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ABSTRACT

The clearance of waste products from the brain is crucial to brain health. Under-
standing the flow of cerebrospinal fluid through the perivascular spaces surround-
ing the brain vasculature is important for the prevention and treatment of disease,
and due to the difficulties of physical flow and pressure measurements in the brain,
numerical models are needed. As 3-dimensional fluid simulations are too compu-
tationally expensive, developing reliable, simplified models is a focus of research
in this area. In this project, I derived and coded a 1-dimensional model that sim-
ulated CSF flow resulting from arterial pulsation in the penetrating arteriole PVS
of a mouse and a human, respectively. To achieve this, I adapted an approach
commonly used for simulating cardiovascular flow in arterial trees. By integrating
the incompressible Navier Stokes equations over a cylindrical, annular control vol-
ume, I arrived at a set of 1-dimensional partial differential equations that I solved
using a MacCormack scheme. The arterial pulsation was modeled as a sinusoidal
radial movement applied uniformly on the inner wall, with an amplitude of 2.5%
of the initial radius, and frequencies f = [0.1, 1, 3, 10]. The frequencies represent
functional hyperemia, human heart rate during rest and exercise, and murine heart
rate respectively.

Using this model, I was able to simulate oscillating flow with similar characteristics
as those described in literature. There was however a considerable deviation in the
results at the inlet and outlet, causing flows ranging from 1.34 to 3.23 times that
of the internal nodes. This flow was shown to be unphysical as the flow rate heav-
ily outweighed the rate of volume change. The average pressure gradient along
the PVS was 12.5 Pa/mm and 2.5 Pa/mm for murine and human dimensions
respectively, which is in the same order as in other simulations. The maximal
Reynold’s numbers in the trials ranged from 1.2×10−2 to 3×10−1 which is one
to two orders of magnitude higher than the upper range of Reynold’s numbers
observed for similar systems.

In conclusion, the model presented was successful in simulating the expected pul-
satile flow characteristics, with physiologically reasonable pressure gradient. How-
ever, the flow rate magnitude was too high, especially around the inlet boundary,
where it was also unphysical.
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SAMMENDRAG

Fjerning av avfallsprodukter fra hjernen er avgjørende for hjernehelse. En forståelse
av flyten av cerebrospinalvæske i det perivaskulære rommet rundt hjernevaskula-
turen er viktig for å forebygge og bekjempe sykdom, og på grunn av utfordrin-
gene ved å gjøre flyt- og trykkmålinger i hjernen, er det behov for numeriske
modeller. Siden 3-dimensjonale flytsimuleringer er for kostbare med tanke på
datakraft, er det et fokus i forskningen på å utvikle pålitelige, forenklede mod-
eller. I dette prosjektet utledet og kodet jeg en 1-dimensjonal modell som simulerte
cerebrospinalvæske-flyt i det perivaskulære rommet rundt en penetrerende arte-
riol for mus og menneske, som resultat av pulsering åreveggen. For å oppnå
dette tilpasset jeg vanlig tilnærming brukt for å simulere kardiovaskulær flyt i
blodåresystem. Ved å integrere de inkompressible Navier-Stokes-ligningene over
et sylindrisk, ringformet kontrollvolum, kom jeg frem til et sett med 1-dimensjonale
partielle differensialligninger som jeg deretter løste ved hjelp av et MacCormack-
skjema. Arteriepulseringen ble modellert som en sinusformet radiell bevegelse
påført uniformt på innerveggen, med amplitude 2,5% av startradiusen og med
frekvenser f = [0, 1, 1, 3, 10]. Frekvensene representerer henholdsvis funksjonell
hyperemi, menneskelig hjerteslag ved ro og trening, og hjerteslag hos mus.

Ved hjelp av denne modellen simulerte jeg oscillerende flyt med lignende flytkarak-
teristikker som er beskrevet i litteraturen. Det var derimot betydelige avvik i
løsningen ved innløp og utløp som forårsaket strømningshastigheter opp til 1,34
ganger høyere enn ved interne punkter for menneskeforsøkene og 3,23 ganger
høyere for museforsøkene. Denne flyten ble vist å være ufysisk da den utveide
volumforandringen kraftig. Gjennomsnittlig trykkgradient langs det perivaskulære
rommet var henholdsvis 12, 5Pa/mm og 2, 5Pa/mm for mus og menneskelig di-
mensjoner, som er i samme størrelsesorden som andre simuleringer. De maksimale
Reynoldstallene i forsøkene varierte fra 1,2×10−2 til 3×10−1, som er en til to stør-
relsesordener høyere enn det øvre sjiktet funnet i liknende systemer.

For å oppsummere lyktes modellen å simulere realistiske pulserende flytkarakteris-
tikker med fysiologisk rimelig trykkgradient. Flythastigheten var derimot for høy,
spesielt rundt innløp og utløp, hvor den også var ufysisk.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Waste clearance is imperative for a healthy brain. Neurodegenerative disorders
like Alzheimer’s and Parkinson’s disease have been connected to buildup of waste
proteins like β-amyloid α-synuclein[1], yet the underlying mechanics of this trans-
port is largely unknown. Formerly, it was thought that diffusion processes were
the primary drivers of waste clearance, but in 2012-2013, a series of studies [2] [3]
[4] described the glymphatic system, where cerebrospinal fluid (CSF) is produced
and transported along penetrating arteries, before being transported into the brain
tissue by glial cells and removed from the central nervous system through lym-
phatic pathways. The Glymphatic System has since been the leading model for
the transport of cerebrospinal fluid and interstitial solutions through the brain.
A major contributor to this circulation is the transport of CSF along perivas-
cular spaces (PVS) surrounding the brain vasculature. Although the transport
of particles along the PVS is well documented [5][6][7], the underlying physical
mechanisms causing directional flow in these are not well understood. Hadaczek
et al. [8] proposed peristaltic pumping as a major mechanism, while the effect
of vasomotion [9] and functional hyperemia [10][11] have also been studied. Gan
et al.[12] explored the idea of pressure dependent permeability of the outer wall
of the PVS around a penetrating artery, increasing the CSF flow into the brain
tissue as the blood vessel expands, causing inflow from the pial artery PVS when
the vessel contracts.

Although imaging techniques are being improved, studying perivascular flow in
vivo is challenging, and the use of mathematical modeling and simulation is im-
portant for PVS flow research. 3-dimensional flow simulations in complex sys-
tems of vessels are both expensive and time-consuming, so simplified models are
more practical. When calculating flow in complex structures of blood-vessels, re-
duced 1-dimensional (1D) models are commonly used, and have been shown to
be accurate[13]. The book “Mathematical Modeling and Numerical Simulation
of the Cardiovascular System” by Quarteroni and Formaggia is a comprehensive
guide to describing blood flow in compliant vessels, and my first goal is to fol-
low their approach and make a 1-dimensional model of CSF flow in an annular
PVS due to arterial pulsations. To achieve this, I will first reduce the incom-

1



2 CHAPTER 1. INTRODUCTION

pressible Navier-Stokes Equations for Newtonian flow in a deformable domain to
a set of 1-dimensional partial differential equations (PDEs) by integration over a
PVS-shaped control volume using cross-secionally averaged flow-values. Then I
will write a python-program to solve this set of equations using a MacCormack
scheme.

My second goal is to use this model to investigate the flow characteristics, with
focus on flow rate, pressure variation, axial pressure gradient, Reynold’s numbers
and Womersley numbers of a mural and human penetrating arteriole PVS during
pulsations caused by vasomotion and a range or heart rates.



CHAPTER

TWO

THEORY/METHODS

2.1 The PVS as an annular tube

The PVS is the space surrounding the brain vasculature. It is filled with CSF
and is bound by the vessel wall on the inside and a layer of astrocyte endfeet
separating it from the extracellular space (ECS) on the outside. The astrocyte
endfeet are connected with gap junctions through which CSF can flow into the
ECS. The PVS shape varies for different types of arteries, being elliptical for the
subarachnoid vessel and nearly circular for penetrating arterioles [1]. Mural PVS
surrounding surface arteries are measured to be about 20-40µm wide and open as
opposed to porous[14], while penetrating arteriole PVSs are smaller[15].

2.2 Model reduction

The goal of the current section is to arrive at a system of 1-dimensional PDEs
governing the flow in a straight, cylindrical PVS. The derivation is included for
completeness and ease of reading. I will be following the steps of Quarteroni and
Formaggia[16] closely, using mostly their notation, and commenting on adjust-
ments needed to account for the differences of an annular domain. I begin by
making the following assumptions:

1. Axial symmetry: All quantities are independent of the angular coordinate
θ. Every axial section z = const remains circular during the wall motion.
The inner and outer radii, R1 and R2 are a function of only z and t

2. Radial displacements of boundaries: The walls displace along the radial
direction solely. We may write ηi = ηier, i = 1, 2, where ηi = Ri − Ri,0 is
the displacement of the inner and outer wall respectively.

3. Constant pressure: We assume that the pressure P is constant on each sec-
tion, so that it depends only on z and t

4. No body forces: We neglect body forces, thus f = 0 in the momentum
equation

3



4 CHAPTER 2. THEORY/METHODS

5. Dominance of axial velocity: The velocity components orthogonal to the z
axis are negligible compared to the component along z, uz, which will be
simplified as uz(t, r, z) = ū(t, z)s(r), where ū(t, s) is the mean velocity over
the axial section and s(r) is an assumed velocity profile.

These are the same as the ones used when deriving the arterial flow model in [16],
with the addition of the subscript in assumption 2, to account for the addition of
an inner wall. The velocity profile in assumption 5 is given as a function of the
radius, s(r) as opposed to the normalized radius s(r/R) in [16]

Under these assumptions, the incompressible Navier-Stokes Equations reduce to

div(u) = 0 (2.1)

∂uz

∂t
+ div(uzu) +

1

ρ

∂P

∂z
− v∆uz = 0 (2.2)

where ρ is the CSF density, ν is the kinematic viscosity and ∆ = ∇2 is the
Laplace operator. The next step is to integrate equations 2.1 and 2.2 over the
control volume, starting with the mass equation. An overview of the notation
used is given in Table 2.2.1

Spatial domain: Ωt

Domain boundary ∂Ω
Section of Ωt P
Section boundary ∂P
Wall boundary of Ω Γw

t

Generic axial section S

Table 2.2.1: Notation used to describe the domain

2.2.1 Continuity equation

Integrating the mass equation (Eq. 2.1) over a section P of the domain Ωt and
using the divergence theorem gives:

0 =

∫
P

div(u) =
∫
S−

uz +

∫
S+

uz +

∫
Γw
P

u · n (2.3)

S− and S+ signify the part of the boundary lying on the left, and right axial
plane respectively. Γw

P is the wall boundary of P and n is the outward normal to
the boundary. Due to the no-slip condition by the walls, the velocity u = η̇er.
Additionally, since the PVS has both an inner and an outer wall, the last term
can be written as:∫

Γw
P

u · n =

∫
Γw
P,1

(−1)η̇1 +

∫
Γw
P,2

η̇2 = [2π(R2η̇2 −R1η̇1)dz +O(dz2)] (2.4)

subscript 1 and 2 signifying the inner and outer wall. Using the ALE-theorem for
a function f=1 lets me describe the change in area due to each wall movement as

∂Ai

∂t
= 2πRη̇ (2.5)
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making the total area change

∂A

∂t
= 2π(R2η̇2 −R1η̇1) (2.6)∫

S−
uz +

∫
S+

uz = 2π
∂u

∂z
dz (2.7)

and as dz→0, Equation 2.3 becomes the Continuity Equation

∂A

∂t
+

∂Q

∂z
= 0 (2.8)

Although Equation 2.4 introduces an extra term for the inner wall, the resulting
Continuity Equation (Eq.2.8) is the same as in [16], as the inner wall contribution
to area change is accounted for in Equation 2.6 and is a part of ∂A

∂t
.

2.2.2 Momentum Equation

The next step is to handle the momentum equation (Eq 2.2). Still following [16],
I integrate each term over P , starting with:∫

P

∂u

∂t
=

d

dt

∫
P
uz −

∫
∂P

uzw · n =
d

dt

∫
P
uz (2.9)

where w is the velocity of the boundary of P . The boundary integral is equal to
0, as w = 0 at S− and S+, while uz = 0 at the wall. Using the definition of the
average velocity, ū we can write.∫

P

∂u

∂t
=

d

dt

∫
P
uz =

∂

∂t
[Aū dz +O(dz2)] (2.10)

Next is the term∫
P

div(uzu⃗) =

∫
∂P

uzu · n = −
∫
S−

u2
z +

∫
S+

u2
z +

∫
Γw
P

uzw · n (2.11)

Again, the wall boundary integral = 0, and by introducing the Coriolis coefficient:

α =

∫
S u

2
z dσ

Aū2
(2.12)

we can write:∫
P

div(uzu⃗) = −
∫
S−

u2
z +

∫
S+

u2
z =

∂

∂z
(αAū2)dz +O(dz2) (2.13)

Again, the terms accounting for the addition of the inner wall

Assuming constant pressure on each axial section, the pressure term can be written
as ∫

P

∂P

∂z
= −

∫
S−

P +

∫
S+

P +

∫
Γw
P

P nz (2.14)
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because
∫
∂P nz = 0, we can write rewrite the last term as∫

Γw
P

P nz = P

∫
Γw
P

nz +O(dz2) = −P

∫
∂P\Γw

P

nz +O(dz2) = −P
∂A

∂z
dz +O(dz2)

(2.15)
Similarly,

−
∫
S−

P +

∫
S+

P =
∂AP

∂z
dz +O(dz2) (2.16)

and inserting them back into Equation 2.14 and using the chain rule we can write∫
P

∂P

∂z
=

(∂AP
∂z

− P
∂A

∂z

)
dz +O(dz2) = A

∂P

∂z
dz +O(dz2) (2.17)

Lastly, we have the viscous term, which due to the divergence theorem can be
rewritten as:∫

P
∆uz =

∫
∂P

∇uz · n = −
∫
S−

∂uz

∂z
+

∫
S+

∂uz

∂z
+

∫
Γw
P

∇uz · n (2.18)

The axial variation of ∂uz

∂z
is small compared to the last term, and is neglected.

Additionally, ∇uz · n = ∂uz

∂r
nrer as ∂uz

∂θ
= 0, and ∂uz

∂z
nz is proportional to ∂uz/∂z,

and we can write ∫
Γw
P

∂uz

∂r
nr =

∫
Γw
P,1

∂uz

∂r
nr +

∫
Γw
P,2

∂uz

∂r
nr (2.19)

where Γw
P,1 and Γw

P,1 are the inner and outer wall boundaries. Since us = ūs(r)
and using the relation nr dσ = 2πR dz, the terms can be rewritten in∫

Γw
P,1

∂uz

∂r
nr =

∫
Γw
P,1

ūs′(R1)nrdσ ≈ −2πū(s∗)s′(R1)R1dz∫
Γw
P,2

∂uz

∂r
nr =

∫
Γw
P,2

ūs′(R2)nrdσ ≈ 2πū(s∗)s′(R2)R2 dz

(2.20)

and the viscosity term becomes∫
P
∆uz = 2π(R2s

′(R2)−R1s
′(R1))dz (2.21)

Inserting the boxed equations back into Equation 2.9, dividing by dz and letting
dz → 0, what remains is the momentum equation:

∂Q

∂t
+ α

∂

∂z

(Q2

A

)
+

A

ρ

∂P

∂z
+Kr

(Q
A

)
= 0 (2.22)

Where Kr = −2πν(R2s
′(R2)− R1s

′(R1)) is the friction parameter resulting from
the viscosity term in Eq.2.21.

With this, we have arrived at the 1-dimensional Continuity and Momentum Equa-
tions. I note that despite the inclusion of the inner wall, the resulting equations
only differ from those of the simple compliant vessel by the friction factor Kr.
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2.3 Outer Wall Mechanics

To describe the movement of the outer wall, I’m using the Independent Ring Model
described in section 16.2 of [16]:

∂2η2
∂t2

+ bη2 = H

b =
E

ρw(1− ξ2)R2
2,0

H =
1

ρwh

[ R2

R2,0

(P − Pext)− 2g(D⃗(u⃗ · n⃗)
)
· e⃗r

] (2.23)

ρw being the wall density, g = R2

R2,0

√
1 + ( 1

R2

∂R2

∂θ
)2 + (∂R2

∂z
)2, and D⃗ being the Strain

Rate Tensor. The added subscript in the radius and wall movement variables
signifies that they’re regarding the outer wall. The H-term is often simplified
by assuming R

R0
≈ 1 and neglecting the contribution from viscous forces, leaving

H = P−Pext

ρwh
. By also neglecting the acceleration term, Equation 2.23 can be

written as:
E

(1− ξ2)R2
2,0

η2 =
P − Pext

h2

, (2.24)

which rearranged gives:

P − Pext =
h2E

(1− ξ2)R2
2,0

η2 (2.25)

The pressure can be described by the change in area by re-arranging the relation
A = π

(
(R2,0 + η2)

2 −R2
1

)
, and substituting for η2 in Equation 2.25 giving:

P − Pext =
h2E

(1− ξ2)R2
2,0

(√A

π
+R2

1 −R2,0

)
(2.26)

I choose the reference pressure at R2 = R2,0 as P0 = Pext = 0.

2.4 Inner Wall Movement

The movement of the inner wall is applied by updating R1 in the constitutive
equation 2.26 for each time step, using a predetermined function R1(t). In the
current test-configuration, R1 = R1,0

(
1 + 0.025 sin(2πft)

)
(Figure.2.7.1(b))

2.5 Numerical Scheme

To solve the system of equations (2.8,2.22) I use a MacCormack scheme[17]. Writ-
ing the system of equations (2.8 and 2.22) in conservative form:

∂U

∂t
+

∂F

∂z
+ S = 0. (2.27)
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A MacCormack scheme consists of a prediction and correction step on the form:

Up
i =Un

i −
∆t

∆x
(Fn

i+1 − Fn
i )−∆tSn

i

Un+1
i =

Un
i +Up

i

2
− ∆t

2∆x
(Fp

i − Fp
i−1) +

∆t

4
(Sn

i − Sp
i )

(2.28)

Since the area in A
ρ
∂P
∂z

from Equation 2.22 isn’t a part of the differentiation, Fos-
san[18] argues for the use of a quasi-conservative form where, the area is in this
step is treated as constant and one value of is chosen for both flux terms Fn

i−1 and
Fn

i in Equation 2.28. The quasi-conservative form is written as:

U′ =

[
A

Q

]
, F′ =

[
Q

αQ2

A
+ AcP

ρ

]
, S′ =

[
0

Kr

(
Q
A

)] . (2.29)

where Ac signifies the area not part of the differentiation. It is chosen to be eval-
uated at point i, and he notes that it is not given at which point the area should
be evaluated, but that the effect of this choice is likely not big, as the wavelength
in general is long in physical conditions[18].

The resulting altered numerical scheme is:

Up
i = Un

i −
∆t

∆x
(Fn

i+1

∣∣
Ac

− Fn
i

∣∣
Ac
) + ∆tbn

i

Un+1
i =

Un
i +Up

i

2
− ∆t

2∆x
(Fp

i

∣∣
Ac

− Fp
i−1

∣∣
Ac
) +

∆t

4
(bn

i + bp
i )

(2.30)

2.6 Characteristic analysis and BCs
Equations 2.8 and 2.22 can also be written in the non-conservative form as:

∂U

∂t
+H

∂U

∂z
+B = 0 (2.31)

U =

[
A

Q

]
, H =

 0 1

c2 −
(

αQ
A

)2

2ααQ
A

 , B =

[
0

Kr
Q
A

]
(2.32)

where c =
√

A
ρ
∂P
∂A

is the celerity. The B-term was simplified by assuming A0 and β

to be constant along the z-axis. The matrix H can be diagonalized as H = RΛL,

where R =
[
r1 r2

]
, L =

[
l1

T

l2
T

]
are the right and left eigenvector matrices of H,

satisfying LR = I, and Λ =

[
λ1 0
0 λ2

]
contains the eigenvalues. Eqs.2.31 can then

be rewritten as
L
∂U

∂t
+ΛL

∂U

∂z
+ LB = 0 (2.33)
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By defining characteristic variables:

W1 =
∂W1

∂U
= l1, W2 =

∂W2

∂U
= l2 (2.34)

constructing a new matrix W = [W1,W2]
T , and assuming B = 0, Equation 2.33

further simplifies to
∂Wi

∂t
+ λi

∂Wi

∂z
= 0 (2.35)

which describes a system where W1 and W2 are constant along the characteristic

paths
∂z

∂t
= λ1 and

∂z

∂t
= λ2 respectively.

For Eq.2.31, we find that the left and right eigenmatrices become:

R =
A

2c

[
1 −1
λ1 −λ2

]
, L =

1

A

[
−λ2 1
−λ1 1

]
(2.36)

with eigenvalues λ1,2 = U ± c for α = 1. The celerity is given by:

c =

√
Aβ

2πρ
√

A/π +R2
1

, β =
h2E

(1− ξ2)R2
2,0

(2.37)

Flows in the body are generally subcritical, U < c, meaning the characteristics
travel in opposite directions, and we can categorize them as incoming and outgoing.

The value of the characteristic variables can be found by integrating the definition
(Eq. 2.34) giving:

∆W =

∫
L dU (2.38)

Inserting values from Equation 2.36 into Eq. 2.38, integrating over a time-step
and using the mean-value theorem, we get the relation:

∆W1 = L11∆A+ L12∆Q

∆W2 = L21∆A+ L22∆Q
(2.39)

and conversely:

∆A = R11∆W1 +R12∆W2

∆Q = R21∆W1 +R22∆W2

(2.40)

The outlet boundary condition of no reflections is set by prescribing W2 = 0, and
the condition of P = 0 at the inlet is set by prescribing ∆A based on the change
of R2 and R1 in the incoming characteristic.
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2.7 Test Setup

I test the model on two sets of dimensions, representing the penetrating arteriole
PVS of a mouse and human, respectively. For the mouse PVS, the length of the
PVS L = 1mm, arteriole initial radius R1,0 = 10µm, outer wall initial radius
R2,0 = 20µm and outer wall thickness h = 3µm, which are common values for
a mouse arteriole PVS[19][20]. For simplicity and ease of comparison, the human
PVS is represented by a 5x upscaling of the mouse PVS, making the arteriole
radius, R1 = 50µm, which matches a human penetrating arteriole[21]. A complete
list of the domain dimensions is given in Table 2.7.1.

Figure 2.7.1: Overview of the test setup. (a)Geometry and physical parame-
ters for the PVS model as a hollow annular cylinder with an elastic outer wall,
(b)applied inner wall motion, and (c)assumed flow profile s(r) for an axial cross-
section. The figure was made using Inkscape.

Mouse Human
Domain length, L 1 mm 5 mm
Initial radius inner wall, R1,0 10µm 50µm
Initial radius outer wall, R2,0 20µm 100µm
Outer wall thickness, h 3µm 15µm
CFL number 0.8 0.9

Table 2.7.1: List of dimensions for the penetrating artery PVS used in the mouse
and human systems
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CSF density, ρ 1060Kg/m3

Dynamic viscosity, µ 0.9× 10−3Pa · s
Young’s modulus, E 104Pa
Poisson’s ratio, ξ 0.5
Coriolis coefficient, α 1
Spatial nodes, nz 51

Table 2.7.2: Overview of model parameters

For both setups, the wall movement is described by R1 = R1,0(1+0.025sin(2πft))(Figure
2.7.1b), with f = [0.1, 1, 3, 10]. f = 0.1 roughly represents vasomotion[22], f = 1
and f = 3 represents a human heartbeat at rest and heavy exercise, and f=10
represents a mural heartbeat[22]. The CSF is modeled as water with density
ρ = 1060Kg/m3 and dynamic viscosity µ = 0.9 × 10−3Pa · s. The outer wall is
modeled as incompressible, ξ = 0.5 and Young’s modulus E = 104Pa[23].

The number of spacial nodes nz = 51, making ∆z = [20µm, 100µm]. ∆t is given
by the Courant-Friedrichs-Lewy condition cfl = ∆t

∆z
(|u|+ c)max[24]. I assume the

normalized annular Poiseuille flow profile used by Daversin-Catty[25], shown in
Figure 2.7.1c, given by:

vvp(r) =
vpoise(r)

vpoise(
R1+R2

2
)

vpoise(r) =
(
1− r2

R2
1

+
R2

2 −R2
1

R2
1 ln(R2/R1)

) (2.41)

An overview of model parameters is found in Table 2.7.2. For completeness, I run
all frequencies on both sized setups.

2.8 Mass conservation
Due to unforeseen results close to the domain boundaries, described in 3.1, I also
conduct a mass conservation test. The PVS volume V n

PV S =
∫ nz

i=0
An dz is approx-

imated for each time step using Simpson’s integration, and the total volume flow
entering the PVS, Qtot =

∫ tn

0
q dt, is approximated using cumulative trapezoids.

To quantify the discrepancy, I use Root mean square deviation:

∆RMS =

√∑nt
n=1(Q

n
tot −∆V n)2

nt
(2.42)

where ∆V n = V n
PV S−V 0

PV S is the total change in PVS volume at the n’th time step
and nt is the total number of time steps. I also measure the maximum deviation
∆max = (Qtot −∆V )max for each trial. To investigate the boundary nodes’ effect
on the results, the mass conservation test is repeated while iteratively removing
1–4 nodes from each side.
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CHAPTER

THREE

RESULTS

3.1 Flow rate, Pressure and Area
In Figure 3.1.1, the PVS cross-section area, CSF flow rate and CSF pressure is plot-
ted for the PVS inlet, midpoint, and outlet for M-0.1–M-10. The area fluctuated
with a similar pattern around a0 for all frequencies, with an amplitude gradually
decreasing from inlet through to outlet. The flow rate at the inlet reached a steady
oscillation around q = 0mm3/s after half a cycle, with amplitudes varying expo-
nentially with frequency. The flow rates at the midpoint were similar in amplitude
for all frequencies, while at the outlet, the amplitudes were slightly differentiated
with lower amplitudes for higher frequencies. At the midpoint, the pressure fluc-
tuated in a similar pattern for all frequencies, with a slightly increased amplitude
for M-10, while at the outlet, the pressure was identical for all frequencies.Both
the flow rate-, pressure- and area curves show a positive phase shift along the
PVS, most noticeable for M-10.

Figure 3.1.1: Area, flow rate and pressure at inlet, midpoint, and outlet, over 3
cycles of wall movement for the mouse dimensions.

Figure 3.1.2, shows the corresponding results for human dimensions. The result-
ing oscillations are very similar as in the mouse dimensions. At the inlet and

13
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midpoint, the area is increased by a factor of 25 and the flow rate by a factor of
50. At the outlet, the area and flow rate amplitudes are slightly higher relative to
the midpoint, compared to the corresponding amplitudes for mouse dimensions.
The pressure curves for all frequencies are close to identical to the corresponding
pressure curves in the mouse dimensions.

Figure 3.1.2: Area, flow rate and pressure at inlet, midpoint, and outlet, over 3
cycles of wall movement for the human dimensions.

Figure 3.1.3 shows the pressure profiles along the PVS for four equally spaced
time-points as R1 goes from R1,0 to R1max, for both sets of dimensions. In (a),
the pressure curves for M-0.1 and H-0.1 are close to flat at 0Pa along the PVS,
while frequencies 1–10 Hz have increasingly curved pressure profiles. (b-d) show
the curvatures of frequency 1–10 Hz become increasingly linear as the pressure
approaches the peak values of approximately 12.5 Pa at the outlet. There is a
slight deviation in the solution at the inlet and outlet, where the slope magnitude
of the slope changes abruptly. The deviation appears reversely proportional to the
slope magnitude.

Figure 3.1.4 and 3.1.5 show the corresponding flow rate profiles for mouse and
human dimensions, respectively. At the boundaries in both ends of the PVS,
the flow rate deviates from the rest of the solution for all trials. The deviation is
consistently in the direction of the flow and appears proportional to the magnitude.
The effect is considerably stronger in the smaller dimensions, where it at the inlet
is present also in the neighboring nodes.

3.2 Flow characteristics

Table 3.2.1 shows peak Reynold’s numbers and range of Womersley numbers for
all trials. Peak pressure gradients: M:12.5Pa/mm and H:2.5Pa/mm over the do-
main. At peak pressure, the gradients were approximately constant.
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Figure 3.1.3: Pressure curve snapshots as R1 goes from R1,0 to R1,max in the
2nd cycle. The solid line is for the mouse trials, and the dashed line is for human
trials. (a)-(d)Number of cycles=[1, 1 1

12
, 11

6
, 11

4
].

Figure 3.1.4: Flow rate snapshots along the PVS as R1 goes from R1,0 to R1,max

in the 2nd cycle, for the mouse trials. (a)-(d)Number of cycles=[1, 1 1
12
, 11

6
, 11

4
].
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Figure 3.1.5: Flow rate snapshots along the PVS as R1 goes from R1,0 to R1,max

in the 2nd cycle, for the human trials. (a)-(d)Number of cycles=[1, 1 1
12
, 11

6
, 11

4
].

Mouse Human
f Remax Wo Remax Wo
0.1 0.0133 [0.0161, 0.0183] 0.1214 [0.0808, 0.0916]
1 0.0137 [0.0511, 0.0579] 0.1252 [0.2556, 0.2896]
3 0.0162 [0.0885, 0.1003] 0.1519 [0.4426, 0.5016]
10 0.0306 [0.1616, 0.1832] 0.2971 [0.8082, 0.9158]

Table 3.2.1: Peak Reynold’s Numbers and range of Womersley numbers for all
trials.

Mouse Human
i=0 i=4 i=0 i=4

f = 0.1 0.531 mm/s 0.173 mm/s 0.968 mm/s 0.826 mm/s
f = 1 0.545 mm/s 0.177 mm/s 1.000 mm/s 0.846 mm/s
f = 3 0.651 mm/s 0.201 mm/s 1.222 mm/s 0.986 mm/s
f = 10 1.246 mm/s 0.352 mm/s 2.417 mm/s 1.784 mm/s

Table 3.2.2: Comparison of peak velocity for all trials at inlet node, i=0, and
i=4. The peak velocity at the inlet is up to 3.23 times higher than at i=4 in the
mouse dimensions (M-3), versus 1.34 for the human dimensions (H-10).
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3.3 Mass conservation
Figure 3.3.1 shows the results from the mass conservation test. Both ∆max. The
peak value for the tests is in M-0.1, where ∆max = 1.086× 10−3mm3 and 115.2%
of V 0

PV S.

Figure 3.3.1: Max difference and Root Mean Squares difference between PVS
volume and total inflow as endpoints are removed.

i=0 i=1 i=2 i=3 i=4
M-0.1 115.22% 37.10% 10.09% 2.61% 0.67%
H-0.1 2.28% 0.37% 0.01% <0.01% <0.01%

Table 3.3.1: Max difference as a percentage of initial domain volume ∆max/V
0
PV S

for f = 0.1 in mouse and human dimensions, at nodes i=[0, 1, 2, 3, 4].

3.4 Outer wall movement

The peak relative outer wall movement was
R2

R2,0max

= 1.00624, and was reached

in M-10.

3.5 CFL-number and stability
The tests were run using cfl = 0.8 for mouse dimensions and cfl = 0.9 for human
dimensions. Higher numbers would cause instability.
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CHAPTER

FOUR

DISCUSSION

4.1 Choice of model geometry

It is important to note that the geometry chosen in my model is heavily simpli-
fied. Penetrating arteriole perivascular spaces are nearly circular, however, the
arteriole is located eccentrically to the side, which causes lower resistance to flow
[1]. Additionally, there is connective tissue and other non-cellular components
present in the PVS. In their 2023 review, Kelley et al.[15] argues for these PVSs
to be modeled as a porous media, while in several recent papers it is modeled
as an open space governed by Navier Stokes Equations[22][25][12]. Upscaling the
mural dimension based on the relative difference in penetrating arteriole radius,
was done for simplicity, and although there is shown a correlation between arterial
radius and other dimensions like PVS width[26][7], the resulting geometry, may
not be fully realistic for a human penetrating arteriole PVS.

1D modeling of the perivascular space has been done before by Daversin-Catty
et al. [25]. They also used dimensionally reduced Navier-Stokes equations to
describe pulsatile flow resulting from axisymmetric arterial wall movement, and
were able to accurately capture the major flow characteristics. Unlike my model,
they accounted for the radial velocity ur at the inner wall, and used a traction
condition at the PVS ends. They also modeled the outer wall as rigid, and direct
comparison can therefore not be made.

The choice to model the outer wall as thin elastic tissue is also done in Gan et
al.[12], and is rooted in Bojarskaite et al.[22] finding considerable changes in the
outer wall diameter during the sleep cycle, in their study. These changes are how-
ever not likely to be solely due to pressure forces translated through the fluid as in
my model as there is found to be threads of connective tissue linking these walls
together, that can also be expected to translate forces.

19
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4.2 Model reduction assumptions
Assumption 5 in Section.2.2, dominance of axial velocity does inherently not hold
along the walls where the no-slip conditions cause only radial velocity, especially
so for the inner wall, which reaches 62.83 µm/s in M-10.

As mentioned in Sec.4.1, the central arteriole is in reality placed eccentrically,
weakening the validity of the assumption of axial symmetry.
Despite the flow rate deviations at the inlet causing umax to reach over three times
the value of any internal point, Remax for the test was 0.2971, in H-10, which is
still adequately low to support the use of a Poiseuille flow profile. H-10, repre-
senting a 600bpm heart rate in a human-sized system, isn’t realistic and Remax is
100 times the maximum Reynold’s number of 3× 10−3 found in [22] and Re 10−3

referenced in [15]. Remax = 0.0306 for M-10 is only ten times the upper bound
used in [22]. They included pial artery PVS, which have higher Reynold’s num-
bers [15], recorded pulsation frequencies up to 15Hz, and used a lower dynamic
viscosity of 0.693 × 10−3 Pa · s, as opposed to the 0.9 × 10−3 used in my model.
The choice of µ = 0.9× 10−3 was made for easier comparison with Gan et al.[12],
who used this number in their model.

The pressure gradient for low frequency oscillations was close to constant along
the cross-section. This was also the case in [27], however they studied a bifurcated
PVS with P = 0 at the ends, and modelled the outer wall as rigid. The peak pres-
sure was also only 0.38Pa, with a gradient of 0.84Pa/mm. Bojarskaite et al.[22]
found a pressure gradient of 11.7Pa/mm in the case of their non-obstructed PVS,
which is close to my value of 12.5Pa/mm for the mouse trials, however, they also
modeled the outer wall as rigid. In the case of 25% and 50% PVS obstruction,
their resulting pressure gradients reached 21.3Pa/mm and 32Pa/mm.

Poiseuille flow profiles in oscillating PVS flow have been observed in vivo by Mestre
et al.[6], using two-photon microscopy. This was in bifurcated pial artery PVSs,
with Reynold’s numbers an order of magnitude lower than the lower bound of
my trials. The Womersley numbers (Table.3.2.1) being in the order of 10−2 does
support the choice of flow profile. The choice of α = 1 is for the same reason
not justified. The simultaneous assumption of Poiseuille flow in the friction term
and a flat velocity profile in the momentum flux term has been justified for blood
flow at higher Womersley numbers[28][18]. This is likely not transferable to CSF,
as it might be attributed to the shear thinning effects of blood, while CSF is
Newtonian[15].

4.3 Boundary conditions and inner wall movement
During the characteristic analysis, to arrive at the decoupled equations 2.35, I
neglected the friction term, which is likely to have caused problems due to the
viscous nature of the flow. This assumption is only made at the boundary nodes,
where the deviation in the results are present. Additionally, the inlet boundary
condition of constant pressure is in the current model enforced by keeping the
outer wall radius constant. This is in conflict with the assumption of constant
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wall stiffness, and would result in extra terms
∂β

∂z
added to the friction term,

that are also neglected. The latter only affecting the inlet, where the deviation is
considerably larger, strengthens the idea that this assumption is the culprit. This
could be investigated by using boundary conditions based on measured pressure
and flow data, and implementing them using a method that does not neglect the
friction effect.

4.4 Stability
The instability resulting from using CFL-numbers higher than 0.8 for mural and
0.9 for human trials should be noted. The cause of this was not investigated, and
is left for further research.
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CHAPTER

FIVE

CONCLUSIONS

In this project, I have succeeded in making a 1-dimensional numerical model that
simulates flow in the penetrating arteriole PVS of a mouse and human brain, re-
sulting from periodic axisymmetric movement of the vessel wall. For most of the
domain, the model generated a periodic, oscillating flow pattern along the PVS,
with similar characteristics to those described in the literature. At the boundaries,
the results deviated considerably from the internal nodes, resulting in flow rates
up to 1.34 times that of any internal nodes for the human dimensions, and up to
3.23 times for the mouse dimensions. The flow in the nodes with deviating re-
sults was not physical, as the total flow strongly deviated from the volume change.

The biggest pressure difference from inlet to outlet was 12.5Pa in all trials, giv-
ing an average pressure gradient of 12.5Pa/mm in the mouse dimensions and
2.5Pa/mm in the human dimensions. This is in the same order as in other sim-
ulations. The Reynold’s numbers were approximately 1 to 2 orders of magnitude
larger than what’s found in simulations of similar systems, even when excluding
nodes with unphysical flow results. The peak flow rates were in the upper bound
of what’s found in other PVS flow simulations. They were expected to be lower,
as the elastic outer wall absorbs some pulsation energy where the more commonly
used rigid outer wall does not.

I suspect that the unphysical results at the boundaries can be due to the neglecting
of friction when deriving the boundary conditions, and the way constant pressure is
enforced at the inlet, so future work should examine this by handling the boundary
conditions differently.

23
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