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The difference of convex algorithm

on Hadamard manifolds
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In this paper, we propose a Riemannian version of the difference of convex algorithm

(DCA) to solve a minimization problem involving the difference of convex (DC) function.

We establish the equivalence between the classical and simplified Riemannian versions

of the DCA. We also prove that, under mild assumptions, the Riemannian version of the

DCA is well-defined, and every cluster point of the sequence generated by the proposed

method, if any, is a critical point of the objective DC function. Additionally, we establish

some duality relations between theDCproblem and its dual. To illustrate the effectiveness

of the algorithm, we present some numerical experiments.
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1 Introduction

In this paper, we consider a general non-convex and non-smooth constrained optimization problem

involving a difference of convex functions (shortly, DC problem) as follows

argmin
p∈M

f(p), where f(p) := g(p)− h(p), (1)

where the constrained setM is endowed with a structure of a complete, simply connected Riemannian

manifold of non-positive sectional curvature, i.e., a Hadamard manifold, the functions g, h : M → R,
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are convex, lower semi-continuous and proper functions (calledDC components), andR := R∪{+∞}
is the extended real line.

Due to the increasing number of optimization problems arising from practical applications posed

in a Riemannian setting, the interest in this topic has increased significantly over the years. Even

though we are not currently concerned with practical issues at this point, we emphasize that practical

applications arise whenever the natural structure of the data is modeled as an optimization problem

on a Riemannian manifold. For example, several problems in image processing, computational vision

and signal processing can be modeled as problems in this setting. Papers dealing with this subject

include Bačák et al. 2016; Bergmann, Persch, and Steidl 2016; Bergmann and Weinmann 2016; Bredies

et al. 2018; Weinmann, Demaret, and Storath 2014, 2016, and problems in medical imaging modeled

in this context are addressed in Esposito et al. 2019. Problems of tracking, robotics and scene motion

analysis are also posed onRiemannianmanifolds, as seen in Freifeld and Black 2012; Park, Bobrow, and

Ploen 1995. Machine learning Nickel and Kiela 2018, artificial intelligenceMuscoloni et al. 2017, neural

circuits Sharpee 2019, low-rank approximations of hyperbolic embeddings Jawanpuria, Meghwanshi,

and Mishra 2019; Tabaghi and Dokmanić 2020, Procrustes problems Tabaghi and Dokmanic 2021,

financial networks Keller-Ressel and Nargang 2021, complex networks Krioukov et al. 2010; Moshiri,

Safaei, and Samei 2021, embeddings of dataWilson et al. 2014 and strain analysis Vollmer 2018; Yamaji

2008 are some of the other areaswhere optimizationproblems onRiemannianmanifolds are prevalent.

Additionally, we mention that there are many papers on statistics in the Riemannian context, as seen

in Bhattacharya and Bhattacharya 2008; Fletcher 2013.

As previously mentioned, there has been a significant increase in the number of works focusing on

concepts and techniques of nonlinear programming and convex analysis in the Riemannian setting,

see Absil, Mahony, and Sepulchre 2008; Udrişte 1994. In addition to the theoretical issues addressed,

which have an interest of their own, the Riemannianmachinery provides support to design efficient al-

gorithms to solve optimization problem in this setting; papers on this subject include Absil, Baker, and

Gallivan 2007; Edelman, Arias, and Smith 1999; Huang, Gallivan, and Absil 2015; Li, Mordukhovich,

et al. 2011; Manton 2015; Miller and Malick 2005; Nesterov and Todd 2002; Smith 1994; Wen and Yin

2012; Wang et al. 2015 and references therein.

Recently, the concept of the conjugate of a convex functionwas introduced in the Riemannian context.

This is an important tool in convex analysis and plays a significant role in the theory of duality on

Riemannian manifolds, see Silva Louzeiro, Bergmann, and Herzog 2022; Bergmann, Herzog, et al.

2021. In particular, this definition enables us to propose a Riemannian version of the DCA.

DC problems cover a broad class of non-convex optimization problems and DCAwas the first method

introduced especially for the standard DC problem Equation (1). It was proposed by Tao and Souad

1986 in the Euclidean setting. The basic idea behind DCA is to compute a subgradient of each (convex)

DC component separately, i.e., at each iterate k, DCA calculates y(k) ∈ ∂h(x(k)) and uses this trial

point to compute x(k+1) ∈ ∂g∗(y(k)), where ∂g∗ denotes the subdifferential of the conjugate function
of g in the sense of convex analysis. Equivalently, DCA approximates the second DC component h(x)
by its affine minorization hk(x) = h(x(k)) + 〈x − x(k), y(k)〉, with y(k) ∈ ∂h(x(k)), and minimizes

the resulting convex function

x(k+1) ∈ argmin
x∈Rn

g(x)− hk(x),
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which is called the alternative version of DCA therein. On the other hand, computing y(k) ∈ ∂h(x(k))
is equivalent to find a solution of the dual problem

argmin
y∈Rn

h∗(y)− g∗(yk−1)− 〈y − yk−1, x(k)〉.

Therefore, DCA can also be viewed as an iterative primal-dual subgradient method.

DC optimization algorithms have been proved to be particularly successful for analyzing and solving

a variety of highly structured and practical problems; see for instance de Oliveira 2020; Thi and Pham

Dinh 2018; An and Tao 2005. To the best of our knowledge, the work in Souza and Oliveira 2015 was

the first to deal with DC functions in Riemannianmanifolds. More precisely, the authors proposed the

proximal point algorithm for DC functions (DCPPA) and studied the convergence of the method in

Hadamard manifolds. Recently, Almeida et al. 2020 proposed a modified version of the DCPPA in the

same Riemannian setting in order to accelerate the convergence of the method considered in Souza

and Oliveira 2015.

The aim of this paper is to propose, for the first time, a Riemannian version of the DCA. We obtain

an equivalence between the classical and a simplified version of the Riemannian DCA. Therefore,

under mild assumptions, we prove that the Riemannian DCA is well-defined, and every cluster point

of the sequence generated by the proposed method, if any, is a critical point of the objective DC

function in Equation (1). We also extend some relations between the DC problem Equation (1) and its

dual to the Riemannian setting. To illustrate the effectiveness of DCA, we present some numerical

experiments.

This paper is organized as follows. In Section 2we present some notations and preliminary results that

will be used throughout the paper. In Section 3 some relations between the DC problem and its dual

are established on Hadamard manifolds. In Section 4 we present a formulation of the Riemannian

DCA. In Section 5 we study the convergence properties of the proposed method. In Section 7 we

provide some applications to the problem of maximizing a convex function in a compact set and

manifold-valued image denoising. Finally, Section 8 presents some conclusions.

2 Preliminaries

In this section, we recall some concepts, notations, and basics results about Riemannian manifolds

and optimization. For more details see, for example, do Carmo 1992; Rapcsák 1997; Sakai 1996; Udrişte

1994. Let us begin with concepts about Riemannian manifolds. We denote byM a finite dimensional

Riemannian manifold and by TpM the tangent space ofM at p. The corresponding norm associated

to the Riemannian metric 〈·, ·〉 is denoted by ‖·‖. Moreover, the tangent bundle ofM, will be denoted

by TM. We use ℓ(γ) to denote the length of a piecewise smooth curve γ : [a, b]→M. The Rieman-

nian distance between p and q inM is denoted by d(p, q), which induces the original topology on

M, namely, (M, d), which is a complete metric space. A complete, simply connected Riemannian

manifold of non-positive sectional curvature is called a Hadamard manifold. All Riemannian manifold

considered in this paper will be Hadamard manifolds and will be denotedM. For a p ∈ M, the expo-

nential map expp : TpM→M is a diffeomorphism and exp−1
p :M→ TpM denotes its inverse. In
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this case, d(q, p) = ‖exp−1
p q‖ holds, the function d2q :M → R defined by d2q(p) := d2(q, p) is C∞

and its gradient is given by grad d2q(p) = −2 exp
−1
p q. Now, we recall some concepts and basic prop-

erties about optimization in the Riemannian context. For that, given two points p, q ∈ M, denotes

by γpq the geodesic segment joining p to q, i.e., γpq : [0, 1] → M with γpq(0) = p and γpq(1) = q.
We denote by R := R ∪ {+∞} the extended real line. The domain of a function f : M → R is

denoted by dom(f) := {p ∈ M : f(p) < +∞}. The function f is said to be convex (resp. strictly

convex) if, for any p, q ∈ M, the composition f ◦ γpq : [0, 1] → R is convex (resp. strictly convex),

i.e., (f ◦ γpq)(t) ≤ (1− t)f(p) + tf(q) (resp. (f ◦ γpq)(t) < (1− t)f(p) + tf(q)), for all t ∈ [0, 1]. A
function f :M→ R is said to be σ-strongly convex for σ > 0 if, for any p, q ∈ M, the composition

f ◦ γpq : [0, 1]→ R is σ-strongly convex, i.e., (f ◦ γpq)(t) ≤ (1− t)f(p) + tf(q)− σ
2 t(1− t)d

2(q, p),
for all t ∈ [0, 1].

Definition 2.1. The subdifferential of a proper, convex function f :M→ R at p ∈ dom(f) is the set

∂f(p) :=
{

X ∈ TpM : f(q) ≥ f(p) + 〈X, exp−1
p q〉, for all q ∈ M

}

.

The proof of the first item of the following theorem can be found in Udrişte 1994, Theorem 4.10, p. 76,

while the proof of the second one follows the same idea as the first one.

Theorem 2.2. Let f :M→ R be a function. Then,

i) The function f is convex if and only if f(p) ≥ f(q) + 〈X, exp−1
q p〉, for all p, q ∈ M and all

X ∈ ∂f(q).
ii) The function f is σ-strongly convex if and only if f(p) ≥ f(q) + 〈X, exp−1

q p〉 + σ
2d

2(p, q), for
all p, q ∈M and all X ∈ ∂f(q).

The following definition play an import role in the paper, see Bourbaki 1995, p. 363.

Definition 2.3. A function f : M → R is said to be lower semi-continuous ( lsc), at p ∈ M if

lim infq→p f(q) = f(p). If f is lower semi-continuous at all points alongM, we simply state that

f is lower semi-continuous.

The proof of the following result is an immediate consequence of Wang et al. 2015, Proposition 2.5.

Proposition 2.4. Let f : M → R be a convex and lower semi-continuous function. Consider the se-

quence (p(k))k∈N ⊂ int dom(f) such that lim
k→∞

p(k) = p̄ ∈ int dom(f). If (X(k))k∈N is a sequence

such that X(k) ∈ ∂f(p(k)) for every k ∈ N, then (X(k))k∈N is bounded and its cluster points belongs to

∂f(p̄).

Definition 2.5. A function f :M→ R is said to be 1-coercive if there exists a point p̄ ∈ M such that

lim
d(p̄,p)→+∞

f(p)

d(p̄, p)
= +∞.
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The global minimizer set of a function f :M→ R is defined by

Ω∗ := {q ∈ M : f(q) ≤ f(p), for all p ∈ M}.

Proposition 2.6. Assume that f :M→ R is lsc and 1-coercive. Then the global minimizer set of f is

non-empty.

Proof. Take p̄ ∈ M such that limd(p̄,p)→+∞(f(p)/d(p̄, p)) = +∞. In particular, we conclude that

lim
d(p̄,p)→+∞

f(p) = +∞. Thus, there exists r̄ > 0 such that r̄ < d(p̄, p) implies that f(p̄) ≤ f(p).

Consider the set B[p̄, r̄] := {p ∈ M : d(p, p̄) ≤ r̄}. SinceM is a Hadamard manifold, the Hopf-

Rinow theorem ensures that B[p̄, r̄] is compact. Thus, taking into account that f is lsc., by Bourbaki

1995, Theorem 3, p. 361 there exists p̂ ∈ B[p̄, r̂] such that f(p̂) ≤ f(p), for all p ∈ B[p̄, r̂]. Therefore,
p̄ or p̂ is a global minimizer of f .

Lemma 2.7. Let g :M→ R be a σ-strongly convex function. Take p̄ ∈ M and X ∈ Tp̄M. Then, the

function f : M → R defined by f(p) = g(p) −
〈

X, exp−1
p̄ p

〉

is 1-coercive. Consequently, the global

minimizer set of f is non-empty.

Proof. Since the function g :M→ R is a σ-strongly convex, Theorem 2.2 Item i) implies that

g(p) ≥ g(p̄) + 〈Y, exp−1
p̄ p〉+

σ

2
d2(p̄, p), for all p ∈M and all Y ∈ ∂g(p̄).

Thus, considering that f(p) = g(p) −
〈

X, exp−1
p̄ p

〉

and using the last inequality we conclude

f(p)

d(p̄, p)
≥

g(p̄)

d(p̄, p)
+

〈

Y,
exp−1

p̄ p

d(p̄, p)

〉

+
σ

2
d(p̄, p)−

〈

X,
exp−1

p̄ p

d(p̄, p)

〉

, for all Y ∈ ∂g(p̄).

Since d(p̄, p) = ‖exp−1
p̄ p‖, we obtain that the inner products in the last inequality are bounded.

Hence, we have

lim
d(p̄,p)→+∞

f(p)

d(p̄, p)
= +∞.

Therefore, f is 1-coercive. The second part of the proposition is an immediate consequence of the

first one combined with Proposition 2.6.

The statement and proof of the next proposition can be found in Li, López, and Martín-Márquez 2009,

Lemma 2.4, p. 666.

Proposition 2.8. Let p̄ ∈ M and (p(k))k∈N ⊂ M be such that lim
k→+∞

p(k) = p̄. Then the following

assertions hold:

i) For any p ∈ M, we have lim
k→+∞

exp−1
p(k)

p = exp−1
p̄ p and lim

k→+∞
exp−1

p p(k) = exp−1
p p̄.
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ii) If X(k) ∈ Tp(k)M and lim
k→+∞

X(k) = X̄ , then X̄ ∈ Tp̄M.

iii) Given X(k) ∈ Tp(k)M, Y (k) ∈ Tp(k)M, X̄ ∈ Tp̄M, and Ȳ ∈ Tp̄M. If lim
k→+∞

X(k) = X̄ and

lim
k→+∞

Y (k) = Ȳ , then lim
k→+∞

〈X(k), Y (k)〉 = 〈X̄, Ȳ 〉.

We end this section recalling several results from Fenchel duality on Hadamardmanifolds, which play

an important role in the following sections. It is worth emphasizing that we are limiting our study to

finite-dimensional manifolds and that our emphasis is algorithmic. Consequently, we do not need to

use cotangent space for our purposes. Due to this, we decided to exclusively employ tangent spaces in

the following results of the paper Silva Louzeiro, Bergmann, and Herzog 2022. We begin by recalling

the defining the conjugate of a proper function.

Definition 2.9. Let f : M → R be a proper function. The Fenchel conjugate of f is the function

f∗ : TM→ R defined by

f∗(p,X) := sup
q∈M

{

〈X, exp−1
p q〉 − f(q)

}

, (p,X) ∈ TM.

Theorem 2.10. Let f :M→ R be a proper function. Then, the Fenchel-Young inequality holds, i. e.,

for all (p,X) ∈ TM we have

f(q) + f∗(p,X) ≥ 〈X, exp−1
p q〉, for all q ∈ M.

Theorem 2.11. Let f : M → R be a proper lsc convex function and p ∈ M. Then the function

f∗(p, ·) : TpM→ R is convex and proper.

Definition 2.12. Let p ∈ M and suppose that f∗(p, ·) : TpM → R is proper. The subdifferential of

f∗(p, ·) at X ∈ TpM, denoted by ∂2f
∗(p,X), is the set

∂2f
∗(p,X) =

{

Y ∈ TpM : f∗(p, Z) ≥ f∗(p,X) + 〈Z −X,Y 〉, for all Z ∈ TpM
}

.

Combining Silva Louzeiro, Bergmann, and Herzog 2022, Remark 3.3 with Bergmann, Herzog, et al.

2021, Corollary 3.16, we obtain the following result.

Theorem 2.13. Let f :M→ R be a proper function and p ∈ M. Then, Y ∈ ∂2f
∗(p,X) if and only

if f(expp Y ) + f∗(p,X) = 〈X,Y 〉.

Remark 2.14 (Silva Louzeiro, Bergmann, andHerzog 2022, Remark 3.4). IfM = Rn, then f∗(p,X) =
f∗(X)− 〈X, p〉. Moreover, ∂2f

∗(p,X) := ∂f∗(X) + {−p}.

Definition 2.15. The Fenchel biconjugate of a function f : M → R is the function f∗∗ : M → R
defined by

f∗∗(p) := sup
(q,X)∈TM

{

〈X, exp−1
p q〉 − f∗(q,X)

}

, for all p ∈ M.
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Theorem 2.16. Let f :M→ R be a proper lsc convex function. Then, f∗∗ = f holds.

Theorem 2.17. Let f :M→ R be a proper convex function. Then,

X ∈ ∂f(p) if and only if f∗(p,X) = −f(p).

3 Duality in DC optimization in Hadamard manifolds

In this section our aim is to state and study difference of convex optimization problem or DC problem,

and its dual problem, called dual DC problem, in the Hadamard setting. The DC problem is defined

as follows

argmin
p∈M

f(p), where f(p) := g(p)− h(p), (2)

and g : M → R and h : M → R are proper, lsc and convex functions. The DC problem is a non-

convex and, in general, a non-smooth problem. In the following we further use the conventions

(+∞)− (+∞) = +∞, (+∞)− λ = +∞, and λ− (+∞) = −∞, for all λ ∈ R. (3)

Similarly to Euclidean context, see Tao and Souad 1988, the dual DC problem of the problem (2), is

stated as follows

argmin
(p,X)∈TM

ϕ(p,X), where ϕ(p,X) := h∗(p,X)− g∗(p,X). (4)

Additional detail concerning the appropriateness of the previous definition will be provided later in

Theorem 3.10. In the following remark, we will look at the details of the relationship between (4) and

its Euclidean counterpart.

Remark 3.1. IfM = Rn, then TpM ≃ Rn for all p ∈ M. Consequently, TM ≃ Rn. Moreover, by

using Remark 2.14, we obtain

h∗(p,X) − g∗(p,X) = h∗(X)− 〈X, p〉 − (g∗(X)− 〈X, p〉) = h∗(X)− g∗(X), for all X ∈ Rn.

Therefore, ifM = Rn then problem (4) simplifies to

argmin
X∈Rn

h∗(X)− g∗(X). (5)

In conclusion, forM = Rn, the dual (4) of the problem (2) merges into the dual stated in Tao and Souad

1988.

To proceed with the study of problems (2) and (4), for now on we will assume that:

A1) g :M→ R and h :M→ R are σ-strongly convex and lsc functions, where σ > 0;
A2) finf := inf

x∈M
f(x) > −∞;
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A3) dom(g) ⊆ int dom(h);
A4) ∂2g

∗(p,X) 6= ∅, for every X ∈ dom(g∗(p, ·)) := {X ∈ TpM : g∗(p,X) < +∞}.

Next, we discuss the above assumptions. First, we show that (A1) is not restrictive.

Remark 3.2. Let q ∈ M and σ > 0. Consider the functionM ∋ p 7→ σ
2d

2(q, p), which is σ-strongly

convex, see Neto, Ferreira, and Pérez 2002, Corollary 3.1. If g̃ : M → R and h̃ : M → R are convex,

then taking q ∈ M and setting g(p) = g̃(p) + σ
2d

2(q, p) and h(p) = h̃(p) + σ
2d

2(q, p) we obtain two

σ-strongly convex functions g and h inM. In addition, f(p) = g̃(p) − h̃(p) = g(p) − h(p), for all
p ∈ M.

Remark 3.3. If assumption (A2) holds, then dom(f) = dom(g) ⊆ dom(h). Indeed, if dom(g) *
dom(h), then there exists p ∈ dom(g) such that p /∈ dom(h), and hence by (3), we have that f(p) =
g(p) − h(p) = g(p) − (+∞) = −∞, which contradicts assumption (A2). Thus, dom(g) ⊆ dom(h),
which implies that dom(g) ⊆ dom(f). On the other hand, assume by contradiction that dom(f) *
dom(g). Then, there exists p ∈ dom(f) such that g(p) = +∞. From (3) we obtain that f(p) =
g(p) − h(p) = (+∞) − h(p) = +∞, which contradicts the fact that p ∈ dom(f). Therefore, we

conclude that dom(f) = dom(g). Since under assumption (A2), we have dom(f) = dom(g), which
implies that dom(g) ⊆ dom(h). Hence, assumption (A3) is only slightlymore restrictive than assumption

(A2). We also note that if dom(h) =M, then assumption (A3) holds, and if dom(g∗(p, ·)) = TpM, then

assumption (A4) holds. It is worth to note that assumption (A4) is used here to establish the relationship

between problems (2) and (4).

A necessary condition for the point p∗ ∈ M to be a local minimum of f = g − h is that 0 ∈
∂f(p∗) ⊂ ∂g(p∗)− ∂h(p∗). Hence, if p∗ ∈ M is the solution of problem (2), then ∂h(p∗) ⊂ ∂g(p∗).
Consequently, ∂g(p∗) ∩ ∂h(p∗) 6= ∅. In this sense, we define a critical point of problem (2).

Definition 3.4. A point p∗ ∈ M is a critical point of f in (2) if ∂g(p∗) ∩ ∂h(p∗) 6= ∅.

The next lemma establishes a necessary condition for a point (p̄, X̄) ∈ TM be a solution of prob-

lem (4).

Lemma 3.5. If (p̄, X̄) is a solution of problem (4), then ∂2g
∗(p̄, X̄) ⊆ ∂2h

∗(p̄, X̄) holds.

Proof. Let (p̄, X̄) be a solution of problem (4). Then, h∗(p, Y )− g∗(p, Y ) ≥ h∗(p̄, X̄)− g∗(p̄, X̄), for
all (p, Y ) ∈ TM. Thus, we have

h∗(p̄, Y )− h∗(p̄, X̄) ≥ g∗(p̄, Y )− g∗(p̄, X̄), for all Y ∈ Tp̄M.

Take Z ∈ ∂2g
∗(p̄, X̄). By Definition 2.12, we have g∗(p̄, Y ) − g∗(p̄, X̄) ≥ 〈Y − X̄, Z〉, for all Y ∈

Tp̄M, which combined with the last inequality yields

h∗(p̄, Y )− h∗(p̄, X̄) ≥ 〈Y − X̄, Z〉, for all Y ∈ Tp̄M.

This implies, by Definition 2.12, that v ∈ ∂2h
∗(p̄, X̄), and the statement is proved.
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Remark 3.6. If M = Rn, then by using Remark 2.14 we have ∂2g
∗(p̄, X̄) = ∂g∗(X̄) − {p̄} and

∂2h
∗(p̄, X̄) = ∂h∗(X̄) − {p̄}. Thus, from Remark 3.1 and Lemma 3.5 we conclude that if X̄ ∈ Rn is

a solution of problem (5), then we have ∂g∗(X̄) ⊆ ∂h∗(X̄), which yields Tao and Souad 1988, Theo-

rem 2.1 (2).

We have already defined the critical point for the primal problem in Definition 3.4, so let us continue

on dual problem. Please keep in mind that, it follows from Lemma 3.5, that if (p̄, X̄) is a solution of

the problem (4), then the set ∂2h
∗(p̄, X̄) ∩ ∂2g

∗(p̄, X̄) is non-empty. Hence, we define the notion of

critical point for the problem (4) as follows:

Definition 3.7. A point (p̄, X̄) is a critical point for problem (4) if ∂2h
∗(p̄, X̄) ∩ ∂2g

∗(p̄, X̄) 6= ∅.

Remark 3.8. If M = Rn, then by using Remark 2.14 we have ∂2g
∗(p̄, X̄) = ∂g∗(X̄) − {p̄} and

∂2h
∗(p̄, X̄) = ∂h∗(X̄) − {p̄}. Thus, if (p̄, X̄) is a critical point of problem (4), then there exist Z ∈

∂2h
∗(p̄, X̄) ∩ ∂2g

∗(p̄, X̄). Hence, Z + p̄ ∈ ∂g∗(X̄) ∩ ∂h∗(X̄) 6= ∅. Therefore, X̄ ∈ Rn is a critical

point of problem (5).

To proceed with our analysis we need the next lemma. For a proof of it see Bartle and Sherbert 2000,

p. 46.

Lemma 3.9. Let X and Y be non-empty sets and f : X × Y → R a function. Then, it holds

inf
(x,y)∈X×Y

f(x, y) = inf
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

inf
x∈X

f(x, y).

The next theorem presents the relation between the optimum values of problems (2) and (4).

Theorem 3.10. Let g :M→ R and h :M→ R be proper, lsc and convex functions. Then, there holds

inf
(q,X)∈TM

{

h∗(q,X)− g∗(q,X)
}

= inf
p∈M

{g(p)− h(p)} .

Proof. Since h is convex, Theorem 2.16 implies that h∗∗ = h. Thus, using Definition 2.15 we have

inf
p∈M
{g(p)− h(p)} = inf{g(p) − h∗∗(p) : ∈ M}

= inf

{

g(p)− sup
(q,X)∈TM

{

〈X, exp−1
q p〉 − h∗(q,X)

}

: p ∈ M

}

.

Since sup
(q,X)∈TM

{〈X, exp−1
q p〉−h∗(q,X)} = − inf

(q,X)∈TM
{h∗(q,X)−〈X, exp−1

q p〉}, the last equality

is equivalent to

inf
p∈M
{g(p) − h(p)} = inf

p∈M
inf

(q,X)∈TM

{

g(p) + h∗(q,X)− 〈X, exp−1
q p〉

}

,
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which, using Lemma 3.9, can still be expressed equivalently as

inf
p∈M
{g(p) − h(p)} = inf

(q,X)∈TM
inf
p∈M

{

g(p) + h∗(q,X) − 〈X, exp−1
q p〉

}

.

Due to infp∈M{g(p) + h∗(q,X) − 〈X, exp−1
q p〉} = h∗(q,X) − supp∈M〈X, exp

−1
q p〉 − {g(p)}, the

final equality is as follows

inf
p∈M
{g(p) − h(p)} = inf

(q,X)∈TM

{

h∗(q,X) − sup
p∈M

{

〈X, exp−1
q p〉 − g(p)

}

}

,

which, by using Definition 2.9, yields the desired equality and the proof is concluded.

Theorem 3.11. The following statements hold:

i) If p̄ ∈ M is a solution of problem (2), then (p̄, Ȳ ) ∈ TM is a solution of the problem (4), for all

Ȳ ∈ ∂h(p̄) ∩ ∂g(p̄).
ii) If (p̄, Ȳ ) ∈ TM is a solution of problem (4), for some Ȳ ∈ ∂h(p̄) ∩ ∂g(p̄), then p̄ ∈ M is a

solution of problem (2).

Proof. To prove Item i), assume that p̄ ∈ M is a solution of problem (2). Thus, we have ∂h(p̄) ∩
∂g(p̄) 6= ∅. Let Ȳ ∈ ∂h(p̄)∩∂g(p̄). Since g and h are convex, by Theorem 2.17 we have−g∗(p̄, Ȳ ) =
g(p̄) and h∗(p̄, Ȳ ) = −h(p̄), which implies that h∗(p̄, Ȳ )− g∗(p̄, Ȳ ) = g(p̄)−h(p̄). Using again that

p̄ ∈ M is a solution of problem (2), the last equality together with Theorem 3.10 ensure that (p̄, Ȳ ) is
a solution of problem (4), and hence, the Item i) is proved. We proceed to prove Item ii). To this end,

we assume that (p̄, Ȳ ) is a solution of problem (4) with Ȳ ∈ ∂h(p̄)∩ ∂g(p̄). Since g and h are convex

and Ȳ ∈ ∂h(p̄)∩ ∂g(p̄), it follows from Theorem 2.17 that −g∗(p̄, Ȳ ) = g(p̄) and h∗(p̄, Ȳ ) = −h(p̄),
which implies

g(p̄)− h(p̄) = h∗(p̄, Ȳ )− g∗(p̄, Ȳ ) = inf
(p,X)∈TM

{

h∗(p,X) − g∗(p,X)
}

. (6)

On the other hand, Theorem 3.10 implies that

inf
(p,X)∈TM

{

h∗(p,X)− g∗(p,X)
}

= inf
q∈M

{

g(q)− h(q)
}

≤ g(p̄)− h(p̄)

Combining the last inequality with (6) yields g(p̄)− h(p̄) = infq∈M
{

g(q)− h(q)
}

. Hence, p̄ ∈M is

a solution of problem (2).

4 DCA on Hadamard manifolds

The aim of this section is present an extension of the DCA to Hadamard manifolds. To this end, we

first propose an extension of the classical DCA, which is based on the Fenchel conjugate introduced

in Definition 2.9. As the DCA is dependent on the Fenchel conjugate of the first component of the

objective function, which is in general difficult to compute, we provide a much simpler version of
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DCA on Hadamard manifolds based on a first-order approximation of the second component. We

also show the well-definition of these algorithms and their equivalence in the Riemannian setting,

such as in the linear setting. The DCA based on Fenchel conjugate is stated in Algorithm 1, and the

second version in Algorithm 2.

Algorithm 1 The DC Algorithm on Hadamard Manifolds (DCA1)

1: Choose an initial point p(0) ∈ dom(g). Set k = 0.
2: TakeX(k) ∈ ∂h(p(k)), and compute

Y (k) ∈ ∂2g
∗(p(k),X(k)),

p(k+1) := expp(k) Y
(k).

(7)

3: If p(k+1) = p(k), then STOP and return p(k). Otherwise, go to Step 4.

4: Set k ← k + 1 and go to Step 2.

As mentioned before, Algorithm 1 relies on the computation of the Fenchel conjugate, which can be

difficult to compute in practice. However, this algorithm is conceptually useful and can be shown to be

is equivalent to more practical and computable algorithm that does not rely on the Fenchel conjugate.

The following two results will be used to demonstrate the well-definedness of Algorithm 1.

Lemma 4.1. If p ∈ dom(h) and Y ∈ ∂h(p), then dom(h∗(p, ·)) ⊆ dom(g∗(p, ·)) and

Y ∈ dom(g∗(p, ·)) = {X ∈ TpM : g∗(p,X) < +∞}.

In particular, ∂2g
∗(p, Y ) 6= ∅.

Proof. Assume that p ∈ dom(h) and take Y ∈ ∂h(p). Thus, by using Theorem 2.17 we obtain

h∗(p, Y ) = −h(p) < +∞. (8)

From Theorem 3.10 and assumption (A2) we have that

h∗(p, Y )− g∗(p, Y ) ≥ inf
(q,X)∈TM

{

h∗(q,X) − g∗(q,X)
}

= inf
q∈M

{

g(q)− h(q)
}

> −∞. (9)

To prove the first statement, assume by contradiction that dom(h∗(p, ·)) * dom(g∗(p, ·)). Thus,

there exists Ȳ ∈ TpM such that h∗(p, Ȳ ) < +∞ and g∗(p, Ȳ ) = +∞. By using (3), we have

h∗(p, Ȳ ) − g∗(p, Ȳ ) = h∗(p, Ȳ ) − (+∞) = −∞, which contradicts the equality in (9) and the first

statement is proved. Since dom(h∗(p, ·)) ⊆ dom(g∗(p, ·)), it follows from (8) that g∗(p, Y ) < +∞.

Thus, Y ∈ dom(g∗(p, ·)) and by assumption (A4) we conclude that ∂2g
∗(p, Y ) 6= ∅.

Proposition 4.2. Algorithm 1 is well defined.

Proof. Assume p(k) ∈ dom(g). From Remark 3.3, we have that dom(f) = dom(g) ⊆ dom(h), and
hence p(k) ∈ dom(h). By assumption (A3), we have that ∂h(p(k)) 6= ∅. Let X(k) ∈ ∂h(p(k)).
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Since h is convex, Theorem 2.17 implies that h∗(p(k),X(k)) = −h(p(k)) < +∞. By the first part of

Lemma 4.1, we have that g∗(p(k),X(k)) < +∞ and ∂2g
∗(p(k),X(k)) 6= ∅. LetY (k) ∈ ∂2g

∗(p(k),X(k)).
SinceM is Hadamard, the point p(k+1) = expp(k) Y

(k) is well defined and belongs toM. Moreover,

applying Theorem 2.13 with f = g, p = p(k), X = X(k) and Y = Y (k) we have g(p(k+1)) +
g∗(p(k),X(k)) = 〈X(k), Y (k)〉 or equivalently g(p(k+1)) = 〈X(k), Y (k)〉 − g∗(p(k),X(k)) < +∞,

which implies that p(k+1) ∈ dom(g) = dom(f) ⊆ dom(h). Therefore, Algorithm 1 is well de-

fined.

In the following, we present a second version of the DCA that is equivalent to Algorithm 1, which is

described in Algorithm 2.

Algorithm 2 The DC Algorithm on Hadamard Manifolds (DCA2)

1: Choose an initial point p(0) ∈ dom(g). Set k = 0.
2: TakeX(k) ∈ ∂h(p(k)), and the next iterated p(k+1) is define as following

p(k+1) ∈ argmin
p∈M

(

g(p)−
〈

X(k), exp−1
p(k)

p
〉

)

. (10)

3: If p(k+1) = p(k), then STOP and return p(k). Otherwise, go to Step 4.

4: Set k ← k + 1 and go to Step 2.

It should be noted that the stopping criterion in step 3 of Algorithm 2 allows it to generate an infinite

sequence. Therefore, in practice, to implement Algorithm 2, an appropriate stopping criterion will

be required, which will be addressed further in the implementation section. Let us now analyze

Algorithm 2. First of all, note that due to the point p(k+1) be a solution of (10), we have

g(p)−
〈

X(k), exp−1
p(k)

p
〉

≥ g(p(k+1))−
〈

X(k), exp−1
p(k)

p(k+1)
〉

, for all p ∈ M. (11)

This inequality will now have an important role in the paper.

Proposition 4.3. Algorithm 2 is well defined.

Proof. Assume that p(k) ∈ dom(g). From Remark 3.3, we have that dom(g) = dom(f) ⊆ dom(h),
which implies that p(k) ∈ dom(h). Thus, by Assumption (A3), we have that ∂h(p(k)) 6= ∅. LetX(k) ∈
∂h(p(k)). From Lemma 2.7, we have that gk :M→ R given by gk(p) := g(p)−〈X(k), exp−1

p(k)
p〉 is 1-

coercive. Consequently, its minimizer set is non-empty and is contained in dom(g). Therefore, there
exists p(k+1) ∈ dom(g) = dom(f) such that p(k+1) ∈ argminp∈M(g(p) − 〈X(k), exp−1

p(k)
p〉), which

implies that Algorithm 2 is well defined.

Remark 4.4. IfM = Rn, then by Remark 2.14, we have ∂2g
∗(p(k),X(k)) = ∂g∗(X(k)) − {p(k)}

and consequently Y (k) + p(k) = expp(k) Y
(k) = p(k+1) ∈ ∂g∗(X(k)) = ∂2g

∗(p(k),X(k)) + {p(k)},

i.e., p(k+1) ∈ ∂g∗(X(k)) and X(k) ∈ ∂h(p(k)). Therefore, Algorithm 1 coincides with the classical
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formulation of the DCA; see Tao and Souad 1988; An and Tao 2005. Moreover, ifM = Rn, then (11)

becomes

g(p)−
〈

X(k), p − p(k)
〉

≥ g(p(k+1))−
〈

X(k), p(k+1) − p(k)
〉

, for all p ∈ Rn,

which is equivalent to p(k+1) = argminp∈Rn{g(p) −
〈

X(k), p − p(k)
〉

} As a conclusion, Algorithm 2

yields an alternative version of the classical DCA

In the next result, we show that Algorithm 1 is equivalent to Algorithm 2 in the Riemannian setting,

similar to the linear setting.

Proposition 4.5. If p(k) ∈ dom(g), X(k) ∈ ∂h(p(k)) and Y (k) ∈ ∂2g
∗(p(k),X(k)), then p(k+1) =

expp(k) Y
(k) if and only if p(k+1) ∈ argminp∈M(g(p)− 〈X(k), exp−1

p(k)
p〉). Consequently, Algorithm 1

is equivalent to Algorithm 2.

Proof. Let p(k) ∈ dom(g), X(k) ∈ ∂h(p(k)), Y (k) ∈ ∂2g
∗(p(k),X(k)), and p(k+1) = expp(k) Y

(k)

be given by Algorithm 1. By applying Theorem 2.13 with f = g, p = p(k), Y = exp−1
p(k)

p(k+1), and

X = X(k), we have g(p(k+1))+g∗(p(k),X(k)) = 〈X(k), exp−1
p(k)

p(k+1)〉, which by using Definition 2.9

is equivalent to

g(p(k+1))− 〈X(k), exp−1
p(k)

p(k+1)〉 = −g∗(p(k),X(k)) = − sup
q∈M

(

〈X(k), exp−1
p(k)

q〉 − g(q)
)

,

or equivalently,

g(p(k+1))− 〈X(k), exp−1
p(k)

p(k+1)〉 = inf
q∈M

(g(q) − 〈X(k), exp−1
p(k)

q〉).

This is also equivalent to p(k+1) ∈ argmin
p∈M

(g(p)−〈X(k), exp−1
p(k)

p〉). Therefore, Algorithm 1 is equiv-

alent to Algorithm 2.

5 Convergence analysis of DCA

The aim of this section is to study the convergence properties of DCA. It is worth mentioning that the

results in this section can be proved using either of the formulations of DCA in Algorithm 1 and 2,

as they are equivalent according to Proposition 4.5. For simplicity, we present the results only using

Algorithm 2, but the proofs of the results for Algorithm 1 are quite similar. We begin by showing a

descent property of the algorithm.

Proposition 5.1. Let (p(k))k∈N be generated by Algorithm 2. Then, the following inequality holds

f(p(k+1)) ≤ f(p(k))−
σ

2
d2(p(k), p(k+1)). (12)

Moreover, if p(k+1) = p(k), then p(k) is a critical point of f .
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Proof. By using inequality in (11) with p = p(k)wehave g(p(k))−g(p(k+1)) ≥ 〈−X(k), exp−1
p(k)

p(k+1)〉.

On the other hand, since h is σ-strongly convex and X(k) ∈ ∂h(p(k)), we obtain that

h(p(k+1))− h(p(k)) ≥ 〈X(k), exp−1
p(k)

p(k+1)〉+
σ

2
d2(p(k+1), p(k)).

Hence, using that f = g− h together with two previous inequalities we obtain (12). To prove the last

statement, we assume that p(k+1) = p(k). Thus, (11) implies that g(p) ≥ g(p(k)) + 〈X(k), exp−1
p(k)

p〉,

for all p ∈ M, which shows that X(k) ∈ ∂g(p(k)). Hence, taking into account thatX(k) ∈ ∂h(p(k)),
we conclude thatX(k) ∈ ∂g(p(k))∩∂h(p(k)) 6= ∅. Therefore, it follows from Definition 3.4 that p(k)

is a critical point of f in problem (2).

Proposition 5.2. Let (p(k))k∈N be generated by Algorithm 2. Then,

+∞
∑

k=0

d2(p(k), p(k+1)) < +∞.

In particular, lim
k→+∞

d(p(k), p(k+1)) = 0.

Proof. It follows from (12) that 0 ≤ (σ/2)d2(p(k), p(k+1)) ≤ f(p(k))− f(p(k+1)), for all k ∈ N. Thus,

T
∑

k=0

d2(p(k), p(k+1)) ≤
2

σ

T
∑

k=0

(

f(p(k))− f(p(k+1))
)

≤
2

σ

(

f(p(0))− finf

)

,

for each T ∈ N, where finf > −∞ is given by assumption (A2). Taking the limit in the last inequality,

as T goes to +∞, we obtain the first statement. The second statement is an immediate consequence

of the first one.

Theorem 5.3. Let (p(k))k∈N and (X(k))k∈N be generated by Algorithm 2. If p̄ is a cluster point of

(p(k))k∈N, then p̄ ∈ dom(g) and there exists a cluster point X̄ of (X(k))k∈N such that X̄ ∈ ∂g(p̄) ∩
∂h(p̄). Consequently, every cluster point of (p(k))k∈N, if any, is a critical point of f .

Proof. Let p̄ ∈ M be a cluster point of (p(k))k∈N. Without loss of generality we can assume that

lim
k→+∞

p(k) = p̄. It follows from Proposition 5.1 together with assumption (A2) that (f(p(k)))k∈N is

non-increasing and converges. Moreover, due to f(p(0)) ≥ f(p(k)) = g(p(k))− h(p(k)) and g be lsc,
we have

f(p(0)) ≥ lim inf
k→+∞

g(p(k))− lim sup
k→+∞

h(p(k)) ≥ g(p̄)− lim sup
k→+∞

h(p(k)).

Thus, using the convention (3) we conclude that p̄ ∈ dom(g). Hence, using assumption (A3), we

conclude that p̄ ∈ int dom(h). We know thatX(k) ∈ ∂h(p(k)), for all k ∈ N. Thus, by Proposition 2.4,

we can also conclude that lim
k→+∞

X(k) = X̄ ∈ ∂h(p̄). Due to the point p(k+1) being a solution
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of (10), it satisfies (11). Thus, taking the inferior limit in (11), as k goes to +∞, and using the fact that

lim
k→+∞

p(k) = p̄, g is lsc together with Proposition 2.8,Item iii) and Proposition 5.2, we obtain

g(p) ≥ lim inf
k→+∞

(

g(p(k+1)) + 〈X(k), exp−1
p(k)

p〉 − 〈X(k), exp−1
p(k)

p(k+1)〉

)

≥ g(p̄) + 〈X̄, exp−1
p̄ p〉,

for each p ∈ M, which implies that g(p) ≥ g(p̄) + 〈X̄, exp−1
p̄ p〉, for all p ∈ M. Hence, X̄ ∈ ∂g(p̄).

Therefore, X̄ ∈ ∂g(p̄) ∩ ∂h(p̄), and hence p̄ is a critical point of f in problem (2).

Proposition 5.4. Let (p(k))k∈N be generated by Algorithm 2. Then, for all N ∈ N, there holds

min
k=0,1,...,N

d(p(k), p(k+1)) ≤

(

2(f(p0)− finf)

(N + 1)σ

)1/2

.

Proof. It follows from (12) that d2(p(k), p(k+1)) ≤ (2/σ)
(

f(p(k))− f(p(k+1))
)

, for all k ∈ N. Thus,

(N + 1) min
k=0,1,...,N

(

d2(p(k), p(k+1))

)

≤
N
∑

k=0

2

σ

(

f(p(k))− f(p(k+1))

)

≤
2

σ

(

f(p0)− finf

)

,

where finf > −∞ is given by assumption (A2). Therefore, the desired inequality directly follows.

The last result of this section establishes a primal-dual asymptotic convergence of the sequences

generated by the DCA. This result extends the known result from the Euclidean case, cf. Tao and

Souad 1988, Theorem 3, to Hadamard manifolds. Due to the nature of the problem, we will use the

formulation of the DCA given in Algorithm 1.

Theorem 5.5. Let (p(k))k∈N and (X(k))k∈N be the sequences generated by Algorithm 1. Then, the

following statements hold:

i) g(p(k+1))−h(p(k+1)) ≤ h∗(p(k),X(k))−g∗(p(k),X(k)) ≤ g(p(k))−h(p(k)), for all k = 0, 1, . . ..
ii) lim

k→+∞
(g(p(k))− h(p(k))) = lim

k→+∞
(h∗(p(k),X(k))− g∗(p(k),X(k))) = f̄ ≥ finf .

iii) If the sequence (p(k))k∈N is bounded and p̄ is a cluster point of (p(k))k∈N, then p̄ ∈ dom(g) and
there exists a cluster point X̄ of (X(k))k∈N such that

∂g(p̄) ∩ ∂h(p̄) 6= ∅, (13a)

lim
k→+∞

(h(p(k)) + h∗(p(k),X(k))) = h(p̄) + h∗(p̄, X̄) = 0, (13b)

lim
k→+∞

(g(p(k)) + g∗(p(k),X(k))) = g(p̄) + g∗(p̄, X̄) = 0. (13c)

∂2h
∗(p̄, X̄) ∩ ∂2g

∗(p̄, X̄) 6= ∅, (13d)

g(p̄)− h(p̄) = h∗(p̄, X̄)− g∗(p̄, X̄) = f̄ , (13e)

Proof.

cbna page 15 of 32



Bergmann, R., Ferreira, O. P., Santos, E. M., Souza, J. C. O.

i) By applying Theorem 2.10 with q = p(k+1), p = p(k), X = X(k), and f = h, we obtain that

h(p(k+1)) + h∗(p(k),X(k)) ≥ 〈X(k), exp−1
p(k)

p(k+1)〉. Since (7) implies that exp−1
p(k)

p(k+1) ∈

∂2g
∗(p(k),X(k)), we can apply Theorem 2.13 with f = g, p = p(k), Y = exp−1

p(k)
p(k+1), and

X = X(k) to obtain 〈X(k), exp−1
p(k)

p(k+1)〉 = g(p(k+1)) + g∗(p(k),X(k)). Hence, we have

h(p(k+1)) + h∗(p(k),X(k)) ≥ g(p(k+1)) + g∗(p(k),X(k)), which is equivalent to the first in-

equality of Item i). To prove the second one, we first note that since X(k) ∈ ∂h(p(k)) and
h is convex, by using Theorem 2.17, we have h∗(p(k),X(k)) + h(p(k)) = 0. Thus, applying

Theorem 2.10 with q = p = p(k), X = X(k) and f = g, we have 0 ≤ g∗(p(k),X(k)) + g(p(k)),
which combined with the last equality yields the second inequality of Item i).

ii) First we recall that f = g−h satisfies assumption (A2). Thus, Item i) implies that (f(p(k)))k∈N
is non-increasing and convergent. Hence limk→+∞(g(p(k)) − h(p(k))) =: f̄ ∈ R. Moreover,

by using again Item i), we also have

lim
k→+∞

(h∗(p(k),X(k))− g∗(p(k),X(k))) =: f̄ ∈ R.

Finally, the inequality in Item ii) follows from assumption (A2).

iii) To prove the first part, we assume that (p(k))k∈N is bounded and p̄ a cluster point of (p(k))k∈N.
By using Theorem 5.3, we conclude that p̄ ∈ dom(g) and that there exists a cluster point X̄ of

(X(k))k∈N, such that X̄ ∈ ∂g(p̄) ∩ ∂h(p̄). Therefore, (13a) is proved. Before proceeding with

the proof we note that due to p̄ ∈ dom(g), assumption (A3) implies that p̄ ∈ dom(h).
To prove (13b) note that sinceX(k) ∈ ∂h(p(k)), for allk ∈ N, andh is convex, fromTheorem 2.17,

we haveh(p(k))+h∗(p(k),X(k)) = 0, for all k ∈ N. Consequently, lim
k→+∞

(h(p(k))+h∗(p(k),X(k))) =

0. Since X̄ ∈ ∂h(p̄), using again Theorem 2.17, we have h(p̄)+ h∗(p̄, X̄) = 0 and (13b) follows
directly.

To prove (13c) we first note that

g(p(k)) + g∗(p(k),X(k)) = g(p(k))− h(p(k))−
(

h∗(p(k),X(k))

− g∗(p(k),X(k))
)

+ h(p(k)) + h∗(p(k),X(k)).

Thus, using Item ii) together with (13b), we have lim
k→+∞

(g(p(k)) + g∗(p(k),X(k))) = 0. Since

X̄ ∈ ∂g(p̄), using again Theorem 2.17, we have g(p̄)+ g∗(p̄, X̄) = 0, which combined with the

last equality yields (13c).

We proceed to prove (13d). For that, we assume without loss of generality that limk→+∞ p(k) =
p̄. Now, by applying Theorem 2.10 with f = h, p = p̄, q = p(k), we obtain

h(p(k)) + h∗(p̄, Y ) ≥ 〈Y, exp−1
p̄ p(k)〉, for all Y ∈ Tp̄M, and all k ∈ N.

Thus, by using Definition 2.3, lim
k→+∞

p(k) = p̄, Proposition 2.8, Item i) and Item iii), and that h

is lsc, we have h(p̄) + h∗(p̄, Y ) = lim inf
k→+∞

h(p(k)) + h∗(p̄, Y ) ≥ 0. Thus, the second equality in

(13b) implies that

h∗(p̄, Y ) ≥ h∗(p̄,X), for all Y ∈ Tp̄M.

Hence, 0 ∈ ∂2h
∗(p̄,X). Similarly, by using (13c), we can also show that 0 ∈ ∂2g

∗(p̄,X).
Therefore, 0 ∈ ∂2h

∗(p̄,X) ∩ ∂2g
∗(p̄,X), which proves (13d).

Finally, we prove (13e). Combining the second equality in (13b) and (13c), we obtain the first

equality in (13e). To prove the second inequality, we first note that p̄ ∈ dom(g) ⊂ int dom(h).

page 16 of 32 cbna 2023-05-04



The difference of convex algorithm on Hadamard manifolds

Since h is convex, it is continuous in int dom(h), which implies that limk→+∞ h(p(k)) = h(p̄).
Thus, using Item ii), we conclude that

lim
k→+∞

g(p(k)) = lim
k→+∞

(g(p(k))− h(p(k))) + lim
k→+∞

h(p(k)) = f̄ + h(p̄).

Hence, using Definition 2.3, we hav limk→+∞ g(p(k)) = lim infk→+∞ g(p(k)) = g(p̄). There-
fore, we obtain that g(p̄)− h(p̄) = f̄ , which concludes the proof.

6 Examples

In this sectionwe consider examples of DC functions on theHadamardmanifold of symmetric positive

definite matrices. These examples can also be seen as constraint problems on the Euclidean space of

square matrices, but they are not DC problems thereon. Only by imposing the manifold structure

on the constrained set, namely the symmetric positive definite matrices set, both components of the

problem become convex.

Formerly, we consider the symmetric positive definite (SPD) matrices cone Pn
++. Following Rothaus

1960, see also Nesterov and Todd 2002, Section 6.3, we introduce the Hadamard manifold,

M := (Pn
++, 〈·, ·〉) (14)

endowed with the Riemannian metric given by

〈X,Y 〉p := tr(Xp−1Y p−1), (15)

for p ∈ M andX,Y ∈ TpM, where tr(p) denotes the trace of the matrix p ∈ Pn
++, TpM≈ Pn is the

tangent space ofM at p and Pn denotes the set of symmetric matrices of order n×n. Further details
about the Hadamard manifoldM can be found, for example, in Lang 1999, Theorem 1.2. p. 325. The

exponential map and its inverse at a point p ∈M are given, respectively, by

exppX := p1/2ep
−1/2Xp−1/2

p1/2, X ∈ TpM, p ∈ M (16)

exp−1
p q := p1/2 log(p−1/2qp−1/2)p1/2, p, q ∈ M. (17)

The dimension of the manifold is given by dimPn
++

= n(n+1)
2 .

The gradient of a differentiable function f : Pn
++ → R is given by

grad f(p) = pf ′(p)p. (18)

where f ′(p) is the Euclidean gradient of f at p. If f is twice differentiable, then the hessian of f is

given by

Hess f(p)X = pf ′′(p)Xp +
1

2

[

Xf ′(p)p + pf ′(p)X
]

, (19)

whereX ∈ TpM and f ′′(p) is the Euclidean hessian of f at p.
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In general, subproblem (10) in Algorithm 2 is not convex; nevertheless, in some special cases, as illus-

trated by the following examples, it actually is convex. To begin, recall that the gradient and hessian

of a function p 7→ ϕ(det(p)), where ϕ : R++ → R is twice differentiable, is given by

gradϕ(det(p)) =
(

ϕ′(det(p)) det(p)
)

p, (20)

Hess ϕ(det(p))v =
(

ϕ′′(det(p))(det(p))2 + ϕ′(det(p)) det(p)
)

tr(p−1v)p, (21)

where v ∈ TpM, ϕ′ and ϕ′′ are the first and second derivative of ϕ, respectively.

Example 6.1. Consider the following optimization problem

argmin
p∈M

f(p), where f(p) := ϕ1(det(p))− ϕ2(det(p)), (22)

where the function ϕi : R++ → R are twice differentiable satisfying ϕ′′
i (t)t

2 + ϕ′
i(t)t ≥ 0, for all

t ∈ R++ and i = 1, 2. Indeed, by using (18) and (19), we can show that (22) is a DC problem with

components

g(p) = ϕ1(det(p)), h(p) = ϕ2(det(p)). (23)

This follows from (21) and ϕ′′
i (t)t

2 + ϕ′
i(t)t ≥ 0, for all t ∈ R++ that 〈Hess ϕi(det(p))X,X〉 ≥ 0, for

all X ∈ TpM and i = 1, 2, which implies that g and h are convex.

By using (20) we conclude that critical points of f are matrices p̄ ∈ Pn
++ such that

ϕ′
1(det(p̄)) = ϕ′

2(det(p̄)). (24)

Now, considering that h is a differentiable function, consider the subproblem associated to the problem (22)

argmin
p∈M

ψ(p), where ψ(p) := ϕ1(det(p))−
〈

grad(ϕ2(det(q))), exp
−1
q p

〉

(25)

It is worth noting that if we use Algorithm 2 to solve problem (22), the subproblem (10) to be addressed

has the form (25). In general, subproblem (10) is not convex; nevertheless, we will show now that (25) is

a convex problem. In fact, by using second equality in (20) it follows from (25) that

ψ(p) = ϕ1(det(p))−
(

ϕ′
2(det(q)) det(q)

)〈

q, exp−1
q p

〉

. (26)

On the other hand, by using the exponential in (17) and the metric in (15) we obtain that
〈

q, exp−1
q p

〉

= tr
(

log(q−1/2pq−1/2)
)

.

Since tr logZ = log detZ , for any matrix Z , the last equality becomes
〈

q, exp−1
q p

〉

= log det(p)− log det(q). (27)

Combining (26) with (27), the function ψ in subproblem (25) is rewritten equivalently as

ψ(p) = ϕ1(det(p))−
(

ϕ′
2(det(q)) det(q)

)(

log det(p)− log det(q)
)

. (28)

Since the matrix q ∈ M is fixed and the function g(p) = ϕ1(det(p)) is convex, proving that ψ is

convex is sufficient to prove that the function Υ(p) = − log det(p) is convex. Applying (21) with ϕ =
log we conclude that Hess Υ(p) = 0, for all p, which implies that Υ is convex. In conclusion, the

objective function f in problem (22) is not convex in general, while the function ψ in the associated

subproblem (25) is. Let us conclude by presenting some functions ϕ : R++ → R satisfying the condition

ϕ′′(t)t2 + ϕ′(t)t ≥ 0, for all t ∈ R++:
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i) ϕ1(t) = a1(log(t))
2(b+1) and ϕ2(t) = a2(log(t))

2b with a1, a2 ∈ R++ and b ≥ 1.
ii) ϕ1(t) = ā log(tb + c1)− â log(t) and ϕ2(t) = log(t+ c2) with ā, â, b, c1, c2 ∈ R++. Note that,

if ab > d+ 1, then ϕ1 − ϕ2 has a critical point.

iii) ϕ1(t) = a1t
b1+2 and ϕ2(t) = a2t

b2+2 with a1, a2, b1, b2 ∈ R+.

Finally, it is worth noting that these functions g and h in (23) associated with these problems are in general

not Euclidean convex functions. Consequently, (22) is not a Euclidean DC problem. As we just derived,

they are DC in the Hadamard manifold (14).

Let us examine at another set of examples that are not DC Euclidean problems but are DC in the

Hadamard manifold (14) described above.

Example 6.2. Consider the following optimization problem

argmin
p∈M

f(p), where f(p) := ϕ1(tr(p))− ϕ2(det(p)), (29)

where the function ϕi : R++ → R are twice differentiable satisfying the following conditions

ϕ′
1(t) ≥ 0, ϕ′′

1(t) ≥ 0, ϕ′′
2(t)t

2 + ϕ2(t)t ≥ 0 ∀t ∈ R++. (30)

In general, the objective function f in the problem (29) is not convex in either the Euclidean context nor

the Hadamard manifold (14). However, by using (18) and (19), we prove that the components in (29),

denoted by

g(p) = ϕ1(tr(p)), and h(p) = ϕ2(det(p)), (31)

which, in general, are not convex Euclidean, are convex functions on the Hadamard manifold (14) since

conditions in (30) hold. Therefore, (29) is a DC optimization problem. In addition, by using (18), we can

show that the gradients of g and h are given by

grad g(p) = ϕ′
1(tr(p))p

2, gradh(p) =
(

ϕ′
2(det(p)) det(p)

)

p, (32)

respectively. By using (32) we conclude that critical points of f are matrices p̄ ∈ Pn
++ such that

ϕ′
1(tr(p̄))p̄ =

(

ϕ′
2(det(p̄)) det p̄

)

I. (33)

Using the same arguments as in Example 6.1, we can show that the subproblem associated with prob-

lem (29) is given by

argmin
p∈M

ψ(p), where ψ(p) = ϕ1(tr(p))−
(

ϕ′
2(det(q)) det(q)

)(

log det(p)− log det(q)
)

, (34)

for a fixed q ∈ M, and the objective function ψ is convex. Finally, let us present some functions satisfying

the condition (30).

i) ϕ1(t) = a1t
b1 and ϕ2(t) = a2t

b2 with a1 ≥ 1 and a2, b1, b2 > 0 such that a1b1n
b1−1 = a2b2.

ii) ϕ1(t) = aebt and ϕ2(t) =
1
2abe

nbt2, with a, b > 0.
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7 Numerics

In this section, we present several numerical examples. On the one hand, we compare the algorithm

to two existing algorithms and, on the other hand, illustrate in a third example how optimization

problems can be reformulated into DC problems to use this structure as an advantage in numerical

computations. For all numerical examples, the Algorithm 2 is implemented in Julia 1.8.5 Bezanson

et al. 2017 within the package Manopt.jl Bergmann 2022 version 0.4.12, using a trust region solver to

solve the optimization problem in (10) within every step, including a generic implementation of the

corresponding cost and gradient. This way, the algorithm is easy-to-use, while when a more efficient

computation for either cost and gradient of the sub problem or even a closed form solution is available,

they can benefit to speed up the computation, when provided. Together with Manifolds.jl Axen et

al. 2021 this algorithm can be used on arbitrary manifolds. All times refer to running the experiments

on an Apple MacBook Pro M1 (2021), 16 GB Ram, Mac OS Ventura 13.0.1.

7.1 A comparison to the Difference of Convex Proximal Point Algorithm

We first consider the problem

argmin
p∈M

(

log
(

det(p)
))4
−

(

log det(p)
)2
.

on Pn
++. Here we have f(p) = g(p) − h(p) where g(p) = ϕ1

(

det(p)
)

, ϕ1(t) = (log t)4, and h(p) =
ϕ2

(

det(p)
)

, ϕ2(t) = (log t)2, which fits Example 6.1, Item i). The critical points of this problem are

the matrices p∗ ∈ Pn
++ such that det(p∗) = e1/

√
2. We have f(p∗) = −1

4 , for each critical point p
∗.

We compare theDCAwith theDifference of Convex Proximal Point Algorithm (DCPPA) as introduced

in Souza and Oliveira 2015. The algorithm is also available in Manopt.jl, implemented in the same

generic manner, as the DCA explained above. This means that the proximal map can be considered as

a subproblem to solve. When only g and its gradient grad g are provided, the subproblem is generated

in a generic manner, that is, a default implementation of the minimization problem that corresponds

to step 3 of the DCPPA-Algorithm from Souza and Oliveira 2015 is generated. This is also the scenario

we use for our example. For the case that proxλg(p) is available, e.g. in closed form, it can be provided

to the algorithm for speed-up.

For both DCA and DCPPA, the generation of the generic subproblem is the default in Manopt.jl as

soon as the gradient grad g of g is provided. The function calls look like

difference_of_convex_algorithm (M, f, g, grad_h , p0; grad_g =grad_g )

difference_of_convex_proximal_point (M, grad_h , p0; g=g, grad_g =grad_g )

By default, further an approximation the Hessian of both sub problems by a Riemannian variant of

forward difference from the gradient is used. This enables the use of the trust_regions1 algorithm

to solve the sub-problem. To make both algorithms comparable we

1see manoptjl.org/stable/solvers/trust_regions/ for details
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Figure 1: A comparison of the run times of DCA and DCPPA for different manifold dimensions.

• for both sub solvers we stop when the gradient norm (of the subproblem’s gradient) is below

10−10 or after 5000 iterations if the gradient does not get small.

• for both algorithms DCA and DCPPA when the gradient norm (of f ) is below 10−10. We also

have a fall back to stop after 100 iterations if the gradient norm is not hit.

• the proximal parameter in the DCPPA to a constant of λ = 1
2n

• for both algorithms we set p(0) = log(n)In as the initial point, where In denotes the n × n
identity matrix

For the matrix size n of Pn
++ we set n = 2, 3, . . . , 80 to compare the algorithm for different manifold

sizes, which yields manifolds of dimension d = n(n+1)
2 .

In Figure 1 we compare the different run times for both the DCA and DCPPA. These were obtained

using the @benchmark macro from BenchmarkTools.jl Chen and Revels 2016,

Up to a dimension of approximately d = 40 (or 8×8 spd. matrices) the DCA is faster. This includes the

important case of 3× 3 spd. matrices, that is one representation of diffusion tensors, where the DCA

takes only 5.2434·10−3 secondswhile theDCPPA takes 2.2672·10−2 seconds. For higher-dimensional

problems, cf. Figure 1b, the DCPPA seems to only increase very slowly, where d = 465, or 30 × 30
spd. matrices, seems to be an outlier, where DCPPA takes over 22 seconds, while otherwise it stays

around about half a second, even for the last case shown, i.e. d = 99 (or 44× 44 spd. matrices).

Comparing the number of iterations, we observe that after the first 5 experiments, so starting from a

dimension of 21 (6× 6 spd. matrices), the number of iterations stabilizes around 25 iterations for the
DCA and 38 for the DCPPA.

We compare different developments of the cost function in Figure 2. Since for all dimensions we

know that f(p∗) = −1
4 we plot |f(p(k))− f(p∗)| over the iterations for the manifold dimensions d =

15, 55, 210, 820, 3240, that is the n × n matrices for n = 5, 10, 20, 40, 80. The initial value p(0) was
chosen as above, which yields that the value f(p(1)) is always below 103 in our experiments. All these

different dimensions show the same slope in the decrease of the cost function f(p) for both the DCA

as well as the DCPPA. While for DCPPA the cost seems to be below 10−16 close to the minimum for

a few iterations already, before the stopping criterion of a gradient norm ‖ grad f(p(k))‖p(k)< 10−10
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Figure 2: A comparison of how close the cost function is to the actual minimum for different sizes of

problems and both algorithms.

is reached.

The development of the cost function illustrates, that DCA converges faster than DCPPA, such that

the choice of the sub solver seems to be crucial for the run time, which for these experiments we

configures equally to compare the algorithms and not sub solvers.

7.2 The Rosenbrock Problem

The Rosenbrock problem consists of

argmin
x∈R2

a
(

x21 − x2
)2

+
(

x1 − b
)2
, (35)

where a, b > 0 are positive numbers, classically b = 1 and a≫ b, see Rosenbrock 1960. Note that the
function is non-convex on R2. The minimizer x∗ is given by x∗ = (b, b2)T, and also the (Euclidean)

Gradient can be directly stated as

∇f(x) =

(

4a(x21 − x2)
−2a(x21 − x2)

)

+

(

2(x1 − b)
0

)

(36)

We introduce a new metric forM = R2: For any p ∈ R2 we define

Gp :=

(

1 + 4p21 −2p1
−2p1 1

)

, which has the inverse matrix G−1
p =

(

1 2p1
2p1 1 + 4p21

)

.

We define the inner product on TpM = R2 as

〈X,Y 〉p = XTGpY
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In the following we refer to R2 with the default Euclidean metric further as just R2 and to the same

space with this new metric asM.

The exponential and logarithmic map are given as

expp(X) =

(

p1 +X1

p2 +X2 +X2
1

)

, exp−1
p (q) =

(

q1 − p1
q2 − p2 − (q1 − p1)

2

)

.

Given some function h : M → R, its Riemannian gradient gradh : M → TM can be computed

from the Euclidean one by

gradh(p) = G−1
p ∇h(p).

Denoting the two components of the Euclidean gradient by ∇h(p) = (h′1(p), h
′
2(p))

T we can derive

that given two points p, q ∈ M we have

〈

gradh(q), exp−1
q (p)

〉

q
=

(

exp−1
q (p)

)T
∇h(q)

= (p1 − q1)h
′
1(q) + (p2 − q2 − (p1 − q1)

2)h′2(q)
(37)

For the difference of convex algorithm we split the cost function from the Rosenbrock problem (35)

as f(x) = g(x) − h(x) with

g(x) = a
(

x21 − x2
)2

+ 2
(

x1 − b
)2

and h(x) =
(

x1 − b
)2
.

Using the isometry ψ : R2 →M, z 7→ (z1, z
2
1 − z2) we get

(h ◦ ψ)(x) = h(x1, x
2
1 − x2) = (x1 − b)

2

and hence h is (geodesically) convex onM.

The corresponding Euclidean gradients of g and h are

∇g(p) =

(

4a(x21 − x2)
−2a(x21 − x2)

)

+

(

4(x1 − b)
0

)

and ∇h(p) =

(

2(p1 − b)
0

)

,

So especially the second component h′2(p) = 0.
Considering the sub-problem Equation (10) from Algorithm 2, we obtain together with (37) for some

fixed q that

ϕ(p) = g(p)−
〈

gradh(q), exp−1
q (p)

〉

q

= a
(

p21 − p2
)2

+ 2
(

p1 − b
)2
− 2(q1 − b)(p1 − q1)

= a
(

p21 − p2
)2

+ 2
(

p1 − b
)2
− 2(q1 − b)p1 + 2(q1 − b)q1,

where the last term is constant with respect to p and hence irrelevant when determining a minimizer.

The Euclidean Gradient reads

∇ϕ(p) =

(

4ap1(p
2
1 − p2) + 4(p1 − b)− 2(q1 − b)

−2a(p21 − p2)

)
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Figure 3: A comparison of the cost function during the iterations of the four experiments performed

on the Rosenbrock example.

and the Riemannian gradient is similar to before gradϕ(p) = G−1
p ∇ϕ(p). This allows to use for

example the Riemannian gradient descent from Manopt.jl to be used as a sub-solver for Equation (10)

within Algorithm 2.

Since also for the Rosenbrock function the Riemannian gradient can be easily computed in the same

manner from (36), we can now compare three different first order methods:

i) The Euclidean gradient descent algorithm on R2,

ii) The Euclidean Difference of Convex Algorithm on R2

iii) The Riemannian gradient descent algorithm onM,

iv) The Riemannian Difference of Convex Algorithm onM, using Riemannian gradient descent as

a sub-solver

All algorithms use ArmijoLinesearch(M) when determining the step size in gradient descent, and all

stop either after 10 million steps, or when the change between two successive iterates drops below

1e-16. The sub solver in the DCA is set to stop when the gradient is at 1e-16 in norm or at 1000

iterations.

We set b = 1 and a = 2 · 105. All algorithms start in p(0) = 1
10 (1, 2)

T . The initial cost is f(p(0)) ≈
7220.81. The runtime and number of iterations is depicted in Table 1 and the development of the cost

function during the iterations in Figure 3.

For the cost f(p(k)) during the iterations, we can observe that both gradient algorithms as well as

both difference of convex algorithms perform similar in shape, both groups even have similar gain in

their first step.

Still, even for the Euclidean case, the gradient descent with Armijo step size requires several orders

of magnitude more iterations than the Euclidean difference of convex algorithm. The Riemannian

gradient descent outperforms the Euclidean one both in number of iterations as well as overall run-

time. Since a single iteration in the difference of convex algorithm requires to solve a sub optimization

problem, and we even employ a gradient descent per iteration, even the Euclidean DCA is slower than
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Algorithm Runtime # Iterations

Euclidean GD 305.567 sec. 53 073 227

Euclidean DCA 58.268 sec. 50 588

Riemannian GD 18.894 sec. 2 454 017

Riemannian DCA 7.704 sec. 2 459

Table 1: Summary of the runtime and number of iterations of the four experiments performed on the

Rosenbrock example.

the Riemannian gradient descent, while the DCA already requires about a factor of 50 less iterations.

Similarly, the Riemannian DCA requires a factor of 1 000 less iterations than the Riemannian gradient

descent, but since a single iteration is more costly, it is only about a factor of 2 faster.

7.3 Constrained maximization of the Fréchet variance

Let M be the manifold (14) of symmetric positive definite matrices Pn
++, n ∈ N with the affine

invariant metric 〈·, ·〉, {q1, . . . , qm} ⊂ M be a data set of distinct points, i. e.qi 6= qj for i 6= j, and
µ1, . . . µm be non-negative weights with

∑m
j=1 µj = 1. Let h :M→ R be the function defined by

h(p) :=
m
∑

j=1

µjd
2(p, qi), where d2(p, qi) := tr

(

log2(p−1/2qjp
−1/2)

)

. (38)

Recall that

d(p, q) := ‖log(p−1/2qp−1/2)‖F =

√

tr log2(p−1/2qp−1/2)

is the Riemannian distance between p and q onM. When every one of the weights µ1, . . . µm are

equal, this function h is known as the Fréchet variance of the set {q1, . . . , qm}, see Horev, Yger, and
Sugiyama 2017. In this example we want to consider the constrained Fréchet variance maximization

problem, which is stated as

argmax
p∈C

h(p) (39)

where the constrained convex set is given by

C := {p ∈ M | q̄− � p � q̄+}, (40)

where q̄−, q̄+ ∈ M with q̄− ≺ q̄+. Here, p ≺ q (p � q) denotes the (non-strict) partial ordering on

the spd-matrices, i. e. that q − p is positive (semi-)definite or for short q − p ≺ 0 (� 0). We point out

that Lim 2012, Lemma 2 (iii) implies that the set C is convex.

The problem (39) can be equivalently stated as a Difference of Convex problem or a non-convex

minimization problem. The second formulation can be algorithmically solved by a Frank-Wolfe algo-

rithm Weber and Sra 2022.
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Maximizing the Fréchet variance as a DC problem. We define the indicator function of the set C as

ιC(p) =

{

0 if p ∈ C

∞ else.

Using g = ιC and the fact that

argmax
p∈C

h(p) = argmin
p∈C

−h(p)

to rephrase problem (39) to

− argmin
p∈M

f(p), where f(p) := g(p) − h(p). (41)

We obtain indeed for p ∈ C that f(p) = −h(p) and hence at a minimizer of f we obtain a maximizer

of h. This hence yields a DC problem as studied in the previous sections.

By using (18) and (38), the gradient gradh(p) is given by

gradh(p) = −2

m
∑

j=1

µjp
1/2 log(p−1/2qjp

−1/2)p1/2 (42)

= 2
m
∑

j=1

µjp
1/2 log(p1/2q−1

j p1/2)p1/2. (43)

In this case, due to g(p) = 0, for p ∈ C, the subproblem (10) for X(k) = gradh(p(k)) is given by

p(k+1) ∈ argmin
p∈C

〈

− gradh(p(k)), exp−1
p(k)

p
〉

. (44)

On the other hand, it follows from (15) and (17) that
〈

− grad h(p(k)), exp−1
p(k)

p
〉

(45)

=
〈

− grad h(p(k)),
(

p(k)
)1/2

log
(

(

p(k)
)−1/2

p
(

p(k)
)−1/2

)

(

p(k)
)1/2〉

(46)

= tr
(

−
(

p(k)
)−1/2

gradh(p(k))
(

p(k)
)−1/2

log(
(

p(k)
)−1/2

p
(

p(k)
)−1/2

)
)

. (47)

Therefore, the problem (44) becomes

p(k+1) ∈ argmin
p∈C

tr
(

s(k) log(
(

p(k)
)−1/2

p
(

p(k)
)−1/2

)
)

, (48)

where, by using (42), the matrix s(k) is given by

s(k) = −
(

p(k)
)−1/2

gradh(p(k))
(

p(k)
)−1/2

= 2

m
∑

j=1

µj log(
(

p(k)
)−1/2

qj
(

p(k)
)−1/2

). (49)

or, by using (43), the matrix s(k) is given equivalently by

s(k) := −
(

p(k)
)−1/2

gradh(p(k))
(

p(k)
)−1/2

= −2

m
∑

j=1

µj log(
(

p(k)
)1/2

q−1
j

(

p(k)
)1/2

). (50)

In order to deal with the subproblem (48) we consider the following theorem, which gives a closed

formula for it , see Weber and Sra 2022, Theorem 4.
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Theorem 7.1. Let L,U ∈ Pn
++ such that L ≺ U . Let S be a Hermitian (n× n) matrix and X ∈ Pn

++

be arbitrary. Then, the solution to the optimization problem

min
L�Z�U

tr(S log(XZX)),

is given by Z = X−1Q
(

P⊤[−sgn(D)]+P + L̂
)

Q⊤X−1, where S = QDQ⊤ is a diagonalization of

S, Û − L̂ = P⊤P with L̂ = Q⊤XLXQ and Û = Q⊤XUXQ, where [−sgn(D)]+ is the diagonal

matrix

diag ([−sgn(d11)]+, . . . , [−sgn(dnn)]+)

and D = (dij).

Remark 7.2. The solution to (48) can be obtained Theorem 7.1 setting L = q̄−, U = q̄+, S = s(k),

X =
(

p(k)
)− 1

2 and Z = p. Note that given p(k) both X and X−1 can be easily computed using the

eigen decomposition and modifying the diagonal matrix.

Tominimize a constrained, non-convex function fFW : X → R,X ⊂M, Weber and Sra 2022 propose

the Riemannian Frank-Wolfe algorithm as summarized in Algorithm 3.

Algorithm 3 The Riemannian Frank-Wolfe Algorithm, cf. Weber and Sra 2022, Algorithm 2.

1: Choose an initial point p(0) ∈ X . Set k = 0.
2: while convergence criterion is not met do

3: q(k) ← argmin
q∈X

〈

grad fFW(p(k)), exp−1
p(k)

q
〉

4: sk ←
2

2+k

5: p(k+1) = γp(k)q(k)(sk)
6: k ← k + 1
7: end while

In our example we have X = C and fFW = −h, i. e.we obtain a concave constrained problem. Since

fFW = −h, we obtain the same subproblem in Step 3 of the Frank-Wolfe Algorithm as stated in (44).

Thus, we have two algorithms for solving the problem (39) or equivalently (41), namely Algorithm 3

and Algorithm 2. Both possess the same subproblem in this case. They treat the result of the sub-

problem differently, though. While Algorithm 2 uses the subproblem solution directly for the next

iteration, Algorithm 3 uses the solution as an end point of a geodesic segment starting from the pre-

vious iterate. This geodesic segment is then evaluated at a certain interims point. This also means

that Algorithm 3 has to start in a feasible point p(0) ∈ C, while for Algorithm 2 this is not necessary.

In our numerical example we considerM = P20
++, that is, the set of 20 × 20 symmetric positive

definite matrices with the affine-invariant metric 〈·, ·〉. This is a Riemannian manifold of dimension

d = 210. We further generatem = 100 random spd matrices qi with corresponding random weights

wi as the data set for the Fréchet variance. We set

q− :=

( m
∑

i=1

wiq
−1
i

)−1

, q+ :=
m
∑

i=1

wiqi, and p(0) :=
1

2
(q− + q+).

A numerical implementation of Theorem 7.1 is used as a closed-form solver of the subproblem. Nu-

merically we observe, that these results might suffer from imprecisions, which means they might not
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Figure 4: A comparison of the Fréchet variance h(p) during the iterations of Algorithm 2 (indigo) and

Algorithm 3 (teal).

meet the constraint, but only by around 2·10−13 . Since we use these points as iterates in Algorithm 2,

only for this algorithmwe add a “safeguard” and perform a small line search for the first matrix closest

matrix to the sub-solver’s result q∗ on the geodesic to the last iterate p(k) fulfilling the constraint.

Then we stop Algorithm 2 if the change d(p(k), p(k+1)) < 10−14 or if the gradient change between

these two iterates (computes using parallel transport) is below 10−9. The algorithm stops after 55
iterations due to a small gradient change.

For Frank-Wolfe a suitable stopping criterion is challenging. Note that the gradient grad ffw does not

tend to 0 of the minimizer is on the boundary. Even after 100 000 iterations, Frank-Wolfe still has not

reached either of the stopping criteria, both changes are still of order 10−4. While the Difference of

Convex Algorithm reaches it’s minimum (its maximum in h) after 11 iterations and then increases

slightly, probably due to the closed-form solution not being precise, Frank-Wolfe reaches neither of

these two values – after 11 or 55 in these 100 000 iterations.

Finally, comparing the time per iteration, both algorithms comparable. With the numerical safeguard

for this specific problem, 1000 iterations of DCA take 16.01 seconds, Frank-Wolfe 8.13 seconds and

DCAwithout the safeguard 7.475 seconds. That is, in runtime per iteration, using the same sub solver,

both perform similarly, while DCA seems to have a vanishing gradient change.

8 Conclusion

In this paper, we investigated the extension of the Difference of Convex Algorithm (DCA) to the

Riemannian case, enabling us to solver DC problems on Riemannian manifolds. We investigate its

relation to Duality on manifolds and state a convergence result on Hadamard manifolds.

Numerically, the new algorithm outperforms the existing Difference of Convex Proximal Point algo-

rithm (DCPPA) in terms of the number of iterations. However, for large-dimensional manifolds, the

DCPPA is faster. Additionally, for a specific class of constrained maximization problems, the DCA

is well-suited and outperforms the Riemannian Frank-Wolfe algorithm, especially because a suitable

stopping criterion can be used but also in how close it gets to the actual minimizer. Finally, rephrasing

page 28 of 32 cbna 2023-05-04



The difference of convex algorithm on Hadamard manifolds

Euclidean problems into DC problems with a suitable metric is another field where using the DCA

seems very beneficial.

Extending the numerical algorithms also to employing duality is a future research topic, where the

iteration time and convergence speed might increase.
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