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Abstract: Three-dimensional path planning is instrumental in path decision making and obstacle
avoidance for deep-sea mining vehicles (DSMV). However, conventional particle swarm algorithms
have been prone to trapping in local optima and have slow convergence rates when applied to
underwater robot path planning. In order to secure a safe and economical three-dimensional path for
the DSMV from the mining area to the storage base in connection with innovative mining system,
this paper proposes a multi-objective optimization algorithm based on improved particle swarm
optimization (IPSO) path planning. Firstly, we construct an unstructured seabed mining area terrain
model with hazardous obstacles. Consequently, by considering optimization objectives such as the
path length, terrain undulation, comprehensive energy consumption, and crawler slippage rate, we
convert the path planning problem into a multi-objective optimization problem, constructing a multi-
objective optimization mathematical model. Following that, we propose an IPSO algorithm to tackle
the multi-objective non-linear optimization problem, which enables global optimization for DSMV
path planning. Finally, we conduct a comprehensive set of experiments using the MATLAB simulation
platform and compare the proposed method with existing advanced methods. Experimental results
indicate that the path planned by the IPSO exhibits superior performance in terms of path length,
terrain undulation, energy consumption, and safety.

Keywords: deep-sea mining vehicles; path planning; improved particle swarm optimization;
unstructured seabed terrain

1. Introduction

The benthic zone of the oceans is replete with mineral resources distinguished by their
vast reserves, superior grades, and great extension. These resources prominently include
manganese nodules, polymetallic sulfides, and cobalt-rich crusts. Seabed mineral resources
have been recognized as a significant strategic objective for global economies [1]. The deep-
sea mining system, a critical apparatus for the extraction of these seabed mineral resources,
is now widely endorsed by the international community. Currently, the pipe-lifting mining
system, as illustrated in Figure 1, has been adopted universally. This system comprises
three integral subsystems: the underwater acquisition system, the pipeline delivery system,
and the surface support system [2]. Nonetheless, the pipe-lifting mining system continues
to face significant challenges. The considerable distance required for pipeline transportation
places rigorous demands on system stability. The pipeline configuration further imposes
restrictions on operational procedures, thus limiting the extension of the collection area.
Additionally, the substantial extraction of sediment raises environmental concerns, as the
discharge of tailings detrimentally affects the marine ecosystem and beyond.
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Facing numerous limitations of the pipe-lifting mining mode, a new pattern of deep-
sea mining is being developed (as shown in Figure 2), which consists of a mineral acqui-
sition system, a mineral storage system, a lifting system and a surface support system.
The particular operational modality can be delineated as follows: The deep-sea mining
vehicle (DSMV) accumulates minerals within the designated extraction zone; upon reach-
ing capacity, the mineral container is conveyed to a storage base, where it is subsequently
transferred to a storage hold. Utilizing a steel cable, the storage hold is then elevated to a
surface support vessel, culminating in the successful completion of a closed-loop mission
cycle. The DSMV represents a critical part of the underwater acquisition system, and it
also contains a significant number of complex technical components. These components
involve environmental perception technology, soft bottom traveling technology, intelligent
path planning technology, and underwater positioning and navigation technology, etc. [3,4].
However, the DSMV still faces numerous challenges in the process of traveling from the
mining area to the storage base, such as traversing rugged terrains, lack of transparency, and
circumventing unforeseen obstacles, among others. Therefore, the exploration of intelligent
path planning methodologies in relation to unstructured terrains emerges as an imperative
for amplifying the efficiency of DSMVs concerning navigation, mineral procurement, and
the integrated efficacy of deep-sea mining systems.

In the novel type of deep-sea mining system, the purpose of path planning is based on
a set of constraints to effectively avoid regions with multiple obstacles in order to obtain an
optimal or sub-optimal path with minimal path length and time or energy consumption
from the mining area to the storage base. Three-dimensional path planning for DSMVs
facilitates navigation, positioning, and trajectory tracking, thereby enhancing the efficiency
of the transfer and the safety of mining vehicles. Furthermore, it elevates the operational
efficiency of the entire mining system, serving as a pivotal exemplification in relation to
advanced planning of these systems [5].

Based on research of traversal path and route selection of DSMV, Mathai [6] introduced
a mining area path with high coverage and low repetition rate, while considering the impact
of safety and economic effects. Shi [7] regarded the DSMV as a particle and proposed two-
dimensional grid path planning based on ant colony optimization (ACO) particle swarm
optimization hybrid algorithms, but ignore the kinematic and dynamic constraints of the
DSMV. To ensure the maximum acquisition efficiency of the DSMV, Park [8] designed
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two novel modes of a DSMV traveling in a mining area: contour-parallel and square-
parallel. Dai and Liu [9] proposed two new traveling paths to improve the collection
efficiency and ability of obstacle avoidance of the DSMV. Based on a two-dimensional
seabed grid terrain, Jiang [10] proposed an improved ACO algorithm to plan the travel
path of a DSMV in unstructured mining areas, and the effectiveness of the algorithm
was verified by simulation experiments. Chen developed a path-following controller for
the DSMV, refining the dynamic model and proposing an improved deep deterministic
policy gradient algorithm [11]. Existing literature on DSMV path planning predominantly
concentrates on the exploration of traversal paths and navigation methodologies within
mining areas, with both aspects being implemented in a two-dimensional Cartesian grid
framework. However, such bidimensional grid representations neglect essential seabed
elevation data, which may consequently result in an imprecise depiction of the actual
seafloor topography. Moreover, significant variations in seafloor terrain, the presence
of submarine canyons, and the occurrence of uncharted impediments contribute to the
insufficiency of the two-dimensional grid-based pathways in guaranteeing the safety of
DSMVs. As a result, there is an urgent need to devise path planning strategies for DSMVs
that incorporate a three-dimensional topographical context.
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In recent years, there are many kinds of evolutionary algorithms that have been used
for solving the path planning problem in a three-dimensional environment for underwater
vehicles [12–14]. Leng [15] proposed an optimal and efficient path planner based on shell
space decomposition (SSD), which is used to solve the path planning problem of under-
water robots in cluttered and uncertain environments. The proven SSD solution can help
autonomous underwater vehicles (AUV) navigate in compliance with the best trajectory
in a variable ocean environment with obstacles. Yan [16] introduced a multi-objective
whale optimization algorithm based on forward-looking sonar, which takes the least energy
consumption, the shortest and the safest path as the optimization goals in order to solve the
three-dimensional path planning problem of the underwater vehicle. Xiong [17] presented
an ACO algorithm for multi-autonomous marine vehicles based on Voronoi diagrams to
cope with the difficulty of adaptive ocean sampling, and the Voronoi-based ACO path plan-
ning was verified by simulation experiments and model tests to identify the optimum
scheme in relation to adaptive sampling of ocean data. Liu [18] proposed a continuous
ACO method based on a probabilistic random walk strategy and adaptive waypoint repair
method to optimize the path of each Unmanned Ground Vehicle. Aiming at the problem
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of low accuracy of existing terrain matching methods in areas with few characteristic
features, Li [19] introduced a seafloor terrain matching navigation method to avoid these
areas in order to plan the optimal path of AUVs. Zhu [20] proposed an integrated bionic
self-organizing map algorithm for task allocation and path planning of AUV systems for
obstacle avoidance in three-dimensional underwater environments. Although the above
algorithm can provide an effective reference route for underwater robots, it has several
shortcomings: complexity, a tendency to exhibit premature convergence and stagnation
behavior.

Considering the limitations of existing algorithms in relation to path planning for
underwater vehicles, some researchers have shifted focus to particle swarm optimization
(PSO). PSO, a population-based optimization algorithm, was introduced by Eberhart and
Kennedy in 1995 [21], drawing inspiration from birds’ foraging behavior. Notable for its
simplicity, high accuracy, and robustness, PSO has been employed in various combinatorial
optimization problems [22], such as multi-objective optimization [23], robot path plan-
ning [24], and wind power generation prediction intervals [25]. Despite PSO’s potential in
addressing complex terrain path selection for robots, its slow convergence and tendency to
be trapped in local optima have led researchers to enhance and optimize the algorithm for
various applications. Das [26] developed a co-evolutionary PSO method for multi-robot
trajectory planning. Liang [27] utilized K-means clustering to construct subpopulations, in-
tegrating global historical optima and neighborhood optima for particle swarm velocity and
position updates. Tharwat [28] employed Bezier curves for path planning and introduced
a novel chaotic PSO algorithm to control Bezier curve points, generating the shortest and
smoothest path between initial and goal points. Zheng [29] employs an augmented PSO
algorithm for global path optimization and an enhanced Artificial Potential Field (APF) for
dynamic obstacle evasion, yielding superior performance in comprehensive path planning
and real-time obstacle avoidance as validated by experimental results. While existing
literature has indeed enhanced the performance of underwater robotic path planning using
PSO, it still exhibits shortcomings when dealing with realistic scenarios, such as with a
majority focusing primarily on 2D terrains and with high sensitivity to parameter selection.
Furthermore, the shortest path length is mainly considered, while the security and energy
consumption aspects are not considered.

The main contributions of this paper can be summarized as follows:

(1) In the context of a novel mining system, a three-dimensional, unstructured seabed
terrain has been modeled via simulation, incorporating random hazardous zones and
various obstacles. The fundamental goal of this endeavor is to formulate an optimized,
collision-free path that traverses from the subaqueous mining location to the mineral
storage base.

(2) This paper introduces an improved particle swarm optimization (IPSO) algorithm
by means of velocity updating, application of weight factors and learning factors
utilization of population iteration. This is to better balance the global search ability
and to increase the convergence speed of the algorithm.

(3) Considering the path length, terrain undulation, energy consumption and crawler
slippage rate, the path planning problem is transformed into a multi-objective opti-
mization problem, which can make the DSMV move in compliance with the global
optimal multi-objective path.

(4) Utilizing the three-dimensional seabed terrain model as the foundation, we propose
an enhanced update mechanism for the PSO algorithm, specifically tailored for multi-
objective optimization in path planning. The efficacy of this improved PSO variant,
henceforth referred to as IPSO, is substantiated through numerical experiments.

The remainder of this paper is structured as follows: Section 2 establishes a three-
dimensional seabed environment model. Section 3 elucidates the IPSO algorithm and
corresponding verification experiments for each enhancement. Section 4 compares the
IPSO with alternative algorithms to demonstrate its feasibility and effectiveness in DSMV
path planning. Section 5 presents the simulation and analysis of the DSMV trajectory



J. Mar. Sci. Eng. 2023, 11, 1797 5 of 26

planning, comparing the algorithms referenced in this paper to substantiate the rationality
of IPSO. Finally, Section 6 offers concluding remarks.

2. Path Planning Strategy

This section presents a methodology for achieving high-precision Cobalt-rich crust
seabed environment modeling through numerical simulation, which serves as a crucial
component in aiding DSMV with path planning. To this end, a multi-objective mathematical
model is developed for the DSMV’s path planning process, which takes into account the
path length, terrain undulation, minimal track slip, and overall power consumption which
are all built into the cost functions. In order to ensure the smoothness of the path, a cubic
B-spline curve is introduced to interpolate the trajectory.

2.1. Microtopographic Features of Cobalt-Rich Crusts

The micro-topographic characteristics of cobalt-rich crusts have a great influence on
DSMV path planning. Cobalt-rich crust deposits are distributed on the tops and upper
slopes of underwater mountains such as seamounts, islands, and mid-ocean ridges with
a water depth of 800–3200 m. Crusts mainly occur on table mounts and pointed-topped
seamounts. The diameter of the flat roof is usually 5~9 km, and the diameter of the base
is 10~20 km. The basement layer is basalt, metamorphic basalt, cellophane clastic rock,
pyroclastic rock, etc. Large areas of plate-like crusts and gravel-like crusts are distributed
in the crust development area with hard sediment. The tracked DSMV is identified as
appropriate for navigation and extraction operations on soft seafloor substrates, owing to its
superior traction, minimized ground-specific pressures, and exceptional maneuverability.
Figure 3a shows the overall slope change in the subsea flat-topped seamount area, with
the S–N cross-section given in Figure 3b, and the E-W cross-section in Figure 3c. Terrain
slopes greater than 10◦ appear on the sloping wings of the seamounts (above the pink line)
in Figure 3b,c. A terrain with a slope of less than 5◦ appears in the top area (below the pink
line). The black circles I and II show the slope change at the summit of the seamount, with
small topographic relief. To sum up, the flat terrain and small slope changes at the summit
of the seamount with cobalt-rich crusts can satisfy the walking criteria for the DSMV, and
the harder substrate can provide enough shear force for the track. In order to improve the
feasibility of simulated terrain, this paper considers the convex mountain obstacle at the
summit of the seamount area.
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In Figure 3b,c, the blue solid lines show the depth variations (right axis) and the red
dotted lines show the slope variations (left axis). The black circles I and II denote the slight
undulations at the top of the seamounts. These profiles exemplify the steep-sided flanks
and flat summit, as well as axial slope gradient profiles. The areas of high gradient slopes
(>5◦) are found at the seamount flank, whereas the zones with slope gradients less than 5◦

(pink lines) are found on the summit [30].

2.2. Submarine Environment Model

Land-based tracked robots and the DSMV require highly precise maps and elevation
data to facilitate navigation in challenging mountainous terrains. Similarly, the DSMV
necessitate a three-dimensional environmental model of the seafloor to aid in path planning
and decision making when traversing complex underwater mining areas. This paper
analyses the micro-topographical characteristics of seamounts and proposes a digital
simulation model for the mining area. This model effectively captures seafloor terrain
variations, slopes, and obstacle information, with a level of precision suitable for DSMV
path planning. In this paper, we denote by (x,y,z) the coordinates of a path waypoint in the
three dimensional environment. The traveling space for the DSMV can then be expressed
as follows:

{(x, y, z)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax} (1)

where xmin, xmax, ymin, ymax, zmin, zmax define the bounds of x, y, z respectively. We present
a three-dimensional environmental model of a cobalt-rich crust seabed mining area based
on the Cartesian coordinate system [31].

Z1(x, y) = sin(y + a) + b× sin(x) + c× cos(d×
√

x2 + y2) + e× cos(y) + f × sin(g×
√

x2 + y2) (2)

where x, y denote the point coordinates projected on the base plane of the summit of
the seamount of the Cobalt-rich crust; Z1 represent the elevation corresponding to the
base plane, where the lowest point of base plane corresponds to Z = 0; are constants,
which control the datum terrain variation in the map. For the larger mountain obstacles
encountered by the DSMV during the traveling process, an exponential function is applied
in order to describe a mountain obstacle [32], and a schematic diagram is shown in Figure 4.

Z2(x, y) =
n

∑
i=1

hi exp
[−( x−xi

xsi
)

2
−−( y−yi

ysi
)

2
]

(3)

where Z2 donates the elevation at a specific position with coordinates (x,y); (xi, yi) are
the center coordinates of the i-th mountain; hi controls the height of the mountain, xsi, ysi
are attenuation parameters of the i-th mountain along the x, y axis; n represents the total
number of mountain obstacles.

For a DSMV that traverses areas where penetration into the seabed may occur, a high
risk of failure of the operation is generally present. In this paper, we consider a mining
area with a soft substrate that poses such a threat k. Because areas with thin and soft
substrates are likely to cause the mining vehicles to sink, making them unable to progress,
the corresponding mathematical model of the high-risk area is formulated by means of a
geometric cylinder (as shown by the blue transparent cylinder in Figure 4). The simplified
mathematical model for a high-risk (hazardous) area is written as:

Tk = (xs
k, ys

k, zs
k, rk) (4)

where (xs
k, ys

k) is the center (in the horizontal plane) of the k-th high-risk area, zs
k is the

height of the cylinder, and rk is the radius of the cylinder cross-section.
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In the global coordinate system O− XYZ, S is the initial starting point of the DSMV
and G is the target point. The path of the DSMV is characterized by the spatial coordinate
points that are close to each other and connected by smooth curves. Suppose a set of node
sequences is {S, w1, w2, w3, . . . , wn−1, G}, this sequence consists of N+1 nodes, S represents
the initial point of the DSMV, G represents the target point, and w1-wn-1 are the nodes of
the path that the DSMV is following. the initial point is referred to as S = (x0, y0, z0), the
target point as G = (xn, yn, zn), while wi = (xi, yi, zi)(i = 1, 2, . . . , n− 1) represents each
node during the motion of the vehicle.

2.3. Multi-Objective Model of DSMV Path Planning

Referring to the DSMV, the shortest path length contributes to efficient completion of
its tasks and the entire mission; a smaller undulation of the path benefits its traversability;
the minimum energy consumption path contributes greatly to providing long-term and
energy-demanding mining; the minimum crawler slip path can ensure that the DSMV
executes activities with the lowest slip and highest safety. Consequently, four objectives
involving path length, undulation of the path, economic cost, and crawler slip of the DSMV
should be considered in order to assess the “total quality” of the path.

2.3.1. The Shortest Path Length

Generally, the shorter paths can save more time and energy, which can enable the
DSMV to accomplish the task quickly. In this paper, the path of the DSMV consists of
several N waypoints si(i = 1, 2, 3, . . . , N), (xi, yi, zi) and (xi+1, yi+1, zi+1) represent the
three-dimensional coordinates of i-th waypoint and adjacent waypoint, respectively. Then,
the distance that is applied to formulate the corresponding objective function (cost function)
fd is defined as:

fd = ∑
i∈N

∑
i + 1 ∈ N;

(i, i + 1) ∈ E

di,j = ∑
i∈N

∑
i + 1 ∈ N;

(i, i + 1) ∈ E

(

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2) (5)

where N is the set of nodes that form the graph, and E the set of edges of the graph; di,j is the
distance metric between node i and node i + 1. In our formulation, the Euclidean distance
was adopted. xi, xi+1, yi, yi+1, zi, zi+1, are the geographical coordinates of node i and node
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i + 1 along the transverse, longitudinal and vertical axes, respectively, the dimension of the
path length is meter.

2.3.2. The Undulation of the Path

The undulation of a path refers to the variation in elevation over a certain distance
of the path, which can be expressed by slope, elevation difference or standard deviation.
The greater the undulation of the terrain, the rougher the terrain is, which is not conducive
to the travel of the DSMV. Accordingly, it is recommended to select paths with flatter
terrains whenever possible. In this paper, the elevation difference is chosen to represent the
undulation of the path fu defined as:

fu =
N−1

∑
i=1

∣∣∣Zi−1 − Zi

∣∣∣ (6)

where |Zi−1 − Zi| represents elevation difference when moving from path point i−1 to
path point i. In order to simplify the calculation, the sum of all of these difference is taken
to represent an approximation to the undulation of the path, and the dimension of this
undulation is length, usually expressed in meters.

2.3.3. The Energy Consumption of the Path

In general, reduced energy consumption corresponds to decreased economic costs.
The DSMV relies on the electrical system of a supporting surface floater, which is connected
through a photon–electron composite cable in order to provide the necessary energy. The
energy consumption associated with the DSMV arises from multiple components, including
the acquisition, control, perception, and travel systems. The present study posits that the
acquisition and traveling systems of the DSMV are mutually exclusive in their operation.
While the control and perception systems operate continuously throughout the duration of
the mission, the power supply to the DSMV system remains constant. Thus, the energy
consumption of the control system and perception system is determined by the amount of
time of the DSMV is in operation on the seabed, which consist of the mining time t1 and
the travel time t2. The energy consumption function fe is defined as:

fe = t1P1 + t2P2 + (t1 + t2)P3 (7)

where fe is energy consumption of the entire system; t1 is the mining time, t2 is the travel
time. P1 is the average power of the acquisition system, P2 is the average power of the travel
system, P3 is the average power of the control and perception system, and the dimension of
the energy consumption is kWh.

2.3.4. Path of Crawler Slippage

For the DSMV, the force of the mining vehicle movement is generated by the shearing
effect of the crawler on the deep-sea soil, and in the process of the crawler shearing the soil,
a slip phenomenon may occur. The deep-sea soil in different areas will provide different
shear forces to the crawler, so the DSMV will face different slippage rates. The successful
navigation of the DSMV through soft sediment environments is critically dependent on
the slippage rate between the vehicle crawler and the seabed soil. Here, we define a
threshold slippage rate below which the DSMVs can traverse the mining area smoothly.
However, when the slippage rate exceeds an upper threshold, the DSMV cannot get out
of this area due to slipping, thereby classifying the region as an obstruction zone. In
this paper, the smallest circle k ((xk, yk), rk), which covers the area with the slippage rate
exceeding the threshold, is used to reflect the obstacle area of DSMV, where k is the number
of the obstacle (i.e., Obsk), and with (xk, yk) and rk denoting the center and the radius
of the circle, respectively. The real distance, the least distance, and the lower limit of
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the maximum distance between Obsj and the path are denoted by dreal_j, dsa f e_minj and
dsa f e_maxj, respectively. The crawler slips of the path fs is defined as:

fs =

{
0, slip rate < 0.5
D, slip rate > 0.5

(8)

D =


1 dreal_j < dsa f e_minj
0 dreal_j ≥ dsa f e_maxj
dreal_j−dsa f e_minj

dsa f e_maxj−dsa f e_minj
others

(9)

When the slippage rete is less than 0.5, it can be considered that the DSMV is not
affected by the slippage rate between the track and the seabed soil, so that it can pass
through the area safely. When the slippage rete is greater than 0.5, the mining vehicle
cannot pass through, and this area is regarded as a high-risk area. At this time, the problem
can be equivalent to finding the safe distance for the mining vehicle to pass through this
area. Here, D is the distance between the actual path and the high-risk area, The smaller
the D value, the safer the path will be, fs is dimensionless.

2.3.5. The Formulated Path Planning Model for the DSMV

In general, DSMV path planning typically involves a multi-objective optimization,
where the different objectives have different optimal solutions. Broadly speaking, there
are three ways to deal with multi-objective problems: a direct approach, aggregation
or transformation, and Pareto-set approximation [33]. However, the direct approach is
difficult, especially in the case when multiple objectives seem conflicting. The limitation of
Pareto front includes lack of diversity, scalability, and the inability to account for changes
in objectives over time. Therefore, this paper uses aggregation or transformation by
combining multiple objectives into a single composite objective function (cost function)
so that standard methods for optimization can be used. By using the optimized planned
path in terms of such multiple criteria including the path length, path undulation, energy
consumption and the crawler slip along the path, the cost function is defined as:

Fc = ω1 fd + ω2 fu + ω3 fe + ω4 fs (10)

where Fc represent cost function, fd is objective function of path length, fu is the objective
function of the path undulation, fe is energy consumption objective function, fs is the
objective function of crawler slip of the path. As these metrics inherently exhibit variations
in magnitude and units, an appropriate comparison mandates a standardized framework.
To this end, a standardization method was adopted, transforming each variable into a
dimensionless form. Specifically, for each metric, the mean was subtracted from individual
observations, followed by division by the standard deviation, resulting in a standardized
score with a mean of zero and a standard deviation of one: fi =

xi−µ
δ . where xi represents

the original value, the µ is the mean value, and the δ represents the standard deviation
of variable. Through this process, the differences in scale among the various parameters
were effectively neutralized, allowing for their integration into a cohesive and comparable
objective function. ωi is the weighting coefficients, the solution strongly depends on the
chosen weighting coefficients. these weights have to be positive, satisfying:

4

∑
i=1

ωi = 1, ωi ∈ (0, 1) (11)

The optimal solution of the multi-objective path planning problem is dependent on the
assigned weight coefficients. In this study, the path planning of the DSMV is conceptualized
as a global static process. As a result, the weight coefficients were deliberately chosen
to reflect the significance of each objective in the context of deep-sea mining missions.
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Specifically, the path length is prioritized with a weight coefficient of ω1 = 0.5 due to its
crucial role in minimizing both time and associated costs. Next in priority are the path
undulation and crawler slippage rate, which are fundamental to vehicle stability and safety.
We assign them similar weight coefficients of and ω2 = ω3 = 0.2 to balance these objectives.
Energy consumption has the least weight (ω4 = 0.1) in the optimization problem, given
that the DSMV receives stable and continuous electric energy from the surface vehicle. This
methodological approach to weight setting aims to holistically address the multi-objective
optimization problem in question.

2.4. Cubic B-Spline Curve Path Smoothing Model

The conventional path planning algorithm typically involves constructing a series of
connected trajectory points to form the path. However, this results in abrupt curvature
changes that fail to conform to the dynamic constraints of the DSMV and that does not
accurately align with the actual path. In order to reduce the shaft wear of the DSMV actual
track and the turbidity plumes on the seabed, the steering path should be smooth. Com-
monly used methods for path smoothing include spline curve and straight-line segment
approximation method for complex curves [34]. It is shown based on both theory and
practice that, there are several disadvantages in using straight-line segments to approximate
complex curves and using linear interpolation to smooth the path, such as: large speed
fluctuation, low smoothing efficiency, and contradiction between smoothing accuracy and
speed requirements [35]. Spline curves offer a superior alternative to the straight-line
approach when navigating complex curves due to their increased precision of fitting and
lower computational requirements, which effectively mitigate potential data scarcity and
other associated limitations. Thus, spline curve gradually plays an increasingly important
role in path smoothing methods [36].

As one of the most typical functions of spline curves, the B-spline curve function has
continuous first and second derivatives, and this represents an advantages relative to the
Bezier method. Due to these properties, it can overcome the defects of the Bezier method
that do not have such local properties due to the overall representation (i.e., moving one
control point will affect the whole curve). The B-spline curve has many advantages in path
smoothing: locality, geometrical invariability, symmetry, recursion, continuity, convex hull
characteristics, and convexity preservation [37]. It is accordingly able to fit the requirements
of continuous change in the DSMV speed. The contradiction between the approximation
of the curve and the convexity preservation can be solved by the B-spline curve, thus,
the path curve is relatively smooth, and the curvature changes are minor before and after
turning. In this section, the smooth path of the cubic B-spline curve is adopted to ensure
the stability and continuity of the DSMV traveling on the seabed. A B-spline curve of order
k can be defined by a total of n + 1 control points p0, p1, . . . , pn and a set of non-decreasing
continuously changing vector nodes ui. The expression is as follows:

p(u) = [p0 p1 . . . pn]


N0,k(u)
N1,k(u)

. . .
Nn,k(u)

 = ∑n

i=0
pi Ni,k(u) (12)

where pi(i = 0, 1, . . . , n) is the control point of B-spline curve, which is used to limit the
curve range; u is the vector node, n is the number of control point, k is the order of B-spline
curve, and the basis function Ni,k(u) is defined as follows: Ni,0(u) =

{
1, ui ≤ u ≤ ui+1

0, others
Ni,k(u) =

u−ui
ui+k−ui

Ni,k−1(u) +
ui+k+1−u

ui+k+1−ui+1
Ni+1,k−1(u)

(13)

where ui(i = 0, 1, . . . , n) are vector nodes, and the sequence satisfies the non-decreasing
relationship. In this paper, the vector repetition degree of the nodes at both ends is set as
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k + 1, the inner node vector is uniformly distributed, given k = 3, that is, fitting the path
with a cubic quasi uniform B-spline curve equation, the strength of which is to complete
the path planning in complex terrains through less design parameters. Figure 5 shows a
cubic B-spline curve, the blue circles are the control points and the orange polygon is the
control polygon. The blue line is the original path, and the red line is the processed smooth
path.
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3. Improved Particle Swarm Optimization (IPSO)

In this section, first based on a brief description of the PSO algorithm, the basic
principle of using PSO to solve the path planning problem is expounded. Analyzing its
optimization mechanism and convergence characteristics, the basic PSO is subsequently
modified in terms of four different aspects which are velocity update, inertia weight,
learning factor, and population iteration in order to avoid falling into a local optimum and
premature convergence.

3.1. Particle Swarm Optimization

PSO is a population-based stochastic optimization algorithm, which has been success-
fully applied in various fields [22,38]. Within the PSO framework, the algorithm commences
with a randomized initialization that generates a set of candidate solutions. These solutions
are then iteratively improved via updates to their position and velocity, with the aim of
finding the global optimal solution. For every individual particle, its velocity denotes the
direction of search and is continually revised based on its prior state, as well as the best
positions achieved by the particle itself and the overall collective. The subsequent particle
position is then determined by its previous state and the instantaneous velocity. The PSO
entails that if a particle’s current position surpasses its previous position with respect to
the prescribed fitness function, the new position will be designated as its personal best.
Moreover, if the new position is superior to the positions of all other particles in the swarm,
it will be regarded as the global best. For a three-dimensional path planning problem,
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suppose that the waypoint number of all the individual particles is D, then the position
and velocity vector for the i-th particle can be expression as follows:

pi = (pi1, pi2, . . . , piD), i = 1, 2, . . . , N (14)

vi = (vi1, vi2, . . . , viD), i = 1, 2, . . . , N (15)

The optimal position searched by the i-th particle is the individual extreme value:

pbest = (pi1, pi2, . . . , piD), i = 1, 2, . . . , N (16)

The optimal position searched by the entire particle swarm is the global optimization:

gbest = (pg1, pg2, . . . , pgD), g = 1, 2, . . . , N (17)

After calculating the individual extreme value and the global optimal value, then
update the velocity vid and position xid of the particles [39,40]:{

vid = ωk ∗ vi−1,j + c1r1(pid − xid) + c2r2(pgd − xid)
xid = xid + vid

(18)

where vid is the current velocity of the particle; xid is the current position of the particle;
ωk is inertia weight, for trust in the current speed direction; c1, c2 are learning coefficients;
r1, r2 is a uniform random number in the range of [0, 1] to increase the randomness of
the search; pid is the individual best position; pgd is the global best position searched by
the entire population. The flight trajectory of the particle determined by Equation (17)
which consists of three parts, is illustrated in Figure 6. The first component is the motion
inertia of the particle, represented by the green block, which encapsulates the particle’s
initial velocity information. The second component, indicated by the yellow block, pertains
to cognitive information, and comprises the original velocity of the particle. The third
component, denoted by the blue block, signifies social cognition and reflects the distance of
the best position pgd among the population. This component signifies the sharing of social
information among the particles. Finally, the particle update mechanism after integration is
represented by the pink block in Figure 6.
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As a heuristic optimization algorithm, the PSO is based on a simple principle, few
parameters and easy implementation. Each particle is updated based on the internal speed,
memorizing the positives and negatives solutions during the optimization process, and
saving the information about pros and cons. However, for high-dimensional complex
problems, problems associated with premature and poor convergence performance are
usually encountered, so there is no guarantee for convergence to the optimal point. When
applied to robot path planning the following problems still exist [41,42]:

(1) The core of PSO is an iterative optimization algorithm. It needs more time to get a
feasible solution, so it has limitations when it comes to path planning applications. In
addition, the tendency of the standard particle swarm to move to a local optimum
and to stagnate represents a basic problem.

(2) Constrained by the characteristics of the modelling environment, PSO is predomi-
nantly applied in two-dimensional grids or 2.5D environments, with scant experience
in relation to DSMV trajectory planning for three-dimensional settings.

3.2. The Improved Particle Swarm Optimization Algorithm

In view of the weakness of the PSO algorithm mentioned above in solving the path
planning problem, this paper proposes several enhancements to the PSO. Specifically, the
PSO is optimized and the adaptive weight method is leveraged to optimize the search and
convergence capabilities of the PSO. Furthermore, to enhance the early local search ability
and the late global convergence ability of the algorithm, asynchronously changing learning
factors are employed and the velocity update scheme is modified. Finally, to improve the
optimization efficiency and increase the population diversity, the crucial natural selection
operation applied in genetic algorithms is integrated.

3.2.1. The Improved Particle Velocity Update Method

The introduction of the average best position S into the velocity update scheme enables
the particles to gather information from other particles, resulting in enhanced global search
capability and group cooperation in the PSO algorithm.

vid = ω ∗ vi−1,j + c1r1(pid − xid) + c2r2(pgd − xid) + c3r3(s− xid) (19)

c3 = 1 +
t

tmax
(20)

s(t) =
1
M

M

∑
i=1

pid(t) (21)

where c3 represents the newly introduced acceleration coefficient, while r3 denotes a
random number within the range of (0, 1). while s signifies the average best position. M
represents the total number of particles, t is the current number of iterations; tmax is the
maximum number of iterations.

3.2.2. Adaptive Weight Function

As an important parameter in the PSO algorithm, the inertia weight ω is a pivotal
parameter that dictates the propensity of a particle to retain its previous velocity, thus
influencing its exploratory and exploitative behaviors in the search space. A larger ω

amplifies the particle’s global search capabilities, whereas a smaller ω enhances its focus
on localized, fine-grained optimization. When combined with high velocity, an elevated
inertia weight introduces stochasticity into the particle’s movement, enriching its global
exploration potential and increasing the probability of escaping local optima. This interplay
between inertia weight and velocity is instrumental in shaping the algorithm’s overall
performance in complex optimization tasks. Thus, an appropriate value of the inertia
weight ω is the key to avoid that the algorithm falls into a local optimum and to improve
the search efficiency. This paper adopts a non-linear dynamic inertia weight ω strategy:
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When the fitness values of each particle tend to be consistent or tend to be locally optimal,
the inertia weight is increased, otherwise, the inertia weight is decreased. For the particle
whose objective function value is better than the average, its inertia weight factor is small,
so as to protect the particle. On the contrary, for the particle whose objective function value
is worse than the average, the corresponding inertia weight factor is larger, which makes
the particle move closer to a better search area. The improved non-linear dynamic inertia
weight coefficient ω is expressed as follows:

ω =

 ωmin − (ωmax−ωmin)∗( f− fmin)
( favg− fmin)

, ( f ≤ favg)

ωmax, ( f > favg)
(22)

where ωmax, ωmin is the maximum and minimum value of ω respectively; f donates the
current fitness value of particles; favg is the average fitness value; fmin is the minimum
fitness value.

3.2.3. Asynchronously Varying Learning Factor

The individual learning factor c1 and the social learning factor c2 play a crucial role in
guiding the trajectory of each particle in the search space. Specifically, c1 influences how
much a particle relies on its own best-known position, whereas c2 determines how much the
particle is influenced by the best-known position in its neighborhood or among all particles
in the swarm. Different settings for c1 and c2 can significantly affect the optimization
results. A higher value of c1 would make the particle more self-reliant and focused on
its individual experiences, potentially making it harder for the algorithm to escape local
optima if the particle’s own best-known position is not globally optimal. On the other hand,
a higher c2 value emphasizes collective intelligence, allowing particles to converge more
quickly to a promising area of the search space but also risking premature convergence
to suboptimal solutions if not properly balanced. c1 and c2 change differently over time
during the optimization process which is referred to as asynchronous change. In this way,
the particles have a strong self-learning ability and a strong global search ability during the
initial stage of the optimization. In the later stage of the optimization, particles have greater
social learning ability and less self-learning ability, which is conducive to convergence to
the global optimal solution. The improved learning factors are expressed as follows:

c1 = c1,ini +
c1, f in − c1,ini

tmax
∗ t (23)

c2 = c2,ini +
c2, f in − c2,ini

tmax
∗ t (24)

where c1,ini and c2,ini donate the initial values of c1, c2; c1, f in and c2, f in denote the iteration
end values of c1, c2; t is the current number of iterations; tmax is the maximum number of
iterations, in this paper, tmax is defined as the anticipated or expected number of iterations.

3.2.4. Population Iteration Method Based on Natural Selection

In order to avoid particles getting trapped in local optima and further keep the particle
population diverse, this paper introduces the principle of survival of the fittest in Darwin’s
theory of natural selection, integrating the natural selection mechanism of the genetic
algorithm into the particle swarm optimization algorithm. The core idea is to sort the
newly generated particle swarm according to the new fitness value in each iteration process
according to the sorting selection method. Replace the particles in the worst p% (p is the
percentage constant, that is, the probability of elimination) positions with the positions of
the particles in the best top p% in the population, while retaining the historical optimal
value memorized by each individual, thereby increasing the proportion of the particles
closest to the optimal particle in the particle population. This selection can ensure that the
particles have good optimization performance in each iteration process and can speed up
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the convergence speed of the algorithm. The improved particle swarm update process is as
follows: 

[sort( f ), sort x] = sort( f )

e = round(M− 1)/2

x(sort((M− e + 1) : M)) = x(sort(1 : e)

v(sort((M− e + 1) : M)) = v(sort(1 : e)

(25)

where f donates particle fitness value; M is the total number of particles; sort indicates
preferential sorting; round represents the rounding function.

To sum up, this paper proposes an IPSO algorithm, with the update formulas being
described as follows:{

vid = ω ∗ vi−1,j + c1r1(pid − xid) + c2r2(pgd − xid) + c3r3(s− xid)

xid = xid + vid
(26)

The Sphere is a non-linear unimodal function, and the Rastrigin is a non-linear multi-
modal function. In order to simplify the expression, we make the following abbreviations:
IV-PSO: improved velocity update method; IW-PSO: Improved weight; ILF-PSO: improved
learning factor; IPSO: improved population iteration, it is also the final improved algorithm
of this paper, and it is the same as the IPSO in the Section 5. After conducting an empirical
analysis using the group method, the resulting algorithmic parameter configurations are
presented in Table 1.

Table 1. Parameter for the improved PSOs.

PSO Kind Parameter

PSO M = 100, tmax = 100, c1 = c2 = 2, w = 0.5
IV-PSO M = 100, tmax = 100, c1 =c2 = 2, w = 0.5, c3 and S are set by (20–21)
IW-PSO M = 100, tmax = 100, c1 = c2 = 2,wmax = 0.9, wmin = 0.4

ILF-PSO M = 100, tmax =100, c1_ini = 2,c1_ f in = 0.5, c2_ini = 2,c2_ f in = 0.5,
wmax = 0.9, wmin = 0.4

IPSO M = 100, tmax = 100, c1_ini = 2,c1_ f in = 0.5, c2_ini = 2,c2_ f in = 0.5,
wmax = 0.9, wmin = 0.4, p = 0.05

To verify the effectiveness of the above improvements, four classical benchmark
functions from Congress on Evolutionary Computation (CEC)’2020 multi-modal multi-
objective optimization (MMO) [43,44] are used to evaluate its performance, the simulation
results are shown in Table 2.

Table 2. Calculation results and contrast based on benchmark functions.

Function Statistics PSO IV-PSO IW-PSO ILF-PSO IPSO

Kowalik
Best value 0.0009171 0.000564 0.000756 0.000823 0.0003021

Mean value 0.003873 0.004325 0.005631 0.004325 0.002758
St. Dev. 0.008256 0.00756 0.007258 0.006652 0.006231

Six-Hump Camel
Best value −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

Mean value −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
St. Dev. 1.23 × 10−10 6.56 × 10−13 4.32 × 10−11 3.32 × 10−9 2.13 × 10−14

Branin
Best value 0.45376 0.42358 0.41852 0.402568 0.397861

Mean value 0.456854 0.43675 0.43345 0.423482 0.397863
St. Dev. 6.32 × 10−9 1.32 × 10−13 2.65 × 10−13 3.32 × 10−14 1.05 × 10−16

Hartman
Best value −3.28633 −3.28633 −3.28633 −3.28633 −3.32046

Mean value −3.323963 −3.138 −3.1224 −3.3224 −3.321
St. Dev. 0.7728 0.5828 0.6448 0.5328 0.45463
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Learning factors c1_ini = 2, c2_ini = 2, c1_ f in = 0.5, c2_ f in = 0.5: These were initially set
to 2 and gradually decreased to 0.5 as the iterations progressed. The rationale behind this
setting is to promote broad exploration of the solution space in the early iterations and then
focus on exploitation around the best-found solutions in the later stages. This approach is
supported by prior empirical studies that demonstrate the effectiveness of varying c1 and
c2 in this manner for balancing exploration and exploitation. Additional learning factor
c3: This was introduced to further fine-tune the algorithm’s performance. It is calculated as
c3 = 1 + t

tmax
, where t is the current iteration number and tmax is the maximum number of

iterations. The purpose of c3 is to adaptively change the acceleration of particles based on
the progress of iterations. Inertia weights wmax and wmin: We adopted an adaptive inertia
weight strategy with wmax = 0.9 and wmin = 0.4. This adaptive method allows particles to
have greater momentum in early iterations for global searching and reduced momentum in
later iterations for more localized searching.

As shown in Table 2, the IPSO algorithm has good performance (best value, mean
value and standard deviation) for the Kowalik, Six-Hump Camel, Branin and Hartman
functions. The achievement of min best values and mean value can be considered as
reliable indicators of the IPSO’s enhanced optimization performance, and the min standard
deviation can also be interpreted as evidence of the IPSO’s robustness and algorithmic
stability. Therefore, it can be concluded that the IPSO algorithm has excellent performance
after being improved step by step.

The framework for the numerical simulation shown in Figure 7. The path planning
process of DSMV based on IPSO is as show in Algorithm 1:

Algorithm 1 IPSO for path planning

//Environment construction
Establish the simulation environment model according to Equations (1)–(3);
Set the start point and target point for DSMV.
//IPSO initialization
Initialize the particle swarm parameters: tmax,wmax,wmin,c1,c2;

Initialize particles and velocities;
Set a relatively large value for the fitness value;
Calculate the fitness value and select pbest and gbest.

//main loop
for t = 1: tmax

for j = 1:M
update IPSO parameters by Equations (19)–(24);
generate new particle position and velocity by Equation (25);
calculate particle fitness fit;

select pbest and gbest;
Remember the value and the iteration for gbest;

if fit < pbest, then pbest = fit
else pbest = pbest
if pbest < gbest, then gbest = pbest
else gbest = gbest

end
t = t + 1

End
//Path smoothing

define control points;
Use cubic B-spline function to fit the control point and generation of a smooth path;

//Output
Output the planned path.
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4. IPSO for Function Optimization

To provide a lucid illustration, we introduce a number of benchmark functions to
evaluate the efficacy of the IPSO. In addition, to establish a comparative analysis, we
incorporate three advanced PSO methodologies, namely CBPSO (chaos-based initialization
particle swarm optimization) [45], NSPSO (non-dominated sorting particle swarm opti-
mization) [46], ACO-PSO (ant colony and particle swarm hybrid algorithm) [7] and SPSO
(standard particle swarm optimization). Twelve well-known benchmark functions are
selected [47]: Sphere, Tablet, Rosenbrock, BentCigar, Rastrigin, Griewank, Ackley, Schaffer,
Kowalik, Six-Hump Camel, Branin, and Hartman. The details are shown in Table 3, where
fi(x), i = 1, 2, 3, 4 are non-linear unimodal functions, fi(x), i = 5, 6, 7, 8 are non-linear multi-
modal functions and fi(x), i = 9, 10, 11, 12 are dimension-fixed functions used to test the
ability of the algorithm to solve the simple problem. These functions are all optimization
problems for which there is a global minimum value.

In every scenario, this study performs a total of 50 independent trials for each bench-
mark function, with algorithmic parameters detailed in Table 4. The metrics employed to
evaluate algorithmic performance include the optimal value, the average value, and the
standard deviation, each of which is summarized in Table 5. Specifically, the optimal value
serves as an indicator of the algorithm’s search capability, while the average value provides
a measure of its convergence accuracy. The standard deviation, meanwhile, offers insights
into the algorithm’s stability across multiple runs.

Table 3. Benchmark functions.

Figure Formulation Range Optimum/
Minimum

Search
Ability

Sphere f1(x) =
D

∑
i=1

x2
i

[−100, 100] [0, 0, 0,..., 0]/0 Local

Tablet f2(x) = (1000 ∗ x1)
2 +

D

∑
i=2

x2
i

[−100, 100] [0, 0, 0,..., 0]/0 Local

Rosenbrock f3(x) =
D−1

∑
i=1

(100(x2
i − xi+1))

2
+ (xi − 1)2 [−100, 100] [1, 1, 1,..., 1]/0 Local

BentCigar f4(x) = x2
1 + 106

D

∑
i=2

x2
i

[−100, 100] [1, 1, 1,..., 1]/0 Local

Rastrigin f5(x) =
D

∑
i=1

(x2
i − 10 cos(2πxi) + 10) [−5.12, 5.12] [0, 0, 0,..., 0]/0 Global

Griewank f6(x) =
D

∑
i=1

x2
i /4000−

D
∏
i=1

cos(xi/
√

i) + 1 [−600, 600] [0, 0, 0,..., 0]/0 Global

Ackley f7(x) = −20 exp(−0.2

√
D

∑
i=1

x2
i /n) [−32, 32] [0, 0, 0,..., 0]/0 Global
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Table 3. Cont.

Figure Formulation Range Optimum/
Minimum

Search
Ability

Schaffer f8(x) = 78.33 +
D

∑
i=1

x4
i −16x2

i +5xi
D

[−500, 500] [420.96, 420.96, 420.
96,..., 420.96]/0 Global

Kowalik f9(x) =
11

∑
i=1

[ai −
x1(b

2
i +bi x2)

b2
i +bi x3+x4

]

2
[−5, 5] 0.00030 -

Six-Hump Camel f10(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + x4

2 [−5, 5] −1.0316 -

Branin f11(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 [−5, 5] 0.398 -

Hartman f12(x) = −
4

∑
i=1

ci exp(−
6

∑
j=1

aij(xj − pij)
2) [0, 1] −3.32 -

Table 4. Parameter for improved PSOs.

PSO Kind Parameter

IPSO M = 30, tmax = 300, c1_ini = 2,c1_ f in = 0.5, c2_ini = 2,c2_ f in = 0.5,
wmax = 0.9, wmin = 0.4, p = 0.05

SPSO M = 30, tmax = 300, c1 = c2 = 2, w = 0.5
CBPSO M = 30, tmax = 300, c1 = c2 = 2, wmax = 0.9, wmin = 0.4, µ = 4
NSPSO M = 30, tmax = 300, c1 = c2 = 2, wmax = 0.9, wmin = 0.4

ACO-PSO M = 30, tmax = 300, c1 = c2 = 2, w = 0.5, α = 1, β = 5, ρ = 0.5

Table 5. Experiment results of benchmark functions.

Functions Statistics IPSO SPSO CBPSO NSPSO ACO-PSO

Sphere
Best value 3.03 × 10−37 1.03 × 10−21 1.40 × 10−28 1.30 × 10−13 1.22 × 10−13

Mean value 0.37 × 10−35 5.55 × 10−20 4.89 × 10−25 5.51 × 10−3 8.25 × 10−2

St. Var 1.61 × 10−70 3.26 × 10−38 3.46 × 10−27 7.16 × 10−1 1.04 × 10−1

Tablet
Best value 1.25 × 10−27 1.09 × 10−7 3.21 × 10−27 1.20 × 10−13 1.00 × 10−12

Mean value 2.73 × 10−3 1.43 × 105 9.78 × 10−24 4.49 × 10−2 1.84 × 10−3

St. Var 1.43 × 10−2 2.63 × 106 6.92 × 10−26 2.5 × 10−2 3.2 × 10−3

Rosenbrock
Best value 2.17 × 10−15 2.73 × 10−1 1.21 × 10−8 9.91 × 10−5 6.54 × 10−6

Mean value 8.91 × 10−9 1.38 × 103 3.51 × 10−6 9.45 × 10−3 5.32 × 10−5

St. Var 7.94 × 10−16 4.95 × 107 2.48 × 10−10 1.32 × 10−5 2.35 × 10−5

BentCigar
Best value 2.19 × 10−9 1.45 × 10−18 1.56 × 10−22 1.25 × 10−13 1.31 × 10−14

Mean value 1.25 × 10−8 4.59 × 10−10 4.20 × 10−19 6.03 × 10−2 −8.28 × 10−2

St. Var 3.47 × 10−16 6.16 × 10−7 2.97 × 10−21 1.83 × 10−3 1.47 × 10−1

Rastrigin
Best value 8.61 × 10−13 5.38 × 10−5 3.61 × 10−7 1.54 × 10−10 1.00 × 10−8

Mean value 1.98 × 10−12 2.17 × 10−4 4.11 × 10−5 −3.24 × 10−2 −1.39 × 10−1

St. Var 7.16 × 10−24 5.46 × 10−2 2.21 × 10−5 2.26 × 10−3 3.64 × 10−1

Griewank
Best value 1.13 × 10−14 1.34 × 10−12 5.42 × 10−8 3.03 × 10−4 3.12 × 10−4

Mean value 3.45 × 10−2 6.85 × 101 3.21 × 10−5 3.21 × 10−4 4.42 × 10−3

St. Var 1.92 × 10−3 2.48 × 101 5.22 × 10−4 1.16 × 10−2 3.73 × 10−3

Ackley
Best value 8.11 × 10−8 3.77 × 10−14 4.44 × 10−6 1.67 × 10−13 1.00 × 10−12

Mean value 2.80 × 10−7 −1.97 × 10−1 1.19 × 10−4 −1.37 × 10−1 3.34 × 10−3

St. Var 5.04 × 10−14 3.61 × 10−1 8.13 × 10−12 1.78 × 10−1 2.92 × 10−2

Schaffer
Best value 5.32 × 10−9 2.96 × 10−5 3.98 × 10−2 2.30 × 10−3 1.00 × 10−6

Mean value 2.16 × 10−7 1.14 × 10−4 3.97 × 10−2 2.30 × 10−3 1.55 × 10−1

St. Var 4.51 × 10−14 1.39 × 10−3 6.09 × 10−1 2.90 × 10−11 1.13 × 10−1

Kowalik
Best value 3.02 × 10−4 9.171 × 10−4 2.12 × 10−4 8.31 × 10−4 6.32 × 10−4

Mean value 2.75 × 10−3 3.87 × 10−3 1.21 × 10−2 3.78 × 10−3 4.12 × 10−3

St. Var 6.23 × 10−3 8.26 × 10−3 6.02 × 10−2 7.54 × 10−1 5.31 × 10−1

Six-Hump Camel
Best value −1.0316 −1.0316 −1.03149 −1.03159 −1.03152

Mean value −1.0316 −1.0313 −1.03162 −1.03172 −1.03163
St. Var 2.13 × 10−14 1.23 × 10−10 3.56 × 10−8 5.02 × 10−9 6.20 × 10−11

Branin
Best value 0.3978 0.4537 0.4378 0.4030 0.3997

Mean value 0.3978 0.4568 0.4062 0.4130 0.4183
St. Var 1.05 × 10−16 6.32 × 10−9 8.21 × 10−10 6.55 × 10−9 8.11 × 10−11

Hartman
Best value −3.3204 −3.2863 −3.2504 −3.3631 −3.2932

Mean value −3.321 −3.3239 −3.3352 −3.3936 −3.3632
St. Var 0.4546 0.7728 0.8654 1.1228 0.9652
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As demonstrated in Table 6, the IPSO algorithm exhibits superior performance for six
out of twelve benchmark functions, with respect to both the best and mean values. This
illustrates that the IPSO algorithm surpasses the SPSO, CBPSO, NSPSO and ACO-PSO
algorithms in terms of local and global search capabilities. Additionally, the IPSO algorithm
showcases exceptional performance in six out of eight benchmark functions with regard to
the standard deviation, which indicates that the IPSO has better robustness and stability.
Consequently, it can be inferred that the IPSO algorithm has stronger features as compared
to the other five algorithms when it comes to convergence, diversity, and distribution
aspects.

Table 6. Comparison of significance level results between IPSO and others algorithm.

Pair of Algorithms p-Value

IPSO vs. SPSO 0.012
IPSO vs. CBPSO 0.023
IPSO vs. NSPSO 0.012

IPSO vs. ACO-PSO 0.024

To further evaluate the performance of these optimization algorithms, parametric
statistical tests are performed using the Wilcoxon rank sum test in this paper. From a
statistical point of view, the test is robust since it does not assume normal distributions [48].
Firstly, eight benchmark functions ( fi(x), i = 1, 2, . . . , 8) are used to test the five algorithms
(IPSO, SPSO, CBPSO, NSPSO, and ACO-PSO), each benchmark function corresponds to
five results obtained by each of the five algorithms. These results are analyzed using
Wilcoxon rank sum test to compare the Best Value of the different algorithms for the same
benchmark function. Under normal conditions, the significance level is set to α = 0.5.
When p < 0.05, there is a significant difference between them, but when p > 0.05, there
no significant difference is observed. Table 6 shows p-value computed for all the pairwise
comparisons concerning IPSO (the p-values have been computed by using SPSS). As the
table states, all the p < 0.05, that IPSO shows a significant improvement in SPSO, CBPSO,
NSPSO, and ACO-PSO.

In summary, IPSO performs well in optimizing complex high-dimensional functions,
which not only has strong local search ability and global search ability, but also has strong
robustness. Therefore, this paper adopts the IPSO algorithm to solve the three-dimensional
path planning of DSMV on the unstructured seabed topography.

5. Simulation Evaluation

In this section, to evaluate the path planning performance of IPSO, we carry out
several comparisons between different important indicators, such as solution optimality,
convergence speed, and computation time for a given algorithm. The simulation results
for the different PSOs (i.e., SPSO, CBPSO, NSPSO, and ACO-PSO) are summarized. All
the comparison results clearly illustrate the effectiveness and advantages of the proposed
improvements. The present simulations are performed on an Intel(R) Core (TM) i7–12700H
2.30 GHz, on-board RAM 24.0GB, Nvidia GeForce RTX 3060 Laptop GPU, MATLAB-2022b
under win11 platform Compile and simulate.

5.1. Simulation Parameters

When path planning in the simulation environment, in order to simplify the calcula-
tion, DSMV is regarded as a particle, ignoring the force of the crawler and the submarine
water current on the DSMV. The size of the three-dimensional simulation environment is
set to [200 200 10]m, the underwater sensing equipment is installed on the DSMV main
frame and the vertical distance from the seabed datum is 0.5~1 m. The initial location
point of the DSMV is set to [1 1 0.5], the goal point is [200 200 0.5], and with 3 random
control points, where the control points are considered as particles. The free space is
regarded as the feasible region for each particle and as the solution space. According to
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Equations (1)–(3), different specifications and hazardous areas are set in the traffic area,
and their coordinates in the x− y plane are shown in Table 7. To ensure that the results are
reasonable, the maximum number of iterations of the algorithm is set to tmax = 100, and
the population size is set to M = 50. Other parameter settings of the IPSO, SPSO, CBPSO,
NSPSO, and ACO-PSO are shown in Table 8. Five algorithms are applied in order to
calculate the best route of the DSMV from the initial point to the goal point. A comparison
between is made in terms of path length, path undulation, minimum crawler slip path,
energy consumption, convergence time and the difference between the optimal values for
the five algorithms. When the slippage rete between the crawler and the sediment is greater
than 0.5, the mining vehicle cannot pass through, and this area is regarded as a hazardous
area. When calculating the energy consumption, the DSMV related parameters refer to
those of the “Pioneer No. 1” of Shanghai Jiao Tong University. The speed of the DSMV is
set to a constant 1m/s, the energy consumption of the acquisition system P1 is equal to
90KW, and the energy consumption of the traveling system P2 is equal to 50KW, the energy
consumption of the control and perception system P3 is equal to 5KW, the mining time
accounts for 60% of the total time, and the traveling time accounts for 40%. Finally, the
differences and applicability of each algorithm are analyzed and discussed.

Table 7. Center points of the obstacles in the x–y plane.

Obstacle Point Hazard Point

Point No. p1 p2 p3 p4 p5 pa
(x, y) (28.32,70.58) (29.22,109.53) (51.05,129.46) (89.84,131.10) (148.62,149.23) (148.62,149.23)

Point No. p6 p7 p8 p9 p10 pb
(x, y) (68.10,89.45) (108.56,72.03) (189.85,111.53) (171.55,69.85) (160.13,79.56) (160.13,79.56)

Table 8. Parameters of the algorithms.

PSO Kind Parameter

IPSO M = 50, tmax = 100, c1_ini = 2,c1_ f in= 0.5, c2_ini = 2,c2_ f in = 0.5,
wmax = 0.9, wmin = 0.4, p = 0.05

SPSO M = 50, tmax = 100, c1 = c2 = 2, w = 0.5
CBPSO M = 50, tmax = 100, c1 = c2 = 2, wmax = 0.9, wmin = 0.4, µ = 4
NSPSO M = 50, tmax = 100, c1 = c2 = 2, wmax = 0.9, wmin = 0.4

ACO-PSO M = 50, tmax = 100, c1 = c2 = 2, w = 0.5, α = 1, β = 5, ρ = 0.5

5.2. Analysis of Simulation Results

Five optimization algorithms are considered, all of which are intended to provide
three-dimensional path planning for the DSMV. Their objectives are accordingly to avoid
hazardous regions and areas with a high crawler slippage rate, to identify the shortest
route, to support minimum terrain relief, and to facilitate minimum energy consumption.
Figure 8 depicts the path planning simulation results for five algorithms, where the blue
circular cylinders represent the hazardous area due to exceeding the threshold for the
DSMV crawler’s slip rate. Figure 9 illustrates the iterative progression of the algorithm.

Figure 8 provides a comprehensive comparative analysis of paths generated by mul-
tiple optimization algorithms—IPSO, SPSO, CBPSO, NSPSO, and ACO-PSO—within a
simulated three-dimensional environment. The figure elucidates the spatial distribution
of the generated trajectories across the x, y, z coordinate axes. Among the evaluated algo-
rithms, the IPSO-generated path (Figure 8a) is characterized by its remarkable geometric
smoothness and angular stability in the heading direction, eliminating the necessity for
abrupt maneuvering. In contrast, the paths generated by SPSO and NSPSO algorithms
(Figure 8b,d) are predominantly situated along the environmental periphery and are
marked by pronounced angular turns, further complicated by substantial fluctuations
in heading angles at midpoints. A noticeable large-angle turn is also evident in the NSPSO-
generated path near the second control point, as depicted in Figure 8e. A multi-metric
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evaluation further reveals discernible differences in path quality, including criteria such as
the cumulative distance traversed, the frequency of hazardous regions encountered, and
topographical fluctuations. The trajectories optimized by IPSO, CBPSO, and ACO-PSO
(Figure 8a,c,e) are noticeably smoother and less topographically undulating, indicating
their enhanced suitability for deep-sea mining vehicle (DSMV) navigation. Specifically, the
path delineated in Figure 8a outperforms its counterparts in Figure 8c,e, underlining the
superior optimization capabilities of the IPSO algorithm. Conversely, the paths generated
by SPSO and NSPSO (Figure 8b,d) manifest longer lengths and greater topographical vari-
ance, highlighting their relatively inferior capacity for efficient path optimization. These
observations implicitly question the efficacy of SPSO and NSPSO algorithms in generating
optimal navigational paths compared to their algorithmic counterparts.
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This multi-faceted analysis serves not only to validate the computational robustness
of the IPSO algorithm but also to lay the foundation for future research aiming to address
more complex navigational scenarios involving dynamic constraints and uncertainties.

Figure 9 shows the iterative convergence diagrams of the five algorithms. The IPSO
algorithm demonstrates rapid overall convergence, reaching the optimal solution within
the 31st generation and maintaining stability at this optimum, which indicates strong
robustness. Combining the algorithm’s performance with the path plot in Figure 8a reveals
its notable optimization capabilities. Although the SPSO algorithm exhibits a relatively
high convergence rate in the initial stages, its overall convergence speed is slower than that
of the IPSO. Both the CBPSO and NSPSO algorithms begin to converge around the 50th
generation, exhibiting a slower overall convergence rate. However, they ultimately achieve
and maintain the optimal solution, demonstrating satisfactory robustness. The ACO-PSO
algorithm exhibits the slowest convergence speed, requiring approximately 80 generations
to approach the optimal solution, and its stability is comparatively inferior.

The results of the path analysis conducted by application of the IPSO, SPSO, CBPSO,
NSPSO, and ACO-PSO algorithms for the simulated environment are illustrated
in Figure 10.

The sub-Figures (a), (b), and (c) of Figure 10 provide the optimal value, the difference
from the theoretical value, and the percentwise difference with respect to the theoretical
value for each algorithm. It is found that the IPSO algorithm produces the shortest path,
with differences of 14.692 m, 1.892 m, 21.682 m, and 4.122 m shorter than those of the SPSO,
CBPSO, NSPSO, and ACO-PSO algorithms, respectively. Moreover, the path generated by
the IPSO algorithm is the closest to the theoretical optimal value (The theoretical optimal
path is 281.4285 m). The convergence time of the algorithms to the optimal value is
demonstrated in Figure 10d. The results reveal that the IPSO algorithm outperforms the
other algorithms in terms of convergence rate, with a convergence time that is 14.7s shorter
than that of the SPSO algorithm, 5.72 s shorter than that of the CBPSO algorithm, 17.29 s
shorter than that of the NSPSO algorithm, and 16.34 s shorter than that of the ACO-PSO
algorithm. In Figure 10e, the path undulation is depicted, and the results reveal that the
paths generated by all five algorithms exhibit minimal undulation. Specifically, the overall
path undulation of IPSO, SPSO, CBPSO, and NSPSO is less than 1m, which satisfies the
requirements for DSMV traffic. In Figure 10f, the overall energy consumption is presented,
and the results indicate that IPSO generates the path with the lowest energy consumption
for the DSMV, with reductions of 18.25%, 7.99%, 20.79%, and 19.88% compared to SPSO,
CBPSO, NSPSO, and ACO-PSO, respectively. These findings suggest that utilizing the IPSO
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algorithm for DSMV path planning can lead to significant energy savings and promote
environmental sustainability.
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Figure 10. Comparison of path planning results for the five algorithms. (a) Best value of path
length; (b) difference from optimal theoretical value; (c) percentage difference from optimal value;
(d) commutation time; (e) fluctuation; (f) energy consumption.

Table 9 illustrates the best value, the mean value, and the standard deviation for the
paths obtained by the different algorithms after 10 iterations. The results indicate that the
IPSO algorithm outperforms the other algorithms in terms of both path optimization ability
and stability, as evidenced by its performance with respect to the best value, the mean
value, and the standard deviation.
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Table 9. Calculation results and contrast for the five algorithms.

Algorithm Best Value Mean Value St. Dev.

IPSO 283.428 284.232 0.026
SPSO 298.12 302.679 3.448

CBPSO 285.32 287.154 0.636
NSPSO 305.11 306.488 5.451

ACO-PSO 287.55 290.251 1.181

To sum up, when compared with other algorithms, they are outperformed by IPSO
in terms of path planning speed, path accuracy, and convergence speed, making it the
preferred algorithm for path planning of the DSMV. The potential of the IPSO algorithm
in order to enhance the efficiency and safety of mining operations is highlighted, and
this approach can significantly contribute to the advancement of mining automation and
optimization.

6. Conclusions

The purposes of path planning are to minimize the energy consumption and execution
time, to avoid hazardous regions and to obtain an optimal or suboptimal path from the
mining area to the storage base within the context of the novel mining system. In this
study, an improved particle swarm optimization algorithm is proposed for achieving three-
dimensional path planning for DSMVs. In relation to the accuracy and effectiveness of
the IPSO, compared with other algorithms, it is found that the IPSO has stronger overall
optimization and search ability. The experimental results indicate that the IPSO algorithm
is more robust, and that it possesses better convergence efficiency and higher precision with
respect to the solution. Furthermore, the IPSO algorithm is a practical method to obtain the
best optimized path and has certain benefits including stability properties for solving the
challenging task of three-dimensional path planning of DSMVs.

The next stage of this work is to improve the practicability of the current algorithm in
realistic and complex deep-sea mining environments and consider the introduction of the
dynamic and kinematic equations of the mining vehicles to make the planned path more
applicable to actual usage scenarios. The mining area is composed of random obstacles,
irregular terrain as well as soft and sparse sediments. Therefore, a natural extension of
the above work is to develop an effective path planner that can integrate current forecast
information and be able to accommodate planning a complex and variable seabed mining
missions.
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