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Abstract. The topic of object detection, which involves giving cars
the ability to perceive their environment has drawn greater attention.
For better performance, object detection algorithms often need huge
datasets, which are frequently manually labeled. This procedure is ex-
pensive and time-consuming. Instead, a simulated environment provides
full control over all parameters and enables automated image annota-
tion. Carla, an open-source project created exclusively for the study of
autonomous driving, is one such simulator. This study examines if object
detection models that can recognize actual traffic items can be trained
using automatically annotated simulator data from Carla. The findings
of the experiments demonstrate that optimizing a trained model using
Carla’s data, along with some real data, is encouraging. The Yolov5
model, trained using pretrained Carla weights, exhibited improvements
across all performance metrics compared to one trained exclusively on
2000 Kitti images. While it didn’t reach the performance level of the
6000-image Kitti model, the enhancements were indeed substantial. The
mAP0.5:0.95 score saw an approximate 10% boost, with the most signif-
icant improvement occurring in the Pedestrian class. Furthermore, it is
demonstrated that a substantial performance boost can be achieved by
training a base model with Carla data and fine-tuning it with a smaller
portion of the Kitti dataset. Moreover, the potential utility of Carla Li-
DAR images in reducing the volume of real images required while main-
taining respectable model performance becomes evident. Our code is
available at: https://tinyurl.com/3fdjd9xb.

Keywords: Obtection detection · Synthetic data · RGB · LiDAR · Au-
tonomous driving · Deep learning · Computer vision.

1 Introduction

According to a research by the U.S. Department of Transportation [1], between
94 and 96 percent of all automobile accidents, were the result of human error.
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A human driver must be able to perceive and comprehend a wide range of
various things, including vehicles, pedestrians, and other road users like cyclists.
Therefore, making a vehicle capable of precisely detecting these items is crucial to
the sustainability of autonomous cars. This research focuses on object detection
of dynamic traffic objects such as vehicles and people which is a subset of this
broad and developing field of autonomous vehicles.

According to Zou et al. [2], requirement of having a large enough dataset
is one of the major problems in object detection model training. For instance,
the COCO dataset [3] has approximately 328,000 images of day to day objects
and humans that are categorized into 80 different categories. To train an object
detection model, images have to be manually labeled, which is a tedious and time-
consuming task. In this study, we examined how effectively an object detection
model, trained on simulated RGB and LiDAR image data gathered from the
Carla (Car Learning to Act) simulator 1 can identify actual traffic objects.

The structure of the remaining paper is as follows. Section II introduces the
existing literature in the research direction. Section III presents the methods and
tools used for the current study. Section IV describes the different experiments
that were done, along with their results. Finally, concluding remarks and future
research directions are discussed in section V.

2 Literature Review

An approach to automatically acquire annotated image data using the Carla
simulator is described in a paper by Jang et al [4]. Semantic segmentation is also
used to correct the collected bounding boxes. The paper aimed to enhance the
reliability of synthetic data collected from Carla by simplifying the process. It
was examined by Dworak et al. [5] that if deep learning object detection models
could be trained using LiDAR data obtained from the Carla simulator. They
discovered that while combining the real and synthetic data for training had no
positive effect on the models, it may still be employed for fine-tuning. It was
investigated in a report written by Niranjan et al. [6] if data obtained from the
Carla simulator might be used to train object detection algorithms. They stated
that Carla’s open-source nature, compatibility, and environment modeling give
it an edge over rival simulators. Bu et al. [7] published a new paper that made use
of Carla simulator data. They wanted to find out if object detection algorithms
could be trained using data taken from Carla. They concluded that models can
be successfully trained to recognize low-quality real-world objects using data
from the Carla simulator.

Whether artificial data could be used to train deep networks was examined
in research by Tremblay et al. [8]. In order to reduce the amount of annotation
required, the research claims that portions of real datasets might be replaced
with synthetic data. The hardest part of this research is making backgrounds
that are natural and photorealistic, which takes a lot of time and effort. Abu

1 https://carla.org/
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Alhaija et al. [9] tried a hybrid approach to fix this by employing real-life images
as backgrounds and realistically integrating photo-realistic 3D objects into the
scenes. They discovered that the model trained on their augmented dataset out-
performed both the real-world and synthetic datasets in terms of generalization.
Tsirikoglou et al. [10] created a comparable method in which very realistic syn-
thetic data with pixel-accurate annotations were produced to support CV tasks
including semantic segmentation.

Richter et al. [11] investigated the possibility of creating pixel-accurate se-
mantic label maps for images derived from the realistic open-world video game
GTA V. They created a database of 25,000 images and trained a detection model
using this dataset. Their findings demonstrated that a model enhanced with syn-
thetic data not only produced noticeably better improvements but also allowed
for a reduction in the amount of hand-labeled data. The performance of a model
improved when it was trained using both their dataset and only a third of the
real-world dataset.

The research goal for this paper is to investigate whether automatically an-
notated images from the Carla simulator can be used to train object detection
models for real traffic scenarios. To achieve this goal, two research questions
(RQs) were posed:

• RQ 1: Is it possible to reduce the number of real images needed by fine-
tuning an object detection model trained mainly on the simulated RGB image
data gathered from the Carla simulator? • RQ 2: To what extent can the fine-
tuning of a model that was previously trained on simulated LiDAR image data
be utilized to minimize the number of real LiDAR images needed?

3 Methodology

Building on earlier research by Jang et al. [4], we address these RQs by gather-
ing automatically annotated images using the open-source autonomous driving
simulator Carla. We have collected 3D bounding boxes and RGB images from
the simulation. Then, in order to correct them, these 3D boundary boxes were
translated into 2D. The bounding boxes acquired using the paper Jang et al. [4]
demonstrated that they were frequently inaccurate since they were larger than
the boundaries of the objects. Research by Kervadec et al. [12] demonstrated
the significance of tightness of bounding boxes in an ML scenario. Additionally,
the very first research only classified objects into two categories: pedestrians and
vehicles. Due to this, the diversity of the dataset was constrained as Carla has
several types of other types of spawnable objects, like trucks and cyclists. In this
project, we are particularly interested to build datasets that were more stable
and balanced on groundwork laid by the paper [12]. This study investigates if
the created datasets can be used to train a model to detect traffic items in real-
life images in order to determine whether the gathered data is useful for object
detection tasks. Even though experiments were conducted on both Yolov5 and
Faster R-CNN algorithms, due to space constraint, experimental analysis related
to single stage simple and efficient Yolov5 object detector is presented with differ-



4 B. Durga Prasad et al.

ent parameter settings. The Kitti, a well known dataset for autonomous driving
tasks, was used to validate the models.

In detail discussion on the methodology is explained in following subsections.
The subsection 3.1 details the collection of simulator data in order to create a
dataset. The next subsection 3.2 describes how this dataset was used to train
object detection models to verify the research objectives.

3.1 Data collection pipeline

A data collection pipeline is developed to collect data and create the training
datasets. First, the Carla server is started, and the actors are spawned after
selecting the desired map and weather conditions. The number of actors de-
pends on the size of the map that data was collected. If not enough actors were
spawned in relation to the map size, many of the collected images would have
few or no objects in view most of the time due to them being spread out. To
ensure a consistent number of labels in the collected images, maps with rela-
tively similar sizes were chosen. The chosen maps were Town01, Town02, and
Town11. After setting up the Carla simulator with actors, map, and weather
conditions, we have extracted both RGB and LiDAR images in autopilot mode
and saved instance segmentation image, RGB image, and bounding box infor-
mation for all the actors present in the current image view of the simulator for
every five seconds. Tightened the bounding boxes further and saved them for
the object detection process. In detail explanation of the pipeline can be seen in
the following subsections.

Dynamic Objects creation Performing object detection requires the selection
of object classes. As this project focused on detecting dynamic objects in a traffic
situation, four classes were chosen. They are 0 - Car (regular passenger cars), 1
- Truck (bigger cars like vans or ambulances), 2 – Cyclist, and 3 – Pedestrians.
The classes were partly chosen based on what objects were available in the Carla
simulator and partly based on what classes were typically found in available real-
life datasets for comparison.

Sensor Data (RGB/LiDAR) Acquisition There are primarily two ways
one could go about gathering data from the Carla simulator: Manual and auto-
matic controlling. The player vehicle would be fitted with selected sensors, which
are accessible through the Python API. For example, RGB or LiDAR sensors
attached to the vehicle can gather data for every game update.

RGB data Extraction from Carla The first step of the data collection pro-
cess was to gather raw data from the simulator which was done using the script
from the CarFree project [4]. For most of the data collection, the autopilot
and automatic capture of images were used. The images were captured with a
resolution of 960x540. The player vehicle was attached with the RGB camera
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sensor and Instance Segmentation camera. In addition to saving the RGB and
instance segmentation images, bounding boxes with 8 corners in (x, y, z) format
were also collected and saved. A transformation has been applied to transform
bounding boxes with respect to the camera view. This was done in two steps:
first by transforming the actor coordinates to the world coordinates, and then
from the world coordinates to the sensor coordinates. After this, the coordinates
are projected from 3D into 2D to achieve bounding boxes on images using cam-
era calibration [6]. As mentioned before CarFree only used two labels whereas
this project aimed at 4 labels for the dynamic objects. A different approach has
been taken to add additional labels aimed at converting 3D bounding boxes to
2D for creating correct labels which include extended classes.

Extracting LiDAR data from Carla The LiDAR extraction process from
the Carla simulator is also similar to the extraction of the RGB data as discussed
in section 3.1 which can collect Point cloud files at a rate of one every 5 seconds.
The Carla LiDAR sensor has several attributes that need to be tweaked before
collecting data. LiDAR data collection in this research is conducted using the
NTNU research platform, which is a Kia e-Niro (fully electric) equipped with
three LiDARs (one 360 degrees 128-channel at the top, one 180 degrees 16 chan-
nel in the front and one close to 270 degrees looking at the rear right side), other
sensors and software. We try to simulate LiDAR images with the top mounted
LiDAR configuration as in Table 1. Using these settings, 20.ply files were gener-

LiDAR Specification Value

Channels 128

Range 240

Upper and lower FOV -11.25 to 11.25

Rotation frequency 20 FPS

Points per second 2,621,440

Table 1. Simulated LiDAR specifications.

ated and LiDAR point cloud scans were collected at a similar pace to the RGB
images (one image every 5 seconds). This would allow for a greater variance in
the images, as 20 images each second would result in many very similar images.

Generating LiDAR annotated data Projecting 3D points to 2D image space:
In order to create an image, the 3D point cloud needed to be projected to a 2D
image space. Wu et al. [13] described one method to achieve this. This is done
by calculating where the 3D points will fit as pixel coordinates, as well as what
the pixel value should be. Figure 1 shows an example of the generated range and
intensity images by 3D to 2D image projection on our one LiDAR scan.

Automatic annotation for Lidar images: After projecting 3D points to 2D
image space, the next step is to the annotation of LiDAR images automatically.
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Fig. 1. Example range image (top) and intensity image (bottom).

A similar method to the RGB images was applied when generating the LiDAR
bounding boxes. While the semantic LiDAR sensor did not provide instance
colors for each object, it did provide the actor ID directly. As such, a slightly
different approach had to be used compared to the RGB images.

A case was found where certain objects could appear on both sides of the
image. Since the image was 360 degrees, an actor could appear split on both ends
of the image horizontally. This would cause issues with the object’s bounding
box, as the bounding box would stretch across the entire image. To avoid this,
any object where the difference between max and min X above 900 pixels was
ignored. Another option would be to treat these two parts as separate objects,
but this seemed like a sub-optimal solution from an annotation perspective.

As with the RGB images, bounding boxes that were too small were removed.
However, unlike for the RGB images, where a percentage of the x and y val-
ues was chosen as a threshold for removal, the area of the bounding box was
calculated and used as a threshold. Compared to the RGB images, the LiDAR
images had more slim and tall objects, particularly pedestrians. Using an area as
the threshold preserved these bounding boxes while still removing small boxes
that could be a detriment to model training. Figure 2 shows the effect of using
the threshold on a range image. Note the smaller objects being removed in the
bottom image.

Fig. 2. LiDAR range image without bounding box threshold (top) vs with threshold
(bottom).
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Real RGB images for testing : The team needed a dataset with properly an-
notated real images to test the models. A popular dataset used for 2D traffic
object detection is the Kitti dataset2. It contains roughly 7500 annotated im-
ages. This dataset was chosen due to the quality of the annotations, as well as it
having annotations for all the relevant label types used in this project. For the
Carla dataset, the team initially collected 500 test images to review the dataset
before collecting a larger sample. The images were all collected from Town11.

Real LiDAR images for testing : Similar to RGB images, a test dataset was
needed to test the generated LiDAR images. As mentioned previously, LiDAR
data collected from our research platform and nearly 5000 images were hand-
annotated for the Object detection task in Darknet and COCO formats. Mainly
four classes (car, person, rider (cyclist), and bus) were considered. One issue that
had to be addressed was the mismatching labels between the simulated and real
data. The data provided for the project did not contain any truck class, however,
it did contain a bus class. We have decided to simply change the class name in
the project dataset, with the reasoning that some of the trucks in Carla like the
fire truck or ambulance look fairly similar to buses.

Dataset format conversion: Yolov5 uses the Darknet Pytorch dataset for-
mat while Carla simulator uses the regular Darknet format for bounding box
information. To convert between these formats, a website called Roboflow3 was
used.

Dataset imbalance: We have to make sure that the collected datasets did
not suffer from significant class imbalance. According to Oksuz et al. [14], an
imbalanced dataset can have adverse effects on the final detection performance
of object detection models. As mentioned previously, a test dataset consisting
of 500 images was initially collected. It was discovered that the 500-image test
dataset suffered from a significant class imbalance, which is illustrated in Figure 3
(left).

Fig. 3. Class imbalance for 500 image test dataset Before (left) vs After (right) spawn
balancing.

As the figure shows, the cyclist class was severely underrepresented whereas
the car was over represented in the dataset. After investigation, it is found that

2 https://www.cvlibs.net/datasets/kitti/
3 https://roboflow.com/
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the class imbalance is arising while spawning actors during the simulation due
to the random selection of vehicles from the list of vehicle blueprints, where
the Carla blueprint library had significantly more car blueprints than trucks or
cyclists (Car:25, Truck:7, Cyclists:3). To fix this issue and balance the spawning,
we update the existing code to spawn a certain amount of each type of vehicle. We
have decided that 20 of each vehicle type was enough for the size of the selected
maps, for a total of 60 vehicles. There was still some class imbalance. However,
it was an improvement over the original dataset as shown Figure 3 (right). By
following the approach class balance for LiDAR images was also addressed. After
the imbalance was addressed on 500 images initially, 7500 images from the Carla
simulator were gathered to match the Kitti dataset size. The images were equally
split between the three maps, with each map having three separate weather
conditions: clear, night and rain. Both datasets were split, with 80% reserved for
training, 10% for testing and 10% for validation.

For the data collection of LiDAR images from the Carla simulator, the team
opted for a total of 5000 images to match the testing dataset size, with 2500
range and 2500 intensity images. This was done by collecting an equal amount
of .ply files from the same three towns as the RGB images. The LiDAR images
would not be affected by world conditions like rain and lighting, so these settings
were not considered. The same 80/10/10 split was used for this dataset.

3.2 Training and testing object detection models

One of the reasons for picking Yolov5 for this research was its ease of use in ev-
erything from training on custom data to testing the trained models. There are
several versions of Yolov5 available; Yolov5n (nano), Yolov5s (small), Yolov5m
(medium), Yolov5L (large) and Yolov5X (XL). The primary difference is a trade-
off in speed vs. accuracy. The smaller models like nano and small could run in-
ference (detect objects in images) faster, but are not as accurate as the larger
models. We have decided that a balance between speed and accuracy was the
best choice, resulting in Yolov5m being chosen. For more information about the
model architecture, one could refer to github repo 4. In an interview 5, Glenn
Jocher (the lead developer on the Yolov5 project), shared an insight on why
YoloV5 is an easy and efficient method. According to him, the new contribution
in Yolov5 was the introduction of genetic anchors. Instead of using pre-existing
anchors, the model uses genetic learning algorithms to create new anchors based
on the bounding boxes of the custom dataset. This enables the model to train
using custom datasets much more easily than previous versions, with no modi-
fication of the model needed.

Testing Yolov5 produced a variety of information and metrics about the
models. In this research, we considered a most common performance measure
by [15] in the context of object detection called Mean Average Precision (mAP)
score as the main metric to compare the results from the experiments. Average

4 https://github.com/ultralytics/yolov5/issues/6998
5 https://blog.roboflow.com/yolov5-improvements-and-evaluation/
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Precision (AP) for each class was also measured, as it could show discrepancies
among different classes and how they could affect the mAP value. The mAP
training values for a model trained exclusively on Carla would likely not be
very useful when the research objective is to check how well a model trained
on simulator data can perform on a real dataset. Hence, the models were tested
using the test portions of the Kitti and Ouster LiDAR datasets.

4 Experiments & Results

This section details the experiments that were carried out in an attempt to
answer the research questions posed in Section 2. First, baseline models were
created which are used for comparison. A total of three experiments were con-
ducted. Experiments 1 and 2 focus on RQ1. RQ2 is addressed in experiment
3, respectively. In this regard, experiments (Exp 1-2) pertaining to RGB cam-
era are shown in the Table 2 whereas experiment (Exp 3) with regard to the
LiDAR sensor are shown in the Table 3.

Model Train data Test data Epochs mAP0.5 mAP Car Truck Cyclist Pedestrian
0.5:0.95

Kitti Carla RGB Kitti

Baseline 1 6000 – 1500 300 0.936 0.703 0.812 0.822 0.680 0.497
(Yolov5)

Exp 1
Kitti 2k 2000 – 1500 300 0.863 0.592 0.748 0.711 0.537 0.374

Kitti Transfer 2000 6000 1500 300 0.898 0.644 0.776 0.764 0.591 0.447

Exp 2
Carla RGB – 6000 1500 300 0.168 0.078 0.221 0.052 0.005 0.037

COCO weights+ – 6000 1500 300 0.283 0.144 0.352 0.13 0.005 0.088
Carla RGB

Table 2. Results of Experiments 1 and 2.

Model Train data Test data Epochs mAP0.5 mAP Car Truck Cyclist Pedestrian
0.5:0.95

Ouster Carla Ouster
LiDAR

Baseline 2 4000 – 1000 300 0.877 0.522 0.691 0.498 0.475 0.425
(Yolov5)

Exp 3
Ouster 2k 2000 – 1000 300 0.631 0.346 0.442 0.469 0.245 0.202

Ouster Transfer 2000 4000 1000 300 0.670 0.402 0.476 0.569 0.305 0.250

Table 3. Results of Experiment 3.

Training baseline models: Before any experiments were conducted, As shown
in Table 2 and Table 3, two baseline models Baseline 1 and Baseline 2 were
created; one for RGB and another LiDAR data respectively from the hand-
annotated datasets. As mentioned previously, the Kitti dataset contained roughly
7500 annotated images. As per the 80/10/10 split, 6000 of the images were used
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to train the baseline models, with the remaining 1500 images divided equally
into the validation and testing sets. For the Ouster LiDAR data, the dataset
was hand-annotated by researchers at NAPLab of NTNU. A total of 5000 Li-
DAR images, of which 4000 were used for training, and 500 each for test/valid.
All trained models were tested on the test portion of their respective hand-
annotated datasets. As mentioned, these scores represented the baseline against
which the other experiments were compared.

Exp 1: Fine-tuning with Kitti images: It was conducted to investigate whether
the Carla data could be used to train a baseline model, which could then be
fine-tuned using a smaller subset of the Kitti data. 2000 images were selected
randomly from the Kitti training dataset, and transfer learning was done on
top of pre-trained Carla weights (6000 images, 300 epochs). Models were also
trained from scratch using the same 2000 Kitti images to check if the pre-trained
weights had any effect at all. The Yolov5 model trained using the pre-trained
Carla weights showed an improvement across all metrics compared to the one
trained solely on 2000 Kitti images. While not reaching the performance of the
6000 image Kitti model, the improvement was significant. The mAP0.5:0.95
score improved by roughly 10%, while the Pedestrian class showed the biggest
improvement overall.

Exp 2: Fine-tuning on pre-trained COCO models: It was conducted to in-
vestigate whether models pre-trained on the COCO dataset could be used to
enhance the data collected from Carla. A substantial increase in mAP can be
seen, even doubling the value for the mAP0.5:0.95 metric. The only class which
did not benefit from the pre-trained weights was the cyclist.

Exp 3: Fine-tuning with LiDAR images: It was conducted to investigate
whether the Carla LiDAR images could be used to reduce the amount of real
images required when training with LiDAR images. A subset of the Ouster train-
ing dataset consisting of 2000 randomly chosen images were used to fine-tune
the models from exp 6 by doing transfer learning. Model trained using the 2000
images was also used to check whether the transfer learning had any effect. It
is observed that the fine-tuned model saw substantial gains in its metrics com-
pared to the model trained only on the 2k Ouster images. It can observed that
all scores increased by between 5-14%, with the truck class seeing the largest
increase. However, the scores did not reach the baseline.

Looking at the Exp 1, a model that was trained using pre-trained Carla
weights demonstrated improvements across all metrics when compared to a
model trained exclusively on Kitti images. The Exp 2 also demonstrates a signifi-
cant improvement when training a base model on Carla data and fine-tuning with
a small portion of the Kitti dataset which could be an application in training
the building blocks of Yolov5 object detection models used in traffic environ-
ments. The Exp 3 indicates that the Carla LiDAR images could have a use in
reducing the amount of real images required while still achieving decent model
performance.
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5 Conclusion and Future work

In conclusion, this study has highlighted the significance of object detection in
the context of autonomous driving and the challenges associated with acquiring
large labeled datasets. The use of a simulated environment, such as Carla, for
automated image annotation has shown promise in mitigating these challenges.
Our experiments have demonstrated that training object detection models with
automatically annotated data from Carla can yield encouraging results.

Specifically, the Yolov5 model, optimized using pretrained Carla weights, ex-
hibited significant improvements across various performance metrics when com-
pared to a model trained solely on a limited set of 2000 Kitti images. While
it did not match the performance of the 6000-image Kitti model, the enhance-
ments were substantial, particularly in the Pedestrian class where the most sig-
nificant improvement was observed, leading to an approximate 10% increase in
mAP0.5:0.95 score.

Furthermore, our findings suggest that a substantial performance boost can
be achieved by initially training a base model with Carla data and then fine-
tuning it with a smaller portion of the Kitti dataset. This approach offers a
potential solution to reduce the dependency on a large volume of real images
while maintaining respectable model performance.

Additionally, the study highlights the valuable role of Carla LiDAR images in
augmenting the dataset, further reducing the need for a massive collection of real
images. In essence, our research demonstrates the feasibility and effectiveness
of leveraging simulated environments like Carla for training object detection
models, which can be instrumental in advancing autonomous driving technology.

The possibility of extracting 2D bounding boxes directly from Carla rather
than having to project the 3D bounding boxes into the 2D is one of the future
directions we think is worth exploring. Other potential directions include the
effect of image scale variation on object detection performance, and the study
of specific aspects of the data collection process.
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