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ABSTRACT
This work compares different regression models combined
with hybrid modeling to estimate water clarity using hyper-
spectral remote sensing data. The Secchi depth, a proxy of
water clarity, can be modeled using first principles bio-optical
modeling and other static pre-processing steps are used to
generate four different feature sets. The different feature sets
and regression models are evaluated using cross-validation on
the recently published GLORIA dataset, representing a vast
set of Secchi depth measurements from various aquatic envi-
ronments (N = 3914). The best-performing feature genera-
tion and regression model combination can provide promising
Secchi depth inference from hyperspectral data (RMSE =
1.543, APD = 39.419, R2 = 0.636). The study demon-
strates the potential of hyperspectral remote sensing data for
monitoring and managing aquatic ecosystems.

Index Terms— Water Quality, Hyperspectral, Secchi
Depth, Machine Learning, hybrid modeling,

1. INTRODUCTION

Access to comprehensive information on water environments
is increasingly vital for developing informed decisions re-
garding water resource use and development policies [1–5].

The Secchi Depth (SD) is a simple yet effective indicator
of water quality, used to evaluate the long-term dynamics of
water quality, and is one of the measurements that has been
used since the 19th-century. SD is influenced by the amount
of dissolved and particulate matter in the water column, which
plays a critical role in regulating various chemical, physical,
and biological processes [1, 4, 5]. Furthermore, good water
quality is valued for recreational activities, including boating,
swimming, fishing, and sightseeing [3, 4]. Traditional obser-
vations of SD can be accurate but will be limited in terms of
spatial and temporal resolutions. Fortunately, satellite remote
sensing has emerged as a vital alternative tool for synoptic es-
timates of SD, providing large-scale observations and higher
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spatial and temporal resolutions [1, 4, 6]. Remote sensing can
offer a broader perspective and enables us to make informed
decisions that benefit our water resources and those who en-
joy them [4].

The model presented in [1] provides a mechanistic model
for SD retrieval, and the work is demonstrated in [7] to show
how it can be applied to multispectral data from Landsat-8.
Additionally, with considerable success, recent studies have
developed different data-driven approaches to infer SD [2].
Results from [2] indicate that machine learning methods
could have advantages over simple empirical band-ratio-
based and semi-analytical methods. The models in [2] are
shown to outperform the model developed in [1] when tested
with multispectral data from Landsat-8. In [2], the results
indicate that ensemble models, specifically Random Forrest
Regression (RFR), appeared to be more reliable than single
models such as Support Vector Regression (SVR). While
previous work has been focused on multispectral data, with
the publication of the GLORIA Data set [6], it is now pos-
sible to explore the use of hyperspectral data without being
concerned with intermediate processing steps related to atmo-
spheric compensation, data co-location, and other challenges
of similar nature.

In this work, we show how the different approaches work
in a hyperspectral context and show the potential benefits of
feature engineering. It is shown that simple feature engineer-
ing can improve models’ performance across various water
bodies.

Sec. 2 provides details on the physical model, the hy-
brid modeling and feature engineering approach of choice,
a brief introduction to the regression models, the GLORIA
Data Set [6], and model evaluation metrics. In Sec. 3, details
of the data handling can be found alongside some relevant
considerations. Lastly, Sec. 4 provides conclusions and paths
forward.
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2. BACKGROUND AND THEORY

2.1. Secchi Depth Theory

The importance of the SD, zsd, in water quality monitoring is
detailed in Sec. 1. Several algorithms have been developed to
infer the zsd by remote sensing. More recently [1] provided
a new mechanistic model for water visibility. For brevity, the
model can be expressed as

zsd =
1

2.5 ·Kdmin

· ln
(
|0.14−Rrs(λk)|

0.013

)
. (1)

where Kdmin is the minimum diffuse attenuation coefficient
which characterizes the intensity reduction rate of the light as
it passes through water. Rrs(λk) refers to the remote sensing
reflectance at the wavelength of Kdmin . The parameter Kd can
be expressed as

Kd =(1 + 0.005 · sa) · a
+ (1− 0.265 · nw) · 4.259
· (1− 0.52 · e−10.8·a) · bb,

(2)

with details in [8]. Here, sa denotes the solar zenith angle, a
represents the total absorption, nw represents the contribution
from molecular backscattering to total backscattering, and bb
represents the total backscattering coefficient.

2.2. Hybrid Modeling and Regression Models

This approach combines machine learning with physical
modeling to generate new models with more accurate and
precise features while still being simpler to interpret. By
utilizing both paradigms, hybrid models ideally ensure that
mechanistic knowledge is kept in new, more data-driven tech-
niques. Following the definitions from [9], the first principle
model has been used to generate a suitable feature space in
a serial configuration. That is, the results from the phys-
ical model described in Eq. (1) are included as an input
to the data-driven model alongside the spectral reflectance.
The feature engineering is tested against static spectral pre-
processing steps such as log transformation and first-order
gradient. Several combinations were experimented with, and
the interesting ones can be seen in Sec. 3.

SVR is a model that uses the Support Vector Machine al-
gorithm to perform regression [10]. The model is trained us-
ing a set of training data, D = {(xi, yi)}Ni=1, where xi ∈ Rd

is the ith input vector of a given feature set and yi ∈ R is the
corresponding SD for this particular problem. The model is
trained by solving an optimization problem that finds a hyper-
plane, defined by a kernel function, in an n-dimensional space
that maps the feature vector to the target value. See [10, 11],
for further details on SVR theory.

RFR is a regression model that uses the Random Forest
(RF) algorithm to perform regression. This method employs
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Fig. 1: Mean wavelength spectra from [6], where each water
type and water body type has been plotted together.

several decision trees to make predictions. Each decision tree
consists of nodes and branches, with each node representing
a test on a feature or a group of features and each branch rep-
resenting an outcome. The RFR aggregates the results from
individual decision trees to make the best predictions accord-
ing to a given metric or criterion,[10].

2.3. The GLORIA Data Set

This work uses the SD reported in the GLORIA data set [6].
The instruments used for Rrs measurements are typically
used for validating satellite-derived water reflectance with an
above-surface protocol or using floating frames, with more
details in [6]. In Fig. 1, the mean spectra of the data set have
been plotted. The variability in the mean spectra from the
different water and water body classes should be noted. The
spectra have been transformed using a triangular Relative
Spectral Response (RSR) function to have a Full Width at
Half Maximum (FWHM) of 10 nm. This spectral resolution
is more attainable with current and planned satellites with
high-resolution optical imagry [12] and should improve the
approach’s applicability. Only the wavelengths between 443
and 700 nm as this spectral region are included in all the sam-
ples from [6] that had taken simultaneous SD measurements.
The spectral resampling ensures that all SD measurements
can be used as there are variations in spectral coverage of the
sensors used [6]. Furthermore, by looking at this subset, it
is also ensured that only the spectral region that most optical
satellites can cover is used [12]

2.4. Model Evaluation

The metrics Root Mean Square Error (RMSE), Absolute Per-
centage Deviation (APD), and Correlation Score (R2) are
used to evaluate the different models.



RMSE can be computed as

RMSE = (
1

n

n∑
i=1

(yi − ŷi)
2)

1
2 . (3)

where n is the number of observations, yi is the SD value
for the ith observation, and ŷi is the model-inferred SD for
the ith observation. The formula calculates the average of the
squared differences between the inferred and measured values
and then takes the square root of that average.

R2 is a statistical measure representing the proportion of
the variance in the dependent variable explained by the inde-
pendent variables in a regression model. R2 can be calculated
as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4)

A higher R2 value indicates a better fit between the observed
and the inferred data better and that the independent variables
explain a more significant proportion of the variability in the
dependent variable.

APD measures the relative difference between two values,
expressed as a percentage. It is given here as the absolute
error divided by the mean of the observed. This value can be
expressed as

APD =

∣∣∣∣yi − ŷi
ȳ

∣∣∣∣× 100% (5)

3. METHODS AND RESULTS

This section describes the methods used in more detail, as
well as a presentation of the results. A complete overview of
the results with the chosen metrics can be found in Table 1.

This study derived various feature sets. The feature sets
were labeled as

F0 :=
[
Rrs(λ)

]
,

F1 :=
[
log(Rrs(λ)

]
,

F2 :=
[
log(Rrs(λ)), ŷz

]
, and

F3 :=
[
log(Rrs(λ)),∇(log(Rrs(λ))), ŷz

]
,

with Rrs(λ) being the set of wavelength vectors for a
given data point, log(·) being a logarithmic mapping of each
feature, ∇(·) being the first-order gradient along the vector,
and ŷz being the SD derived from Eq. (1).

The correlation between radiometric intensity and the
measured SD at different wavelengths can be seen for some
operators in Fig. 2. A higher absolute correlation value,
closer to 1, indicates that there should be a stronger rela-
tionship between the variables and the target value. The
regression models are expected to perform better with a more
linear relationship. The log(·) compresses the dynamic range
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Fig. 2: The absolute value of the correlation coefficient be-
tween each wavelength of various static preprocessing meth-
ods with the measured SD. The gradient is a first-order gradi-
ent, and for the Log Gradient, the log of the values per wave-
length is derived prior to computing the gradient.

of the data, making it easier to distinguish small changes in
the signal from noise and make multiplicative effects addi-
tive. The ∇(·) measures the rate of change of the signal with
wavelength, which is less affected by baseline shifts than the
raw spectra themselves [13].

The tested regression models rely on these different fea-
ture sets as input. The SVR and RFR models are implemented
using the Python library Scikit-learn [10]. The SVR model
utilizes the Radial Basis Function (RBF) kernel function, the
same as used in [2]. The RFR model is also configured in the
same way as reported [2]. The RFR uses the absolute error
to evaluate the splitting of the decision trees. See Sec. 2.3 for
details on how the GLORIA data set is pre-processed. The
models are evaluated using 10-fold cross-validation when the
number of samples is N ≥ 10. Otherwise, the number of
folds is equal to the number of samples. The results reported
in Table 1 are based on the predicted values on the test fold.
All feature set and regression model combinations are tested
and trained per Water type. For some of the values an over-
flow error is encountered in the exponent of Eq. (2). The as-
sociated variables have been discarded, removing in total 20
variables, less than 1 percent. In Fig. 3 three selected models
are plotted for the entire data set.

4. DISCUSSION AND CONCLUSIONS

This section examines the impact of various feature sets and
regression models on the estimation of SD using hyperspec-
tral reflectance. The choice of regression models is based
on [2] and alternative models that were tested through trial
and error. While [2] demonstrates consistent and favorable
performance with RFR, it is essential to note that [2] did not
explore significant feature engineering beyond band-ratios,
which corresponds to F0 here, more or less. In contrast, our
feature engineering approach led to significant improvements,



Table 1: RMSE, APD and R2 values for all subsets of the data for all the different models. An average and a weighed average,
with the number of samples as weights, is also computed.

Water type Metric Z. Lee SVR F0 SVR F1 SVR F2 SVR F3 RFR F0 RFR F1 RFR F2 RFR F3 N

All RMSE 2.986 1.779 1.636 1.639 1.627 1.711 1.715 1.676 1.593 3914
Lake RMSE 3.383 1.913 1.928 1.888 1.889 2.048 2.110 2.112 2.189 2001
Stability-1 RMSE 2.846 1.077 1.084 1.151 1.125 1.333 1.230 1.302 1.040 1410
Stability-2 RMSE 3.743 1.303 0.889 0.902 1.040 0.946 0.899 1.173 0.830 1172
Chla RMSE 1.423 1.507 1.384 1.387 1.429 1.552 1.563 1.573 1.580 915
Stability-3 RMSE 1.620 1.920 1.654 1.612 1.569 1.713 1.564 1.521 1.401 627
TSS RMSE 3.152 2.658 2.429 2.529 2.716 2.397 2.403 2.239 2.447 407
Clear RMSE 7.102 2.182 2.095 2.101 2.118 2.279 2.248 2.256 2.656 327
Chla + CDOM RMSE 1.257 1.553 1.206 1.209 1.372 1.421 1.403 1.326 1.259 315
Coastal Ocean RMSE 0.674 1.392 1.376 1.435 1.333 1.328 1.353 1.326 1.071 63
River RMSE 0.483 0.221 0.220 0.242 0.257 0.199 0.202 0.208 0.177 43
Estuary RMSE 1.009 1.532 1.285 1.443 1.659 1.210 1.229 1.250 1.001 22
CDOM RMSE 0.531 0.502 0.542 0.561 0.715 0.604 0.607 0.566 0.608 13
Turbid Coastal RMSE 0.865 2.356 2.348 2.256 2.300 2.397 2.370 2.371 2.324 5
Other RMSE 0.539 1.117 0.953 0.954 0.909 0.980 0.946 0.886 0.903 4
W-Avg. RMSE 2.961 1.678 1.543 1.549 1.569 1.654 1.640 1.655 1.580 -
Avg. RMSE 2.107 1.534 1.402 1.421 1.471 1.475 1.456 1.452 1.405 -

All APD 47.258 41.318 34.836 35.389 35.970 39.716 40.919 40.446 37.462 3914
Lake APD 61.991 51.184 46.292 46.142 48.723 55.586 59.410 60.490 60.781 2001
Stability-1 APD 99.937 60.467 60.881 64.788 62.892 71.339 67.623 70.944 58.865 1410
Stability-2 APD 42.417 33.698 24.629 25.256 28.088 26.725 25.922 29.814 24.682 1172
Chla APD 46.917 43.020 33.123 33.588 38.483 46.169 48.150 48.518 49.980 915
Stability-3 APD 23.106 25.090 20.184 20.176 19.817 20.992 20.489 20.387 18.830 627
TSS APD 86.081 73.259 61.470 68.181 77.430 66.042 66.427 62.585 65.989 407
Clear APD 108.499 61.851 51.046 53.570 58.740 69.204 69.562 71.453 80.982 327
Chla + CDOM APD 37.921 43.010 25.974 29.016 36.856 32.436 32.540 31.668 29.369 315
Coastal Ocean APD 52.432 60.253 57.668 61.683 62.845 53.196 54.844 54.668 49.990 63
River APD 50.575 22.521 22.719 23.490 25.857 18.720 18.325 20.464 16.522 43
Estuary APD 33.682 45.470 39.745 42.882 48.837 43.519 45.589 44.381 34.770 22
CDOM APD 30.235 26.196 29.638 32.710 41.180 31.242 30.811 29.913 33.335 13
Turbid Coastal APD 14.128 29.306 28.597 27.836 28.765 30.190 30.946 31.145 28.368 5
Other APD 61.832 131.938 109.163 109.196 97.342 112.803 108.941 94.579 111.236 4
W-Avg. APD 57.523 45.770 39.419 40.614 42.451 46.258 46.978 47.743 45.021 -
Avg. APD 53.134 49.905 43.064 44.927 47.455 47.859 48.033 47.430 46.744 -

All R2 0.441 0.681 0.739 0.738 0.743 0.715 0.712 0.727 0.756 3914
Lake R2 0.236 0.454 0.480 0.503 0.491 0.451 0.429 0.402 0.407 2001
Stability-1 R2 0.169 0.274 0.345 0.268 0.214 0.291 0.329 0.288 0.468 1410
Stability-2 R2 0.297 0.785 0.902 0.897 0.861 0.882 0.894 0.822 0.911 1172
Chla R2 0.670 0.645 0.697 0.696 0.678 0.603 0.599 0.596 0.599 915
Stability-3 R2 0.815 0.754 0.811 0.821 0.834 0.792 0.826 0.837 0.863 627
TSS R2 0.334 0.274 0.460 0.380 0.218 0.484 0.488 0.561 0.475 407
Clear R2 -0.001 0.245 0.326 0.326 0.379 0.140 0.192 0.198 0.101 327
Chla + CDOM R2 0.756 0.630 0.777 0.775 0.718 0.686 0.689 0.721 0.751 315
Coastal Ocean R2 0.924 0.211 0.267 0.133 0.455 0.374 0.329 0.388 0.689 63
River R2 0.488 0.649 0.651 0.562 0.519 0.732 0.722 0.702 0.791 43
Estuary R2 0.837 0.463 0.758 0.629 0.494 0.667 0.652 0.638 0.813 22
CDOM R2 0.672 0.653 0.580 0.530 -0.151 0.454 0.452 0.524 0.417 13
Turbid Coastal R2 0.959 -0.654 -0.531 0.009 -0.447 -0.530 -0.384 -0.405 -0.252 5
Other R2 0.777 -0.331 -0.358 -0.356 -0.307 -0.303 -0.325 -0.291 -0.694 4
W-Avg. R2 0.391 0.568 0.636 0.626 0.609 0.598 0.602 0.595 0.636 -
Avg. R2 0.558 0.382 0.460 0.461 0.380 0.429 0.440 0.447 0.473 -
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Fig. 3: The best performing combination of model and feature set alongside Eq. (1) for All variables. The variables labeled in
the GLORIA data set to have an optical stability of 1, 2 and 3 have been colored blue, orange, and gray, respectively.

as shown in Table 1. The [1] model works well in specific
scenarios, especially optically simple waters, and were few
variables are available from [6]. The SVR is best suited for
continuous data with fewer features, while the RFR handle a
large set of features better and is more appropriate for model-
ing non-linear relationships[10]. A notable improvement can
be seen in Table 1 for RFR when trained with the F3 feature
set. Overall, the SVR with F1, and RFR with F3 perform best.
The differences between the models’ performance are lim-
ited. However, the performance from SVR and RFR is closer
than what was observed in [2], where RFR was reported to be
more favorable. From this, it is clear that significant attention
should be focused on pre-processing in addition to model se-
lection. Moving forward, while this work tested a single con-
figuration for hybrid models, it could be beneficial to explore
other configurations. This work did not investigate feature se-
lection, which could improve the models’ performance. The
work should also be extended by exploring other basis models
than the [1], e.g., the Forel-Ule-Scale [5]. The variability in
performance seen in Table 1 per Water type, and Fig. 1, sug-
gests that local adaptations could be beneficial. Here, little
emphasis has been put on scrutinizing of the measured SD,
but this is also a source of error. Finally, the continuation of
this work should adapt the data set and models to be used with
data from operational satellites.
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