
Adaptive Kalman filter for on-line spectroscopic sensor corrections

Daniel Sbarbaro1 and Tor Arne Johansen2 and Jorge Yañez3

Abstract— Spectroscopic sensors provide online information
about the composition and concentration of species in a sample
by analyzing the interaction of light and matter. At the indus-
trial scale, external variables such as temperature, pressure, and
particle size distribution affect spectroscopic measurements.
Thus, conventional quantitative analytical methods that do
not consider these external factors provide poor estimates.
Their effects have to be compensated through proper modeling
and processing to improve the concentration estimation. This
work presents an integrated discrete-time model considering
the process dynamic and a physics-based sensor model. Then,
we suggest a novel application of an adaptive Kalman filter to
provide concentration estimates by correcting external factor
effects. The convergence of the Kalman filter requires the fulfill-
ment of uniform observability (persistent excitation) conditions
for both inputs and external signals. Simulation results illustrate
the modeling methodology and the main characteristics of
the proposed Kalman filter approach for performing online
correction of the spectroscopic sensor signals. The results
show that the proposed adaptive Kalman filter can estimate
concentrations with small error under temperature variations
and measurement noise.

I. INTRODUCTION

Spectroscopic sensors provide information about the com-
position of a sample by measuring and analyzing the ra-
diation emitted, reflected, or transmitted by the sample.
Sensors based on infrared and Raman spectral information
are routinely used at the laboratory and industrial level
for chemical analysis and process monitoring [1], [2]. Cal-
ibration methods usually perform quantitative analysis of
the spectral information to estimate the concentration of a
given component [3]. These methods are data-driven and
they require a set of informative data for calibration. The
calibration process is carried out offline.

In practice, physical interferences can affect the spec-
troscopic measurements. The effects produced by changes
in temperature, viscosity, and optical path are, in general,
nonlinear since they produce both additive and multiplicative
deformations in the shape of the spectral response. For
instance, [4] provides an overview of data-driven approaches
to deal with the temperature influence on Near-infrared (NIR)
spectra. Some of the representative algorithms are: Local
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3Jorge Yañez is with the Department of Analytical and Inorganic Chem-
istry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcin,
Chile jyanez@udec.cl

and Global Partial Least-Squares calibration strategies [5],
Extended Multiplicative Signal Correction, [6], Extended
loading space standardization, and systematic error predic-
tion [7]. On the other hand, several authors have proposed
physics-based spectral methods to account for the physico-
chemical information of the elements [8][9]. These methods
consider parametric models represented by a linear combina-
tion of peak functions having physicochemical significance.
Under this approach, pure components can be modeled as
parametrized peak models, accounting for nonlinear effects
such as peak shifts and deformations. The sensor model
combined with the process model leads to a nonlinear state
space model. Kalman filters is the facto standard estimation
method. Unfortunately, the model considered in this applica-
tion does not have a standard structure, having a nonlinear
output map with unknown parameters. However, following
similar transformations as proposed for a continuous-time
model in [10], the model can be transformed to a standard
form with a time-variant linear output map. The design
of Kalman filters for model structures similar to the one
obtained in this application has been proposed by several
authors. For instance, [11] offers an approach based on two
interconnected Kalman-like filters and [12] one based on
the combination of a Kalman filter and Recursive Least
Square (RLS) algorithm. The main advantage of using a
Kalman filter compared to an adaptive observer, such as
the one presented in [13], is the convergence speed and
the possibility of tuning the filter’s dynamic. Hence, this
work aims to combine parametric models based on a linear
combination of peak functions and adaptive Kalman filter,
as proposed by [12], to estimate the concentrations of com-
ponents based on measurements affected by external factors.
Thus, this contribution extends our previous work [10] to
consider the discrete time implementation, more complex
and realistic sensor models and the presence of disturbances.
The paper’s organization is as follows: Section 2 describes
an integrated discrete-time model for the process dynamic
and the spectroscopic information. Section 3 presents an
adaptive Kalman filter for performing an online calibration.
Section 4 provides a convergence analysis of the filter,
considering the particular model structure to shade light
over the conditions to be fulfilled. Section 5 illustrates the
main characteristics of the proposed approach by addressing
the problem of correcting the effect of an external variable
over the mixture of two components. Conclusions and future
works are summarized in section 6.
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Fig. 1. Basic mixing process

II. PROCESS AND SENSOR MODELING

Let us consider a mixing process where a constant main
stream is mixed with several constituents as depicted in figure
1. The concentrations of each constituent are manipulated by
the speed of peristaltic pumps and the resulting mixture is
monitored by a spectroscopic sensor.

The process dynamic can be represented by a discrete-time
linear model

xj(k + 1) =
nX

l=1

ajlxl(k) +
nuX

l=1

bjlul(k) + !j(k),

j = 1, .., n (1)

wi(k) =
nX

j=1

cijxj(k), i = 1, ...,m

where n is the number of state variables, xj(k) are state
variables, ul(k) input variables, !j(k) are input disturbances,
and wi(k) concentrations. The constants aij , bij , and cij
represent the parameters of the dynamical system. We also
assume that the concentration of each constituent is manip-
ulated by an independent input; i.e. the number of outputs
is equal to the number of inputs, m = nu. This model has
demonstrated to represent adequately this process [14].

Thus, according to the Beer’s law the relationship between
the sensor output y(k,�) 2 R and the constituent concentra-
tions can be written as follows:

y(k,�) =
mX

i=1

wi(k)�i(�, v(k)) +d(�) + ⌫(k,�), (2)

� 2 ⇤, k > 0 (3)

where the variable � 2 ⇤ represents the spectral coordi-
nate as a wavelength value, ⇤ is the wavelength interval,
�i(�, v(k)) is the absorbance of the i � th element, wi(k)
is the corresponding concentration, and d(�) a baseline
offset. The output noise is noted as ⌫(k,�). Notice that the
absorbance of the different components is affected by an
exogenous variable, v(k). This baseline is sensor specific,
and in practice the offset compensation can be performed
off-line and therefore it will not be considered in this work.

Following physics-based methods [8], the absorbance
model of the constituent considers a linear combination of
Ni peaks functions

�i(�, v(k)) =
NiX

j=1

↵ij(v(k)) ij(�) (4)

where  ij(�) are peak functions required to model the
ith element, ↵i(v(k)) models the effect of the exogenous
variable, v(k), over constituent spectra.

Each linear coefficient can be modeled as a linear combi-
nation of known functions

↵ij(v(k))) =

N↵ijX

l=1

�ijl'ijl(v(k)) (5)

where �ijl are the calibrating factors and 'ijl(v(k)) are a
set of N↵ij known functions.

Using equations (4) and (5), the sensor model (2)
can be written as a linear parametrization in terms of
the calibrating factors collected in a single vector ✓ =
[�111 · · ·�mNm N↵mNn

]T as follows

y(k,�) =

NpX

q=1

✓q q(�, v(k))w(k) + ⌫(k,�) (6)

where  q(�, v(k)) is a row vector having the cross prod-
ucts between 'ijl(v(k)) and  ij(�). The vector w(k) =
[w1(k), .., wm(k)]T is the concentration vector. The length
of ✓ is Np =

Pm
i=1

PNi

j=1 N↵ij .
Remark 1: The parametrization given by (6) can also

accommodate models derived from data-driven methods. For
instance, as suggested in [2], the effect of temperature over
the absorbance of each element can be modeled as a second
order polynomial; i.e. �i(�, T (k))

�i(�, T (k)) = �i0(�) + �i1(�)T (k) + �i2(�)T
2(k) (7)

where all the coefficients are wavelength dependent. These
coefficients can be calculated by means of Standard Loading
Space Standardization. However, this model can be casted as
(6), if each wavelength dependent function �ij(�) is modeled
by a parametric model as follows:

�ij(�) =

ljX

l=1

cjl jl(�) j = 0, 1, 2. (8)

where lj is the number of basis functions  jk(�) and
cjk are parameters to be estimated. The basis functions
can be predefined using mathematical considerations or the
available knowledge about the absorbance spectrum of each
constituent; see for instance [15], [16]. ⇤

Summarizing, equations (1) and (6) can be written as

x(k + 1) = Ax(k) +Bu(k) + !(k) (9)
w(k) = Cx(k)

y(k,�) =

NpX

i=1

✓i i(�, v(k))w(k) + ⌫(k,�)

where u(k) = [u1(k), .., unu(k)]
T , x = [x1(k), .., xn(k)]T ,

w(k) = [w1(k), .., wm(k)]T , !(k) = [!1(k), ..,!m(k)]T

and  (�, v(k)) = [ 1(�, v(k)).... Np(�, v(k))]. Matrices
A 2 Rn⇥n, B 2 Rn⇥m, and C 2 Rm⇥n define the
state space model. Since the dynamic equations represent
transportation and mixing dynamics, we also assume that A



is Hurwitz. Equation (9) represents a linear dynamic model
with a nonlinear output map given by the product of the
concentrations, w(k), with the unknown parameters ✓i.

III. ON-LINE CORRECTION

The on-line correction methods estimate the concentra-
tions based on the spectral measurements, even though
they are affected by exogenous variables. Thus the on-line
calibration problem can be defined as follows:

Given the process and sensor models, equations (1) and
(2) respectively, the measurements of u(k), y(k,�) and v(k)
estimate the concentrations w(k) and the calibration factors
✓i.

We consider the unknown parameters to satisfy the fol-
lowing equation

✓i(k + 1) = ✓i(k), i = 1, . . . Np (10)

To obtain time-variant linear model, we define a new
variable qi(k) = ✓i(k)x(k), as in [17] for continuous-time,
then by equation (10) it follows qi(k+1) = ✓i(k)x(k+1).
Thus, multiplying the recursive equation of (9) by ✓i(k) we
obtain:

qi(k + 1) = Aqi(k) + ✓i(k)Bu(k) + ✓i(k)!(k) (11)
y(k,�) =

PNp

i=1 i(�, v(k))Cqi(k) + ⌫(k,�)

Summarizing the dynamical equations and the output map:

x(k + 1) = Ax(k) +Bu(k) + !(k)

✓i(k + 1) = ✓i(k), i = 1, 2, ..Np (12)
qi(k + 1) = Aqi(k) + ✓i(k)Bu(k) + ✓i(k)!(k),

i = 1, 2, ..Np

y(k,�) =

NpX

i=1

 i(�, v(k))Cqi(k) + ⌫(k,�)

Remark 2: Model (12) is an overparametrized time-
variant linear model representation of the non-linear model
(9). The downside of the overparametrized model is that
it neglects some of the relationships between redundant
variables and also the nice state and output noise properties
of the original model become quite complex and correlated.
⇤

By defining p = [x q1 · · ·qNp ]
T and ✓ = [✓1 · · · ✓Np ]

T

the system equations (12) can be written as

p(k + 1) = App(k) +Bpu(k) +B✓(k)✓(k) (13)
y(k,�) = Cp(k,�)p(k)

where

Ap =

2

6664

A 0 0 0
0 A 0 0

0 0
. . . 0

0 0 0 A

3

7775
Bp =

2

6664

B
0
...
0

3

7775
(14)

,

B✓(k) =

2

6664

0 0 0
Bu(k) 0 0

0
. . . 0

0 0 Bu(k)

3

7775
(15)

Cp(k,�) = [0  1(�, v(k))C  2(�, v(k))C · · ·
· · ·  Np(�, v(k))C]

Augmenting the system with the dynamic of the parame-
ters it follows:

p(k + 1)
✓(k + 1)

�
=


Ap B✓(k)
0 I

� 
p(k)
✓(k)

�
+


Bp

0

�
u(k) (16)

For this structure, Zhang [12] proposed an adaptive
Kalman filter with different error dynamics for the state and
parameters. The recursive equations for the estimates are:

p̂(k) = App̂(k � 1) +Bpu(k � 1) +B✓(k)✓̂(k � 1)+

K(k)e(k) +⌥(k)[✓̂(k)� ✓̂(k � 1)]

✓̂(k) = ✓̂(k � 1) + �(k)e(k)

where the estimation error is

e(k) =y(k,�)�Cp(k,�)[App̂(k � 1) +Bpu(k)

+B✓(k)✓̂(k � 1)]

The gain matrix K(k) associated to the state is updated as
follows:

P(k|k � 1) = AP(k � 1|k � 1)AT +Q

⌃(k) = Cp(k,�)P(k|k � 1)Cp(k,�)
T +R

K(k) = P(k|k � 1)Cp(k,�)
T⌃(k)�1

P(k|k) = [I�K(k)Cp(k,�)]P(k|k � 1)

where Q and R in a deterministic setting can be considered
as tuning parameters.

The gain matrix �(k) associated to the parameters update
is given by the following recursive equations:

⌥(k) = [I�K(k)Cp(k,�)]A⌥(k � 1)

+ [I�K(k)Cp(k,�)]B✓(k)

⌦(k) = Cp(k,�)A⌥(k � 1) +Cp(k,�)B✓(k)

⇤(k) = [�⌃(k) + ⌦(k)S(k � 1)⌦(k)T ]�1

�(k) = S(k � 1)⌦(k)T⇤(k)

S(k) =
1

�
S(k � 1)� 1

�
S(k � 1)⌦(k)T⇤(k)⌦(k)S(k � 1)

where ⌥(k) is an auxiliary variable and � 2 (0, 1) is a
forgetting factor.

Remark 3: Tuning matrices Q and R can be challenging
since they can no longer be associated with the noise
covariances due to the model’s overparametrization. Hence,
it is worth exploring approaches without overparametrized
models, such as the Double Kalman Filter (DKF) approach
[18]. As future work, we will explore the DKF discrete
versions [19] and [20] to improve performance and ease filter
tuning. ⇤



IV. CONVERGENCE PROPERTIES

The Kalman filter will converge if a set of key assump-
tions associated to the model structure and persistency of
excitation are satisfied [12]. These conditions depend on the
structure of the system and the input signals; i.e. u(k) and
v(k).

Assumption 1: The pairs [A, Cp(k,�)] and [A, Q] are
uniformly completely observable and controllable, respec-
tively.

The conditions for uniform observability and controlla-
bility are defined in terms of the the controllability and
observability Grammians, which are defined as follows

Wc(k, k0) =
kX

i=k0

�(k, i+ i)QQT�T (k, i+ i) (17)

Wo(k, k0) =
kX

i=k0+1

�T (i, k0)Cp(k,�)
TCp(k,�)�(i, k0)

(18)

where k � k0 � 0 and �(k, k0) = Ak�k0 .
The pair [A, Q] is uniformly completely controlable if

there exits constants cc 2 R and Nc 2 N such that

Wc(k +N, k) � ccI 8k � 0 (19)

Given that A is Hurwitz, it is always possible to chose a
positive definite matrix Q so that the pair [A, Q] satisfies
(19).

On other hand, the pair [A, Cp(k,�)] is uniformly
completely observable if there exits constants co 2 R and
No 2 N such that

Wo(k +No, k) � co�
T (k +No, k)�(k +No, k) 8k � 0

(20)
This condition imposes a constraint over Cp(k,�) so that
(20) is satisfied. Since Cp(k,�) depends on v(k), it means
that the exogenous signal must satisfy a kind of persistently
excitation condition.

Finally, the last assumption deals with the evolution of the
regressor term in (13) and imposes conditions over the input
signal, u(k).

Assumption 2: The input signal u(k) is persistently excit-
ing in the sense that exists an integer h > 1 and a constant
↵ 2 R such that

Ph�1
l=0 ⌦

T (k + l)⌃(k + l)�1⌦(k + l) �
↵Ip 8k � 0

Remark 4: The assumptions 1 and 2 require the input
and external variable satisfy persistent excitation condition;
which in practice is not always satisfied. Recent works have
addressed this problem [21] [22], and the analysis of these
approaches in the context of this application is subject of
future work. ⇤

V. SIMULATION RESULTS

To illustrate the main ideas, we consider a simulated
mixing example of two components. These components are
mixed in a static mixer. A spectrometer measures the spectra
at the output of the mixing stage, as depicted in figure 1,
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Fig. 2. Basis spectral response of each component
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Fig. 3. Spectral response of each component for different temperature.

where F (t) is the main stream, u1(t) and u2(t) are the flow
rates of each component, v(t) is the mixture temperature and
y(t,�) is the measured spectra.

The absorbance of each component is modeled as a linear
combination of two gaussian peaks, depicted in figure 2. The
effects of the external variable v(k) on the absorbance of
each component are depicted in figure 3. These are described
by the following equations:

�1(�, v(k)) = ✓1 11(�) + (✓2 + ✓3v(k)) 12(�) (21)
�2(�, v(k)) = (✓4 + ✓5v(k)) 21(�) + ✓6 22(�)

and illustrated in . Functions  ij(�) represents gaussian
peaks associated to the model of each component i. The
parameters nominal values are ✓ = [2.2 � 1.5 0.15 �
0.02 0.1 2.5]T and the vectors  i(�, v(k)) are:

 1 =


 11(�)

0

�
,  2 =


 12(�)

0

�
,  3 =


 12(�)v(k)

0

�

(22)

 4 =


0

 21(�)

�
,  5 =


0

 21(�)v(k)

�
,  6 =


0

 22(�)

�

The sensor model combines the absorbance spectra of each
components and the temperature effects; i.e.

y(�, v(k)) = w1(k)�1(�, v(k)) + w2(k)�2(�, v(k)) (23)

Using (21) and (22), the sensor model can be written as a
linear in the parameter model as (6).

The dynamics representing the transport and mixing of the
two componentes is modeled by a discrete space state model
obtained for a sampling time of one second and having the

Daniel Sbarbaro
T
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Fig. 4. Input variables and external variable.

following parameters

A =

2

664

1.6 �0.8 0 0
0.8 0 0 0
0 0 1.7 �0.85
0 0 0.85 0

3

775B =

2

664

1 0
0 0
0 1
0 0

3

775 (24)

C =


0 0.05 0 0
0 0 0 0.0265

�
(25)

In addition, zero mean gaussian disturbances are considered
in both the sensor measurements and the state equations, with
variances �⌫ = 0.5 and �! = 0.1 respectively.

The simulations consider a sampling time of one second
and step changes in the flow-rates of each components and
periodic variation in external variable, as shown in figure 4.
The effect of these changes and the disturbances noises over
the spectral response can be seen in figure 5.

The matrix Q = 10�4I was chosen to be a constant
diagonal matrix, P(0) = 103I and � = 0.9. The observer
initial conditions states are set to zero. The estimated con-
centrations converge fast to the real values. However, the
convergence of some parameters are slower, as shown in
figure 6. The variability of the input variables; i.e. flow
rates and temperature, ensures the convergence of estimated
concentrations and parameters, as seen in figure 6. The state
error asymptotically converges to zero as depicted in figure
7.

VI. FINAL REMARKS

The problem of online correction of spectroscopic mea-
surements subject to external perturbations is critical from
a practical point of view. This work has proposed a novel
discrete-time correction algorithm based on an adaptive
Kalman filter for spectroscopic applications. The algorithm
estimates the system states and the calibration factors associ-
ated with the sensor model considering the effects of external

Fig. 5. Spectral response
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Fig. 6. Parameters and concentrations evolution. Solid line: estimated
values

variables. The conditions for ensuring the asymptotic con-
vergence of the Kalman filter imposes persistent excitation
condition over the input and external variables. Since these
conditions for online applications are not always satisfied,
we will analyze relaxed convergence conditions to ensure
the graceful degradation of the filter performance induced
by the lack of excitation. In addition, we will also explore
the use discrete DKF filters to improve performance and ease
filter tuning.

A simple mixing simulation example has illustrated the
sensor model’s principal elements and shown the Kalman
filter’s performance under the presence of zero mean gaus-
sian disturbances. The estimated concentrations converge fast
with small error. These results are encouraging, and we will
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Fig. 7. State error.

further work on their real-time validation in a laboratory
setup for NIR and Raman applications.
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