INVERTIBLE OBJECTS IN FRANKE'S COMODULE
CATEGORIES

DREW HEARD

Abstract

We study the Picard group of Franke’s category of quasi-periodic EgE-comodules for E
a 2-periodic Landweber exact cohomology theory of height n such as Morava E-theory,
showing that for 2p — 2 > n2 4 n, this group is infinite cyclic, generated by the suspension of
the unit. This is analogous to, but independent of, the corresponding calculations by Hovey
and Sadofsky in the E-local stable homotopy category. We also give a computation of the
Picard group of I,-complete quasi-periodic EgE-comodules when E is Morava E-theory, as
studied by Barthel-Schlank-Stapleton for 2p — 2 > n? and p — 1 { n, and compare this to
the Picard group of the K (n)-local stable homotopy category, showing that they agree up
to extension.

1. Introduction

By the pioneering work of Quillen and Morava, it is known that the stable
homotopy category has a ‘height’ stratification, corresponding to the height
filtration of formal groups. For example, height 0 is essentially rational stable
homotopy theory, and in this case this has an entirely algebraic model, as a
consequence of work of Serre [42].

The chromatic convergence theorem of Hopkins and Ravenel [39] shows
that for any p-local finite spectrum X, there is an equivalence X ~ lim L, X,
where L, X is the Bousfield localization with respect to a p-local Landweber
exact homology theory E of height n. Via certain chromatic squares, the
computation of L, X can be roughly reduced to a computation of Ly ,)X, the
Bousfield localization with respect to Morava K-theory K (n). Correspondingly,
the study of the E-local and K (n)-local categories, denoted Sp,, and Sp g,
respectively, are of great interest to homotopy theorists, and have been studied
in detail in [28].

One observation is that when the prime p is large compared to n, the
categories Sp,, and Sp K(n) simplify, and become more algebraic. For example,

in both cases the Adams spectral sequence computing 7, Ly, S®) or 7 (L (1) S°)
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collapses for p > n. Additionally, the Picard groups of the two categories
become completely algebraic when p > n. Inspired by unpublished work of
Franke [15], we have the following two results that make this asymptotic
algebraic behavior more precise.

THEOREM (Barthel-Schlank-Stapleton [8]). For any non-principal ultra-
filter F on the set of primes, there is an equivalence of symmetric monoidal
stable co-categories

H Sp,, ~ H DPE (Comod g, ).
F F

THEOREM (Pstragowski [37], Patchkoria—Pstragowski [36]). For 2p — 2 >
n?+n and k =2p — 2 —n? —n there is an equivalence

hk Spn ~ thpeT(GomodEoE)

between the homotopy k-categories of the oco-category of E-local spectra and
the category of quasi-periodic EgE-comodules.

Here DP¢"(Comodp,r) denotes the oco-category of quasi-periodic EyE-
comodules for a 2-periodic Landweber exact cohomology theory E of height n
(essentially) first introduced by Franke [15]. Alternatively, this is the derived
category of differential F, F-comodules, where a differential E, E-comodule is
a pair (M, d) consisting of an E,F-comodule M and d: M — M is a map of
comodules of degree 1 satisfying d> = 0 (this is the approach taken in [37],
and the equivalence of the two approaches is given in [37, Proposition 3.3]).

The passage from the usual derived category D(Comodg,g) to the quasi-
periodic derived category DP¢"(Comodg,g) is part of a more general con-
struction due to Franke [15], expanded upon by Barnes and Roitzheim [4].
We explain here a special case when restricted to the derived category of a
suitable Hopf algebroid (A,I") (note that by taking the Hopf algebroid (A, A)
this also includes the case of the derived category of a commutative ring).
Given an invertible I'-comodule L and an integer N > 0, the derived category
DLN) (Comodr) is obtained by considering the class of complexes for which
there is a specified isomorphism «: L ® X —» X[N]. For even periodic cohomo-
logy theories such as Morava E-theory, the quasi-periodic derived category
DPeT(Comodg, ) is defined as D2 (Comodg, ) for L = Es, the invertible
class in degree 2.

The key result to the algebraicity theorem of Barthel-Schlank—Stapleton is
the observation that for large primes DP°"(Comodg, g) satisfies a good theory
of descent. Inspired by this, we introduce the notion of a descendable Hopf
algebroid (Definition 3.10). As expected, the associated quasi-periodic category
satisfies a good theory of descent. In Theorem 3.12 we prove the following.
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THEOREM A. Suppose (A,T) is a descendable Hopf algebroid, and L is an
invertible T'-comodule, then there is an equivalence of symmetric monoidal
stable co-categories between DN (Comodr) and

Tot < DN (Mod ) == DITEOLN)(Modr) == DTOTOLN) (Modpgr) - - -

In the case where (A, T") is the Hopf algebroid associated to an even-periodic
Landweber exact cohomology theory E of height n, this recovers a result of
Barthel-Schlank—Stapleton, although our methods are somewhat different -
the precise translation of the two results is given in Remark 4.20. The extra
generality we work in is not for no reason however - in Theorem 4.22 we show
how it also applies to a certain Hopf algebroid that appears in the change of
rings theorem of Miller-Ravenel [34].

As demonstrated in work of Mathew—Stojanoska [33] descent is a powerful
technique for determining the group of invertible objects (the Picard group)
of a symmetric monoidal category. More precisely, Theorem A implies a
description of the Picard spectrum (see Remark 5.3) associated to the category
DEN) (Comodr): there is an equivalence of connective spectra

pic(DEN) (Comodr)) =~ 750 Tot ( pic(DEN) (Mod,)) =3 pic(DTELN) (Modp)) = - - - )

Studying the associated Bousfield-Kan spectral sequence in the case where
(A,T) is the Hopf algebroid associated to an even-periodic Landweber exact
cohomology theory E of height n, we prove the following in Theorem 5.10.

THEOREM B. Let E be an even-periodic Landweber exact cohomology theory
E of height n. Suppose 2p — 2 > n? + n, then Pic(DP"(Comodg,r)) = Z,
generated by the suspension of the unit.

In the case n = 1,p > 2 this is a theorem of Barnes—Roitzheim [4], while for
p > n it is a consequence of work of Barthel-Schlank—Stapleton, see page 5 of
[8] (more precisely, it holds away from a finite set of primes). Both of these
results, however, rely on the corresponding computation of the E(n)-local
Picard group. The result we give is independent of this result (of course, the
proof is similar in spirit). In Theorem 5.13 we also give a computation of the
Picard group of the derived category of quasi-periodic comodules associated
to the Hopf algebroid used by Miller-Ravenel; in particular, when 2p — 2 > n?
and p — 1 { n, we show that this Picard group is cyclic of order Z/(2(p"™ — 1)).

Barthel-Schlank—Stapleton have also given a K (n)-local version of their
algebraicity result, as follows.

THEOREM (Barthel-Schlank—Stapleton [9]). For any non-principal ultra-
filter F on the set of primes, there is an equivalence of symmetric monoidal
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stable co-categories

[ISpx =[] 27" (Comodg, )7,
F F

Here the algebraic model of the K(n)-local category appearing on the
right-hand side is a certain Bousfield localization of DP"(Comodg, k), see
Definition 6.3 for a precise definition.

In Section 6 we therefore take up the study of the Picard group of the
category DP¢"(Comodg,r)7,. We note that for technical reasons we fix a
particular model for an even-periodic Landweber exact cohomology theory FE
of height n, namely we use this to mean the Lubin—Tate theory associated to
the Honda formal group law over Fpn.

We first show that this category has a good theory of descent, and deduce
a spectral sequence for computing the Picard spectrum of DP"(Comodg, E)?n,
see Theorems 6.12 and 6.16. Studying this spectral sequence, we prove the
following in Theorems 6.17, 6.19 and 6.20 (here G,, denotes the Morava stabilizer

group).
THEOREM C. Suppose that 2p — 2 > n? and (p — 1) 1 n, then there is a
short exact sequence
0 = H'(Gp, E) = Pic(DP*" (Comodg,g)},) = Z/2 — 0.

Whenn =1 andp > 2

Pic(DP"(Comodg,g)T,) = Zy, x Z/2(p — 1).
When n =2 and p > 3, then

Pic(DP*" (Comodp,p)7,) = Zo x Z/2(p* — 1).

Up to extension, this identifies the Picard group of the K (n)-local category
(see [22]) with the Picard group of DP"(Comodg, )7, . Once again, we note
that the algebraicity results of Barthel-Schlank—Stapleton identify the two
Picard groups away from a finite set of primes; our results are independent of

Picard group computations in the K (n)-local category.!

2. Quasi-periodic complexes of comodules

Let A be a symmetric monoidal Grothendieck abelian category. Following work
of Franke [15], Barnes and Roitzheim [4] construct a category of quasi-periodic
chain complexes. The construction of Barnes and Roitzheim relies on the choice
of a self-equivalence T: A — A and a period N. We will only consider the

1Aalthough in the cases n = 1 and n = 2, we do rely on computations in group cohomology
that are also used in the K (1) and K (2)-local computations.
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special case where T'= — ® L is the tensor product with an invertible object
L.

2.1. DEFINITION. The category of quasi-periodic chain complexes Ch&N) (A)
has objects the class of chain complexes in A which have a specified isomorph-
ism a: L ® X = X[N]. A morphism is a chain map which commutes with
the given isomorphisms.

2.2. EXAMPLE. Taking L to be the tensor unit and n = 0, we see that
ChU49(A) ~ Ch(A).
2.3. REMARK. By [4, Lemma 1.2] there is an adjunction
Py: Ch(A) S ChENM(A4): Uy

where Uy is the forgetful functor, and the left adjoint P4 is the periodification
functor defined on objects by

Pa(M) = (M & L¥*[~kN]),
kez
i.e., it is the complex which has degree ¢ part (Pa(M)): = @z Mitrn ® L%k,
The differential on the summand M n ® L®F ig given by
(_l)kthJrk;N Qidper: Myrpn @ L%k Miypxn—1® L%k,

The forgetful functor also has a right adjoint, given by replacing the direct
sum with the direct product in the definition of the periodification functor,
see the remark before Proposition 1.3 of [4].

2.4. REMARK. From the definition we see that
PA(M) ~ PA(]l) QM.
where the tensor product is of chain complexes (we omit the forgetful functor).

2.5. REMARK. Suppose that F': Ch(A) — Ch(B) is a symmetric monoidal
colimit preserving functor with right adjoint G. Suppose that L is invertible in
Ch(A), and note then that F'(L) is invertible in Ch(B). It follows from the for-
mula for periodification that if M € Ch“ (A), then F(M) € ChF M) (4),
and moreover Pg o F(R) ~ F o P4(N) for R € Ch(A), i.e., the following
diagram commutes:

Ch(A) —E—— Ch(B)

pﬂl lpg

ChtHM(A) —— Ch PN (B)
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Taking right adjoints, it follows that for any S € Ch(F(-N )(B) we have
GOUB(S) ~ UA OG(S).

2.6. REMARK. We now specialize to the situation we are interested in. Let
(A,T) be a Hopf algebroid, always assumed to be an Adams Hopf algebroid
[23, Definition 1.4.3], i.e., I" is a filtered colimit of finitely-generated projective
A-modules. This condition ensures that I' is a flat A-module via the left (or
right) unit map? (in fact, faithfully flat, as the unit maps are split by the
counit map e¢: I' = A) and we let Comodr be the symmetric monoidal abelian
category of (A4, T")-comodules, see [23, Section 2]. The condition that the Hopf
algebroid is Adams ensures that the dualizable comodules generate Comodr
[23, Proposition 1.4.4], and hence that Comodr is Grothendieck abelian [23,
Proposition 1.4.1].

Let L be an invertible I'-comodule, and consider the endofunctor of Comodr
given by tensoring with L. We then have the category Ch'“™)(Comodr) of
quasi-periodic complexes of (A, I')-comodules. Note that for the discrete Hopf
algebroid (A4, A) we have Comoda ~ Mod 4, so this also includes as a special
case the category ChN) (Mod 4) of quasi-periodic complexes of A-modules.

The following result is due to Barnes and Roitzheim [4, Theorems 6.5 and
6.9]

2.7. THEOREM (Barnes-Roitzheim). Let L be an invertible IT'-comodule,
then there is a model structure on the category of quasi-periodic complezes
of T'-comodules Ch(L’N)(Gomodp), such that the resulting model category is
cofibrantly-generated, proper, stable, and symmetric monoidal. Moreover, there
s a symmetric monoidal Quillen adjunction

Py: Ch(Comodr) < Ch™™) (Comodr): Uy

2.8. NOTATION. Following Barnes and Roitzheim, we denote the tensor
product in Ch(L’N)(Gomodp) by ®p.

2.9. REMARK. The model structure used by Barnes and Roitzheim is
called the quasi-projective model structure, because the weak equivalences are
exactly the quasi-isomorphisms. This is a Bousfield localization of the relative
projective model structure studied by Hovey in [23, Section 2], see [4, Corollary
6.4]. We note that in the case of the discrete Hopf algebroid (A, A) the model
structures are equivalent.

2.10. DEFINITION. We let D(Comodr) and DEN)(Comodr) denote the
symmetric monoidal stable co-categories underlying these model categories
(see [30, Section 1.3.4]).

2Such Hopf algebroids are called flat.
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2.11. REMARK. We note that Comodr is always locally presentable for an
Adams Hopf algebroid as it is Grothendieck abelian. It follows that Ch(Comodr)
is Grothendieck abelian, and hence locally presentable as well. The adjunction
mentioned in the last paragraph of Remark 2.3 can be used to show that
Ch(L’N)(Gomodp) is locally presentable by applying [19, Lemma 11.2]. Altern-
atively, as noted after Corollary 2.4 of [4], Ch'“"N) (Comodr) is the category
of modules over the monad of the displayed adjunction in Remark 2.3, and
hence is locally presentable by [12, Theorem 5.5.9]. Along with Theorem 2.7
we deduce that the Barnes—Roitzheim model structure is combinatorial. It
then follows from [30, Proposition 1.3.4.22] that the above co-categories are
presentable.

2.12. REMARK. By [21, Proposition 1.5.1] we then obtain a symmetric
monoidal adjunction of stable co-categories

Pr: D(Comodr) = DN (Comodr) : Ur

The adjunction therefore preserves commutative algebra objects; in particular,
we have that Pr(A) € CAlg(DEN)(Comodr)).

We show that the monoidal Barr-Beck theorem (see Appendix A) holds for
this adjunction, recovering [4, Proposition 2.3] in this case.

2.13. PROPOSITION (Barnes—Roitzheim). There is an equivalence of sym-
metric monoidal stable co-categories

DEN) (Comodr) ~ Modpcomodr) (Pr(A)).

PROOF. We must verify the conditions of Theorem A.1 for the (Pr,Ur)
adjunction of Remark 2.12. Uy is conservative by construction, and commutes
with colimits as it has a right adjoint (Remark 2.3). The proof is completed if
we can show that the projection formula holds, i.e., that

UrX ®Y = Up(X ® Pr(Y))

for X € DEN)(Comodr) and Y € D(Comodr). In fact, this holds for purely
formal reasons, see [3, Proposition 2.15].

2.14. REMARK. To be explicit: we have a commutative diagram as follows,
where the diagonal arrows correspond to restriction and extension of scalars
along the map A — Pr(A) in D(Comodr):

Pr
D(Comodr) ——— DLN)(Comodr)

U\ g

MOd’D(Comodr) (PF (A))
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2.15. REMARK. As the forgetful functor from I'-comodules to A-modules is
symmetric monoidal, L is also invertible in D(Mod 4). We can therefore also
form DEN)(Mods). Then, we have an equivalence of symmetric monoidal
oo-categories

DEN) (Mod ) ~ Modp (nods) (Pa(A)).

3. Descendable Hopf algebroids

In this section we introduce the notion of a descendable Hopf algebroid (Defin-
ition 3.10). As the name suggests, we show (Theorem 3.12) that if a Hopf
algebroid is descendable, then D(Comodr) (or more specifically, its associated
category of quasi-periodic comodules) has a good theory of descent.

3.1. REMARK. We recall that the forgetful functor e,: D(Comodr) —
D(Mod4) has a right adjoint, the extended (or cofree) comodule functor,
defined by €*(M) =T ®4 M, with structure map A® M, where A: T' - T ®T
is the coproduct of the Hopf algebroid. We first show this extends to the
derived category.

3.2. LEMMA. There is a symmetric monoidal adjunction
€x: D(Comodr) = D(Moda): €.
The adjunction has the following properties:

(a) €* is conservative.
(b) € commutes with colimits.
(¢) The adjunction satisfies the projection formula: the natural map

E(X)RY = (X ®e(Y))
is an equivalence for all X € D(Mody) and Y € D(Comodr).

PROOF. For the projective model structure, the existence of the adjunction
is a special case of [23, Proposition 2.2.1]. We need to show that this is preserved
by Bousfield localization at the homology isomorphisms (see Remark 2.9). ¢,
clearly preserves cofibrations in the quasi-projective model structure, as they
are the same as in the relative projective model structure. Moreover, as ¢,
is conservative, it preserves quasi-isomorphisms, and so €, is a left Quillen
functor.

The adjunction passes to underlying co-categories by [21, Proposition 1.5.1].
We now verify the stated properties of the adjunction. For (a), let f: M — N
be a morphism in D(Mody), with €*f =T'® f a quasi-isomorphism. Because
T is faithfully-flat, f is a quasi-isomorphism as well, so that €* is conservative.
To see that € commutes with colimits note that the A-module colimit of a
diagram of comodules acquires the structure of a comodules and is in fact the
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colimit in I'-comodule; the claim then follows because I' ® — commutes with
colimits of A-modules. Finally, the projection formula can be proved in the
usual way: using that both €* and e, preserve colimits, one reduces the claim
to the case where X = A. This is then the claim that '® Y ~T'® (e,Y") which
holds by [23, Lemma 1.1.5] (note that I is flat, so we do not need to derive
the tensor product here).

3.3. REMARK. Because €, is symmetric monoidal, ¢* is lax symmetric
monoidal. We therefore obtain an adjunction at the level of commutative
algebra objects [32, Proposition 5.22]

€x: CAlg(D(Comodr)) & CAlg(D(Moda)): €
In particular, T’ ~ €*(A) is a commutative algebra object in D(Comodr).

3.4. PROPOSITION. There is a symmetric monoidal adjunction,
ps: DEN) (Comody) S DEN) (Moda): p*

compatible with the periodification functors, i.e., the diagram

D(Comodr) T———— D(Mod,)

e Jur 6 P

DEN) (Comodr) == DEN) (Mod,4)
P

commutes.
The adjunction has the following properties:

(a) p* is conservative.
(b) p* commutes with colimits.
(¢) The adjunction satisfies the projection formula.

Moreover, there is an equivalence
DEN) (Mod ) ~ Moda 2.3 (@omodr) (Pr ().
PROOF. We first observe that €,(Pr(A)) ~ Pa(A) (Remark 2.5). Applying

Proposition A.6 and Remark A.7 with T = Pr(A) to the adjunction of
Lemma 3.2 we obtain an adjunction

P« Modp (eomodr) (Pr(A)) == Modp(nod,) (Pa(A)): p*

satisfying the properties listed in the proposition. Using Proposition 2.13 we
have equivalences

D(LvN)(GomodF) ~ Modp(eomodr) (Pr(4))
DEN) (Mod.a) = Modan (wod,) (Pa(A))
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giving the adjunction and its properties.
For the ‘moreover’ statement, we note that by Proposition A.6

D(LJV) (MOdA) = MOde(L’N)(Comodp)(p*(PA(A)))'

But p*(Pa(A)) ~ Pr(e*(A)) ~ Pr(T") (using the commutativity of the diagram
in the proposition), and the result follows.

3.5. PROPOSITION. For each k > 2 there is an equivalence of symmetric
monoidal stable co-categories®

Moday 2.3 (@omodr) (Pr(T)¥7F) 2 Modapy 2.3 (ytod,,) (Pa(T) 7 F71).
PROOF. Because p, is symmetric monoidal, we have
pe(PR(D)®6=0) = p (P(I))®7 =D o py (1) (D),
We apply Proposition A.6 with 7= Pp(I')®»(# =1 to the adjunction
pe: DEN) (Comodrp) S DEN) (Mody): p*

of Proposition 3.4. We deduce the existence of a commutative diagram

P

DLN) (Comodr) . DEN)(Mod 4)

p
Il Il
Modiay (.3 (@omodr) (Pr (L) ©7 1) — Mody .3 (Mod ) (Pa(T)®7*=1)

and a symmetric monoidal equivalence
Modpy ) (atod ) (Pa (D)7 F 1) = Moda .3 (omodr ) (CF(Pa(T) 2 F71)).

We recall that (* is just given by p* after forgetting the module structure. We
see then that

¢ (Pa(D)®r ) o p* (PA(DFF ) o Pr(er (D¥F ) o Po(D®F) o Pp(0)®7"

and the result follows.

3.6. PROPOSITION. For each k > 1 there is an equivalence of symmetric
monoidal stable co-categories

MOer(L,N)(MOdA)(PA(F)®TI€) ~ D(F®k®L’N) (Modr‘@k).

SHere, by abuse of notation we use ®< for the appropriate symmetric monoidal product
in both DE-N) (Comodr) and DEN) (Mod 4).



INVERTIBLE OBJECTS IN FRANKE’S COMODULE CATEGORIES 11

PROOF. By base change along A — I'®* (given by using the left unit) we
have an adjunction

D(Mod4) S D(Modrer)
which satisfies the conditions of Theorem A.1. We can therefore apply Propos-
ition A.6 with T'= P4(A) to deduce an induced adjunction

Modp (nod) (Pa(A)) S Modp(vod, o) (T @ Pa(A))

F®k)

and an equivalence

Modp (Mod, g ) (TZF @ Pa(A)) ~ Modp(noa,) (T @ Pa(A))

r&k)

We now make two observations. The first is that there is an equivalence I'®* ®
Py(A) ~ P4(I'®%) ~ Po(T")®?* in D(Mod,) (Remark 2.4 and Notation 2.8),
so that

MOdD(ModF®k)(F®k ® Pa(A)) 2 Modp (vtod.) (Pa(D)®7F). (3.7)

The second observation (which is a special case of Remark 2.5 combined
with Proposition 2.13) is that if we periodise D(Modrer) with respect to
(T®* @ L, N) (note that L invertible in Mod 4 implies I'®* @ L is invertible in
MOdl"@k), then

'D(F®k®L,N) (MOdF@k) ~ MOd'D(ModF®k)(PF®k (F®k))

(3.8)
~ Modop (nody.q, ) (T®" @ Pa(A))
Finally, we note that because
DEN) (Mod ) ~ Mods (o) (Pa(A)).
we have
Modp ) (atod ) (PA(T)#7*) = Modatods, o ) (Pa(a)) (Pa(T)®7F) (3.9)
~ Modp (nod) (Pa(T)®7F)
where the last equivalence follows by [30, Corollary 3.4.1.9].
Together, we deduce that
Modipy.m) (wod ) (Pa(D)27F) 2 Modop (vtodr) (Pa(T)E7F) [Equation (3.9)]
~ MOdD(ModF@,Tk)(F@k ® Pa(A4)) [Equation (3.7)]
~ ®(F®k®L7N)(MOdF®k> [Equation (3.8)]

as claimed.

We now introduce a class of Hopf algebroids with a good theory of descent.
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3.10. DEFINITION. We say that a Hopf algebroid (A,T") is descendable if
the commutative algebra object I' € CAlg (D(Comodr)) is descendable in the
sense of [31, Definition 3.18]; that is, the thick tensor ideal generated by T is
all of D(Comodr).

3.11. REMARK. We note that if I" is descendable in D(Comodr), then Pr(T)
is descendable in D) (Comodr) by [31, Corollary 3.20].

3.12. THEOREM. Suppose (A,T) is a descendable Hopf algebroid, and L is
an invertible I'-comodule, then there is an equivalence of symmetric monoidal
stable co-categories

D(L’N)(Gomodp) ~ Tot ( DN (Mod ) == DIOLN)(Mody) == - -- )

PRrROOF. By Remark 3.11 and [31, Proposition 3.22] there is an equivalence
‘D(L,N)(GomOdF) o~ TOt(MOdD(L*N)(eomodr)(PF(F)) =
MOd'D(L’N)(ComodF)(PF(F)®T2) 3 T )
By Propositions 3.4, 3.5 and 3.6 we have
MOdD(LvN)(Gomodp)(PF(F)®Tk) = MOde(L’N)(MOdA)(PA(F)®T(]€_1))
~ 'D(F®(k71)®L’N)(MOdF®k71)

as required.

3.13. REMARK. A similar, but simpler, argument shows that if (4,T") is a
descendable Hopf algebroid, then there is an equivalence of symmetric monoidal
stable co-categories

D(Comodr) ~ Tot (D(Jv[odA) — D(Mody) == --- )

This uses Lemma 3.2 and the non-periodic version of Proposition 3.6.

4. Landweber exact Hopf algebroids and the moduli stack of formal
groups

In this section we recall the moduli stack of formal groups, and the relation
between chromatic homotopy theory and the height filtration of this stack. We
then introduce two examples of Hopf algebroids with descent.

4.1. NOTATION. Let My, denote the moduli stack of (p-typical) formal
groups.
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4.2. REMARK. For a detailed study of this moduli stack, we refer the reader
to work of Naumann [35], Goerss [17], or the survey article [5]. For now, we
simply recall the following results: the height filtration of formal groups gives
rise to a filtration by closed substacks

Mg DM@A)DM((2)D---

We let Mfgg" denote the open complement of M(n + 1), corresponding to

formal groups of height at most n. We also set #(n) := M(n) N M=", so that

fo
H(n) is a locally closed substack corresponding to formal glroupsg of height
exactly n.
Finally, we note that there is an equivalence of symmetric monoidal oo-
categories QCoh(Myy) =~ ComodFp pp between quasi-coherent sheaves on the
moduli stack of p-typical formal groups and evenly-graded B P, B P-comodules

(see, for example, [35]).

We recall the following very general definition from [27]. We will generally
use this in the case where A = BP, /I, where I, = (vg,...,vp—1), with the
usual conventions that vg = p and Iy = (0).

4.3. DEFINITION (Hovey—Strickland). Let (A,T) be a flat Hopf algebroid,
and f: A — B a ring homomorphism. We say that B is Landweber exact
over (A,T) (if it is clear, we will simply say Landweber exact) if the functor
M — M ®4 B from I'-comodules to B-modules is exact.

4.4. REMARK. In this case, one can define a flat Hopf algebroid (B,I'p)
where ' = B®4 ' ®4 B. See [27, Section 2] for more details.

4.5. DEFINITION. Given a morphism of rings f: BP,/I;, — R we define the
height of f to be
ht(f) = max{n > 0| R/I,R # 0}
where we allow oo and set ht(f) =0 in the case R = 0.

4.6. REMARK. Our main examples will come from the following result of
Naumann [35, Proposition 28 and Corollary 30]. Note that in the following
theorem, the category of comodules considered does not take into account any
grading, see [35, Remarks 29 and 34].

4.7. THEOREM (Naumann). Let 0 < h <n < oo, and let BP,/I), = R#0
be Landweber exact of height n.* Let (R,T') = (R, R ®pp, BP.BP ®@pp, R)
be the associated flat Hopf algebroid. Then, there is a symmetric monoidal
equivalence of categories

QCoh(M(h) N MF) ~ Comodr

4Here we mean that R is Landweber exact over the Hopf algebroid
(BPx/I,,BP,BP/I, BP.BP)
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4.8. EXAMPLE. The first main example to keep in mind is the Lubin—Tate
cohomology theory, which is the Landweber exact BP,-algebra E, ., where
Ep .« 2 W(Fpn)[ug, ... U1 [ut.

The elements u; have degree 0, while u has degree 2. Here the map

BP, = E, .
sends _
uiu21_1 1<i1<n-1
v ur Tl i=n
0 1> n.

This corresponds to the case of h = 0 above, and (taking into account the
grading) gives an equivalence

QCoh(MF)') ~ Comod(y ) (i,
bewteen quasi-coherent sheaves on M?; and evenly-graded (E,,).(Ey,)-comodules.

4.9. EXAMPLE. The map BP, — E,_, in the previous example gives rise
to a quotient map BP,/I,, — E./I, = F,.[u!] which is Landweber exact
of height n. We denote the corresponding Hopf algebroid in the sense of
Remark 4.4 as (K, «, ¥y ). Naumann’s theorem (in the case h = n) then gives
rise to an equivalence

QCoh(H(n)) ~ Comodsy, .

A direct proof of this is also given in [7, Proposition 2.10] where the Hopf
algebroid (K, «, Xy «) is denoted by (K., K. E).

Note that the Hopf algebroid (K, «, ¥y ) is a 2-periodic version of the Hopf
algebroid (K (n), K(n)«K(n)) used in [34]; Naumann’s theorem implies that
the comodule categories are equivalent in either case. For later use we recall
that the Miller-Ravenel change of rings theorem [34, Theorem 2.10] states
that

Ext3p pp(BP, v, 'BP, /1) 2 Exty! (Kp ., Kp ).

Morava has shown (see [38, Theorem 6.2.10]) that if p — 14 n then the groups
Extg’i (Kp, Knx) = 0 for s > n?. Moreover, by Morava’s change of rings
theorem (see [13, Theorem 6.5] or [7, Corollary 5.5]) we have

Extss’ (Ko, Knx) & H* (G, (En)i/(In)),

where G,, .= S,, ¥ Gal(Fpn /F,) is the (extended) Morava stabilizer group, and
S, = Aut(H,), for H,, the Honda formal group of height n over F,». The
action of G,, on (Ey,)./I, = Fpn[u™!] is described as follows: the Galois group
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acts in the usual way on F,n, and S,, acts on u by s-u = p(s)u where p(s)
takes the leading coefficient of s € S,;, which is necessarily an element of F;n.

In both examples above, the base ring is even-periodic in the following
sense.

4.10. DEFINITION. Let R be a graded ring, then R is said to be even-periodic
if it is of the form Ro[u®!] where u is an element of degree 2.

4.11. REMARK. If particular, we see that L := Rs is an invertible R-module,
and Rs, = L®" for all n.

4.12. REMARK. Let 0 < h < n < oo, and let BP,/I;, — R # 0 be Landweber
exact of height n for R even periodic. Let (R,T') := (R, RQpp, BP,BP®Rpp, R)
be the associated flat Hopf algebroid, and (Rg,g) the corresponding Hopf
algebroid using degree 0 elements. Even-periodicity implies that there is an
equivalence between T'g-comodules and even graded I'-comodules, see [17,
Remark 3.14]. Along with Theorem 4.7, we see that

Comodf? ~ QCoh(M(h) N M3)").

4.13. DEFINITION. Let 0 < h < n < oo, and let BP./I, — R # 0 be
Landweber exact of height n with R even-periodic. Let (R,I') .= (R, R ®pp,
BP,BP ®pp, R) be the associated flat Hopf algebroid, and set L := Ry. The
category of quasi-periodic RgR-comodules DP¢"(Comodg,r) is

DPT (Comodg, ) = D (Comodp, r).
For k > 0 we also define
DI (Mod g, o) i= DFR" LD (Mod g, o)
where in the case k = 0, we take RyR®* = R,.

4.14. REMARK. Suppose R and F' are even-periodic p-local Landweber exact
homology theories of height n as in the previous definition. Then, as noted
previously, there is an equivalence of symmetric monoidal abelian categories

Comodr, r =~ Comodp, . (4.15)
It follows that Comodr,r ~ Comodgr,r as well, and hence
D(Comodpr,r) ~ D(Comodp, )

as symmetric monoidal co-categories. We claim that we also have an equivalence
Drer(Comodp,r) ~ DP"(Comodr,r). This follows from Proposition 2.13 if
we can show that Pr,r(Ro) and Pp,r(Fp) correspond under the equivalence
of categories. Let L := Ry and Ly := Fy. Because the equivalence (4.15) is
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monoidal the units R, and F correspond (as graded rings), and hence Ry and
Fy correspond (as well as Lg and Lg). In other words,

Pror(Ro) = @ Eo @ LE*
kez
corresponds to
Pryr(Fo) = @Fo ® L&*
kez
and vice-versa, and the claim follows.

4.16. REMARK. Taking h = 0, and letting BP, — F # 0 be Landweber
exact of height n with E even-periodic, the category DP¢"(Comodg, ) is also
known Franke’s comodule category, as it was essentially introduced in the
unpublished paper [15] (Franke works with model categories and derivators
instead of stable oo-categories). The main result of [8] is that for any non-
principal ultrafilter F on the set of primes, there is an equivalence of symmetric
monoidal stable co-categories

H Sp,, ~ H DPET (Comodp, ).
F F

In a related result, Pstragowski [37] shows that for 2p — 2 > 2(n? +n) and
k =2p — 2 — n? — n there is an equivalence

hi Sp,, =~ hipDP" (Comodg, k)
between the homotopy k-categories of the oo-category of E-local spectra and
the category of quasi-periodic EyFE-comodules. More recently, in [36, Theorem

8.13] Patchkoria and Pstragowski have shown that the bound can be improved
to 2p — 2 > n? +n.

We note the following, which will be used later (we begin to omit subscripts

from the periodization functors, as they behave as expected; for example
Pr.r(Fy) and Pg,(Ey) agree as Fp-modules).

4.17. LEMMA.
P(Ey) 2 E., and P(EyE)=E.FE.

PROOF. By definition P(Ey) & P, (Fo ® L¥*¥[-2k]) = E, because E is
even-periodic. A similar argument work for FyFE.

4.18. THEOREM. Let E be an even-periodic p-local Landweber exact (over
BP,) homology theory of height n, and let L .= mo(E). Suppose p > n+1, then
(Eo, E0E) is a descendable Hopf algebroid, and hence there is an equivalence
of symmetric monoidal stable co-categories

DPer (Comodps, ) ~ Tot ( Drer(Modp,) —— DP" (Modp,p) =3 - )
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PROOF. For the claim that EgE € D(Comodg, i) is descendable, see [8,
Lemma 5.30] or [6, Remark 4.14] (note that the property of being a descendable
Hopf algebroid is preserved under the equivalence of categories of Theorem 4.7).
The equivalence is then a consequence of Theorem 3.12 and the definitions
(Definition 4.13).

4.19. REMARK. Suppose C is a compactly generated symmetric monoidal
stable co-category generated by its tensor unit 1. Let E € CAlg(€), then
Mode(E) is compactly generated by E. By adjunction, we see that the endo-
morphism spectrum Homygq. (g (E, E) then satisfies

7. Homyoge () (E, E) = 7 Home (1, E)

Applying this with C = DP¢"(Modg, ger) (which is compactly generated by
its tensor unit and F = P(E E®*) = E,E®*, we see that

7 Homprer (aod P(E(E®F), P(E,E®%)) =~ E,E%*

EOE®k)(

4.20. REMARK. The description of DP"(Comodg, ) is given in a slightly
different form in [8]. We explain the connection here. We will use the notation
from [8, Definition 4.2]: for a spectrum X, we let

X, = Hm (X)),

where H: GrAb — Sp is the functor from Z-graded abelian groups to spectra,
given by taking the generalized Eilenberg-Maclane spectrum.

Using Schwede—Shipley Morita theory ([41, Theorem 3.3.3] and [30, Theorem
7.1.2.1]), and arguing as in the previous remark (or applying [8, Lemma 5.32])
we have

@per(MOdEDE@;k) = MOd(EAk+1)* .

Then, we have the claimed result: there is a symmetric monoidal equivalence

of stable oco-categories

QPET(eomOdEOE) ~ Tot (MOdE* :; MOd(E/\E)* E )

This is implicit, although not explicitly stated, in [8, Section 5].

4.21. REMARK. One also has a similar result for the Hopf algebroid appearing
in Example 4.9. More generally, we have the following:

4.22. THEOREM. Let K be an even-periodic p-local Landweber exact (over
BP,/I,) homology theory of height n, let (K,X) be the associated Hopf al-
gebroid, and let L == mo(K). Suppose p — 11 n, then (Ko, Xo) is a descendable
Hopf algebroid, and hence there is an equivalence of symmetric monoidal stable
oo-categories

DPer (Comods, ) ~ Tot ( Drer(Modye,) =2 DP" (Mods, ) =3 - -- )
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PROOF. The descendability of the Hopf algebroid (Kj, ¥¢) is a consequence
of [6, Lemma 4.5]; now apply Theorem 3.12.

5. Picard groups

In this section, we turn to our first application of descent. We recall that an
object M in a symmetric monoidal category is invertible if there exists an
object M1 such that M @ M~ ~ 1.

5.1. DEFINITION. For a symmetric monoidal presentable stable co-category
C, we let Pic(C) denote the group of isomorphism classes of invertible objects
in Ho(©).

5.2. REMARK. The idea of studying Picard groups of localized categories
of spectra was begun by Hopkins [22], who studied the Picard group of
K (n)-locally invertible spectra. Hovey and Sadofsky then studied the Picard
group of the category of E(n)-local spectra [26]. Their Theorem A shows that
for 2p — 2 > n? + n, we have Pic(SpE(n)) = 7, generated by L,S'. Given
Remark 4.16, our main result in this section, Theorem 5.10, is a direct analog
of this theorem.

5.3. REMARK. We recall from [33] that to a symmetric monoidal presentable
stable oo-category € we can associate a connective spectrum pic(C) whose
homotopy groups are given by the following:

Pic(@) t=0,
thic(e) ERi Ende(]].e, ]].e)x t=1 (54)
T—1 End@(ﬂe,]].e) tZ 2.

Moreover, as a functor Cat® — Sp>o from the oo-category of symmetric
monoidal stable co-categories to the oo-category Sps of connective spectra,
pic commutes with limits [33, Proposition 2.2.3].

5.5. PROPOSITION. Suppose (A,T") is a descendable Hopf algebroid, and L
s an invertible I'-comodule, then there is an equivalence of connective spectra

pic(DEN) (Comodr)) ~ 750 Tot ( pic(DEN (Moda)) = pic(DTOLN)(Modr)) = - - )

ProoF. This follows from Theorem 3.12 and the fact that pic commutes
with limits.

Applying this to Theorem 4.18 we get the following:
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5.6. PROPOSITION. Let E be an even-periodic p-local Landweber exact (over
BP,) homology theory of height n, and let L = wo(E), then for p > n+1
there is an equivalence of connective spectra

pic(DP" (Comodg,)) = 50 Tot { pie(D¥ (Nodz,)) = pie(DP (Modz,z)) = - )

5.7. REMARK. Using descent (in particular, combining [31, Proposition 3.19]
and [20, Lemma 6.1]) one deduces that X € DP¢"(Comodg, ) is invertible
if and only if Pr(Ep) ® X is invertible in MOdecr(eo7rL0dEOE)(PF(EO)), or
equivalently (via Proposition 3.5) p. X € DP¢"(Modpg,) is invertible. We shall
see in a moment that Pic(DP"(Modg,)) = Z/2 generated by P(Ey)[1] = EL[1].
Together,

X € Pic(DP"(Comodp,g)) < H.(p«(X)) = E. (up to a shift).
This is the analog of the result, implicit in Hovey—Sadofsky [26]
X € Pic(Sp,,) <= m.(EANX)=E, (up to a shift).
We first study the spectral sequence associated to pic(DP"(Comodg, k))-

5.8. THEOREM. With E as in the previous proposition, suppose p >n + 1,
then there is a spectral sequence
Z/2 s=t=0
R~ 5 < _
Ey' > H“’(/\/lfg”,O/fAfg) t=1
Exty' ' (By, E)  t>2.

which converges fort —s > 0 to m_spic(DP" (Comodg,r)). The differentials
run d,: ESt — Estritr=l

Proor. This is the Bousfield-Kan spectral sequence associated to the
totalization in Proposition 5.6. Given the descent result above, the proof is in
fact completely analogous to [33, Theorem 3.4.3].

Suppose first that ¢ > 2. Then by Remark 4.19 we have
mpic(DP" (Mod gy per)) = mp—1 Homprer (zod (P(EoE®%), P(EyE®F))

~ (E,E®%),_,.

E0E®k)

Then, the Eg’t—term of the spectral sequence is the s-th cohomology of the
complex

(E*)tfl :; (E*E)tfl S (E*E®2)t71

Unwinding the definition of the maps, we see that this is precisely the cohomo-
logy of the cobar complex, and so this is isomorphic to ExtsE’iTEl (ELE,E.\E).
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In the case t = 1, this is the cohomology of the units of the complex

Ey —= EoE == EyE®?
Passing to the algebro-geometric approach, we note that the simplicial scheme
-+» == Spec EgE —— Spec Ey

is a presentation for M?; . In particular, the spectral sequence has the claimed
form when ¢ = 1.

In the case s =t = 0, this is precisely the Picard group Pic(DP¢"(Modg,)).
To see that this is Z/2, one can use that DP"(Modg,) ~ Modg, and appeal
to [1, Theorem 8.1]. See also [8, Lemma 5.33].

5.9. REMARK. Note that (as expected) this spectral sequence has the same
FE>-term as the corresponding spectral sequence for the Picard spectrum of the
E(n)-local category, see [33, Theorem 3.4.3]. Here they use the more invariant
description of the Fo-term as

E;,t — HS(M§:,w(t71)/2)
for ¢t > 3.

Putting this all together, we can compute the Picard group of Franke’s
comodule category at large primes.

5.10. THEOREM. Let E be an even-periodic p-local Landweber exact (over
BP, ) homology theory of height n, and let L :== w5 (E). Suppose 2p—2 > n?+n,
then Pic(DP" (Comodg,r)) = Z, generated by P(Ep)[1] = E.[1].

PRrROOF. This is the claim that m(pic(DP"(Comodg,r))) = Z. We will
prove this via the spectral sequence of Theorem 5.8 (which applies because
2p — 2 > n? +n implies p > n + 1).

By [26, Theorem 5.1] we have

Exty 5 (B, B.) =0

for s > n?+4n. In fact, Hovey-Sadofsky use Johnson-Wilson E-theory, but this
does not change anything in light of [27, Theorem C] (or Theorem 4.7). Now,
a sparseness argument shows that in the stable range the spectral sequence is
zero unless the internal degree is a multiple of 2(p — 1). It follows that there
is no room for non-trivial differentials or extensions in the stable range (as
non-zero differentials raise filtration by a multiple of 2p — 1).

By [33, Proposition 3.4.2] we have Hl(/\/li?, O/X\/lfq) = Z, generated by the
tautological line bundle w. This corresponds to EH\Q ~ F,[2], and hence to
the periodic comodule P(Ejp)[2]. It follows that this class survives the spectral
sequence. The copy of Z/2 in degree (0,0) corresponds to P(Ey)[1] = E,[1],
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the generator of the Picard group Pic(DP¢"(Modg,)). We therefore have a
non-trivial extension

0 — Z — Pic(DP*" (Comodg,g)) — Z/2 — 0,

where the first map is multiplication by 2. It follows that Pic(DP¢" (Comodg, r)) =
Z, generated by P(Ep)[1] & E,[1], as claimed.

5.11. REMARK (The Galois group). The Picard group is not the only
invariant of DP¢"(Comodpg, ) that can be studied via descent. For example,
in [31] Mathew introduces an invariant of a symmetric monoidal stable oco-
category C, the Galois group(oid) 71 C. For example, if A is a commutative
ring spectrum, then a continuous group homomorphism 7 Mody — G is
equivalent to giving a faithful G-Galois extension of A [40]. If R denotes the
endomorphism ring of the unit object in €, then there is always a canonical
surjection

71(C) — 7§ Spec(R)

to the étale fundamental group of Spec(R). One says that the Galois group of
C is algebraic if this canonical surjection is an isomorphism.

By [31, Theorem 10.15] the Galois theory of the F(n)-local category Sp,,
is algebraic; the Galois group m(Sp,,) is isomorphic to the étale fundamental
group of SpecZ,). One therefore expects that when p > n + 1 the Galois
theory of DP"(Comodg, i) is algebraic, and indeed, this is the case. In fact,
using descent, this is essentially the same argument as in [31, Theorem 10.15].
We leave the details to the interested reader.

5.12. REMARK. One can also study the Hopf algebroids (K, X) appearing
in Theorem 4.22. We will use the notation of Example 4.9 so, G,, denotes
the Morava stabilizer group. We note that Exty;" (K., K,) is a K(n).-module
([38, Proposition 5.1.12]), and so is 2(p™ — 1)-periodic. This translates into the
category D) (Comods,) having a 2(p™ — 1)-periodicity, i.e., Ps(Ko)[2(p" —
1] = Px(Kyp) & K,.

5.13. THEOREM. Let K be an even-periodic p-local Landweber exact (over
BP./I,) homology theory of height n, let (K,X) be the associated Hopf al-
gebroid. Suppose 2p — 2 > n? and p — 1 { n, then Pic(DP¢"(Comods,)) =
Z/(2(p™ — 1)) generated by K,[1] = Ps(Ko)[1].

PRrROOF. The argument is similar to that used in Theorem 5.10. First we
note that since we are free to make a choice of the height n homology theory
used, we take K, = E, /I, so that we use (K, «, X, ) from Example 4.9.
Using descent, we claim that we have a spectral sequence analogous to that in
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Theorem 5.8, namely

0

Z/2 s=t
Ey' =S H*(Gy, Fin) t=1
Exty' ™ (Kpw, Knp) 2> 2.

which converges for t —s > 0 to m,_ ,pic(DPe" (Comods, )). To identify the Ey°-
term we observe that this is exactly Pic(D?¢"(Modg,) = Pic(Modg, ) = Z/2 by
[1, Theorem 8.1]. Perhaps the only further point of note here is the identification
of the t =1 line. This is the cohomology of the complex

Ko /=%, (Zn,0 ®K, 0 Xn0)*

We now note that X, o = Hom(G,,, K, 0), see [24] or [43, Theorem 12] (re-
duced modulo I,,). Then ES’B =~ Hom®(G*, K,, o); this argument is essentially
contained in Appendix II of [13]. Noting that K, ¢ = Fy