
DNN-based anomaly prediction for the uncertainty
in visual SLAM

Vasileios Bosdelekidis∗, Tor A. Johansen∗, Nadezda Sokolova†∗
∗ Department of Engineering Cybernetics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Correspondence: vasileios.bosdelekidis@ntnu.no
† SINTEF, 7034, Trondheim, Norway

Abstract—The method described in this paper proposes a
supervised Deep Neural Network (DNN) approach for the pre-
diction of anomalies in camera-based navigation. The method
is inspired by the unsolved issues of Integrity Monitors (IMs)
when some of the sensor measurement covariances are unknown
or inconsistent. Especially, the focus is on predicting when
the estimation error distribution would require fatter tails
to include outliers. The developed method takes into account
single-frame image features as well as transient changes in the
error. In the best of our knowledge, this is the first work that
predicts anomalies in the error covariance of SLAM estimates
and associates them with low-level image features. Finally, the
prediction method can be used with other sensors as well,
allowing the future development of navigation algorithm- and
sensor-agnostic safety monitoring frameworks.

Index Terms—Deep Neural Network, covariance prediction,
Sensor Fusion, Visual SLAM, Navigation

I. INTRODUCTION

Autonomous vehicle navigation in safety critical opera-
tions has gained huge interest in the research community.
However, the development of frameworks to monitor such
systems and identify hazardous situations has been limited to
specific navigation algorithms or sensors [1]. Solution Sepa-
ration (SS) has been promoted several times as a promising
framework for sensor-agnostic safety monitoring (e.g. [2],
[3]), as far as the error covariances due to each sensor can
be estimated. However, this is very often not the case. In
addition, traditional Protection Level (PL) computation for-
mulas developed for GNSS/Inertial Measurement Unit (IMU)
systems might not be reliable. Estimating global positions
from visual measurements entails many more sources of error
in comparison to estimating from GNSS/IMU measurements,
for example raw image noise or feature extraction and
association errors [4]. Therefore, bounding the true position
error due to each sensor might require special computations.
The extension of the SS framework to navigation systems that
are based on auxiliary sensors (e.g. camera, LiDAR) is also
challenging due to the additional computational complexity,
since in a SS framework a computationally heavy navigation
algorithm has to be executed multiple times at each step.

Another requirement to guarantee reliable safety moni-
toring is the identification of the rare cases that cause a
navigation system to fail, in order to conduct extensive testing
of the framework under those conditions. The requirements

of real universality of IM and identification of environment
conditions that cause sensor faults or degradation, without
the need of efforteous manual selection of relevant features,
inspired the work presented in this paper. The focus is
on camera-based navigation, although the method can be
extended to any sensor.

Simultaneous Navigation and Mapping (SLAM) is a very
popular framework when it comes to visual navigation.
Consequently, there is a variety of SLAM methods, and the
development of a safety monitor that can be integrated with
a majority of these methods may be impossible. Methods
that allow the uncertainty estimation in SLAM have been
proposed in the past [5], [6], [7], however this would require
modifications in the internals of the SLAM algorithm, or,
to obtain some internal matrices and do the computations
externally.

Methods based on covariance prediction attempted to relate
features of the sensor input to covariance matrices and man-
aged to overcome, in a large degree, the above limitations.
An example is the method from Hu and Kantor [8] who
predicted the variation of covariance of a Gaussian error
distribution. Later contributions that use offline training, and
the features are directly derived from the input measurements,
are promising to predict the exact error covariance, based
solely on the input measurements, without the requirement
for manual identification of relevant features (e.g. [9] and
[10]).

A DNN-based anomaly detection approach gives a simpler
solution to the problem, as the model can be trained to learn
when the distribution of estimated position errors should have
fatter tails than the normal distribution to reliably compute er-
ror bounds. Anomaly detection in a DNN setting attempts to
learn a feature representation of the raw inputs in the dataset,
in a way that anomalous instances are distinguishable from
normal instances. Other methods attempt to learn directly an
anomaly score mapping function τ(.) : X → R [11]. The
most popular approach for learning-based anomaly detection
is to use autoencoders, where, in an unsupervised manner,
the network is trained to reconstruct normal data from their
low dimensional representations.The reconstruction error for
anomalous data will be very high. The biggest disadvantage
of using this approach in our problem is that our knowledge



of which data is normal, in terms of not causing unbounded
errors from a navigation algorithm, is very limited.

Wen and Keyes [12] proposed an anomaly detection
method based on Convolutional Neural Networks (CNNs),
utilizing transfer learning from a larger dataset, as the occur-
rence of anomalies is very rare. However, pre-trained models
are usually available for specific type of data, whereas the de-
tection of anomalies that can affect negatively a safety mon-
itor is a problem that lacks similar data. Conventional neural
network methods tend also to neglect past information, which
makes them inappropriate for learning long-term dependen-
cies among sensor measurements that cause anomalies. Long
Short Term Memory Networks (LSTMs) are designed to
model short-term as well as long-term data dependencies
by controlling the addition and forgetting mechanisms of
new and old information [13]. LSTMs have found large
utilization in recent studies on anomaly detection. The largest
focus was to detect abnormalities in sensor measurement
time-series extending the framework of autoencoders, as in
[14], or in the time-series of a specific IM test statistic (e.g.
[15]). Literature on directly associating navigation faults with
anomalies in single-sensor readings is still lacking, whereas a
few works have used neural network architectures for predic-
tion of failures, based on sets of measurements and probable
actions undertaken by the system (e.g. [16]). Wyk et al. [17]
tackled the problem of identifying anomalous sensor readings
during automated vehicle navigation, via combined CNN and
Kalman Filter (KF)-based anomaly detection. However, a
central assumption is redundancy in sensor measurements
and that a KF is applicable with the sensor input at hand. An
interesting conclusion of their experiments is the superiority
of CNNs in comparison to a combination of Recurrent Neural
Networks (RNNs) with LSTMs, when there are normal
values between consecutive anomalous values. However, they
did not evaluate the combination of CNNs with LSTM, as is
used in our work.

In comparison to previous research, our approach achieves
clearer quantification of anomalies associated with input im-
ages during SLAM navigation, based on the error of position
estimates to a reference trajectory. The problem of labeling
measurement anomalies or outliers in a time-series without
misclassifying inliers is an open research topic. The most
relevant approaches that attempt to deal with the problem,
utilize hypothesis testing. An example is the work of Tong
and Barfoot [18] where their statistical testing approach also
deals with the problem of misclassified inliers in a sequence
of error samples that fail the test. Nonetheless, in this paper,
the start and end of anomalies is identified with a simpler
statistical method.

The main contributions and potential benefits of the work
presented herein can be summarized as follows:

1) Early anomaly prediction in the position errors of
camera-based navigation, taking into account low-level
image features and presence of dynamic objects.

2) The algorithm can classify one or more subsequent

outliers and image features that are likely the real origin
of SLAM failures.

3) The method can benefit existing sensor- and navigation
algorithm agnostic IM systems by alarming for un-
bounded covariance. Although the DNN was developed
for visual input, the same logic can be applied for any
type of sensor.

4) The developed network expects raw sensor inputs and
classifies the output of a SLAM algorithm. Therefore,
the robustness of various SLAM algorithms can be
evaluated objectively with the same network and under
the challenging conditions present in a standard dataset.

Section II describes the offline methodology to label the
training dataset (II-A), the utilized DNN model (II-B) and the
bias initialization procedure to cope with the class imbalance
problem (II-C). In section III we describe the datasets used
for evaluation of the model’s performance (III-A), the result
of the statistical anomaly labeling for the creation of training
data (III-B) and the performance of the model on the training,
validation and test sets (III-C ). Section IV concludes the
paper.

II. DNN MODELING FOR ANOMALY PREDICTION IN
VISUAL-BASED NAVIGATION

In the following, a raw measurement sample refers to
M sequential images. We are given a set of K pairs of
measurement samples and associated true errors of positions
estimated by a SLAM algorithm, at each time step i. The
errors are assumed to follow a normal distribution N (0,Ri)
in the nominal case, with Ri the covariance matrix at
step i. Then, we optimize for the parameters of a DNN
to predict that specific features in input images will cause
an error to fall outside the distribution N . For example, a
sample {ξi...ξi+M} starting at image i contains the images
ξk ∈ Rm, k = i, i+1, ..., i+M stacked in a vector, with m
being the number of pixels in the image (or a down-scaled
version of it). Then we obtain a set of low dimensional
features, which are vectorized such that for each image
f(ξk) ∈ Rr, r ≪ m. Let W be a weight matrix and b
a bias which can shift the neural network activation function
to the left or right and is also learned by the neural network.
Then the hypothesis for a sample i will be:

hi(ξi, ..., ξi+M ) = g(W · Λ(f(ξi), ..., f(ξi+M )) + b), (1)

where we abstracted the specifics of the hidden layers that
are applied between the input and output layer. Λ is a function
that combines features of all images in the set and finds
the relationship between each other. g was selected to be
the Sigmoid function, as the desired range of values for the
binary classification problem is [0, 1]. Section II-B will give
an idea of the layers that compute function Λ. It is attempted
to estimate the parameters W and b by optimizing the cost
function:

J(W , b) =
1

K

K∑
i=1

Cost(hi, yi), (2)



with yi denoting the true label corresponding to image i.
The labeling of normal or anomalous cases had to be done
as a preprocessing step, and the procedure is described in
section II-A. Section II-B describes the DNN architecture to
learn relevant features, while section II-C explains the method
to initialize realistically the bias of the output due to the
imbalance of the two classes.

A. Isolation of anomalies in visual navigation

The targeted problem is to identify feature levels in images
that can cause a sudden increase in the estimated absolute
position error of a SLAM algorithm of interest. A Ground
Truth (GT) is therefore required for training the model. In that
GT the input images are associated with the label ”anomaly
- 1” or ”normal - 0”, depending if they cause an anomaly
in the error distribution of the SLAM estimates. The SLAM
algorithm should be executed with the optimal calibration
parameters for this purpose. However, sensor faults and
degradation may happen very rarely, and, many times, there
is only a small effect by challenging conditions of very
short duration. Therefore, it is important to predict how the
SLAM algorithm would behave if some specific conditions
are persistent. The requirement to predict image features that
cause suddenly or progressively an anomaly creates a trade-
off for the anomaly isolation algorithm.

The algorithm that is adopted in this work to detect
anomalies in the error samples is a modification of the peak
detection algorithm of Brakel [19]. The detection depends on
the z-score of a position error sample, that is, the number of
standard deviations that the error sample is above the error
mean [20]. Here, a moving average, that is tolerant to outliers,
is used as reference. The outliers affect the moving average
in a small degree, although a slow adaptation is allowed,
assuming that only measurements at the beginning of the
peak cause the fault. In case of multidimensional positioning
the maximum among all axes errors is selected, and the
anomaly labeling is done based on that error.

Let N be the number of error samples which coincides
with the number of steps in the estimated camera trajectory.
Let e1, e2, ..., eN denote the sequence of error samples and
e∗1, e

∗
2, ..., e

∗
N a sequence with weighted error samples, so that,

for each j ∈ [1, N ]

e∗j =

{
ej , if j an outlier

αej + (1− α)e∗j−1, otherwise
, (3)

with α being a parameter that sets the influence of an outlier
to the mean. A reasonable value for α for non-stationary
signals is in the range of [0.01, 0.1] and is expected to be set
as zero for a stationary signal.

Then at each step i and for a configurable horizon of size
L samples the mean will be:

mi = avg(e∗i−L+1, ..., e
∗
i ) (4)

and the standard deviation:

σi = std(e∗i−L+1, ..., e
∗
i ) (5)

A sample is flagged as an outlier when its z-score is above
a threshold which can be selected based on the assumption
that the error follows a normal distribution and the number
of anomalous samples that we expect. Z-score tables, like the
one in [21], can be used to select a threshold based on the
guessed probability of anomaly.

It is seen that the outliers are included slowly in the
computation of the moving mean. In that way, the algorithm
can classify subsequent outliers until the mean has been
adapted to include them. The algorithm will stop detecting
after a sequence of outliers has adapted the mean value.
Although this algorithm can prevent some false positives, it
is important to force an earlier finish of labeling anomalies.

In this paper we adapt a simple method for stopping the
labeling of outliers based on the dynamics of the error.
Specifically when L errors have been added in a sequence,
with the first element corresponding to the latest error, an
anomaly is still valid if the error appears to be still increasing.
We evaluate if the maximum error is the current one or at
least one of the latest ones, to tolerate for noise:

argmax
j∈i,...,i−L+1

e∗j < Tp, (6)

where Tp ∈ Z+ a positive integer used as threshold to tolerate
that any of the latest Tp errors is the maximum. In this way,
the method labels as anomalies only the first samples that
lead to a peak in an error plot, while the method without the
stopping rule labels all images associated with an error peak.

B. Deep Convolutional Neural Network

To learn the relationship of low-level image features and
transient changes in the environment, the DNN architecture
of Figure 1 was implemented. All input images are down-
sampled using the OpenCV library [22] to low-dimensional
images of width W and height H , where the downsampling
method is bilinear interpolation.

A Time Distributed Layer (TDL) [23], shown as the large
rectangle in Figure 1, was selected to compare a set of M
sequential images and learn, in this way, the effect of tran-
sient changes (e.g. dynamic objects) to the predicted output.
In the TDL the same layers are applied to each image to
extract relevant features, but one set of optimal parameters is
produced for all images in the sample. The extraction of low
level features from the images is achieved by combining two
convolutional layers with non-linear activation function and
two subsequent max-pooling layers. The TDL keeps a 1-1
relation of input image and corresponding output. The LSTM
layer is introduced to learn the temporal dependence among
observations, e.g. image frames in chronological order [23].
A flattening or pooling operation after the TDL is introduced
since the requirement is to have only one dimension per
output from the Time Distributed wrapping to insert them
to the LSTM layer.

Finally, a fully connected layer of 256 units and a drop-out
layer are added in the output.



Fig. 1: DNN diagram. The indicated output dimensions might be inaccurate and they depend on the padding and stride
parameters used. Modified architecture from Liu et al. [9] to use TDL. In that paper they used leaky rectify activation as
non linear activation function.

C. Output bias initialization

The anomalies are significantly fewer than the normal
cases, and this can be an apparent issue if a strict anomaly
labeling method is selected. Using a zero-bias can make it
difficult to obtain good convergence initially. In contrast, we
are aware of the class imbalance and, therefore, an initial bias
b0 can be obtained based on the probability of a positive class
[24]:

p0 = pos/(pos+ neg) = 1/(1 + e−b0)

⇒ b0 = −ln(
1

p0
− 1)

⇒ b0 = ln
pos

neg
,

(7)

where pos and neg are respectively the number of positive
(anomalous) and negative (normal) examples in the training
set.

III. EXPERIMENTS

A. Training data and appropriability for the problem

The input to the CNN is sequential images and position
error pairs {{ξi...ξi+M}, ei|i ∈ [1,K]}. The number of
frames in each sample was pre-selected to be M = 7. The
Visual SLAM algorithm ORBSLAM2 [25] is executed for
the computation of the estimated camera positions. Then
the errors to a reference trajectory can be computed. The
training can be done offline, for any SLAM algorithm, by
using the same set of data every time. The current dataset
for training consists of three trajectories from two different
sources. In all cases a car is driving in an urban environment,

with illumination challenges, repetitive patterns and dynamic
motion of pedestrians and other cars. All the data are open-
source and the sources are the following:

• UrbanLoco [26]: The dataset targets the problem of
navigation in dense urban environment. It is distributed
with GT positions from a SPAN-CPT module that
integrates a GNSS and an Inertial Navigation System
(INS). Data used are from a car driving in a city in
California.

• Complex Urban Dataset / KAIST [27]: Data from stereo
camera, GNSS and IMU. Another dataset in dense urban
environment that can be used for navigation. It has
data from multiple cities and countries. The specific
trajectory that was used is from South Korea. The GT
was created by us with a basic integration of GNSS +
INS in Error State Kalman Filter (ESKF) [28], therefore
it has limited accuracy.

The images’ aspect ratio varies between the datasets.
Figure 2 shows some example images from both datasets.
A frame rate of 10 Hz is used for both datasets, where
downsampling is employed if necessary. In this paper we
evaluate the monocular SLAM case. If a dataset contains
data exclusively from a front facing stereo camera, we will
use images only from the left camera. Both datasets provide
their own extrinsic and intrinsic camera parameters.

Figures 3, 4, 5 depict the GNSS, GT and estimated
camera positions from ORBSLAM2 (labeled as ”cam” in the
figures) relative to the initial position, in North-East-Down
(NED) coordinates, for the three trajectories. Computation
of the optimal transform to align the camera poses with



Fig. 2: Example images from the experimentation datasets. Two trajectories are evaluated from UrbanLoco and one from
KAIST.

Fig. 3: The first trajectory from UrbanLoco. GNSS, GT and
estimated camera positions from ORBSLAM2.

Fig. 4: The trajectory from KAIST. GNSS, GT and estimated
camera positions from ORBSLAM2.

the reference was achieved with the Umeyama method [29].
The gray arrow in the figures shows the starting position,
and the red circle the ending position. Figure 6 compares
the true absolute errors for the first Urbanloco trajectory
of the position estimates from three navigation solutions;
using the camera alone in ORBSLAM2, integrating an IMU
and GNSS, or integrating an IMU, a GNSS and the camera

Fig. 5: The second trajectory from UrbanLoco. GNSS, GT
and estimated camera positions from ORBSLAM2.

position estimates from ORBSLAM2. One can see that the
inclusion of camera may deteriorate the navigation perfor-
mance some times, leading to large position errors. However,
many times a camera can complement the IMU and GNSS,
showing comparable or better performance than the IMU and
GNSS integration. A camera can be very assistive in cases of
GNSS or IMU unavailability or faults. Therefore, the integra-
tion of auxiliary sensors with conventional sensors (e.g. IMU
and GNSS) may lead to superior performance, although the
detection of anomalous measurements independently from
each sensor is an essential prerequisite.

During the experimentation it is expected that the majority
of the true position error samples is concentrated in a small
region. As the estimated camera position might be prone
to errors due to intrinsic calibration or alignment parameter
inaccuracies, the distribution is not necessarily concentrated
close to zero. Figures 7a and 8a show that distribution for the
first Urbanloco and KAIST trajectories respectively. Since we
deal with a 2-dimensional problem, the illustrated error is the



(a) (b)

Fig. 6: Position errors over time obtained for three navigation solutions. ”css error” is the error from the integration of GNSS
and IMU in ESKF. In the ”full error” the ORBSLAM2 camera position estimates are integrated with the IMU and GNSS.
”cam error” refers to the error of position estimates from ORBSLAM2. The errors in (a) north and (b) east axis are shown.

maximum observed among the North and East axes at each
timestep.

B. Anomaly labeling result

The CNN is fed with GT labels that correspond to each
image and show if it causes an anomaly or not. The decision
to label an image as anomalous or not depends on our
intuition and the labeling algorithm described in section II-A.
Figures 7b, 7c, 8b and 8c illustrate for the two trajectories
the samples that are labeled as anomalous or normal, with
or without the ending rule, together with the error plot and
the moving mean. The z-score threshold was selected as 4.5
and influence parameter as α = 0.01. The anomaly ending
rule is used in all further experiments and the threshold used
was Tp = 4. Importantly, different parameters can lead to
more or fewer labeled anomalies, where, based on the given
problem, we might select to be more or less conservative.

C. Training and evaluation of the network

Each sample can contain subsequent images from the
same trajectory. A set of 7400 samples of image sequences
from the UrbanLoco and KAIST trajectories (1900 and
1000 samples from the two UrbanLoco trajectories and 4500
samples from the KAIST trajectory) was split randomly in
the training (66.6%) and test sets (33, 3%), with a fixed seed
so that the DNN never sees the test set during training. The
samples that appear as anomalies when labeling without the
ending rule and as normal when applying the ending rule (see
figures 7 and 8) are not considered for training or validation
in this paper. 30% of the training samples were selected for
validation, using the cross-validation method. The size of
a batch was selected as 50 samples, and main criterion is
that enough positive examples are included, although large
batch size might cause memory exhaustion. The network
is trained for 2000 epochs, binary cross-entropy is used
as the loss function and the optimization is accomplished
with the Adam optimizer with learning rate 10−5. Figure
9 evaluates the evolution of the loss, recall and precision
of the DNN during training and validation. The two latter
metrics indicate the presence of false alarms and of missed

anomalies, respectively. The DNN generalizes quite well
to the validation set, although the significant fluctuations
indicate some sensitivity to noise. Despite the continuous
improvement of the precision and recall, the validation loss
curve seems to flatten after a while. This indicates that
although the classifier makes correct predictions, the margin
between the calculated class probabilities becomes smaller.
Steps that can improve the method further are denoising,
regularization and increased dataset size. Finally, considering
the context of the problem, someone might want to improve
further from the recall of 0.9 which was achieved until now
for the test set. Figure 10 plots the Area Under Precision-
Recall Curve (AUPRC). It shows the performance that can
be achieved for different values of the classification threshold.
In this problem, the presence of False Negatives is usually
far more costly than the presence of False Positives, although
one would also like to avoid many false alarms that cause an
IM to stop the autonomous operation.

For a classification threshold of 0.5, Table I shows the
confusion matrices of the predictions of the model on the
test set. In addition, the performance of the CNN with TDL
is compared with the performance of a CNN that does not
take into account temporal dependence among frames, i.e.
with the TDL removed. It is visible that the CNN performs
better in learning anomalies when the TDL is present.

Finally, Table II compares the performance of the model
on the test set for different z-score and Tp threshold values.
The performance is similar and remains good in all cases,
at least for the recall metric. A general trend is that stricter
anomaly labeling results to worse performance and, if there
are very few anomaly samples in the training set, additional
procedures might be needed, such as transfer learning, data
augmentation or class weighting.

IV. CONCLUSION

This paper investigated a deep CNN for associating anoma-
lous increases of the estimation error from a visual SLAM
algorithm to low level image features. The CNN is trained in
a supervised manner with several image trajectories captured
by ground vehicles in dense urban environments, whereas the



(a) (b) (c)

Fig. 7: For the first UrbanLoco trajectory (a) error distribution of the estimated camera position, (b) marked anomalies with
the anomaly ending rule, and (c) marked anomalies without the anomaly ending rule.

(a) (b) (c)

Fig. 8: For the KAIST trajectory (a) error distribution of the estimated camera position, (b) marked anomalies with the
anomaly ending rule, and (c) marked anomalies without the anomaly ending rule.

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Train
Val

(a)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Train
Val

(b)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Train
Val

(c)

Fig. 9: Evolution of the (a) loss, (b) precision and (c) recall of the DNN with TDL during training, where, with cross-
validation, 1/3 of the training samples are selected for validation.

class labels are specified based on the statistical properties
of the position error. A TDL is included to learn temporal
dependences among sequential image frames. This allows the
investigation of the effect that dynamic objects have on the
accuracy of visual-based position estimates, as well as the
early prediction of anomalies. The results demonstrated a
good performance of the CNN on test data and a tangible
improvement in learning anomalies in comparison to a CNN
without the TDL. The presented approach is a novel and
significant contribution in the domain of monitoring the

safety of autonomous vehicle navigation and can be extended
to evaluate the robustness of any navigation algorithm or
sensor in challenging environmental conditions.

V. ACKNOWLEDGEMENTS

The work is funded by the Research Council of Norway
and Centre for Autonomous Marine Operations and Systems
for the corresponding PhD project at the Norwegian Univer-
sity of Science and Technology (RCN grant number: 305051)



Fig. 10: AUPRC performance of the network for the train
and test sets, where the precision-recall points are obtained
using various classification thresholds.

TABLE I: Confusion matrix for the predictions of the test
samples with and without TDL in the network, where the
counts for the latter architecture are shown in parentheses.

actual
value

Prediction outcome
p n total

p′ 283
()

31
() 314

n′ 42
()

1559
() 1601

total 325 () 1590 ()

REFERENCES

[1] T. Hassan, A. El-Mowafy, and K. Wang, “A review of system inte-
gration and current integrity monitoring methods for positioning in
intelligent transport systems.” IET Intell Transp Syst., 2020.

[2] A. Appleget, R. C. Leishman, and J. Gipson, “Evaluation of sensor-
agnostic all-source residual monitoring for navigation,” Proceedings of
the 2021 International Technical Meeting of The Institute of Naviga-
tion, 2021.

[3] Q. Meng and L.-T. Hsu, “Integrity monitoring for all source navigation
enhanced by kalman filter based solution separation,” IEEE Sensors
Journal, 2020.

[4] C. Zhu, M. Meurer, and C. Günther, “Integrity of visual naviga-
tion—developments, challenges, and prospects,” NAVIGATION: Jour-
nal of the Institute of Navigation, 2022.

[5] A. I. Mourikis and S. I. Roumeliotis, “Analysis of positioning uncer-

TABLE II: Performance on the test set for different values
of the z-score threshold Tz and anomaly ending tolerance
threshold Tp. The percentange PERC of labeled anomalies
to normal samples is also shown.

Tz Tp PERC Precision Recall

4.5 3 15 0.79 0.87
4.5 4 20 0.87 0.9
4.5 5 23 0.89 0.87
5 4
3 5 57 0.92 0.9

tainty in simultaneous localization and mapping (slam),” International
Conference on Intelligent Robots and Systems (IROS), 2004.

[6] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison
of uncertainty criteria for active slam,” International Conference on
Robotics and Automation, 2012.

[7] M. Tkocz and K. Janschek, “Towards consistent state and covariance
initialization for monocular slam filters,” Journal of Intelligent Robotic
Systems, 2015.

[8] H. Hu and G. Kantor, “Parametric covariance prediction for het-
eroscedastic noise,” International Conference on Intelligent Robots and
Systems (IROS), 2015.

[9] K. Liu, K. Ok, W. Vega-Brown, and N. Roy, “Deep inference for
covariance estimation: Learning gaussian noise models for state esti-
mation,” IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[10] F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting
the noise covariance with a multitask learning model for kalman
filter-based gnss/ins integrated navigation,” IEEE Transactions on
Instrumentation and Measurement, 2021.

[11] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM Computing Surveys, 2021.

[12] T. Wen and R. Keyes, “Time series anomaly detection using convolu-
tional neural networks and transfer learning,” ArXiv, 2019.

[13] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, “A survey
on anomaly detection for technical systems using lstmnetworks,”
Computers in Industry, 2021.

[14] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector
for robot-assisted feeding using an lstm-based variational autoencoder,”
IEEE Robotics and Automation Letters, 2017.

[15] D. Kim and J. Cho, “Improvement of anomalous behavior detection of
gnss signal based on tdnn for augmentation systems,” Sensors, 2018.

[16] G. Kahn, P. Abbeel, and S. Levine, “Land: Learning to navigate from
disengagements,” IEEE Robotics and Automation Letters, 2021.

[17] F. v. Wyk, Y. Wang, A. Khojandi, and N. Masoud, “Real-time sensor
anomaly detection and identification in automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

[18] C. H. Tong and T. D. Barfoot, “Batch heterogeneous outlier rejection
for feature-poor slam,” IEEE International Conference on Robotics and
Automation, 2011.

[19] J.-P. G. v. Brakel. Robust peak detection algo-
rithm using z-scores. Version: 2020-11-08. [Online].
Available: https://stackoverflow.com/questions/22583391/peak-signal-
detection-in-realtime-timeseries-data/2264036222640362

[20] B. Murphy and R. Barr. The z-score. Accessed: 2022-06-17. [Online].
Available: https://mat117.wisconsin.edu/4-the-z-score/

[21] A. Alvarado. Z-table. Accessed: 2022-06-17. [Online]. Available:
https://castle.eiu.edu/ aalvarado2/z table.pdf

[22] G. Bradski, “The opencv library,” Journal of Software Tools, 2000.
[23] A. Ravi and F. Karray, “Exploring convolutional recurrent architectures

for anomaly detection in videos: a comparative study,” Discover
Artificial Intelligence, 2021.

[24] A. Karpathy. A recipe for training neural networks. Version: 2019-04-
25. [Online]. Available: https://karpathy.github.io/2019/04/25/recipe/

[25] R. Mur-Artal and J. D. Tardós, “Orb-slam2: an open-source slam
system for monocular, stereo and rgb-d cameras,” IEEE Transactions
on Robotics, 2017.

[26] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan,
M. Tomizuka, and L.-T. Hsu, “Urbanloco: A full sensor suite dataset
for mapping and localization in urban scenes,” IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[27] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” International Journal of Robotics Research, 2019.

[28] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Circumventing
dynamic modeling: evaluation of the error-state kalman filter applied to
mobile robot localization,” IEEE International Conference on Robotics
and Automation, 1999.

[29] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1991.


