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Abstract— This paper introduces the Terrain Recognition
And Contact Force Estimation Paw, a compact and sensorized
shoe designed for legged robots. The paw end-effector is made
of silicon that deforms upon the application of contact forces,
while an embedded micro camera is utilized to capture images
of the deformed inner surface inside the shoe, and a microphone
picks up audio signals. Processed through machine learning
techniques, the images are mapped to compute an accurate
estimate of the cumulative 3D force vector, while the audio
signals are analyzed to identify the terrain class (e.g., gravel,
snow). By leveraging its on-edge computation ability, the paw
enhances the capabilities of legged robots by providing key
information in real-time that can be used to adapt locomotion
control strategies. To assess the performance of this novel
sensorized paw, we conducted experiments on the data collected
through a specially-designed testbed for force estimation, as well
as data from recordings of the audio signatures of different
terrains interacting with the paw. The results demonstrate
the accuracy and effectiveness of the system, highlighting its
potential for improving legged robot performance.

I. INTRODUCTION

Autonomous robots capable of traversing challenging ter-
rain are necessary for a host of critical applications. Legged
robot systems, in particular, have garnered significant at-
tention due to their applicability in diverse fields such as
industrial inspection, search and rescue, and extraterrestrial
exploration [1–4]. The efficiency, robustness, and safety of
these systems hinge on their capability to accurately estimate
the contact forces between the robot’s foot and the ground.
Moreover, the detection of the underlying terrain type (e.g.,
concrete, gravel, snow) is an essential factor that can augment
their capabilities, facilitating more robust and adaptive loco-
motion. Consequently, this enables legged robots to navigate
through a wide range of challenging environments with
increased robustness and efficiency.

While prior research has contributed to the advancement
of shoe sensorization [5–8], the scope of these studies has
been largely focused on niche applications, such as planetary
soil sampling, leading to domain-specialized shoe designs.
However, a look at successful legged robots indicates that
conventional “point-foot” solutions are the most widely used
type owing to their structural simplicity and robustness.
Motivated by the above, this study introduces the Terrain
Recognition And Contact force Estimation Paw (TRACEPaw),
an innovative sensorized point-foot shoe for legged robots
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Fig. 1: The developed TRACEPaw system delivering contact force
estimation and terrain classification on the edge for legged robots.

that exploits embedded vision and audio signal processing
to deliver contact force estimation on the paw and soil type
characterization. The final system is depicted in Figure 1.

The TRACEPaw incorporates a compliant hemispherical
contact point that on its inner side presents a pattern that
is captured by an embedded micro camera positioned within
the shoe itself, alongside a microphone and the necessary
compute. Exploiting this design, it embodies four pivotal
attributes. First, it consolidates image processing and su-
pervised learning techniques in order to estimate the cu-
mulative contact force and the direction of its exertion,
while effectively circumventing the need for complicated and
typically parametrically uncertain modeling of material de-
formation properties. Secondly, it incorporates an advanced
terrain classification scheme relying on a neural network
processing the unique acoustical signatures generated during
the interaction between the paw and the terrain. Thirdly, the
TRACEPaw has been designed with edge processing in mind,
meaning that all the presented computations take place within
the shoe onboard a power-efficient microcontroller thus not
requiring complex wiring within the robot’s body. Finally,
this sensorized shoe employs a pragmatic approach to design,
incorporating commercially off-the-shelf electronics, and
boasting ease of fabrication, thereby ensuring accessibility
and scalability in its application.

To validate the proposed design, a series of experimental
studies were conducted. These studies involve force esti-
mation using the TRACEPaw under various load conditions
and orientations, as well as terrain classification using a



variety of terrain surfaces and soil types. The results were
obtained using experiments based on a specialized testing
set-up allowing to measure forces alongside labeled data for
the terrain class. The results highlight the accuracy of force
estimation and terrain classification provided by the system.
To allow community reuse and reproducibility, we release
the solution as an open-hardware and open-software project
at https://github.com/ntnu-arl/trace_paw.

The remainder paper is organized as follows: Section II
overviews related work in shoe design for legged robots.
Section III details the mechanical design of the TRACEPaw,
in addition to describing the methods used for vision-based
force estimation and audio-based terrain classification. The
experimental setup is described in Section IV, while Sec-
tion V outlines the results obtained. The conclusions drawn
are subsequently discussed in Section VI.

II. RELATED WORK

Three niche directions of research, namely that of a)
“shoe” design for legged robots, b) vision-based force esti-
mation, and c) audio-based terrain classification relate to the
contribution in this work. In the domain of shoe end effector
design, recent work has focused on developing specialized
feet for legged robots such as quadrupeds. Generally, the
most common shoe design is that of “point foot” as found
in successful legged robot designs such as ANYmal [9] and
Spot [10]. Passive point feet offer a flexible solution across
most terrains but more sophisticated options are possible both
in terms of sensorization and in terms of mechanical design.
To that end, the authors in [11] present a lightweight, passive,
adaptive foot design that implements three rotational degrees
of freedom with the goal of offering superior traction on
diverse terrains. The works in [12, 13] outline the SoftFoot-
Q articulated foot made to exhibit reduced slippage and
enhanced stability. Inspired by the presence of soft-pads on
animals, the contribution in [8] offers a shoe that allows for
high traction and strong damping. Considering the benefits
of sensorized feet, the efforts in [5–7] present systems that
use force and inertial sensing allowing to assess terrain
conditions. The involved designs are particularly application-
specific with [5, 7] focusing on assessing concrete deterio-
ration in sewers, and [6] targeting the haptic inspection of
planetary soils. Focusing on walking on soft terrain, the pub-
lication in [14] discusses the research status on foot design
for legged robots walking on soft terrain. In addition, a host
of designs consider diverse challenging tasks for shoe design
such as ball kicking [15] and interacting with snowfields [16],
while the works in [17, 18] consider the benefit of flexible
shoe designs to increase the efficiency of walking robots. In
relation to this literature, the proposed system contributes
in the area of the widely used and mechanically robust
point feet designs albeit with advanced sensorization and the
ability to infer both the forces from the environment and the
type of terrain with which a robot may interact.

To that end, vision-based tactile sensing and force esti-
mation literature is particularly relevant. The body of works
in [19–22] offer a detailed overview of a system involving

multi-camera based visual inference of force relying on
neural networks and possessing the potential for utilization
as an approach to robotic skin. The authors in [23] focus
on a stereo vision for estimating the contact force field.
The contribution in [24] surveys recent literature on tactile
sensing for robotic manipulation with a focus on vision
integration. From a different standpoint, the effort in [25]
investigates the use of a novel fiber optic sensor to measure
normal forces. Exploiting velocimetry for multi-modal object
detection and force feedback, the authors in [26] offer
another solution to tactile sensing. Tailored to thumb-sized
sensing, the work in [27] presents a technique to derive a
directional force-distribution map over its sensing surface
and also relies on neural networks. Using stereo vision, the
authors in [28] focus on estimating the friction coefficient.
Furthermore, [29] proposes a new design on vision-based
tactile sensing exploiting a dense color pattern and delivers
low error and high measurement frequency. Our work builds
further upon such ideas and focuses on miniaturized “edge”
implementation inside the robot’s shoe/paw, alongside deliv-
ering multi-modality to not only estimate force but infer the
terrain/soil type.

In the domain of audio-based classification, a host of
works exist using both conventional and deep learning-
based techniques [30, 31]. The developed methods and sys-
tems have found applications in robotics. Examples include
the work in [32] offering end-to-end tools for supervised
learning of audio events, feature extraction, classification
using support vector machines, alongside detection of audio
events. Of relevance to this work are contributions such as
those in [33–35] delivering audio-based terrain classification
and acoustic feature learning including with visual self-
supervision. Furthermore, the authors in [36] offer a method
for audio-based classification of terrain for legged robots
using support vector machines. Our work extends such ideas
and focuses on edge implementation within the paw itself.

III. SYSTEM DESIGN

This section introduces the design of the TRACEPaw.

A. Mechatronic Design

Figure 2a illustrates the TRACEPaw, which comprises a)
the mechatronic design, including the sensing and computing
unit, an aluminum frame, and a soft-material-based sole in-
corporating a grid-like pattern inscribed on its inner surface,
as well as b) the associated software to realize the desired
force and terrain inference results.

The paw of the TRACEPaw is specifically designed to be
roughly proportionate in size to the shoe size of the ANYmal
legged robot [9]. This design choice ensures compatibility
between the paw and that robot’s foot structure while gen-
erally rendering size-wise compatible with most established
quadrupeds, including ANYbotics ANYmal, Boston Dynam-
ics Spot, Unitree B1, and more.

The design leverages the Arduino Nicla Vision, which
integrates a Dual ARM Cortex M7/M4 with a GC2145
camera (2MP), and an MP34DT06JTR microphone onto a



(a) Exploded View

(b) Undistorted Silicone Surface

(c) Distorted Silicone Surface

Fig. 2: (a) from top to bottom; shank adapter, Nicla Vision, electron-
ics housing, structural frame & silicone sole of the TRACEPaw. (b)
& (c) silicone patterns in the absence & presence of deformation-
causing forces on the sole.

single electronic board (dimensions 22.86× 22.86× 1mm),
thereby simplifying the circuit and facilitating a compact
shoe design with all its processing embedded into it. The
images captured by the camera and the audio picked up by
the microphone are fed into their respective neural networks
for force estimation and terrain recognition. Two small white
LEDs are mounted next to the Nicla Vision board, pointing
downwards to ensure uniform illumination within the shoe.

The compliant sole of the shoe has a solid hemispheri-
cal bottom touching the ground that transitions into a flat
rectangular surface at the top, where its visual pattern is
engraved. The sole is vacuum-cast using silicone of Shore
Hardness 10A, and the marked pattern consisting of trian-
gularly arranged points is coated with dark-colored silicone-
based ink to introduce contrast. Upon application of contact
forces, the soft silicone sole undergoes deformation, causing
the marked points to displace and expand, resulting in distinct
patterns captured in the images (see Figure 2b and 2c).
Therefore, these images provide a visual representation of the
deformation characteristics of the distorted material surface,
thereby serving as an input to derive a map to contact forces.

B. Vision-based 3D Force Estimation

The force vector inference problem involves correlating
the images of the silicone upper surface with correspond-
ing cumulative contact forces. While traditional constitutive
models attempt to capture the complex hyperelastic behavior
of silicone, they often incorporate simplifying modeling
assumptions, such as, the nature of loads [37], which can
introduce imperfections. For instance, assuming a uniform
load distribution when modeling the soft silicone sole may
overlook non-uniform pressure distribution in real-life sce-
narios. These approximations can lead to inaccurate pre-
dictions, especially when the paw is subjected to diverse

terrain and a wide range of linear and non-linear loading
conditions. These models solely rely on point displacement
derived from the image, disregarding other indirect features
like slight variations in marker point size and the effect of
light reflections on the inner silicone surface. In addition,
these models neglect manufacturing defects that may impact
the intrinsic properties of silicone. To address these limi-
tations, a neural network utilizing pattern-based images is
employed. The pattern captured in the image provides good
contrast (assisted by the pattern coloring and the incorporated
illuminating LEDs within the shoe), which helps the neural
network to infer the force vector by identifying the relative
direction and extent of point movement along with other
secondary factors.

The Neural Network (NN) architecture requires substantial
training data for accurate force prediction. For this pur-
pose, grayscale HQVGA (240 × 160 pixels) raw images
streamed through Nicla Vision served as input features,
while the corresponding ground truth labels include the
three-component force measurements obtained using an ATI
Mini45 Force/Torque (F/T) sensor. An external camera cap-
tures Aruco tags attached to the paw and the F/T sensor
setup to determine the relative orientation between the two.
Section IV provides a comprehensive description of the data
acquisition process, which involved the integration of three
sub-setups within a test rig, along with information regarding
the dataset and its associated attributes.

The neural network training involved adopting a relatively
small, Fully Connected Neural Network (FCNN) architecture
tailored to accommodate the memory limitations of Nicla
Vision. The architecture consisted of an input layer process-
ing resized 45× 30 images subsequently flattened, followed
by two hidden layers utilizing the Rectified Linear Unit
(ReLU) activation function to capture nonlinear relationships
within the data. The output layer yielded normalized 3D
force vectors, addressing the multivariate regression task.
To optimize the model’s performance, a grid search was
conducted to explore various hyperparameters, including the
number of hidden layers, number of neurons per layer,
learning rate, and dropout. Batch normalization was applied
across all the layers together with output scaling to expedite
network training. The training employed Mean Absolute
Error (MAE) as the loss function for the Adam optimizer
and incorporated L2 regularization to mitigate over-fitting.
By systematically training and evaluating the model for
each combination of hyperparameters, the most effective
configuration was identified based on performance metrics
assessed on the validation set. A diagram summarizing the
chosen architecture is shown in Figure 3.

C. Audio-based Terrain Classification

Beyond force estimation, this work aims to equip legged
robots with the ability to infer the type of terrain they
interact with. Classifying terrain based on contact sounds
is a task that can be solved by supervised learning, as the
problem relies on categorizing the impact-sound data based
on distinguishable audio features. The terrain classes un-



Fig. 3: The NN architecture for force estimation. In white, the input
layer; in red, the flattening layer; in blue, two hidden layers with
16 and 128 neurons, respectively, using ReLU activation function;
in green, the output layer with linear activation function to perform
the regression task.

der consideration encompass gravel, concrete, leaves, snow,
sand, and grass. To extract the frequency data from the audio
signal efficiently, the Mel-frequency cepstral coefficients
(MFCCs) [38] were utilized and used as the basis to classify
the terrain. MFCCs collectively make up the mel-frequency
cepstrum of a signal which represents its short-term power
spectrum.

The dataset collection involved activating the 16 kHz
omnidirectional microphone on the Nicla Vision for one-
second intervals while deliberately striking the paw into
the ground to emulate the ground interactions of a walking
quadrupedal robot. For each terrain class, the collected audio
samples were truncated to a length of 62.5 ms to slice out
the unimportant background noise and focus on the impact
data. The MFCCs were found using a Short-Time Fourier
Transform (STFT) with a frame size of 512 bytes and a
hop size of 160 bytes. To calculate the mel energies, twenty
mel-filter banks were utilized [39]. Finally, 13 MFCCs were
extracted using the Discrete Cosine Transform (DCT), which
would act as inputs to the machine learning techniques.

Owing to the limited memory capacity of the Nicla Vision,
lightweight machine learning approaches, including Support
Vector Machines, K-Nearest Neighbors, Random Forests,
AdaBoost, Decision Tree, Gaussian Naive Bayes, Template
matching, and small NNs, were investigated. Given the
small size of the dataset, a stratified K-fold cross-validation
technique [40] was employed to partition the training data
into five distinct training and validation compositions. During
training, the extracted MFCCs served as input features, and
the corresponding class label was used as the ground truth.
To determine optimal model performance, all methods under-
went a hyperparameter search across the K-folds. Based on
the evaluation metrics of accuracy and model size, the small-
sized NN model shown in Figure 4 emerged as the preferred
choice. This model employed a feedforward architecture with
two hidden layers, each consisting of 16 neurons and utiliz-
ing Rectified Linear Unit (ReLU) activation. Additionally,
batch normalization was applied to each layer to enhance
the model’s training. The final output layer utilized softmax
activation, facilitating the generation of class probabilities.

Fig. 4: The NN architecture for audio-based terrain classification. In
red, the input layer with a 13-element MFCC-based feature vector;
in blue, two hidden layers using ReLU activation function; in green,
the output layer with softmax activation yielding six terrain class
probabilities.

D. Implementation Details

The chosen models for force estimation and terrain clas-
sification were designed to accommodate the constrained
computational and storage capacities of Nicla Vision. The
board is equipped with a powerful microcontroller (MCU)
running at 400 MHz and has 1 MB of RAM and 2 MB
of flash memory. The MCU present was set up using
MicroPython and OpenMV firmware [41], which supports
TensorFlow Lite (TFLite) Micro [42]. However, when using
Micropython, the available RAM is constrained to 183 kB,
imposing restrictions on the model sizes and parameters that
can be stored. The NNs for both tasks were developed with
Keras and TensorFlow, simplifying the process of porting
them to TensorFlow Lite. The porting procedure onto the
MCU avoided the use of integer quantization for weights and
activations to prevent any potential loss in accuracy during
the model’s transfer onto the MCU.

In order to run the force estimation model, captured
images from Nicla Vision were resized using the built-in
nearest neighbor method to match the required dimensions
of 45 × 30, expected by the model. On the other hand, for
the terrain recognition model, a customized implementation
for the MFCC extraction function was developed from the
ground up and optimized using matrix-based operations.
Section V provides detailed insights into the performance
of the implemented techniques onto the MCU.

IV. DATA COLLECTION

The process to collect the data necessary to train the
described machine learning methods is presented below.

A. Data Collection for Force Estimation

As mentioned in Section III, in order to generate reliable
ground truth data for force estimation learning, a three-part
rig was designed for our experimental setup. A detailed
labeled overview of the setup is illustrated in Figure 5.

The diagram presents the test rig consisting of a box-
shaped platform (labeled A) securely mounted on a linear
rail. The platform served as a stable weight-bearing surface,
effectively transferring the force to the ATI Mini45 F/T



Fig. 5: An overview of the experimental setup employed for
data collection for the force prediction with corresponding labels
assigned to each major component; A - Weight Platform, B - ATI
Mini45 F/T sensor, C - data acquisition system (DAQ), D - System
Computer, E - Aruco marker on the platform, F - Aruco marker on
the paw, G - OAK-D Lite Camera, H - Nicla Vision inside the paw.

Quantity x y z
Force Magnitude [-66, 75] N [-92, 80] N [2, 133] N

TABLE I: Range of ground truth forces.

sensor (labeled B) positioned beneath it. The transducer is at-
tached to a flat disk, ensuring a good contact surface between
the transducer and the paw, facilitating accurate measurement
of contact forces for ground truth. It is interfaced with a data
acquisition system (DAQ) (labeled C), which is connected to
a PC (labeled D) via a USB port.

Additionally, two Aruco markers (labeled E and F) are
attached to the platform and the paw, respectively. An OAK-
D Lite camera (labeled G), positioned appropriately, captures
the images of these markers to send to the recording PC for
further processing. The detection of Aruco markers helps
compute the rotation matrix necessary to determine the
orientation of the applied force in relation to the paw’s
reference frame.

Finally, the Nicla Vision inside the paw (labeled H)
completed the setup by streaming resized images to the
connected PC through the USB port. To ensure synchronized
data collection from the F/T transducer, OAK-D Lite camera,
and Nicla Vision, a Python script was utilized, enabling
simultaneous data capture from all three sensors.

Using the aforementioned setup, we collected a dataset of
17, 975 corresponding force and image data samples. The
ground truth labels in Table I provide information about the
range of force. Figure 9 showcases a few examples from the
dataset, illustrating the relationship between force and image
data.

B. Data Collection for Terrain Recognition

Alongside the image and force pairs, data were collected to
train the audio-based terrain recognition neural network. For
each terrain class, a total of 47 audio samples were collected.

Fig. 6: The plots illustrate five randomly chosen raw audio signals
from the complete dataset, with each plot representing a different
terrain class. The left side displays the full one-second audio clips,
while the right side focuses on the isolated impact sections within
those clips.

As previously mentioned, these audio samples were truncated
to a duration of 62.5ms, removing segments with predom-
inantly ambient noise. Figure 6 showcases representative
examples of the collected audio samples.

V. EXPERIMENTAL EVALUATION

A set of experimental studies serve to evaluate the perfor-
mance of TRACEPaw in contact force estimation and terrain
recognition.

A. Force Estimation Results

The neural network discussed in Section III is trained
using 80% of the complete dataset. To select the best
hyperparameters during training, 10% of the samples are
allocated as a validation set. The search results, including
the evaluation of multiple models, are summarized in Table
II. The highlighted model stands out with the lowest MAE
and satisfactory inference time. The remaining 10% of the
dataset is reserved for test purposes. Figure 7 illustrates the
error distribution for each direction, providing insight into
the accuracy of the model. The resulting mean absolute error
(MAE) for the applied normalized force along each direction
is as follows: 0.013 N for Fx, 0.011 N for Fy , and 0.016 N
for Fz . In order to observe the model’s capability to capture
the variations in the force estimation, Figure 8 provides a
visual representation of the model’s performance on the test
dataset. Additionally, the MAE for the total magnitude of



Model Structure Parameters MAE Inference [µs]
1 60x90, 4, 128, 128 40,138 0.0227 1930
2 60x90, 4, 64, 64 26,807 0.0207 1663
3 30x45, 8, 64 11,867 0.0206 630
4 30x45, 4, 128, 128 23,983 0.0163 883
5 30x45, 8, 256 14,939 0.0162 688
6 30x45, 8, 64, 64 16,283 0.0154 735
7 30x45, 16, 32, 32 23,635 0.0152 892
8 30x45, 16, 128 24.755 0.0147 901

TABLE II: Overview of the tested force prediction models,
including their structure, parameter size, validation perfor-
mance, and inference speed [µs] on the Nicla Vision. The
last entry model is finally selected as the solution of choice
for force estimation.

Fig. 7: Histogram displaying the mean absolute error (MAE)
between the force prediction and the corresponding ground truth
values for the test dataset.

the non-normalized forces is approximately 1.944 N, with a
standard deviation of 2.711 N. The presented figure 9 show-
cases the neural network’s accurate prediction of significant
force magnitude changes despite minimal visual deformation.
It highlights the network’s ability to effectively capture
the relationship between subtle visual cues and substantial
variations in applied force. This capability can be attributed
to the dataset’s diversity, encompassing roll configurations
from -50 to 50 degrees, pitch angle orientations from -40
to 40 degrees, and yaw angles from -180 to 180 degrees.
The chosen model has a size of 24,755 parameters, which
is about 20% of the Nicla Visions memory, leaving memory
overhead for terrain classification.

B. Terrain Classification Results

The terrain classification methods discussed in Section III
were trained on a subset of the dataset, constituting 80% of
the total samples. To extend the usage of the dataset, a K-
fold technique was employed to evaluate the performance of
the models, which involved dividing the learning dataset into
80% training and 15% validation subsets. The experimented
models, along with their respective sizes and cross-validation
scores, are listed in Table III.

Fig. 8: Timeseries comparing the force predictions (in orange) and
the ground truth values (in blue) across all three axes for the test
dataset.

(a) Magnitudes(N): 2.84, 2.41 (b) Magnitudes(N): 45.06, 43.56

(c) Magnitudes(N): 90.54, 88.62 (d) Magnitudes(N): 134.41, 106.79

Fig. 9: This figure displays four instances where the neural network
made predictions on the provided images. The captions for each
image present the predicted force magnitudes obtained from ground
truth data (left value) and the corresponding force magnitudes
computed by the neural network (right value).

Here it can be seen that sparse models such as Gaussian
Naive Bayes (GNB), Template matching, and a small NN
provide the best accuracy and standard deviation regard-
less of their size. Other methods such as Support Vector
Machines (SVM) and k-Nearest Neighbors (k-NN) present
worse performance. The selected NN model has a cross-
validation mean of 0.779 and a standard deviation of 0.039
while keeping a small size of 238 parameters. To ensure that
the NN, which had the best accuracy, did not suffer from
overfitting, it was tested using the test dataset, as seen in
Figure 10. The overall performance is high, while the gravel,
snow, and sand classes are the least distinguishable.

The terrain classification based on MFCCs of the impact



Fig. 10: Confusion matrix depicting the prediction summary
achieved by the selected neural network for the six distinct terrain
classes.

sounds was evaluated using nine different ML methods. Also,
the models were evaluated based on their cross-validation
accuracy and size, revealing the best-performing method
being a small NN.

Model Name Size Cross Val. Mean Cross Val. std
SVM 17.527 0.718 0.106
k-NN 29.108 0.629 0.112

Random Forest 74.490 0.667 0.088
AdaBoost 88.229 0.665 0.0123

Decision Tree 7.463 0.486 0.200
GNB 1.936 0.736 0.127
QDA 10.350 0.314 0.094

Template Matching 1.009 0.681 0.052
Neural Network 3.128 0.779 0.039

TABLE III: Overview of the tested model types for terrain
classification, their parameter size, cross-validation mean,
and cross-validation standard deviation. The last entry model,
using a neural network, is finally selected as the solution of
choice for terrain classification.

C. Computational Metrics

We conducted a comprehensive evaluation of performance,
efficiency, and resource utilization for both functionalities
implemented on the MCU.

For the force prediction task, which involved image captur-
ing, resizing, and model inference, we timed the completion
of 10, 000 passes. Each pass averaged approximately 0.9
milliseconds, making it 25× faster than the camera frame
rate of 43 FPS. Memory consumption during execution was
approximately 34.5 KB of RAM. The combination of com-
pact size, high accuracy, and efficient runtime established this
method as an effective solution for contact force estimation.

Similarly, for terrain recognition, we assessed the MFCC
extraction process and subsequent TFLite model inference
using pre-recorded audio samples. Conducting 10, 000 passes
on the 1-second samples, MFCC extraction averaged around
15.2 milliseconds per sample, while TFLite model inference

required approximately 0.13 milliseconds per sample. Mem-
ory consumption was measured at about 50 KB of RAM for
both processes, taking up 25% of its available memory.

VI. CONCLUSIONS

In this paper, the TRACEPaw system has been introduced,
and its effectiveness in accurately estimating ground contact
forces and delivering terrain classification has been demon-
strated through experimental tests. The system incorporates
sensing and computing on edge, with the neural network in-
ference run times for force estimation and terrain recognition
being sufficiently fast for real-time use onboard the Nicla
Vision. As future work, certain improvements are possible.
First, the data collected for training force prediction can be
enhanced by recordings on uneven terrain. Likewise, regard-
ing the audio-based terrain recognition solution, although
the overall performance is high, it must be noted that the
presented terrain classes presented high distinguishability,
and the method would have to be further assessed in more
complex multi-classed terrain.
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