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Abstract: An easy-to-implement method for nonlinear state estimation for ill-conditioned systems is 
proposed. By propagating standard deviations and correlations instead of the covariance in the unscented 
Kalman filter (UKF), the condition numbers of relevant matrices are reduced. The reduction in the condition 
number is related to the scaling of the problem. Hence, what we propose is a normalization method that 
acts as an “auto-scaler”. Compared to other methods in state estimation for ill-conditioned systems, our 
proposed method factors the covariance matrix into physically meaningful statistics which can be used to 
check for filter divergence online. The method is compared to a standard UKF in a case study and shows a 
significant reduction in the condition number. 
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1 INTRODUCTION 

The task of a state estimator is to infer the true state of a 
system, 𝒙𝒙(𝑡𝑡𝑘𝑘) = 𝒙𝒙𝑘𝑘, by combining measurements with a 
process model. The Kalman filter (KF) is the minimum 
variance estimator for linear systems. It estimates the mean 
and covariance of the state distribution for every timestep. For 
nonlinear systems, approximate solutions such as the Extended 
KF (EKF) or Unscented KF (UKF) can be used. The UKF is 
theoretically more accurate than the EKF but can have stability 
issues when applied to high-dimensional systems  (Yuanxin et 
al., 2006).  

It can be difficult to make the KF to work in practice. A 
standard assumption in the theory is infinite numerical 
accuracy (no round-off errors in computer implementations). 
However, the presence of round-off errors in computers can 
have a significant effect, as reported by Grewal and Andrews 
(2014, p. 360), who note that “the effects of roundoff may 
thought to be minor, but overlooking them could be a major 
blunder”. This paper focuses on issues related to numerical 
accuracy for nonlinear systems, specifically the UKF. 

For linear systems, this issue has been addressed by Simon 
(2006, p. 140) who recommends to use “some form of square-
root filtering” to improve the numerical properties of the KF. 
The idea behind the different forms of square-root filtering is 
to decompose the covariance matrix into factors which are less 
sensitive to round-off errors. A square-root filter typically 
decomposes the covariance matrix into triangular Cholesky 
factors. See Grewal and Andrews (2014, ch. 7) for a good 
overview of numerically stable methods for KF 
implementations for linear systems. 

 
1 The authors acknowledge financial support from the Norwegian Research Council, SUBPRO, grant 
number: 237893. Code for the case study is available on: https://github.com/Process-Optimization-and-
Control/normalizedUKF 

The first square-root filter for the nonlinear UKF (SR-UKF) 
was of van der Merwe and Wan (2001). It is based on the one-
rank Cholesky update procedure. The negative update 
(downdate) might however destroy the positive definiteness of 
the Cholesky factor. Kulikova and Kulikov (2020) avoid this 
issue in the Cholesky downdate by using a 𝐽𝐽-orthogonal 
transformation. De Vivo et al. (2017) take another angle: they 
developed a SR-UKF based on the Joseph stabilized version of 
the covariance matrix update formula. The Joseph stabilized 
form is known from linear KF theory to be more stable and 
robust than the normal covariance update formula (Simon, 
2006, p. 129).  

All the above-mentioned forms of square-root filters use 
matrix decompositions which have no immediate physical 
meaning. Grewal and Kain (2010) noted that one can 
propagate standard deviations, 𝝈𝝈, and correlation matrices, 𝝆𝝆, 
instead of covariance matrices. This gives desirable numerical 
properties since the coefficients in the correlation matrix are 
bounded between (−1,1], and the standard deviation is the 
square-root of variance. They named their filter the sigmaRho 
KF, and it is restricted to linear systems.  Grewal and Andrews 
(2014, p. 416) briefly mention that the sigmaRho may be well 
suited for the UKF, but we have not found any mentions or 
reports of application about it in the literature. 

This paper reports the first implementation of such a filter to 
nonlinear systems. To avoid confusion with sigma-points in 
the UKF literature, we call the filter the Normalized UKF 
(NUKF), as the correlation matrix is a normalized covariance 
matrix. Our proposed method has the following desirable 
properties:  
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1 INTRODUCTION 

The task of a state estimator is to infer the true state of a 
system, 𝒙𝒙(𝑡𝑡𝑘𝑘) = 𝒙𝒙𝑘𝑘, by combining measurements with a 
process model. The Kalman filter (KF) is the minimum 
variance estimator for linear systems. It estimates the mean 
and covariance of the state distribution for every timestep. For 
nonlinear systems, approximate solutions such as the Extended 
KF (EKF) or Unscented KF (UKF) can be used. The UKF is 
theoretically more accurate than the EKF but can have stability 
issues when applied to high-dimensional systems  (Yuanxin et 
al., 2006).  

It can be difficult to make the KF to work in practice. A 
standard assumption in the theory is infinite numerical 
accuracy (no round-off errors in computer implementations). 
However, the presence of round-off errors in computers can 
have a significant effect, as reported by Grewal and Andrews 
(2014, p. 360), who note that “the effects of roundoff may 
thought to be minor, but overlooking them could be a major 
blunder”. This paper focuses on issues related to numerical 
accuracy for nonlinear systems, specifically the UKF. 

For linear systems, this issue has been addressed by Simon 
(2006, p. 140) who recommends to use “some form of square-
root filtering” to improve the numerical properties of the KF. 
The idea behind the different forms of square-root filtering is 
to decompose the covariance matrix into factors which are less 
sensitive to round-off errors. A square-root filter typically 
decomposes the covariance matrix into triangular Cholesky 
factors. See Grewal and Andrews (2014, ch. 7) for a good 
overview of numerically stable methods for KF 
implementations for linear systems. 

 
1 The authors acknowledge financial support from the Norwegian Research Council, SUBPRO, grant 
number: 237893. Code for the case study is available on: https://github.com/Process-Optimization-and-
Control/normalizedUKF 

The first square-root filter for the nonlinear UKF (SR-UKF) 
was of van der Merwe and Wan (2001). It is based on the one-
rank Cholesky update procedure. The negative update 
(downdate) might however destroy the positive definiteness of 
the Cholesky factor. Kulikova and Kulikov (2020) avoid this 
issue in the Cholesky downdate by using a 𝐽𝐽-orthogonal 
transformation. De Vivo et al. (2017) take another angle: they 
developed a SR-UKF based on the Joseph stabilized version of 
the covariance matrix update formula. The Joseph stabilized 
form is known from linear KF theory to be more stable and 
robust than the normal covariance update formula (Simon, 
2006, p. 129).  

All the above-mentioned forms of square-root filters use 
matrix decompositions which have no immediate physical 
meaning. Grewal and Kain (2010) noted that one can 
propagate standard deviations, 𝝈𝝈, and correlation matrices, 𝝆𝝆, 
instead of covariance matrices. This gives desirable numerical 
properties since the coefficients in the correlation matrix are 
bounded between (−1,1], and the standard deviation is the 
square-root of variance. They named their filter the sigmaRho 
KF, and it is restricted to linear systems.  Grewal and Andrews 
(2014, p. 416) briefly mention that the sigmaRho may be well 
suited for the UKF, but we have not found any mentions or 
reports of application about it in the literature. 

This paper reports the first implementation of such a filter to 
nonlinear systems. To avoid confusion with sigma-points in 
the UKF literature, we call the filter the Normalized UKF 
(NUKF), as the correlation matrix is a normalized covariance 
matrix. Our proposed method has the following desirable 
properties:  
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1. Condition numbers of relevant matrices are reduced. 
The reduction is case dependent as the method works 
as an “auto-scaler”. 

2. The method is easy to implement and require only 
standard numerical libraries. E.g. cholupdate() 
required for the SR-UKF in van der Merwe and Wan 
(2001) exists in Matlab, but not in Scipy (as of 
version 1.9.1). 

3. Any matrix square-root can be used. We are not 
restricted to use Cholesky decompositions. 

From a user perspective, our proposed method has further 
advantages, namely that i) it is simple to understand 
decomposition of covariance into standard deviation and 
correlation and ii) standard deviations and correlations have 
physical interpretation, while e.g. Cholesky factors do not.  

The article is structured as follows: In section 2 we present the 
background theory about unscented transformation (UT), the 
standard UKF  and a discussion about the choice of matrix 
square-roots for the UT. Section 3 contains the proposed 
methods: normalized matrix square-roots, normalized UT 
(NUT) and the NUKF. Section 4 contains two case studies: 
one where we show the increased numerical accuracy of the 
normalized Cholesky factorization, and the second a state 
estimation problem from the literature where we demonstrate 
the NUKF. 

2 BACKGROUND 

2.1 Unscented transformation (UT) 

The UT approximates the mean and covariance of a random 
variable 𝒚𝒚 = 𝒈𝒈(𝒙𝒙). The random variable 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥  has a known 
mean and covariance, 𝒙𝒙, 𝑷𝑷𝒙𝒙, the function 𝒈𝒈: ℝ𝑛𝑛𝑥𝑥 → ℝ𝑛𝑛𝑦𝑦 and 
the random variable 𝒚𝒚 ∈ ℝ𝑛𝑛𝑦𝑦. The UT is based on 
deterministically sampling a minimal set of points with 
corresponding weights, 𝝌𝝌(𝑖𝑖), 𝑊𝑊𝑚𝑚

(𝑖𝑖), 𝑊𝑊𝑐𝑐
(𝑖𝑖), such that the weighted 

points capture the mean and covariance of 𝒙𝒙. The sample-
points 𝝌𝝌(𝑖𝑖) ∈ ℝ𝑛𝑛𝑥𝑥  are called sigma-points and the number of 
sigma points are typically 2𝑛𝑛𝑥𝑥 + 1. There are various methods 
to generate sigma-points; here we consider the scaled UT 
described in Merwe and Wan (2004, ch. 3.2.2). The sigma-
points and weights are calculated as below, where the indices 
𝑖𝑖 goes from 𝑖𝑖 = 1, … , 𝑛𝑛𝑥𝑥. 

𝝌̃𝝌 = √(𝑛𝑛𝑥𝑥 + 𝜆𝜆)𝑷𝑷𝒙𝒙 = √𝑛𝑛𝑥𝑥 + 𝜆𝜆√𝑷𝑷𝒙𝒙   

𝝌𝝌(0) = 𝒙𝒙 𝑊𝑊𝑚𝑚
(0) = 𝜆𝜆/(𝑛𝑛𝑥𝑥 + 𝜆𝜆)  

𝝌𝝌(𝑖𝑖) = 𝒙𝒙 + (𝝌̃𝝌)𝑖𝑖 𝑊𝑊𝑚𝑚
(𝑖𝑖) = 1/2(𝑛𝑛𝑥𝑥 + 𝜆𝜆) (1) 

𝝌𝝌(𝑖𝑖+𝑛𝑛𝑥𝑥) = 𝒙𝒙 − (𝝌̃𝝌)𝑖𝑖 𝑊𝑊𝑚𝑚
(𝑖𝑖+𝑛𝑛𝑥𝑥) = 1/2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)  

Here,  (𝝌̃𝝌)𝑖𝑖 means the 𝑖𝑖-th column in  𝝌̃𝝌, 𝑊𝑊𝑐𝑐
(𝑗𝑗) = 𝑊𝑊𝑚𝑚

(𝑗𝑗), 𝑗𝑗 =
1, … ,2𝑛𝑛𝑥𝑥 and 𝑊𝑊𝑐𝑐

(0) = 𝑊𝑊𝑚𝑚
(0) + 1 − 𝛼𝛼2 + 𝛽𝛽 for this algorithm. 

Here, 𝜆𝜆 = 𝛼𝛼2(𝑛𝑛𝑥𝑥 + 𝜅𝜅) − 𝑛𝑛𝑥𝑥 and 𝛼𝛼, 𝛽𝛽, 𝜅𝜅 are tuning/scaling 
parameters. See Merwe and Wan (2004, ch. 3.2.2) for a more 
detailed discussion of these parameters.  

The mean and covariance of 𝒙𝒙 is retained by the sigma-points 
and weights as shown below:  

𝔼𝔼[𝒙𝒙] = 𝒙𝒙 = ∑ 𝑊𝑊𝑚𝑚
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝝌𝝌(𝑖𝑖)  (2) 

𝑷𝑷𝒙𝒙 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝝌𝝌(𝑖𝑖) − 𝒙𝒙)(… )𝑇𝑇  

= 𝑊𝑊𝑐𝑐
(1) ∑ (√𝑛𝑛𝑥𝑥 + 𝜆𝜆(√𝑷𝑷𝒙𝒙)𝑖𝑖)

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(… )𝑇𝑇

+ (−√𝑛𝑛𝑥𝑥 + 𝜆𝜆(√𝑷𝑷𝒙𝒙)𝑖𝑖) (… )𝑇𝑇 

= 2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)𝑊𝑊𝑐𝑐
(1) ∑ (√𝑷𝑷𝑥𝑥)𝑖𝑖

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(√𝑷𝑷𝑥𝑥)𝑖𝑖

𝑇𝑇 

= ∑ (√𝑷𝑷𝒙𝒙)𝑖𝑖

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(√𝑷𝑷𝒙𝒙)𝑖𝑖

𝑇𝑇 = √𝑷𝑷𝒙𝒙(√𝑷𝑷𝒙𝒙)𝑇𝑇, (3) 

where we have used that i) 𝝌𝝌(0) = 𝒙𝒙 ii) 𝑊𝑊𝑐𝑐
(1) = 𝑊𝑊𝑐𝑐

(2) = ⋯ =
𝑊𝑊𝑐𝑐

(2𝑛𝑛𝑥𝑥) = 1/(2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)) iii) scalar-matrix multiplication is 
commutative and iv) computed matrix-matrix multiplication 
as a sum of outer products. The notation (𝒙𝒙)(… )𝑇𝑇 means 
(𝒙𝒙)(𝒙𝒙)𝑇𝑇 . The matrix-square root in (3) is further discussed in 
section 2.3.  
The UT approximates the mean and covariance of the 
output, 𝒚̂𝒚, 𝑷𝑷𝒚𝒚, by a 3rd order Taylor series accuracy given that 
the distribution 𝒙𝒙 is symmetrical (Simon, 2006). Also, the 
cross-covariance between 𝒙𝒙 and 𝒚𝒚, 𝑷𝑷𝒙𝒙𝒙𝒙, are given by:  
 

𝓨𝓨(𝑖𝑖) = 𝒈𝒈(𝝌𝝌(𝑖𝑖)) (4) 

𝔼𝔼[𝒚𝒚] = 𝒚̂𝒚 = ∑ 𝑊𝑊𝑚𝑚
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝓨𝓨(𝑖𝑖) 

(5) 

𝑷𝑷𝒚𝒚 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)(… )𝑇𝑇 

(6) 

𝑷𝑷𝑥𝑥𝑥𝑥 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝝌𝝌𝑘𝑘

(𝑖𝑖) − 𝒙𝒙)(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)𝑇𝑇  (7) 

2.2 The unscented Kalman filter 

We briefly present some UKF concepts used in this work. For 
thorough background theory we refer to Simon (2006). 
Consider the nonlinear discrete system with additive noise 
given by: 

𝒙𝒙𝑘𝑘+1 = 𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝒘𝒘𝑘𝑘  (8) 

𝒚𝒚𝑘𝑘 = 𝒉𝒉(𝒙𝒙𝑘𝑘) + 𝒗𝒗𝑘𝑘, (9) 

where 𝒘𝒘𝑘𝑘 ∼ (𝟎𝟎, 𝑸𝑸𝑘𝑘) is the zero-mean process noise with 
covariance 𝑸𝑸𝑘𝑘, and 𝒗𝒗𝑘𝑘 ∼ (𝟎𝟎, 𝑹𝑹𝑘𝑘) is the measurement noise. 
The subscript 𝑘𝑘 denotes the discrete time. The states are given 
by 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥  and the measurements are given by 𝒚𝒚 ∈ ℝ𝑛𝑛𝑦𝑦. 
Noise which enters 𝒇𝒇(⋅) or 𝒉𝒉(⋅) nonlinearly can be 
approximated as additive noise by the framework of 
parametric uncertainty described in Krog and Jäschke (2022).  

Let 𝒙𝒙𝑘𝑘
+, 𝑷𝑷𝑘𝑘

+ be the a posteriori estimates of the mean and 
covariance from the UKF, and 𝒙𝒙𝑘𝑘

−, 𝑷𝑷𝑘𝑘
− be the a priori estimates. 

A priori estimates have only used the state equations for 
predicting the state at time 𝑘𝑘, while a posteriori estimates have 
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1. Condition numbers of relevant matrices are reduced. 
The reduction is case dependent as the method works 
as an “auto-scaler”. 

2. The method is easy to implement and require only 
standard numerical libraries. E.g. cholupdate() 
required for the SR-UKF in van der Merwe and Wan 
(2001) exists in Matlab, but not in Scipy (as of 
version 1.9.1). 

3. Any matrix square-root can be used. We are not 
restricted to use Cholesky decompositions. 

From a user perspective, our proposed method has further 
advantages, namely that i) it is simple to understand 
decomposition of covariance into standard deviation and 
correlation and ii) standard deviations and correlations have 
physical interpretation, while e.g. Cholesky factors do not.  

The article is structured as follows: In section 2 we present the 
background theory about unscented transformation (UT), the 
standard UKF  and a discussion about the choice of matrix 
square-roots for the UT. Section 3 contains the proposed 
methods: normalized matrix square-roots, normalized UT 
(NUT) and the NUKF. Section 4 contains two case studies: 
one where we show the increased numerical accuracy of the 
normalized Cholesky factorization, and the second a state 
estimation problem from the literature where we demonstrate 
the NUKF. 

2 BACKGROUND 

2.1 Unscented transformation (UT) 

The UT approximates the mean and covariance of a random 
variable 𝒚𝒚 = 𝒈𝒈(𝒙𝒙). The random variable 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥  has a known 
mean and covariance, 𝒙𝒙, 𝑷𝑷𝒙𝒙, the function 𝒈𝒈: ℝ𝑛𝑛𝑥𝑥 → ℝ𝑛𝑛𝑦𝑦 and 
the random variable 𝒚𝒚 ∈ ℝ𝑛𝑛𝑦𝑦. The UT is based on 
deterministically sampling a minimal set of points with 
corresponding weights, 𝝌𝝌(𝑖𝑖), 𝑊𝑊𝑚𝑚

(𝑖𝑖), 𝑊𝑊𝑐𝑐
(𝑖𝑖), such that the weighted 

points capture the mean and covariance of 𝒙𝒙. The sample-
points 𝝌𝝌(𝑖𝑖) ∈ ℝ𝑛𝑛𝑥𝑥  are called sigma-points and the number of 
sigma points are typically 2𝑛𝑛𝑥𝑥 + 1. There are various methods 
to generate sigma-points; here we consider the scaled UT 
described in Merwe and Wan (2004, ch. 3.2.2). The sigma-
points and weights are calculated as below, where the indices 
𝑖𝑖 goes from 𝑖𝑖 = 1, … , 𝑛𝑛𝑥𝑥. 

𝝌̃𝝌 = √(𝑛𝑛𝑥𝑥 + 𝜆𝜆)𝑷𝑷𝒙𝒙 = √𝑛𝑛𝑥𝑥 + 𝜆𝜆√𝑷𝑷𝒙𝒙   

𝝌𝝌(0) = 𝒙𝒙 𝑊𝑊𝑚𝑚
(0) = 𝜆𝜆/(𝑛𝑛𝑥𝑥 + 𝜆𝜆)  

𝝌𝝌(𝑖𝑖) = 𝒙𝒙 + (𝝌̃𝝌)𝑖𝑖 𝑊𝑊𝑚𝑚
(𝑖𝑖) = 1/2(𝑛𝑛𝑥𝑥 + 𝜆𝜆) (1) 

𝝌𝝌(𝑖𝑖+𝑛𝑛𝑥𝑥) = 𝒙𝒙 − (𝝌̃𝝌)𝑖𝑖 𝑊𝑊𝑚𝑚
(𝑖𝑖+𝑛𝑛𝑥𝑥) = 1/2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)  

Here,  (𝝌̃𝝌)𝑖𝑖 means the 𝑖𝑖-th column in  𝝌̃𝝌, 𝑊𝑊𝑐𝑐
(𝑗𝑗) = 𝑊𝑊𝑚𝑚

(𝑗𝑗), 𝑗𝑗 =
1, … ,2𝑛𝑛𝑥𝑥 and 𝑊𝑊𝑐𝑐

(0) = 𝑊𝑊𝑚𝑚
(0) + 1 − 𝛼𝛼2 + 𝛽𝛽 for this algorithm. 

Here, 𝜆𝜆 = 𝛼𝛼2(𝑛𝑛𝑥𝑥 + 𝜅𝜅) − 𝑛𝑛𝑥𝑥 and 𝛼𝛼, 𝛽𝛽, 𝜅𝜅 are tuning/scaling 
parameters. See Merwe and Wan (2004, ch. 3.2.2) for a more 
detailed discussion of these parameters.  

The mean and covariance of 𝒙𝒙 is retained by the sigma-points 
and weights as shown below:  

𝔼𝔼[𝒙𝒙] = 𝒙𝒙 = ∑ 𝑊𝑊𝑚𝑚
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝝌𝝌(𝑖𝑖)  (2) 

𝑷𝑷𝒙𝒙 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝝌𝝌(𝑖𝑖) − 𝒙𝒙)(… )𝑇𝑇  

= 𝑊𝑊𝑐𝑐
(1) ∑ (√𝑛𝑛𝑥𝑥 + 𝜆𝜆(√𝑷𝑷𝒙𝒙)𝑖𝑖)

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(… )𝑇𝑇

+ (−√𝑛𝑛𝑥𝑥 + 𝜆𝜆(√𝑷𝑷𝒙𝒙)𝑖𝑖) (… )𝑇𝑇 

= 2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)𝑊𝑊𝑐𝑐
(1) ∑ (√𝑷𝑷𝑥𝑥)𝑖𝑖

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(√𝑷𝑷𝑥𝑥)𝑖𝑖

𝑇𝑇 

= ∑ (√𝑷𝑷𝒙𝒙)𝑖𝑖

𝑛𝑛𝑥𝑥

𝑖𝑖=1
(√𝑷𝑷𝒙𝒙)𝑖𝑖

𝑇𝑇 = √𝑷𝑷𝒙𝒙(√𝑷𝑷𝒙𝒙)𝑇𝑇, (3) 

where we have used that i) 𝝌𝝌(0) = 𝒙𝒙 ii) 𝑊𝑊𝑐𝑐
(1) = 𝑊𝑊𝑐𝑐

(2) = ⋯ =
𝑊𝑊𝑐𝑐

(2𝑛𝑛𝑥𝑥) = 1/(2(𝑛𝑛𝑥𝑥 + 𝜆𝜆)) iii) scalar-matrix multiplication is 
commutative and iv) computed matrix-matrix multiplication 
as a sum of outer products. The notation (𝒙𝒙)(… )𝑇𝑇 means 
(𝒙𝒙)(𝒙𝒙)𝑇𝑇 . The matrix-square root in (3) is further discussed in 
section 2.3.  
The UT approximates the mean and covariance of the 
output, 𝒚̂𝒚, 𝑷𝑷𝒚𝒚, by a 3rd order Taylor series accuracy given that 
the distribution 𝒙𝒙 is symmetrical (Simon, 2006). Also, the 
cross-covariance between 𝒙𝒙 and 𝒚𝒚, 𝑷𝑷𝒙𝒙𝒙𝒙, are given by:  
 

𝓨𝓨(𝑖𝑖) = 𝒈𝒈(𝝌𝝌(𝑖𝑖)) (4) 

𝔼𝔼[𝒚𝒚] = 𝒚̂𝒚 = ∑ 𝑊𝑊𝑚𝑚
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝓨𝓨(𝑖𝑖) 

(5) 

𝑷𝑷𝒚𝒚 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)(… )𝑇𝑇 

(6) 

𝑷𝑷𝑥𝑥𝑥𝑥 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝝌𝝌𝑘𝑘

(𝑖𝑖) − 𝒙𝒙)(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)𝑇𝑇  (7) 

2.2 The unscented Kalman filter 

We briefly present some UKF concepts used in this work. For 
thorough background theory we refer to Simon (2006). 
Consider the nonlinear discrete system with additive noise 
given by: 

𝒙𝒙𝑘𝑘+1 = 𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝒘𝒘𝑘𝑘  (8) 

𝒚𝒚𝑘𝑘 = 𝒉𝒉(𝒙𝒙𝑘𝑘) + 𝒗𝒗𝑘𝑘, (9) 

where 𝒘𝒘𝑘𝑘 ∼ (𝟎𝟎, 𝑸𝑸𝑘𝑘) is the zero-mean process noise with 
covariance 𝑸𝑸𝑘𝑘, and 𝒗𝒗𝑘𝑘 ∼ (𝟎𝟎, 𝑹𝑹𝑘𝑘) is the measurement noise. 
The subscript 𝑘𝑘 denotes the discrete time. The states are given 
by 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥  and the measurements are given by 𝒚𝒚 ∈ ℝ𝑛𝑛𝑦𝑦. 
Noise which enters 𝒇𝒇(⋅) or 𝒉𝒉(⋅) nonlinearly can be 
approximated as additive noise by the framework of 
parametric uncertainty described in Krog and Jäschke (2022).  

Let 𝒙𝒙𝑘𝑘
+, 𝑷𝑷𝑘𝑘

+ be the a posteriori estimates of the mean and 
covariance from the UKF, and 𝒙𝒙𝑘𝑘

−, 𝑷𝑷𝑘𝑘
− be the a priori estimates. 

A priori estimates have only used the state equations for 
predicting the state at time 𝑘𝑘, while a posteriori estimates have 

also processed the measurements at time 𝑘𝑘. At every time step 
𝑘𝑘, the estimate of the state and covariance are propagated 
through (8) by the UT, and the noise covariance 𝑸𝑸𝑘𝑘 is added 
to obtain the a priori estimates 𝒙𝒙𝑘𝑘

− and 𝑷𝑷𝑘𝑘
−. A new set of sigma 

points and weights based on  𝒙𝒙𝑘𝑘
−, 𝑷𝑷𝑘𝑘

− are then made. These 
points are propagated through (9) to obtain the estimate of the 
predicted measurement 𝒚̂𝒚𝑘𝑘, its covariance 𝑷𝑷𝑦𝑦 and the cross-
covariance 𝑷𝑷𝑥𝑥𝑥𝑥  between 𝒙𝒙𝑘𝑘

− and 𝒚𝒚𝑘𝑘, see (4)-(7). The 
measurement noise 𝑹𝑹𝑘𝑘 is added to 𝑷𝑷𝒚𝒚. The Kalman gain 𝑲𝑲𝑘𝑘 
and the posterior estimates 𝒙𝒙𝑘𝑘

+, 𝑷𝑷𝑘𝑘
+ are calculated based on the 

actual measurement 𝒚𝒚𝑘𝑘: 

𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑥𝑥𝑥𝑥𝑷𝑷𝑦𝑦
−1  (10) 

𝒙𝒙𝑘𝑘
+  = 𝒙𝒙𝑘𝑘

− + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘 − 𝒚̂𝒚𝑘𝑘)  (11) 

𝑷𝑷𝑘𝑘
+ = 𝑷𝑷𝑘𝑘

− − 𝑲𝑲𝑘𝑘𝑷𝑷𝑦𝑦𝑲𝑲𝑘𝑘
𝑇𝑇  

= 𝑷𝑷𝑘𝑘
− − 𝑷𝑷𝒙𝒙𝒙𝒙𝑷𝑷𝒚𝒚

−1𝑷𝑷𝒙𝒙𝒙𝒙
𝑇𝑇 ,  

(12) 

where in the last equality we have inserted (10) and used that 
covariance matrices are symmetric; since 𝑷𝑷𝒚𝒚 = 𝑷𝑷𝒚𝒚

𝑇𝑇 then also 
𝑷𝑷𝒚𝒚

−1 = (𝑷𝑷𝒚𝒚
−1)𝑇𝑇 = 𝑷𝑷𝒚𝒚

−𝑇𝑇. 

2.3 Discussion of the matrix square-root in the UT 

In (3) we showed how the covariance matrix 𝑷𝑷𝒙𝒙 is retained by 
the sigma-points and that the matrix square-root √𝑷𝑷𝒙𝒙 plays a 
role. One important observation in (3) is the transpose in last 
equality: we are not required to use an actual matrix square-
root 𝑺𝑺𝑷𝑷 of 𝑷𝑷𝒙𝒙 = 𝑺𝑺𝑷𝑷𝑺𝑺𝑷𝑷 = 𝑺𝑺𝑷𝑷

𝟐𝟐 , such as the principal matrix 
square-root. The principal matrix square-root 𝑺𝑺𝑷𝑷 is unique, 
symmetric and all eigenvalues are positive. Due to the 
transpose, the Cholesky decomposition 𝑷𝑷𝒙𝒙 = 𝑳𝑳𝑷𝑷𝑳𝑳𝑷𝑷

𝑇𝑇  is 
applicable, where 𝑳𝑳𝑷𝑷 is the lower triangular Cholesky factor of 
the covariance matrix 𝑷𝑷.  

In the original article about the UT, Julier et al. (2000) 
proposed to use Cholesky decomposition since it is a 
numerically effective and stable method. The developed SR-
UKF in literature updates the Cholesky factor in different 
ways, see e.g. van der Merwe and Wan (2001) and  Kulikova 
and Kulikov (2020). However, Daid et al. (2021) remark from 
theoretical considerations that the Cholesky decomposition 
can lead to divergence issues in the Unscented Kalman 
observer while this is not the case for the principal square-root. 
Nevertheless, it seems for most practical applications that the 
UT is quite robust when it comes to the form of square-root, 
as there are many examples of the success of Cholesky 
decomposition (Grewal and Andrews, 2014, p. 404).  

For flexibility purposes, it is desirable that methods for ill-
conditioned systems can use both the Cholesky decomposition 
and the principal matrix square-root. As we will see in section 
3.1, our proposed method accomplishes this. 

3 PROPOSED APPROACH FOR ILL-CONDITIONED 
SYSTEMS – THE NORMALIZED UKF (NUKF) 

The aim for this paper is to report on the first implementation 
of a Normalized UKF. We propagate the standard deviation 
and correlation matrix of the states instead of the covariance 
matrix. The covariance matrix can be decomposed as: 

𝑷𝑷𝒙𝒙 = 𝝈𝝈𝒙𝒙𝝆𝝆𝒙𝒙𝝈𝝈𝒙𝒙,  (13) 

where the standard deviation matrix 𝝈𝝈𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 is a diagonal 
matrix. The correlation matrix 𝝆𝝆𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥  is the normalized 
covariance matrix, i.e. the variables in 𝒙𝒙 have been centered 
and scaled to have a variance of 1. In some sense, the 
correlation matrix contains the directions of the distribution 
while the standard deviation matrix contains the scale. Hence, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝆𝝆𝒙𝒙) = 𝑰𝑰 and 𝝆𝝆𝒙𝒙[𝑖𝑖, 𝑗𝑗] ∈ (−1,1]. The condition number of 
the correlation matrix is therefore usually lower than the 
condition number of the corresponding covariance matrix. 
This is the reason why it makes sense from a numerical point 
of view to propagate the correlation- and standard deviation 
matrix. Note that both matrices are symmetric; 𝝈𝝈𝒙𝒙 = 𝝈𝝈𝒙𝒙

𝑇𝑇  and 
𝝆𝝆𝒙𝒙 = 𝝆𝝆𝒙𝒙

𝑇𝑇. Since 𝝈𝝈𝒙𝒙 is a diagonal matrix, its inverse is diagonal 
and cheap to compute: 𝝈𝝈𝒙𝒙

−1[𝑖𝑖, 𝑖𝑖] = 1/𝝈𝝈𝒙𝒙[𝑖𝑖, 𝑖𝑖].  The standard 
deviations and correlations can be obtained from the 
covariance matrix by: 

𝝈𝝈𝒙𝒙 = √(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑷𝑷𝒙𝒙)  (14) 

𝝆𝝆𝒙𝒙 =  𝝈𝝈𝒙𝒙
−1𝑷𝑷𝒙𝒙𝝈𝝈𝒙𝒙

−1 (15) 

The main benefit of the approach is that we obtain lower 
condition numbers when solving for the matrix square-root 
and the Kalman gain. 

3.1 The matrix square-root for ill-conditioned covariance 
matrices 

3.1.1 Normalized Cholesky decomposition 
 
Applying the decomposition of covariance into correlation- 
and standard deviation matrices as in (13), the Cholesky 
decomposition is equal to: 

𝑷𝑷𝒙𝒙 = 𝝈𝝈𝒙𝒙𝝆𝝆𝒙𝒙𝝈𝝈𝒙𝒙 = 𝝈𝝈𝒙𝒙𝑳𝑳𝝆𝝆𝑳𝑳𝝆𝝆
𝑇𝑇𝝈𝝈𝒙𝒙 

= (𝝈𝝈𝒙𝒙𝑳𝑳𝝆𝝆)(𝝈𝝈𝒙𝒙𝑳𝑳𝝆𝝆)𝑇𝑇 = 𝑳𝑳𝑷𝑷𝑳𝑳𝑷𝑷
𝑇𝑇 , 

(16) 

where we have used that 𝝈𝝈𝒙𝒙 = 𝝈𝝈𝒙𝒙
𝑇𝑇  and (𝑨𝑨𝑨𝑨)𝑇𝑇 = 𝑩𝑩𝑇𝑇𝑨𝑨𝑇𝑇 . Hence, 

the Cholesky factor of a covariance matrix is equal to the 
Cholesky factor of the correlation matrix multiplied with the 
diagonal standard deviation matrix. The benefit is the reduced 
condition number in the correlation matrix compared to the 
covariance matrix. This scaling-technique is also applied in 
Grewal and Andrews (2014, p. 414).  

3.1.2 The principal square-root matrix in the UT 
We apply the same methodology for the principal square-root 
matrix: 

𝑷𝑷𝒙𝒙 = 𝝈𝝈𝒙𝒙𝝆𝝆𝒙𝒙𝝈𝝈𝒙𝒙 = (𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆)(𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆) 
= (𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆)(𝑺𝑺𝝆𝝆

𝑇𝑇𝝈𝝈𝒙𝒙
𝑇𝑇)𝑇𝑇 = (𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆)(𝑺𝑺𝝆𝝆𝝈𝝈𝒙𝒙)𝑇𝑇 

(17) 

These equalities are valid since 𝝈𝝈𝒙𝒙 = 𝝈𝝈𝒙𝒙
𝑇𝑇  and 𝑺𝑺𝝆𝝆 = 𝑺𝑺𝝆𝝆

𝑇𝑇 . 
However, we have not obtained the true principal square-root 
matrix 𝑷𝑷𝒙𝒙 = 𝑺𝑺𝑷𝑷𝑺𝑺𝑷𝑷 = 𝑺𝑺𝑷𝑷

𝟐𝟐 , as that would require that the matrix 
product (𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆) is symmetric, and that is not the case. 
However, for the UT we know from (3) that the requirement is 
𝑷𝑷𝒙𝒙 = √𝑷𝑷𝒙𝒙(√𝑷𝑷𝒙𝒙)𝑇𝑇

and not 𝑷𝑷𝒙𝒙 = 𝑺𝑺𝑷𝑷
𝟐𝟐 . Hence, for the UT we can 

use √𝑷𝑷𝒙𝒙 = 𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆 where 𝑺𝑺𝝆𝝆 is the principal square-root matrix 
of the correlation matrix, 𝝆𝝆𝒙𝒙 = 𝑺𝑺𝝆𝝆

2 . We stress that the factor 
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(𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆) ≠ 𝑺𝑺𝑷𝑷; it is not a true principal matrix square-root. To 
the authors knowledge, this scaling-technique has not been 
used in the literature before. 

3.2 The Normalized UT (NUT) 

We show how to obtain standard deviations and correlations 
directly from the UT when there is presence of additive noise. 
This situation is shown in equation (9), but we omit the 
subscript 𝑘𝑘 in this section for convenience. The sigma-points 
of 𝒙𝒙 are generated by the algorithm in e.g. (1), propagated as 
in (4) and the mean 𝒚̂𝒚 is estimated by (5). We center all the 
sigma-points around the mean, 𝓨̃𝓨(𝑖𝑖) = 𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚, and collect 
the centralized sigma-points in the matrix 𝓨̃𝓨, defined as: 

𝓨̃𝓨 = [𝓨̃𝓨(0), 𝓨̃𝓨(1), … , 𝓨̃𝓨(2𝑛𝑛𝑥𝑥)] ∈ ℝ𝑛𝑛𝑦𝑦×(2𝑛𝑛𝑥𝑥+1) (18) 

Since matrix-matrix multiplication can be computed as a sum 
of outer products, the following is true: 

𝑷𝑷𝒚𝒚 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)(… )𝑇𝑇 + 𝑹𝑹 

= (𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥 ⊗ 𝓨̃𝓨)𝓨̃𝓨𝑇𝑇 + 𝑹𝑹 
= 𝓨̃𝓨𝑾𝑾𝓨̃𝓨𝑇𝑇 + 𝑹𝑹, (19) 

Where 𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥 = [𝑊𝑊𝑐𝑐
(0)𝟏𝟏𝑛𝑛𝑦𝑦, … , 𝑊𝑊𝑐𝑐

(2𝑛𝑛𝑥𝑥)𝟏𝟏𝑛𝑛𝑦𝑦] ∈ ℝ𝑛𝑛𝑦𝑦×(2𝑛𝑛𝑥𝑥+1). 

That is, the first column in 𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥  is filled with 𝑊𝑊𝑐𝑐
(0), the next 

is filled with 𝑊𝑊𝑐𝑐
(1) etc. The symbol ⊗ denotes element-wise 

multiplication. Implementing (19) as matrix-matrix 
multiplication instead of a summation as in (6) significantly 
reduces computation time in numerical libraries such as 
Numpy (Harris et al., 2020). Although this is straight-forward 
usage of linear algebra, the authors have not seen (19) being 
written as matrix-matrix multiplication in literature before. 

The standard deviations are the square-root of the diagonal 
elements of the covariance matrix. Each 𝜎𝜎𝑦𝑦,𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛𝑦𝑦, is 
therefore given by: 

𝜎𝜎𝑦𝑦,𝑖𝑖 = √𝓨̃𝓨𝑾𝑾[𝑖𝑖, : ](𝓨̃𝓨[𝑖𝑖, : ])𝑇𝑇 + 𝑹𝑹[𝑖𝑖, 𝑖𝑖], 
(20) 

where 𝓨̃𝓨𝑾𝑾[𝑖𝑖, : ] ∈ ℝ1×(2𝑛𝑛𝑥𝑥+1) is the 𝑖𝑖-th row in the matrix 𝓨̃𝓨𝑾𝑾. 
Thus, we can directly obtain the standard deviations this way 
without calculating the entire covariance matrix. To obtain the 
correlations, we must first normalize the centered sigma-points 
and the noise matrix: 

𝓨̃𝓨(𝑖𝑖)′ = 𝝈𝝈𝒚𝒚
−1𝓨̃𝓨(𝑖𝑖), 𝑖𝑖 = 0, … ,2𝑛𝑛𝑥𝑥  (21) 

𝑹𝑹′ = 𝝈𝝈𝒚𝒚
−1𝑹𝑹𝝈𝝈𝒚𝒚

−1,  (22) 

where 𝝈𝝈𝒚𝒚 is the diagonal matrix of standard deviations, and its 
inverse is therefore cheap to compute. One potential problem 
here is if 𝝈𝝈𝒚𝒚[𝑖𝑖, 𝑖𝑖] ≫ 1 and 𝑹𝑹[𝑖𝑖, 𝑖𝑖] ≪ 1, then 𝑹𝑹′[𝑖𝑖, 𝑖𝑖] ≪ 𝑹𝑹[𝑖𝑖, 𝑖𝑖] 
and 𝑹𝑹′[𝑖𝑖, 𝑖𝑖] ≈ 𝟎𝟎. The same issue would however exist in the 
normal UT as well, and is not worsened by the NUT.  

The remaining unique elements of the correlation matrix can 
now be computed fast and efficiently by exploiting that the 
diagonal is filled with ones and that the matrix is symmetric: 

𝝆𝝆𝒚𝒚[𝑖𝑖, 𝑗𝑗] = 𝝆𝝆𝒚𝒚[𝑗𝑗, 𝑖𝑖] = {
1 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗

𝓨̃𝓨𝑾𝑾
′ [𝑖𝑖, : ](𝓨̃𝓨′[𝑗𝑗, : ])𝑇𝑇 + 𝑹𝑹′[𝑖𝑖, 𝑗𝑗]  

(23) 

Alternatively, it can be obtained as the matrix-matrix product: 

𝝆𝝆𝒚𝒚 = 𝓨̃𝓨𝑾𝑾
′ 𝓨̃𝓨′𝑇𝑇 + 𝑹𝑹′ (24) 

3.3 The Normalized UKF (NUKF) Algorithm 

Our NUKF propagates mean, standard deviations and 
correlation matrices to remedy ill-conditioned systems. While 
square-root filters double the numerical precision by 
propagating √𝑷𝑷𝒙𝒙, the numerical precision for the normalized 
UKF is case dependent. We note however that √𝑷𝑷𝒙𝒙 =
𝝈𝝈𝒙𝒙√𝝆𝝆𝒙𝒙, so the condition numbers only depend on the 
structure of √𝝆𝝆𝒙𝒙. 
3.3.1 Propagation step  
Generate sigma-points 𝝌𝝌𝑘𝑘−1

+(𝑖𝑖) based on the posterior 
distribution 𝒙𝒙𝑘𝑘−1

+ ∼ (𝒙𝒙+, 𝝈𝝈𝒙𝒙
+𝝆𝝆𝒙𝒙

+𝝈𝝈𝒙𝒙
+)𝑘𝑘−1, where the subscript 

𝑘𝑘 − 1 means that all variables inside the parenthesis have that 
subscript. The matrix square-root is found by the methods of 
section 3.1. Propagate each sigma-point: 

𝝌𝝌𝑘𝑘
−(𝑖𝑖) = 𝒇𝒇(𝝌𝝌𝑘𝑘−1

+(𝑖𝑖))  (25) 

The mean, standard deviation and correlation for the prior, 
𝒙𝒙𝑘𝑘

−, 𝝈𝝈𝒙𝒙𝑘𝑘
− , 𝝆𝝆𝒙𝒙𝑘𝑘

− , is found by straight forward application of the 
NUT in section 3.2 where the additive noise term is the 
process noise covariance 𝑸𝑸𝑘𝑘−1.  
3.3.2 Measurement update step 
The predicted measurement, its standard deviation and 
correlation 𝒚̂𝒚𝑘𝑘, 𝝈𝝈𝒚𝒚𝑘𝑘, 𝝆𝝆𝒚𝒚𝑘𝑘 is found by repeating section 3.3.1 
but use instead i) the prior distribution 𝒙𝒙𝑘𝑘

− ∼ (𝒙𝒙−, 𝝈𝝈𝒙𝒙
−𝝆𝝆𝒙𝒙

−𝝈𝝈𝒙𝒙
−)𝑘𝑘 

to generate sigma-points ii) propagate each sigma-point 
through the measurement equation 𝒉𝒉(⋅) and iii) the 
measurement noise 𝒗𝒗𝑘𝑘 ∼ (𝟎𝟎, 𝑹𝑹𝑘𝑘) as additive noise. 

The cross-correlation between the states and the measurement 
are given by: 

𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝝌̃𝝌𝑘𝑘

−′(𝑖𝑖)(𝓨̃𝓨𝑘𝑘
′(𝑖𝑖))

𝑇𝑇
, (26) 

where the centered and normalized sigma-points are used, see 
(21). This term can be computed as a matrix product in the 
spirit of (19). The Kalman gain can be simplified by inserting 
the decomposition of covariance to standard deviations and 
correlations: 

𝑲𝑲𝑘𝑘 = (𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)(𝝈𝝈𝒚𝒚𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)−1 

=  𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1 

= 𝝈𝝈𝑘𝑘
−𝑲𝑲𝑘𝑘

′ 𝝈𝝈𝒚𝒚𝑘𝑘
−1, 

(27) 

Where we have defined the normalized Kalman gain 𝑲𝑲𝑘𝑘
′ =

𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘
−1. Inserting into the measurement update equation for 

the mean, equation (11): 

𝒙𝒙𝑘𝑘
+  = 𝒙𝒙𝑘𝑘

− + 𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1(𝒚𝒚𝑘𝑘 − 𝒚̂𝒚𝑘𝑘) 

= 𝒙𝒙𝑘𝑘
− + 𝝈𝝈𝑘𝑘

−𝑲𝑲𝑘𝑘
′ 𝝈𝝈𝒚𝒚𝑘𝑘

−1(𝒚𝒚𝑘𝑘 − 𝒚̂𝒚𝑘𝑘) 
(28) 
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(𝝈𝝈𝒙𝒙𝑺𝑺𝝆𝝆) ≠ 𝑺𝑺𝑷𝑷; it is not a true principal matrix square-root. To 
the authors knowledge, this scaling-technique has not been 
used in the literature before. 

3.2 The Normalized UT (NUT) 

We show how to obtain standard deviations and correlations 
directly from the UT when there is presence of additive noise. 
This situation is shown in equation (9), but we omit the 
subscript 𝑘𝑘 in this section for convenience. The sigma-points 
of 𝒙𝒙 are generated by the algorithm in e.g. (1), propagated as 
in (4) and the mean 𝒚̂𝒚 is estimated by (5). We center all the 
sigma-points around the mean, 𝓨̃𝓨(𝑖𝑖) = 𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚, and collect 
the centralized sigma-points in the matrix 𝓨̃𝓨, defined as: 

𝓨̃𝓨 = [𝓨̃𝓨(0), 𝓨̃𝓨(1), … , 𝓨̃𝓨(2𝑛𝑛𝑥𝑥)] ∈ ℝ𝑛𝑛𝑦𝑦×(2𝑛𝑛𝑥𝑥+1) (18) 

Since matrix-matrix multiplication can be computed as a sum 
of outer products, the following is true: 

𝑷𝑷𝒚𝒚 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
(𝓨𝓨(𝑖𝑖) − 𝒚̂𝒚)(… )𝑇𝑇 + 𝑹𝑹 

= (𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥 ⊗ 𝓨̃𝓨)𝓨̃𝓨𝑇𝑇 + 𝑹𝑹 
= 𝓨̃𝓨𝑾𝑾𝓨̃𝓨𝑇𝑇 + 𝑹𝑹, (19) 

Where 𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥 = [𝑊𝑊𝑐𝑐
(0)𝟏𝟏𝑛𝑛𝑦𝑦, … , 𝑊𝑊𝑐𝑐

(2𝑛𝑛𝑥𝑥)𝟏𝟏𝑛𝑛𝑦𝑦] ∈ ℝ𝑛𝑛𝑦𝑦×(2𝑛𝑛𝑥𝑥+1). 

That is, the first column in 𝑾𝑾𝑐𝑐,𝑛𝑛𝑥𝑥  is filled with 𝑊𝑊𝑐𝑐
(0), the next 

is filled with 𝑊𝑊𝑐𝑐
(1) etc. The symbol ⊗ denotes element-wise 

multiplication. Implementing (19) as matrix-matrix 
multiplication instead of a summation as in (6) significantly 
reduces computation time in numerical libraries such as 
Numpy (Harris et al., 2020). Although this is straight-forward 
usage of linear algebra, the authors have not seen (19) being 
written as matrix-matrix multiplication in literature before. 

The standard deviations are the square-root of the diagonal 
elements of the covariance matrix. Each 𝜎𝜎𝑦𝑦,𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛𝑦𝑦, is 
therefore given by: 

𝜎𝜎𝑦𝑦,𝑖𝑖 = √𝓨̃𝓨𝑾𝑾[𝑖𝑖, : ](𝓨̃𝓨[𝑖𝑖, : ])𝑇𝑇 + 𝑹𝑹[𝑖𝑖, 𝑖𝑖], 
(20) 

where 𝓨̃𝓨𝑾𝑾[𝑖𝑖, : ] ∈ ℝ1×(2𝑛𝑛𝑥𝑥+1) is the 𝑖𝑖-th row in the matrix 𝓨̃𝓨𝑾𝑾. 
Thus, we can directly obtain the standard deviations this way 
without calculating the entire covariance matrix. To obtain the 
correlations, we must first normalize the centered sigma-points 
and the noise matrix: 

𝓨̃𝓨(𝑖𝑖)′ = 𝝈𝝈𝒚𝒚
−1𝓨̃𝓨(𝑖𝑖), 𝑖𝑖 = 0, … ,2𝑛𝑛𝑥𝑥  (21) 

𝑹𝑹′ = 𝝈𝝈𝒚𝒚
−1𝑹𝑹𝝈𝝈𝒚𝒚

−1,  (22) 

where 𝝈𝝈𝒚𝒚 is the diagonal matrix of standard deviations, and its 
inverse is therefore cheap to compute. One potential problem 
here is if 𝝈𝝈𝒚𝒚[𝑖𝑖, 𝑖𝑖] ≫ 1 and 𝑹𝑹[𝑖𝑖, 𝑖𝑖] ≪ 1, then 𝑹𝑹′[𝑖𝑖, 𝑖𝑖] ≪ 𝑹𝑹[𝑖𝑖, 𝑖𝑖] 
and 𝑹𝑹′[𝑖𝑖, 𝑖𝑖] ≈ 𝟎𝟎. The same issue would however exist in the 
normal UT as well, and is not worsened by the NUT.  

The remaining unique elements of the correlation matrix can 
now be computed fast and efficiently by exploiting that the 
diagonal is filled with ones and that the matrix is symmetric: 

𝝆𝝆𝒚𝒚[𝑖𝑖, 𝑗𝑗] = 𝝆𝝆𝒚𝒚[𝑗𝑗, 𝑖𝑖] = {
1 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗

𝓨̃𝓨𝑾𝑾
′ [𝑖𝑖, : ](𝓨̃𝓨′[𝑗𝑗, : ])𝑇𝑇 + 𝑹𝑹′[𝑖𝑖, 𝑗𝑗]  

(23) 

Alternatively, it can be obtained as the matrix-matrix product: 

𝝆𝝆𝒚𝒚 = 𝓨̃𝓨𝑾𝑾
′ 𝓨̃𝓨′𝑇𝑇 + 𝑹𝑹′ (24) 

3.3 The Normalized UKF (NUKF) Algorithm 

Our NUKF propagates mean, standard deviations and 
correlation matrices to remedy ill-conditioned systems. While 
square-root filters double the numerical precision by 
propagating √𝑷𝑷𝒙𝒙, the numerical precision for the normalized 
UKF is case dependent. We note however that √𝑷𝑷𝒙𝒙 =
𝝈𝝈𝒙𝒙√𝝆𝝆𝒙𝒙, so the condition numbers only depend on the 
structure of √𝝆𝝆𝒙𝒙. 
3.3.1 Propagation step  
Generate sigma-points 𝝌𝝌𝑘𝑘−1

+(𝑖𝑖) based on the posterior 
distribution 𝒙𝒙𝑘𝑘−1

+ ∼ (𝒙𝒙+, 𝝈𝝈𝒙𝒙
+𝝆𝝆𝒙𝒙

+𝝈𝝈𝒙𝒙
+)𝑘𝑘−1, where the subscript 

𝑘𝑘 − 1 means that all variables inside the parenthesis have that 
subscript. The matrix square-root is found by the methods of 
section 3.1. Propagate each sigma-point: 

𝝌𝝌𝑘𝑘
−(𝑖𝑖) = 𝒇𝒇(𝝌𝝌𝑘𝑘−1

+(𝑖𝑖))  (25) 

The mean, standard deviation and correlation for the prior, 
𝒙𝒙𝑘𝑘

−, 𝝈𝝈𝒙𝒙𝑘𝑘
− , 𝝆𝝆𝒙𝒙𝑘𝑘

− , is found by straight forward application of the 
NUT in section 3.2 where the additive noise term is the 
process noise covariance 𝑸𝑸𝑘𝑘−1.  
3.3.2 Measurement update step 
The predicted measurement, its standard deviation and 
correlation 𝒚̂𝒚𝑘𝑘, 𝝈𝝈𝒚𝒚𝑘𝑘, 𝝆𝝆𝒚𝒚𝑘𝑘 is found by repeating section 3.3.1 
but use instead i) the prior distribution 𝒙𝒙𝑘𝑘

− ∼ (𝒙𝒙−, 𝝈𝝈𝒙𝒙
−𝝆𝝆𝒙𝒙

−𝝈𝝈𝒙𝒙
−)𝑘𝑘 

to generate sigma-points ii) propagate each sigma-point 
through the measurement equation 𝒉𝒉(⋅) and iii) the 
measurement noise 𝒗𝒗𝑘𝑘 ∼ (𝟎𝟎, 𝑹𝑹𝑘𝑘) as additive noise. 

The cross-correlation between the states and the measurement 
are given by: 

𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘 = ∑ 𝑊𝑊𝑐𝑐
(𝑖𝑖)2𝑛𝑛𝑥𝑥

𝑖𝑖=0
𝝌̃𝝌𝑘𝑘

−′(𝑖𝑖)(𝓨̃𝓨𝑘𝑘
′(𝑖𝑖))

𝑇𝑇
, (26) 

where the centered and normalized sigma-points are used, see 
(21). This term can be computed as a matrix product in the 
spirit of (19). The Kalman gain can be simplified by inserting 
the decomposition of covariance to standard deviations and 
correlations: 

𝑲𝑲𝑘𝑘 = (𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)(𝝈𝝈𝒚𝒚𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)−1 

=  𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1 

= 𝝈𝝈𝑘𝑘
−𝑲𝑲𝑘𝑘

′ 𝝈𝝈𝒚𝒚𝑘𝑘
−1, 

(27) 

Where we have defined the normalized Kalman gain 𝑲𝑲𝑘𝑘
′ =

𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘
−1. Inserting into the measurement update equation for 

the mean, equation (11): 

𝒙𝒙𝑘𝑘
+  = 𝒙𝒙𝑘𝑘

− + 𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1(𝒚𝒚𝑘𝑘 − 𝒚̂𝒚𝑘𝑘) 

= 𝒙𝒙𝑘𝑘
− + 𝝈𝝈𝑘𝑘

−𝑲𝑲𝑘𝑘
′ 𝝈𝝈𝒚𝒚𝑘𝑘

−1(𝒚𝒚𝑘𝑘 − 𝒚̂𝒚𝑘𝑘) 
(28) 

From the covariance update formula (12), we know that we 
need an expression for the term 𝑷𝑷𝒙𝒙𝒙𝒙𝑷𝑷𝒚𝒚

−1𝑷𝑷𝒙𝒙𝒙𝒙
𝑇𝑇 : 

𝑷𝑷𝒙𝒙𝒙𝒙𝑷𝑷𝒚𝒚
−1𝑷𝑷𝒙𝒙𝒙𝒙

𝑇𝑇 = (𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)(𝝈𝝈𝒚𝒚𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)−1𝑷𝑷𝒙𝒙𝒙𝒙

𝑇𝑇  
= 𝝈𝝈𝑘𝑘

−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘
−1𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1𝑷𝑷𝒙𝒙𝒙𝒙

𝑇𝑇  
= 𝝈𝝈𝑘𝑘

−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘
−1𝝈𝝈𝒚𝒚𝑘𝑘

−1𝑷𝑷𝒙𝒙𝒙𝒙
𝑇𝑇  

= (𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝈𝝈𝒚𝒚𝑘𝑘
−1)(𝝈𝝈𝑘𝑘

−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝈𝝈𝒚𝒚𝑘𝑘)𝑇𝑇 
= 𝝈𝝈𝑘𝑘

−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘
−1𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘

𝑇𝑇 𝝈𝝈𝑘𝑘
− 

(29) 

Inserting into (12) and decomposing the covariance terms 
gives: 

𝝈𝝈𝑘𝑘
+𝝆𝝆𝑘𝑘

+𝝈𝝈𝑘𝑘
+ = 𝑷𝑷𝑘𝑘

− − 𝝈𝝈𝑘𝑘
−𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘
𝑇𝑇 𝝈𝝈𝑘𝑘

− 
=  𝝈𝝈𝑘𝑘

−(𝝆𝝆𝑘𝑘
− − 𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘𝝆𝝆𝒚𝒚𝑘𝑘

−1𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘
𝑇𝑇 )𝝈𝝈𝑘𝑘

− 
= 𝝈𝝈𝑘𝑘

−(𝝆𝝆𝑘𝑘
− − 𝑲𝑲𝑘𝑘

′ 𝝆𝝆𝒙𝒙𝒙𝒙,𝑘𝑘
𝑇𝑇 )𝝈𝝈𝑘𝑘

− 
= 𝝈𝝈𝑘𝑘

− (𝝆𝝆𝑘𝑘
− − 𝑲𝑲𝑘𝑘

′ 𝝆𝝆𝒚𝒚𝑘𝑘𝑲𝑲𝑘𝑘
′𝑇𝑇) 𝝈𝝈𝑘𝑘

− 
= 𝝈𝝈𝑘𝑘

−𝝆̌𝝆𝑘𝑘
+𝝈𝝈𝑘𝑘

−, 

(30) 

which is a measurement update formula similar to the 
standard UKF, equation (12).  

However, the estimated posterior correlation matrix 𝝆̌𝝆𝑘𝑘
+ is not 

a true correlation matrix, as the elements are not in the range 
-1 to 1. We must therefore normalize the estimated 
correlation matrix 𝝆̌𝝆𝑘𝑘

− to find the true normalized correlation 
matrix 𝝈𝝈𝑘𝑘

+. Then, we multiply the “update-factor” 𝝈̌𝝈𝑘𝑘 to the 
prior standard deviation matrix to obtain the posterior 
standard deviation.  

𝝈̌𝝈𝑘𝑘[𝑖𝑖, 𝑖𝑖] = √𝝆̌𝝆𝑘𝑘
+[𝑖𝑖, 𝑖𝑖], 𝑖𝑖 = 1, … , 𝑛𝑛𝑥𝑥 

(31) 

𝝈𝝈𝑘𝑘
+ = 𝝈𝝈𝑘𝑘

−𝝈̌𝝈𝑘𝑘 (32) 

𝝆𝝆𝑘𝑘
+ = (𝝈̌𝝈𝑘𝑘)−1𝝆̌𝝆𝑘𝑘

+(𝝈̌𝝈𝑘𝑘)−1, (33) 

where all standard deviation matrices 𝝈𝝈𝑘𝑘
−, 𝝈𝝈𝑘𝑘

+, 𝝈̌𝝈𝑘𝑘 are diagonal 
matrices.  

4 CASE STUDIES 

We demonstrate first the numerical benefit of the normalized 
Cholesky decomposition. Then, the benefit of the NUKF is 
highlighted in a state estimation problem from the literature.  

4.1 Normalized Cholesky decomposition 

Let 𝝈𝝈 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(107, 10−7, 10−1) and the correlation matrix be: 

𝝆𝝆 = [
1 10−1 10−1

10−1 1 0
10−1 0 1

] 
(34) 

The covariance matrix is 𝑷𝑷 = 𝝈𝝈𝝈𝝈𝝈𝝈. From (16), we know that 
the Cholesky factor of the covariance matrix can be computed 
as 𝑳𝑳𝑷𝑷 = 𝝈𝝈𝑳𝑳𝝆𝝆. Numerically, we see that applying the Cholesky 
decomposition directly on 𝑷𝑷 gives a slightly different result 
than calculating the product 𝝈𝝈𝑳𝑳𝝆𝝆 for this example. The 
condition number for 𝑷𝑷 is 𝜅𝜅(𝑷𝑷) ≈ 1028, the condition number 
for the correlation matrix is 𝜅𝜅(𝝆𝝆) ≈ 1.32 and 𝜅𝜅(𝝈𝝈𝑳𝑳𝝆𝝆) ≈ 1014. 
If we set instead 𝝈𝝈[1,1] = 102 and 𝝈𝝈[2,2] = 10−2, the two 
methods generate the same result and the condition number of 

the covariance matrix is then 𝜅𝜅(𝑷𝑷) ≈ 108. The reason for the 
difference is presumably due to round-off errors. The 
condition number of the normalized Cholesky decomposition 
indicates that this is the most accurate method.  

The Cholesky decomposition was performed by 
scipy.linalg.cholesky() with a scipy version of 1.9.1. The 
datatype was float64.  

4.2 Normalized UKF: falling body case study 

We investigate the tracking problem from Julier et al. (2000). 
A body falls into the atmosphere from a very high altitude and 
velocity. We want to estimate the altitude 𝑥𝑥1(𝑡𝑡), velocity 𝑥𝑥2(𝑡𝑡) 
and a constant ballistic coefficient 𝑥𝑥3(𝑡𝑡). As a measurement 
device, we have a radar which is located at a height 𝑎𝑎 and a 
horizontal distance 𝑀𝑀 from the falling body.  

The dynamics of the system and the measurements are 
described by: 

𝑥̇𝑥1(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) + 𝑤𝑤1 (35) 

𝑥̇𝑥2(𝑡𝑡) = 1
2 𝜌𝜌0𝑒𝑒−𝑥𝑥1

𝑘𝑘 𝑥𝑥2
2𝑥𝑥3 − 𝑔𝑔 + 𝑤𝑤2 (36) 

𝑥̇𝑥3(𝑡𝑡) = 𝑤𝑤3 (37) 

𝑦𝑦1(𝑡𝑡𝑘𝑘) = √𝑀𝑀2 + (𝑥𝑥1(𝑡𝑡𝑘𝑘) − 𝑎𝑎)2 + 𝑣𝑣1 (38) 

To highlight the benefits of the proposed approach, we need 
𝑛𝑛𝑦𝑦 > 1 for condition numbers to make sense. Hence, we 
assume there is a pressure transmitter on the falling body 
which measures the atmospheric pressure according to: 

𝑦𝑦2(𝑡𝑡𝑘𝑘) = 𝑃𝑃𝑏𝑏 [𝑇𝑇𝑏𝑏 + (𝑥𝑥1(𝑡𝑡𝑘𝑘) − ℎ𝑏𝑏)𝐿𝐿𝑏𝑏
𝑇𝑇𝑏𝑏

]
− 𝑔𝑔𝑔𝑔

𝑅𝑅𝐿𝐿𝑏𝑏
+ 𝑣𝑣2 

(39) 

Here, 𝜌𝜌0 is the air density at sea level, 𝑘𝑘 is a constant relating 
the air density and altitude, 𝑔𝑔 is the gravitational acceleration, 
𝑅𝑅 the universal gas constant and 𝑃𝑃𝑏𝑏, 𝑇𝑇𝑏𝑏, 𝐿𝐿𝑏𝑏 are reference 
parameters for pressure, temperature, and temperature lapse 
rate at a selected reference height ℎ𝑏𝑏 above sea level. 
Parameter values are  

[𝜌𝜌0, 𝑘𝑘, 𝑔𝑔, 𝑀𝑀, 𝑎𝑎, 𝑃𝑃𝑏𝑏, 𝑇𝑇𝑏𝑏, ℎ𝑏𝑏, 𝐿𝐿𝑏𝑏, 𝑅𝑅] = [105.1 𝑘𝑘𝑘𝑘 𝑠𝑠2

𝑚𝑚4 , 6096𝑚𝑚, 

9.81 𝑚𝑚
𝑠𝑠2 , 30 480𝑚𝑚, 30 480𝑚𝑚, 3.96𝑃𝑃𝑃𝑃, 214.65𝐾𝐾, 7 × 104𝑚𝑚, 

−0.002 𝐾𝐾
𝑚𝑚 , 8.314 𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 𝐾𝐾].  

Process noise realizations are sampled at every time step from 
the distribution 𝒘𝒘𝑘𝑘 ∼ 𝒩𝒩(𝟎𝟎, 𝑸𝑸𝑘𝑘) where 𝑸𝑸𝑘𝑘 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(102, 102, 10−8). The measurement noise is coming 
from 𝒗𝒗𝑘𝑘 ∼ 𝓝𝓝(𝟎𝟎, 𝑹𝑹𝑘𝑘) where 𝑹𝑹𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(103, 50). A 
measurement is obtained every 0.5 second and a Runge-Kutta 
method of order 4 with adaptive step size is used to integrate 
the process model between every measurement. Initial 
conditions are 𝒙𝒙0

𝑇𝑇 = [9.1 × 104𝑚𝑚, −6 × 103 𝑚𝑚
𝑠𝑠 , 6.24 ×

10−5 𝑚𝑚3

𝑘𝑘𝑘𝑘⋅𝑠𝑠2] and the UKF were initialized with a standard 
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deviation of 𝝈𝝈𝟎𝟎+ = [104𝑚𝑚, 103 𝑚𝑚
𝑠𝑠 , 10

−5 𝑚𝑚3

𝑘𝑘𝑘𝑘⋅𝑠𝑠2]
𝑇𝑇
and correlation 

𝝆𝝆0+ = 𝑰𝑰3. 

At every time step, the condition number for relevant matrices 
were calculated. The condition number for matrices which 
needs to be inverted gives information about how sensitive the 
solution 𝒙𝒙 = 𝑨𝑨−𝟏𝟏𝒃𝒃 for small errors in the value 𝒃𝒃. For the 
UKF, the relevant matrices are the posterior, prior and 
measurement correlation (covariance) matrix. We repeated the 
simulation 100 times to see the effect of different starting point 
for the filters, 𝒙𝒙0+, and different realizations of process- and 
measurement noise. The 100 trajectories are shown in Figure 
1. Note the logarithmic scale on the y-axis.  

 
Figure 1: Condition numbers for relevant matrices through time for 

100 simulations. The mean value for the condition number 
(averaged over time and 100 simulations) was [1.6 × 1016, 1.8 ×
1014, 2.5 × 104] for the standard UKF and [6.97, 27.1, 8.0] for 
the NUKF. 

As expected, the condition numbers for the NUKF are 
significantly smaller than the standard UKF. The condition 
numbers imply that numerical issues may be encountered for 
the UKF but not for the NUKF. This documents that numerical 
issues due to scaling are automatically and efficiently handled 
by the proposed method. 

The choice of matrix square-root when generating sigma-
points did not matter in this case study. The Cholesky 
decomposition and the principal matrix square-root gave equal 
results. A figure of the state trajectories and the code is 
available on the Github repository mentioned on the front 
page. 

5 CONCLUSION AND FUTURE WORK 

The proposed NUKF was shown to have improved numerical 
properties compared to the standard UKF filter as the condition 
number of relevant matrices were significantly lower. We 
obtained very similar results for the NUKF and the UKF in our 
case study, but the condition numbers for the UKF can give a 
cause for concern. Compared to square-root filters in the 

literature, the NUKF has the benefit that it propagates 
physically meaningful factors which are typically used to 
check for filter divergence. This capability will be subject for 
future work of the authors, as well as to investigate under 
which circumstances the difference in condition numbers have 
a large practical effect.  
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