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τ-PERPENDICULAR WIDE SUBCATEGORIES

ASLAK BAKKE BUAN AND ERIC J. HANSON

Abstract. Let Λ be a finite-dimensional algebra. A wide subcategory of modΛ is called left finite

if the smallest torsion class containing it is functorially finite. In this paper, we prove that the
wide subcategories of modΛ arising from τ -tilting reduction are precisely the Serre subcategories
of left finite wide subcategories. As a consequence, we show that the class of such subcategories
is closed under further τ -tilting reduction. This leads to a natural way to extend the definition
of the “τ -cluster morphism category” of Λ to arbitrary finite-dimensional algebras. This category
was recently constructed by Buan–Marsh in the τ -tilting finite case and by Igusa–Todorov in the
hereditary case.
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1. Introduction

In the study of module categories of rings and algebras, certain classes of subcategories play a
prominent role. Torsion pairs are pairs (T ,F) of subcategories, where the torsion classes T are
characterized by being closed under extensions and factors, and F = T ⊥ : = {X | Hom(T ,X) = 0}.
Together with their triangulated siblings, the t-structures, such pairs are closely connected to
classical tilting theory, e.g. via the Brenner-Butler theorem [BB80] and HRS-tilting [HRS96].
More recently, inspired by links to cluster combinatorics, Adachi, Iyama and Reiten defined support
τ -tilting modules in [AIR14]. They showed that functorially finite torsion classes are exactly those
of the form GenM (i.e all modules which are generated by sums of copies of M), where M is a
support τ -tilting module. This strengthens a classical result of Auslander and Smalø [AS81].

Wide subcategories are exact abelian subcategories. They were first considered by Hovey [Hov01]
in the setting of commutative noetherian rings. The importance of such categories in dealing with
categories modΛ of finitely generated modules over finite-dimensional algebras has been highlighted
by work of Ingalls–Thomas [IT09] and Marks–Šťov́ıček [MŠ17]. In particular [MŠ17] shows that
there is a natural injective map from the set of wide subcategories to the set of torsion classes of
modΛ, and also that there is an injective map from functorially finite torsion classes to functorially

This work was supported by grant number FRINAT 301375 from the Norwegian Research Council. The authors
wish to thank Erlend D. Børve and H̊avard U. Terland for many insightful conversations. They also wish to that
Haruhisa Enomoto for pointing out a mistake in the first version of this manuscript, and for sharing with them the
examples from [Rin16] discussed in Remark 6.17.
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2 ASLAK BAKKE BUAN AND ERIC J. HANSON

finite wide sucategories. The wide subcategories in the image of this map are called left finite wide
subcategories, and there is also a dual notion of right finite wide subcategories. For τ -tilting finite
algebras, all wide subcategories and torsion classes are functorially finite, and the above maps are
actually bijections between finite sets.

Functorially finite wide subcategories are known to be exactly those which are equivalent to
module categories, and are hence of special interest. Examples of such are the left finite and right
finite wide subcategories, and also the Serre subcategories. The latter are subcategories of modΛ
which are equivalent to mod(Λ/I) for I generated by an idempotent in Λ. Another important source
of functorially finite wide categories are the τ -perpendicular categories, first considered by Jasso
[Jas15]. These are categories given by M⊥ ∩ ⊥(τM) ∩ P⊥, where (M,P ) is a pair of modules with
Hom(M, τM) = 0 and P a projective module satisfying Hom(P,M) = 0. These generalize both
Serre subcategories and moreover classical Geigle-Lenzing perpendicular categories [GL91], which
have been much studied in the hereditary setting. There is also a dual concept of τ−1-perpendicular
categories. See Definition 3.4.

Our first main result gives a characterization of τ -perpendicular categories, showing how the
different classes mentioned above are related.

Theorem 1.1 (Theorem 4.5). Let Λ be a finite-dimensional algebra and let W ⊆ modΛ be a wide
subcategory. Then the following are equivalent.

(1) W is a τ -perpendicular subcategory of modΛ.
(2) W is a τ−1-perpendicular subcategory of modΛ.
(3) W is a Serre subcategory of a left finite wide subcategory.
(4) W is a Serre subcategory of a right finite wide subcategory.
(5) There exists a functorially finite torsion class T ⊆ modΛ and a functorially finite torsion-

free class F ⊆ modΛ with T ⊥ ⊆ F such that W = T ∩ F .

We note that Serre subcategories of wide subcategories also occur in Asai and Pfeifer’s classi-
fication of so-called “wide intervals” of torsion classes [AP]. We discuss the relationship between
Theorem 1.1 and their result in Section 4.

It is a consequence of Theorem 1.1 that the left-finite wide subcategories, right-finite wide sub-
categories, and Serre subcategories are examples of τ -perpendicular subcategories. In particular,
this leads to the following consequence.

Corollary 1.2 (Corollary 6.7). Let Λ be a finite-dimensional algebra. Let V ⊆ W ⊆ modΛ be a
chain of subcategories such that V is a τ -perpendicular subcategory of W and W is a τ -perpendicular
subcategory of modΛ. Then V is a τ -perpendicular subcategory of modΛ.

Considering the finite poset S of all wide subcategories of a τ -tilting finite algebra Λ, it was
shown in [BM19] that there is a natural definition of a category W(Λ), with the elements in S
as objects and maps parameterized by support τ -rigid objects. Following [HI21], we call W(Λ)
the τ -cluster morphism category of Λ. The concept of (signed) τ -exceptional sequences [BM21] is
closely related, as such sequences can be interpreted as compositions of irreducible maps in W(Λ).
This extended earlier work of Igusa-Todorov [IT], who dealt with the hereditary case. The study
of W(Λ) was motivated by the link to the study of picture groups [ITW] in the hereditary case,
which was extended to the general (τ -tilting finite) case in [HI21].

As an application of of Theorem 1.1, we show that one obtains a natural generalization of the
above for all finite-dimensional algebras by restricting to τ -perpendicular subcategories. More
precisely, we define a category W(Λ) whose objects are the τ -perpendicular subcategories of modΛ
and whose morphisms with source W are parameterized by the support τ -rigid objects of W. The
following is then our second main result.

Theorem 1.3 (Theorem 6.13). Let Λ be a finite-dimensional algebra. Then the τ -cluster morphism
category W(Λ) is a well-defined category.
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The proof we give of Theorem 1.3 also gives a significant simplification of the proof in the τ -tilting
finite case, given in [BM19].

The paper is organized as follows. We first recall results and definitions concerning torsion
pairs and τ -tilting theory in Section 2. Then we consider various classes of functorially finite wide
subcategories in Section 3 and proceed by proving the first main theorem in Section 4. We review a
reduction formula for support τ -rigid objects in Section 5, which is used to prove the second main
theorem in Section 6. We conclude by working out a concrete example of a τ -cluster morphism
category in the final section.

2. Torsion pairs and τ-tilting theory

In this section, we recall necessary background on torsion pairs and τ -tilting theory. Throughout
this paper, Λ shall always denote a finite-dimensional basic algebra over a field K, and modΛ
denotes the category of finitely generated left Λ-modules. Furthermore, the Auslander-Reiten
(AR) translate in modΛ is denoted by τ .

The study of τ -tilting theory has become instrumental in the study of finitely generated
Λ-modules since its inception in [AIR14]. We follow the notation of [BM19], and denote C(modΛ) :=
modΛ ⊔ modΛ[1] ⊆ Db(modΛ), where Db(modΛ) denotes the bounded derived category of Λ. An
(usually assumed basic) object U = M ⊔ P [1] ∈ C(modΛ) is called a support τ -rigid pair if

(1) M ∈ modΛ satisfies Hom(M, τM) = 0.
(2) P ∈ modΛ is projective and satisfies Hom(P,M) = 0.

If U is basic, we denote by rk(U) the number of indecomposable direct summands of U (up to
isomorphism). If rk(U) = rk(Λ), then U is called support τ -tilting. When P = 0, the module
U = M can be referred to as a τ -rigid (or τ -tilting if it is sincere and rk(U) = rk(Λ)) module.

By a subcategory of modΛ, we shall always mean a full subcategory which is closed under
isomorphisms. Given such a subcategory A ⊆ modΛ, we denote by P(A) the category of modules
which are ext-projective in A. That is, Q ∈ P(A) if and only if Ext1(Q,X) = 0 for all X ∈ A.

Moreover, given a subcategory A ⊆ modΛ, we denote by Gen(A) (resp. Cogen(A)) the subcate-
gory of modΛ consisting of objects which are factors (resp. subobjects) of direct sums of objects in
A. We likewise denote by Filt(A) the subcategory of modules which admit finite filtrations whose
subsequent subfactors all lie in A. Given a module X ∈ modΛ, we define GenX := Gen(addX),
etc., where addX is the subcategory of direct summands of finite direct sums of X.

For any subcategory A ⊆ modΛ, we associate two additional subcategories:

A⊥ = {Y ∈ modΛ | ∀X ∈ A : Hom(X,Y ) = 0}
⊥A = {X ∈ modΛ | ∀Y ∈ A : Hom(X,Y ) = 0}.

Given a module X ∈ modΛ, we likewise have X⊥ := (addX)⊥ and ⊥X = ⊥(addX).
Finally, we recall that a subcategory A ⊆ modΛ is called functorially finite if for all X ∈ modΛ:

(1) There exists AX ∈ A and aX : AX → X such that every morphism with source in A and
target X factors through aX . The morphism aX is called a right A-approximation.

(2) There exists AX ∈ A and aX : X → AX such that every morphism with source X and target
in A and target X factors through aX . The morphism aX is called a left A-approximation.

We are now ready to discuss torsion pairs. A torsion pair is a pair (T ,F) of subcategories of
modΛ such that T ⊥ = F and ⊥F = T . In this case, we call T a torsion class and F a torsion-free
class. It is well known that a pair (T ,T ⊥) (resp. (⊥F ,F)) is a torsion pair if and only if T is closed
under extensions and quotients (resp. F is closed under extensions and subobjects). Moreover,
given a torsion pair (T ,F), we have that T is functorially finite if and only if F is functorially
finite [Sma84].
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If (T ,F) is a torsion pair, then every M ∈ modΛ admits a unique exact sequence of the form

(1) 0 → tT (M)
ι
−→ M

q
−→ fF (M) → 0

with tT (M) ∈ T and fF (M) ∈ F . In particular, the map ι is a minimal right T -approximation
and the map q is a minimal left F-approximation. We note that the operations tT (−) and fF (−)
are both functorial.

We will need the following observation for our discussion of Example 4.9.

Lemma 2.1. Let T be a functorially finite torsion class and let F be a functorially finite torsion-
free class. Then T ∩ F is functorially finite.

Proof. We will show only that left (T ∩F)-approximations exist, as the argument for right approx-
imations is analogous. Let X ∈ modΛ. Let tX : X → TX be a left T -approximation of X and let
fX : TX → fF (T

X) be the left F-approximation of TX coming from Equation 1. We note that
fX is surjective, and so fF(T

X) ∈ T ∩ F . It is then straightforward to show that fX ◦ tX is a left
(T ∩ F)-approximation of X. �

We now turn our attention to the well-established relationship between torsion pairs and support
τ -rigid objects.

Torsion pairs are closely related to support τ -rigid objects, as the following shows.

Theorem 2.2. [AIR14, Sections 2.2-2.3] Let Λ be a finite-dimensional algebra. Then

(1) If U = M ⊔ P [1] ∈ C(modΛ) is support τ -rigid, then both GenM and ⊥(τM) ∩ P⊥ are
functorially finite torsion classes in modΛ.

(2) If U = M ⊔P [1] ∈ C(modΛ) is support τ -tilting, then GenM = ⊥(τM)∩P⊥. Moreover, this
association gives a bijection between support τ -tilting objects in C(modΛ) and functorially
finite torsion classes of modΛ.

(3) Let T ⊆ modΛ be a functorially finite torsion class, let M ∈ modΛ be basic such that
addM = P(T ), and let P ∈ P(modΛ) be the maximal basic projective module which satisfies

Hom(P,M) = 0. Then M⊔P [1] is support τ -tilting and satisfies GenM = T = ⊥(τM)∩P⊥.

Before continuing, we recall the following characterization of Auslander and Smalø, which will
be useful in several of our proofs.

Proposition 2.3. [AS81, Proposition 5.8] Let M,N ∈ modΛ. Then Hom(N, τM) = 0 if and only
if Ext1(M,GenN) = 0.

It is implicit in Theorem 2.2 that any basic support τ -rigid object is the direct summand of at
least one support τ -tilting object. In particular, we have the following.

Theorem 2.4. [AIR14, Section 2.2] Let U = M ⊔P [1] ∈ C(modΛ) be a basic support τ -rigid object.
Then

(1) There exists a unique module BU ∈ modΛ such that BU⊔U is support τ -tilting and add(BU⊔

M) = P(⊥(τM) ∩ P⊥). In particular, this means

Gen(BU ⊔M) =
⊥
(τM) ∩ P⊥ = ⊥(τ(BU ⊔M)) ∩ P⊥.

(2) There exists a unique object CU = N ⊔Q[1] ∈ C(modΛ) such that CU ⊔U is support τ -tilting
and add(N ⊔M) = P(GenM). In particular, this means

Gen(N ⊔M) = GenM = ⊥(τ(N ⊔M)) ∩Q⊥.

The module BU in Theorem 2.4 is called the Bongartz complement of U . Following e.g. [DIR+,
BM21], we refer to CU in Theorem 2.4 as the co-Bongartz complement of U .
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Remark 2.5.

(1) In [AIR14], the Bongartz complement is only explicitly defined when P = 0 (so U = M
is a τ -rigid module). Nevertheless, the more general definition is often given the same
attribution. See e.g. [DIR+, Section 4].

(2) If P = 0, then BU ⊔ M is a sincere module. In general, we can instead see BU ⊔M as a
sincere object in the Serre subcategory P⊥. In this case, it is straightforward to show that
M is τ -rigid in P⊥ and that the Bongartz complement of M in P⊥ is precisely BU . See
[BM19, Lemma 3.8].

We next recall two results which give us a “canonical decomposition” of a support τ -tilting pair.
The first can be seen as a combination of [IT09, Lemma 2.8] and [MŠ17, Lemma 3.7]. We recall
that a module X in a subcategory A ⊆ modΛ is called split projective (in A) if every epimorphism
in A with target X is split.

Lemma 2.6. Let T ⊆ modΛ be a functorially finite torsion class and let M ⊔ P [1] ∈ C(modΛ) be
the support τ -tilting pair which satisfies P(T ) = addM . Then:

(1) There is a decomposition M = Ms⊔Mns such that Ms is split projective in T and no direct
summand of Mns is split projective in T . In particular, T = GenMs.

(2) Let

Λ
g
−→ T0 → T1 → 0

be an exact sequence such that g is a minimal left T -approximation. Then addT0 = addMs

and addT1 = addMns.

The second result relates the direct summands Ms and Mns to Bongartz and co-Bongartz com-
plements.

Proposition 2.7. Consider the setup in Lemma 2.6. Then Ms is the Bongartz complement of
Mns ⊔ P [1] and Mns ⊔ P [1] is the co-Bongartz complement of Ms. In particular, we have

GenMs = GenM = ⊥(τM) ∩ P⊥ = ⊥(τMns) ∩ P⊥.

Proof. It is shown in [DIR+, Lemma 4.5] that Ms is the Bongartz complement of Mns ⊔ P [1].
Moreover, it is clear from Lemma 2.6 that GenMs = GenM . The result thus follows from Theo-
rem 2.4. �

We conclude this section with a brief description of the dual theory of τ−1-tilting. In order to state
this in our context, given an indecomposable stalk complex M [m] ∈ Db(modΛ) with M ∈ modΛ,
we denote

τ(M [m]) :=

{
τM [m], M /∈ P(modΛ)

νM [m− 1] M ∈ P(modΛ),

where ν denotes the Nakayama functor. We then say a (usually assumed basic) object U =
I[−1] ⊔M ∈ C(modΛ)[−1] is support τ−1-rigid if:

(1) M ∈ modΛ and Hom(τ−1M,M) = 0.
(2) I ∈ modΛ is injective and Hom(M, I) = 0.

We likewise say U is τ−1-tilting if U is basic and rk(U) = rk(Λ). It is shown in [AIR14, Section 2.2]
that U ∈ C(modΛ)[−1] is support τ−1-rigid (resp. support τ−1-tilting) if and only if there exists
some support τ -rigid (resp. support τ -tilting) V ∈ C(modΛ) such that U = τV .
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3. Wide subcategories

In this section, we recall the definition and basic properties of wide subcategories and discuss im-
portant classes of examples of functorially finite wide subcategories: τ -perpendicular subcategories,
left/right finite wide subcategories, and Serre subcategories.

Recall that wide subcategories are exactly embedded abelian subcategories, and that a subcat-
egory W ⊆ modΛ is wide if and only if it is closed under extensions, kernels, and cokernels. It is
well known that a wide subcategory W ⊆ modΛ is functorially finite if and only if it is equivalent
to modΛW for some basic finite-dimensional algebra ΛW (This is made explicit in [Eno, Proposi-
tion 4.12].) Given such a wide subcategory, we denote by rk(W) the number of simple objects in
W (or equivalently simple modules in modΛW) up to isomorphism. We note that if P ∈ W is basic
and P(W) = add(P ), then rk(W) = rk(P ). In particular, rk(Λ) = rk(modΛ).

As wide subcategories are abelian categories in their own right, they have their own wide sub-
categories, torsion classes, and torsion-free classes. We will be concerned with such subcategories
in the sequel, and so the following well-known and easily proved fact is useful.

Proposition 3.1. Let W ⊆ modΛ be a wide subcategory.

(1) Suppose that W is functorially finite and let A ⊆ W be a functorially finite subcategory of
W. Then A is a functorially finite subcategory of modΛ.

(2) Let V be a wide subcategory of W. Then V is a wide subcategory of modΛ.

We are now ready to define our main categories of interest.

Definition 3.2. A full subcategory W ⊆ modΛ is called a τ -perpendicular subcategory if there
exists a support τ -rigid object U = M ⊔ P [1] ∈ C(modΛ) such that W = J (U), where

(2) J (U) := (M ⊔ P )⊥ ∩ ⊥(τM).

Such categories were first considered by Jasso [Jas15], who proved that they are equivalent to
module categories, and hence they are functorially finite. Actually, Jasso explicitly dealt with the
case P = 0, but his proofs and statements can be easily modified. This is mentioned explicitly in
[DIR+], where it is also shown that such categories are in fact wide. Summarizing, we have:

Theorem 3.3. [Jas15, Theorem 3.8][DIR+, Theorems 4.12, 4.16] Let U = M ⊔ P [1] ∈ C(modΛ)
be support τ -rigid. Then J (U) is a functorially finite wide subcategory of modΛ. Moreover, if
M ⊔ P [1] is basic, then rk(J (U)) + rk(M) + rk(P ) = rk(Λ).

By identifying a τ -perpendicular subcategory W = J (U) with a module category, one can
consider the τ -tilting theory ofW. That is, we consider the category C(W) := W⊔W[1] ⊆ C(modΛ).
We then say an object N ⊔Q[1] ∈ C(W) is support τ -rigid in W if:

(1) N ∈ W satisfies Hom(N, τWN) = 0, where τW denotes the Auslander-Reiten (AR) translate
in W.

(2) Q ∈ W is projective in W and satisfies Hom(Q,N) = 0.

We emphasize that in general, objects which are projective in W may not be projective in modΛ.
Likewise, we may have that τWN 6∼= τN , so in general we can have modules which are not τ -rigid
in modΛ, but still are τ -rigid in W. However, it is a direct consequence of Proposition 2.3 and
the fact that W is an exactly embedded subcategory that τ -rigid (or projective) objects in modΛ
remain τ -rigid (or projective) in W.

Note also that since W is an exact subcategory of modΛ, the category C(W) can be considered
as sitting either inside C(modΛ) ⊆ Db(modΛ) (as we have defined it) or inside of Db(W). Indeed,
for X,Y ∈ W, we have a canonical isomorphism

HomDb(modΛ)(X,Y [1]) = HomDb(W)(X,Y [1]).
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Continuing in this way, if V = N ⊔Q[1] is τ -rigid in W, we denote

(3) JW(V ) := (N ⊔Q)⊥ ∩ ⊥(τWN) ∩W.

We also have the following dual concept.

Definition 3.4. A subcategory W ⊆ modΛ is called a τ−1-perpendicular subcategory if there exists
a support τ−1-rigid object U = I[−1] ⊔M ∈ C(modΛ)[−1] such that

W =

J

(U) := ⊥(M ⊔ I) ∩ (τ−1M)⊥.

We show as part of Theorem 1.1 that τ−1-perpendicular subcategories and τ -perpendicular
subcategories coincide. Moreover, it will be a consequence of Theorem 1.1 that not all functorially
finite wide subcategories are τ -perpendicular subcategories. See Example 4.9.

We proceed to discuss another central class of functorially finite wide subcategories. These arise
from applying the so-called Ingalls–Thomas bijections [IT09, MŠ17] to functorially finite torsion
classes and torsion-free classes. We recall these constructions now.

Definition 3.5.

(1) Let T ⊆ modΛ be a torsion class. The left wide subcategory of modΛ corresponding to T is

WL(T ) := {X ∈ T | (Y ∈ T , f : Y → X) =⇒ ker f ∈ T }.

(2) Let F ⊆ modΛ be a torsion-free class. The right wide subcategory of modΛ corresponding
to F is

WR(F) := {X ∈ F | (Y ∈ F , f : X → Y ) =⇒ coker f ∈ F}.

One of the key results of [IT09] (hereditary case) and [MŠ17] (general case) is that for any wide
subcategory W, one has

WL(FiltGen(W)) = W = WR(FiltCogen(W)).

They also show that FiltGen(WL(T )) = T (resp. FiltCogenWR(F) = F), when T (resp. F) is
functorially finite. Following Asai [Asa20], a wide subcategory W ⊆ modΛ is called left finite (resp.
right finite) if it is of the form WL(T ) (resp. WR(F)) for some functorially finite torsion class T
(resp. torsion-free class F). It is straightforward that if W is either left finite or right finite, then it
is functorially finite. The converse, however, does not hold in general. See [Asa20, Example 3.13]
or Example 4.9.

We conclude this section by discussing a well understood class of functorially finite wide subcat-
egories, namely the Serre subcategories. A subcategory S is Serre if for any short exact sequence

0 → X → Y → Z → 0

in modΛ, we have Y ∈ S if and only if X,Z ∈ S. That is, S is closed under extensions, quotients,
and subobjects.

Serre subcategories are indeed examples of wide subcategories. In fact, they are also both torsion
classes and torsion-free classes, as the following shows.

Proposition 3.6. Let S ⊆ modΛ be a subcategory. Then the following are equivalent:

(1) S is a Serre subcategory.
(2) S is any two of a torsion class, a torsion-free class, and a wide subcategory.
(3) S is a torsion class, a torsion-free class, and a wide subcategory.
(4) S = P⊥ for some projective P ∈ P(modΛ).
(5) S is a wide subcategory and every object which is simple in S is simple in modΛ.

Proof. The equivalence of (1), (4), and (5) is contained in [GL91, Proposition 5.3], and the equiv-
alence of (1), (2), and (3) follows straightforwardly from the definitions. �
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As useful consequences, we obtain the the following corollaries.

Corollary 3.7. There is a bijection between isomorphism classes of basic projective modules in
P(modΛ) and Serre subcategories of modΛ given by P 7→ P⊥.

Corollary 3.8. Let S ⊆ modΛ be a Serre subcategory. Then S is both a left finite wide subcategory
and a right finite wide subcategory.

Proof. Note that S is a wide subcategory which satisfies WL(S) = S = WR(S) by Proposition 3.6.
The result then follows from Theorem 2.2(1) and item (4) of Proposition 3.6. �

4. Characterizing τ-perpendicular subcategories

In this section, we give the proof of Theorem 1.1, restated as Theorem 4.5 below. This character-
izes τ -perpendicular subcategories as precisely the Serre subcategories of left-finite and right-finite
wide subcategories of modΛ.

The following technical result will be useful for the proof.

Proposition 4.1. [BTZ21, Proposition 5.2.1] Let (T ,F) be a torsion pair in modΛ and let X ∈
WR(F). Then X is simple in WR(F) if and only if the following hold:

(1) Every proper factor of X lies in T .
(2) If 0 → X → Y → Z → 0 is a nonsplit exact sequence and Z ∈ T , then Y ∈ T .
(3) X ∈ F .

Remark 4.2.

(1) Our statement of Proposition 4.1 is actually the dual of [BTZ21, Proposition 5.2.1].
(2) The simple objects of WR(F) are given an alternative characterization in terms of 2-term

simple-minded collections in [Asa20]. The characterization in [BTZ21], on the other hand,
shows that the simple objects of WR(F) are precisely the “minimal extending modules” for
the torsion class T , introduced in [BCZ19].

We now start building towards our proof of Theorem 1.1 with the following lemmas.

Lemma 4.3. Let (T ,F) be a functorially finite torsion pair and let M⊔P [1] be the support τ -tilting
object in C(modΛ) for which add(M) = P(T ). Write M ∼= Ms ⊔Mns as in Lemma 2.6. Then:

(1) WL(T ) = J (Mns ⊔ P [1]).
(2) WR(F) = J (Ms).

In particular, any wide subcategory of modΛ which is either left finite or right finite is also a
τ -perpendicular subcategory.

We note that (1) also appears as [Yur18, Equation 1.2].

Proof. (1) It is shown in [MŠ17, Lemma 3.8] that WL(T ) = M⊥
ns ∩

⊥(τM) ∩ P⊥. Moreover, by

Proposition 2.7, we have that ⊥(τM) ∩ P⊥ = ⊥(τMns) ∩ P⊥. This proves the result.
(2) First let X be a simple object of WR(F). (Note that X is not necessarily simple in modΛ.)

We will show that X ∈ J (Ms). Since J (Ms) is closed under extensions, this will imply that
WR(F) ⊆ J (Ms).

We first note that WR(F) ⊆ F = M⊥
s , so we need only show that Hom(X, τMs) = 0. Suppose

to the contrary that Hom(X, τMs) 6= 0. By Proposition 2.3 this means there exists X ′ ∈ GenX
and a nonsplit exact sequence of the form

0 → X ′ → E → Ms → 0.

By Proposition 4.1, we note that X ′ cannot be a proper quotient of X. Indeed, if this were the

case, we would have X ′ ∈ T ⊆ ⊥(τM), a contradiction. Therefore, we can assume that X ′ = X.
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Applying Proposition 4.1 again, this implies that E ∈ T . Since Ms is split projective in T , this is
a contradiction.

Now let Y ∈ J (Ms). It is clear that Y ∈ F = M⊥
s . Thus let Z ∈ F = M⊥

s and g : Y → Z. We
then have an exact sequence

0 = Hom(Ms, Z) → Hom(Ms, coker g) → Ext1(Ms, image g) = 0,

where the last term is zero by Proposition 2.3 and the fact that image g is a quotient of Y . We
conclude that coker g ∈ F , and therefore Y ∈ WR(F). This completes the proof. �

Lemma 4.4. Let V ⊆ W ⊆ modΛ be a chain of subcategories such that V is a Serre subcategory of
W and W is a τ -perpendicular subcategory of modΛ. Then V is a τ -perpendicular subcategory of
modΛ.

Proof. Let U = M ⊔P [1] ∈ C(modΛ) be support τ -rigid and let S be a Serre subcategory of J (U).
By Proposition 3.6, there exists Q ∈ P(J (U)) so that S = Q⊥ ∩ J (U). It follows from [Jas15,
Proposition 3.14] and Theorem 2.2 that Q = fM⊥(B) for some direct summand B of the Bongartz
complement BU of U . We then have an exact sequence

0 → tGenM (B) → B → Q → 0,

and since tGenM (B) is in GenM , we have Hom(tGenM (B),J (U)) = 0. Hence we have S = Q⊥ ∩
J (U) = B⊥ ∩ J (U) = J (B ⊔ U), and so S is a τ -perpendicular subcategory of modΛ. �

We are now ready to prove our first main result.

Theorem 4.5 (Theorem 1.1). Let Λ be a finite-dimensional algebra and let W ⊆ modΛ be a wide
subcategory. Then the following are equivalent.

(1) W is a τ -perpendicular subcategory of modΛ.
(2) W is a τ−1-perpendicular subcategory of modΛ.
(3) W is a Serre subcategory of a left finite wide subcategory.
(4) W is a Serre subcategory of a right finite wide subcategory.
(5) There exists a functorially finite torsion class T ⊆ modΛ and a functorially finite torsion-

free class F ⊆ modΛ with T ⊥ ⊆ F such that W = T ∩ F .

Proof. (1 ⇐⇒ 2) : Recall that if U ∈ C(modΛ) is support τ -rigid, then τU ∈ C(modΛ)[−1]
is support τ−1-rigid, and moreover that every support τ−1-rigid object in C(modΛ)[−1] occurs
in this way. Thus suppose U = M ⊔ P [1] is support τ -rigid and write M ∼= Mp ⊔ Mnp, where

Mp ∈ P(modΛ) and Mnp has no projective direct summand. We note that ⊥(νMp) = M⊥
p and

⊥(νP ) = P⊥. Moreover, we have τ(U) = (νMp)[−1] ⊔ τMnp ⊔ νP , where τMnp has no injective
direct summand. This means

J (U) = M⊥
np ∩

⊥(τMnp) ∩ (Mp ⊔ P )⊥

= (τ−1τMnp)
⊥ ∩ ⊥(τMnp) ∩

⊥(νMp ⊔ νP )

=

J

(τ (U)).

This proves the result.
(1 =⇒ 5): This follows from Theorem 2.2 and the definition of J (U).
(5 =⇒ 3): Write W = T ∩ F with T a functorially finite torsion class and F a functorially

finite torsion-free class. We will first show that W ⊆ WL(T ) using an argument similar to [MŠ17,
Lemma 3.8]. Let X ∈ W and let g : Y → X be a morphism in T . Note that image g ∈ W since it
is a subobject of X and a quotient of Y . Now consider the canonical exact sequence with respect
to the torsion pair (⊥F ,F):

0 → t(⊥F)(Y ) → Y → fF (Y ) → 0.
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By assumption, we have fF (Y ) ∈ T ∩ F = W and t(⊥F)(Y ) ∈ ⊥F ⊆ T . In particular, we have

that Hom(t(⊥F)(Y ), image g) = 0, and so image g is a quotient of fF (Y ). That is, we obtain the

following diagram with rows and columns exact:

0 0

0 t(⊥F)(Y ) ker g ker g/t(⊥F)(Y ) 0

0 t(⊥F)(Y ) Y fF (Y ) 0

image g image g

0 0

Now ker g/t(⊥F) ∈ W ⊆ T since W is closed under kernels. Therefore ker g ∈ T since T is closed

under extensions. We conclude that X ∈ WL(T ).
We will now show that W is a Serre subcategory of WL(T ). Let

0 → X → Y → Z → 0

be a short exact sequence in WL(T ). It is clear that if X,Z ∈ W then Y ∈ W. Thus suppose
Y ∈ W = T ∩F . It follows that X ∈ W since it is in WL(T ) ⊆ T and F is closed under subobjects.
Since W is closed under cokernels, it folllows that Z ∈ W as well.

(5 =⇒ 4): The proof is dual to that of (4 =⇒ 2), but we include the details here for
convenience. We will first show that W ⊆ WR(F). Let X ∈ W and let g : X → Y be a morphism
in F . We note that image g ∈ W since it is a quotient of X and a subobject of Y . Now consider
the canonical exact sequence with respect to the torsion pair (T ,T ⊥):

0 → tT (Y ) → Y → f(T ⊥)(Y ) → 0.

By assumption, we have tT (Y ) ∈ T ∩ F = W and f(T ⊥)(Y ) ∈ T ⊥ ⊆ F . In particular, we have

image g ⊆ tT (T ). Therefore, we have an exact sequence

0 → tT (Y )/ image g → coker f → f(T ⊥)(Y ) → 0.

Since W is wide, we have tT (Y )/ image g ∈ W ⊆ F . Since F is closed under extensions, this implies
that coker g ∈ F . We conclude that X ∈ WR(F).

We will now show that W is a Serre subcategory of WR(F). Let

0 → X → Y → Z → 0

be a short exact sequence in WR(F). It is clear that if X,Z ∈ W then Y ∈ W. Thus suppose
Y ∈ W = T ∩F . It follows that Z ∈ W since it is in WR(F) ⊆ F and T is closed under subobjects.
Since W is closed under kernels, it folllows that X ∈ W as well.

(3 =⇒ 1): Let W ⊆ WL(T ) be a Serre subcategory of a left finite of modΛ. By Lemma 4.3,
we have that WL(T ) is τ -perpendicular in modΛ. It then follows from Lemma 4.4 that W is
τ -perpendicular in modΛ as well.

(4 =⇒ 1): The proof is analogous to that of (3 =⇒ 1). �

Remark 4.6. We note that the equivalences between (3), (4), and (5) in Theorem 4.5 can also
be deduced from [AP, Corollary 6.8] in Asai and Pfeifer’s work on “wide intervals” in the lattice
of torsion classes. (They deduce this corollary after working with wide subcategories and torsion
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classes which are not necessarily functorially finite.) One of the main differences in our approach
is that we have not explicitly made use of the “brick labeling” of the lattice of torsion classes.

Remark 4.7. Due to the equivalence between τ -perpendicular and τ−1-perpendicular subcat-
egories of modΛ, we will dispense with discussing the support τ−1-rigid case for the remain-
der of this paper. We nevertheless remark that the majority of our results can be restated for
τ−1-perpendicular subcategories by applying Theorem 4.5.

We conclude this section by tabulating several consequences of Theorem 4.5 and the preceding
lemmas.

Corollary 4.8. Let W ⊆ modΛ be a functorially finite wide subcategory with rk(W) + 1 = rk(Λ).
Then the following are equivalent.

(1) W is a left finite wide subcategory.
(2) W is right finite wide subcategory.
(3) W is a τ -perpendicular subcategory.

Proof. The implications (1 =⇒ 3) and (2 =⇒ 3) are contained in Lemma 4.3. Thus assume
(3). By Theorem 4.5, there exists a left finite wide subcategory V ⊆ modΛ such that W is a Serre
subcategory of V. Lemma 4.3 and Theorem 3.3 then imply that

rk(Λ)− 1 = rk(W) ≤ rk(V) ≤ rk(Λ).

Now if rk(W) = rk(V), then W = V as a consequence of the same lemma and theorem. In
particular, W is a left finite wide subcategory of modΛ in this case. Otherwise, V = modΛ by the
same argument, and so W is a left finite wide subcategory of modΛ by Corollary 3.8. We conclude
that (3) implies (1). The proof that (3) implies (2) is identical. �

In [Asa20, Example 3.13], Asai gives an example of a functorially finite wide subcategory which
is right finite but not left finite. (It is, however, a Serre subcategory of a left finite wide subcategory,
consistent with Theorem 4.5.) By modifying Asai’s example, we obtain an example of a functorially
finite wide subcategory which is not a τ -perpendicular subcategory.

Example 4.9. Consider the quiver

Q = 1 2 3
α1

α2

β1

β2

and let Λ = KQ/(β2α1, β1α2). Consider the Λ-modules

X1 = K K K, X2 = K K K.
1

0

1

0

0

1

0

1

We will demonstrate that W := Filt(X1,X2) is a functorially finite wide subcategory of modΛ which
is not a τ -perpendicular subcategory.

We first note that Hom(X1,X2) = 0 = Hom(X2,X1) and that End(X1) ∼= K ∼= End(X2).
Moreover, it is straightforward to show that

τX1 = K K 0, τX2 = K K 0.
1

0

0

0

0

1

0

0

In particular, Hom(X1, τX2) = 0 = Hom(X2, τX1) and every morphism X1 → τX1 (or X2 →
τX2) factors through the injective I(2). By the Auslander-Reiten formulas, we conclude that
Ext1(Xi,Xj) for any i, j ∈ {1, 2}. This means W is a wide subcategory equivalent to the module
category of a semisimple algebra, so in particular W is functorially finite.

We will now show that W is not a τ -perpendicular subcategory. By Corollary 4.8, the fact that
rk(W) = rk(Λ) − 1 means we need only show that W is not left finite. To see this, we note that
the Serre subcategory P (3)⊥ is equivalent to the module category of the Kronecker path algebra.
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Thus we can consider the Ingalls-Thomas bijection (Definition 3.5) W
P (3)⊥

L in the category P (3)⊥.

Then the wide subcategory V = W
P (3)⊥

L (FiltGen(W) ∩ P (3)⊥) = W
P (3)⊥

L (FiltGen(τX1, τX2)) is
the additive closure of a pair of homogeneous tubes having τX1 and τX2 at their mouths. It is
then a well-known fact that right V-approximations will in general not exist, and hence V is not
functorially finite (in either P (3)⊥ or in modΛ). In particular, this means V is not a left finite
wide subcategory of P (3)⊥, and so FiltGen(W) ∩ P (3)⊥ is not functorially finite. Since P (3)⊥ is
a functorially finite torsion-free class of modΛ (see Proposition 3.6 and Corollary 3.8), Lemma 2.1
then implies that the torsion class FiltGen(W) is not functorially finite; that is, that W is not left
finite. (Note that, as a consequence of Corollary 4.8, W is not right finite either. This can also be
seen directly using duality.)

Remark 4.10. Summarizing, we have the following inclusions of classes of subcategories of modΛ:

{wide}

{functorially finite wide}

{τ -perpendicular}

{left finite wide} {right finite wide}

{Serre}

⊆ (1)

⊆ (2)

⊆(3) ⊇ (4)

⊇(5) ⊆ (6)

Moreover, each of these inclusions can be proper. Indeed, (2) can be proper by Example 4.9 and
(3) and (4) can be proper by [Asa20, Example 3.13] and its dual. It is clear that if Λ is not τ -tilting
finite, then (1) will in general be proper. Likewise, (5) and (6) will be proper unless Λ is semisimple
or local. We note that all six of these classes coincide when Λ is semisimple or local, and that all
but the Serre subcategories coincide when Λ is τ -tilting finite. Moreover, if Λ is hereditary, then
(2), (3), and (4) are all equalities by [IT09, Corollary 2.17].

5. Reduction of support τ-rigid objects

The proof of our second main theorem will rely on a reduction formula, which allows us to
compare τ -rigid objects in C(modΛ) with those in C(W), with W ⊆ modΛ a τ -perpendicular sub-
category. Theorem 5.1 below extends Jasso’s reduction of τ -rigid modules [Jas15, Corollary 3.18] to
account for shifted projectives in the reduction. Note that there is an analogous, and related, formu-
lation in terms of torsion classes. See [Jas15, Theorems 3.12 and 3.13] and [DIR+, Theorem 4.12].
For the statements in this section, we recall the notation for the canonical exact sequence of a
module with respect to a torsion pair from Equation (1) in Section 2.

Theorem 5.1. Let W ⊆ modΛ be a functorially finite wide subcategory.

(1) [BM21, Proposition 5.6] Let M ∈ W be basic and τ -rigid in W. Then there is a bijection

{V ∈ C(W) | M ⊔ V is basic and τ -rigid in C(W)}

↓ EW
M

{V ′ ∈ C(JW(M)) | V ′ is basic and τ -rigid in C(JW(M))}

summarized as follows.
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(a) If N ∈ W is indecomposable, M ⊔ N is τ -rigid in C(W), and N /∈ GenM , then
EW
M (N) = f(M⊥)(N).

(b) If N ∈ W is indecomposable, M ⊔ N is τ -rigid in C(W), and N ∈ GenM , then there
exists an indecomposable direct summand B of the Bongartz complement of M (in W)
such that EW

M (N) = f(M⊥)(B)[1].

(c) If Q ∈ P(W) and M ⊔Q[1] is support τ -rigid in C(W), then there exists a direct sum-
mand B of the Bongartz complement of M (in W) such that EW

M (Q[1]) = f(M⊥)(B)[1].
The bijection then extends additively.

(2) [BM21, Proposition 5.10a] Let P ∈ P(W) be projective in W. Then there is a bijection

{V ∈ C(W) | V ⊔ P [1] is basic and τ -rigid in C(W)}

↓ EW
P [1]

{V ′ ∈ C(JW(P [1])) | V ′ is basic and τ -rigid in C(JW(P [1]))}

given by
EW
P [1](N ⊔Q[1]) = N ⊔ f(P⊥)(Q)[1].

(3) [BM19, Theorem 3.6] Let U = M ⊔ P [1] ∈ C(W) be basic and support τ -rigid in C(W) and
define

EW
U := E

JW(M)

EW
M

(P [1])
◦ EW

M .

Then EW
M⊔P [1] is a bijection

{V ∈ C(W) | U ⊔ V is basic and support τ -rigid in C(W)}

↓ EW
U

{V ′ ∈ C(JW(U)) | V ′ is basic and support τ -rigid in C(JW(U))}.

Remark 5.2. Since EW
U is defined additively, it follows immediately from Theorem 3.3 that U ⊔V

is support τ -tilting in C(W) if and only if EW
U (V ) is support τ -tilting in JW(U).

In case W = modΛ, we will sometimes denote EU := EmodΛ
U . In Theorem 6.12, we will show that

these “E-maps” satisfy an associativity property as follows: If W ⊆ modΛ is a τ -perpendicular

subcategory of modΛ and U ⊔ V is basic and support τ -rigid in C(W), then EW
U⊔V = E

JW(U)

EW
U

(V )
◦ EW

U .

This result is established in [BM19, Theorem 5.9] in the case that Λ is τ -tilting finite.
For the remainder of this section, we recall some technical results about these bijections and

their relationship with Bongartz complements. In essence, these lemmas are well-known (see e.g.
[BM21, Lemma 4.13]), but we give proofs here for completeness.

Lemma 5.3. Let U = M ⊔P [1] ∈ C(modΛ) be support τ -rigid and let BU be the Bongartz comple-
ment of U . Then no direct summand of BU lies in GenM .

Proof. Let B be an indecomposable direct summand of BU . By Theorem 2.4, we have
⊥(τM) ∩ P⊥ = Gen(BU ⊔M) = ⊥(τ(B ⊔M)).

Moreover, by [BM19, Lemma 3.8], B ⊔M is τ -rigid in the Serre subcategory P⊥ and satsifies

⊥(τM) ∩ P⊥ = ⊥(τ(P⊥)M) ∩ P⊥, ⊥(τ(B ⊔M)) ∩ P⊥ = ⊥(τ(P⊥)(B ⊔M)) ∩ P⊥.

Since Gen(B ⊔M) ⊆ P⊥, it then follows by applying [AIR14, Proposition 2.22] in the category P⊥

that B /∈ GenM . �

Lemma 5.4. Let U = M ⊔ P [1] ∈ C(modΛ) be support τ -rigid and basic. Let BU and CU be the
Bongartz complement and co-Bongartz complement of U , respectively. Then

(1) For B ∈ add(BU ), we have J (B ⊔ U) = B⊥ ∩ J (U) = (EU (B))⊥ ∩ J (U).
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(2) P(J (U)) = add(EU (BU )).
(3) P(J (U)) = add(EU (CU )[−1]).

Proof. (1) We leave out the proof, since it identical to the proof of Lemma 4.4, using Theorem
5.1(1)(a) and Lemma 5.3.

(2) By Proposition 3.1, we note that rk(BU ) = rk(EU (BU )) = rk(J (U)). Thus it suffices to

show that Gen(EU (BU )) ∩ J (U) = J (U). Now let X ∈ J (U), so in particular X ∈ ⊥(τM) ∩ P⊥.

By Theorem 2.4, we have that P(⊥(τM)) ∩ P⊥ = add(BU ⊔ M). Since Hom(M,X) = 0, this
means there exists B ∈ addBU and an epimorphism g : B → X. Again using the fact that
Hom(M,X) = 0, we obtain an epimorphism g′ : f(M⊥)(B) → X. By Theorem 5.1, we conclude

that f(M⊥)(B) ∈ add(EU (B)) and therefore X ∈ Gen(EU (B)) ∩ J (U) as claimed.

(3) By Theorem 5.1, we have that EU (CU ) is support τ -tilting in C(J (U)) and is contained in
J (U)[1]. This means EU (CU ) must be the direct sum of the shifts of the indecomposable projectives
in P(J (U)). �

6. τ-cluster morphism categories

In this section, we apply our previous results to extend the definition of the τ -cluster morphism
category to arbitrary finite-dimensional algebras. This is a small category whose objects corre-
spond to the τ -perpendicular subcategories of modΛ and whose morphisms are indexed by support
τ -rigid pairs in these subcategories. See Definition 6.1 below. This category was defined by Igusa
and Todorov for hereditary algebras in [IT] under the name “cluster morphism category”. A com-
binatorial interpretation in Dynkin type A using noncrossing partitions and binary forests was also
given by Igusa in [Igu]. The definition was extended to τ -tilting finite algebras by Marsh and the
first author in [BM19] under the name “a category of wide subcategories” and given the name
“τ -cluster morphism category” in [HI21]. We state our extension of this definition to arbitrary
finite-dimensional algebras now.

Definition 6.1. Let Λ be a finite-dimensional algebra. We define the τ -cluster morphism category
of Λ, denoted W(Λ), as follows.

(1) The objects of W(Λ) are the τ -perpendicular subcategories of modΛ.
(2) For W ⊆ modΛ a τ -perpendicular subcategory and U ∈ C(W) support τ -rigid and basic,

define a formal symbol gWU .
(3) Given W1,W2 two τ -perpendicular subcategories of modΛ, we define

HomW(Λ)(W1,W2) =

{
gW1

U

∣∣∣∣
U is a basic support τ -rigid object in C(W1)
and W2 = JW1

(U)

}
.

In particular:
(a) If W1 6⊇ W2, then HomW(Λ)(W1,W2) = ∅.

(b) HomW(Λ)(W1,W1) = gW1

0

(4) Given gW1

U : W1 → W2 and gW2

V : W2 → W3 in W(Λ), denote Ṽ :=
(
EW1

U

)−1
(V ). We

define

gW2

V ◦ gW1

U = gW1

U⊔Ṽ
.

Remark 6.2. For τ -tilting finite algebras, it is well-known [MŠ17] that all wide subcategories are
both left and right finite, so in particular they are τ -perpendicular. The above definition therefore
specializes to the definition in [BM19].

Remark 6.3. An independent generalization of the τ -cluster morphism category to arbitrary finite-
dimensional algebras is given in the concurrent work of Børve [Bør]. The construction given there
replaces τ -perpendicular subcategories with certain thick subcategories of the bounded derived
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category Db(modΛ) and replaces support τ -rigid objects with 2-term presilting objects. The com-
position law can then be described in terms of the (pre)silting reduction of Iyama–Yang [IY18]. It is
shown explicitly in [Bør] that our generalization and Børve’s yield categories which are equivalent.

The main goal of this section is to prove that the τ -cluster morphism category is indeed a well-
defined category (Theorem 1.3, restated as Theorem 6.13 below). As with [IT, Igu, BM19], the
main technicality is in showing that the composition law is well-defined and associative. In the
present paper, this will be a consequence of the following generalization of [BM19, Theorem 4.3],
the proof of which depends on Theorem 4.5.

Theorem 6.4. Let W ⊆ modΛ be a τ -perpendicular subcategory of modΛ. Let U ⊔ V be basic and
support τ -rigid in C(W). Then

JW(U ⊔ V ) = JJW(U)(E
W
U (V )).

Our proof of Theorem 6.4 is largely contained in the two technical lemmas which follow.

Lemma 6.5. Let U ∈ C(modΛ) and N ∈ modΛ such that U⊔N is support τ -rigid and basic. Write
U = M ⊔ P [1] and let N be the direct sum of the indecomposable direct summands of N which do
not lie in GenM . Then the following coincide:

(1) (GenN) ∩ J (U)
(2) (Gen(M ⊔N)) ∩ J (U)
(3) f(M⊥)(Gen(M ⊔N))

(4) (Gen(f(M⊥)(N))) ∩ J (U)

(5) (Gen(EU (N ))) ∩ J (U)

Proof. The equality (1) = (2) follows immediately from the fact that J (U) ⊆ M⊥.
We next show that (2) = (3). Note that by definition

f(M⊥)(Gen(M ⊔N)) ⊆ (Gen(M ⊔N)) ∩M⊥.

Moreover, we have that Gen(M ⊔ N) ⊆ ⊥(τM) ∩ P⊥ since U ⊔ N is support τ -rigid. Now, if

X ∈ (Gen(M ⊔N)) ∩ J (U), then in particular X ∈ M⊥ and so f(M⊥)(X) = X. We conclude that

(2) = (3).
We now show that (3) = (4). It is shown in [BM19, Lemma 5.5] that

f(M⊥)(Gen(M ⊔N)) = (Gen(f(M⊥)(N))) ∩M⊥ ∩ ⊥(τM).

Moreover, since N ∈ P⊥ and f(M⊥)(N) ∈ GenN , we have that Gen(f(M⊥)(N)) ⊆ P⊥. It follows

that (3) = (4).
It remains to show that (4) = (5). This follows from the definition of EU (see Theorem 5.1) and

the fact that f(M⊥)(N) = f(M⊥)(N). �

Lemma 6.6. Let U⊔V ∈ C(modΛ) be support τ -rigid and basic. Let B be the Bongartz complement
of U ⊔V (in modΛ). Write U = M ⊔P [1], V = N ⊔Q[1], and EU (V ) = L⊔R[1]. Then the following
coincide:

(1) ⊥(τN) ∩Q⊥ ∩ J (U)

(2) ⊥(τN ⊔ τM) ∩ (Q ⊔ P )⊥ ∩ J (U)
(3) Gen(B ⊔N ⊔M) ∩ J (U)
(4) Gen(EU (B) ⊔ L) ∩ J (U)

(5) ⊥(τJ (U)L) ∩R⊥ ∩ J (U)

Proof. The equality (1) = (2) follows immediately from the fact that J (U) ⊆ ⊥(τM) ∩ P⊥. Like-
wise, the equality (2) = (3) follows immediately from the definition of the Bongartz complement
(Theorem 2.4).
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We next show that (3) = (4). By Theorem 5.1 and Lemma 5.3, we note that EU (B) ∈ modΛ.
Moreover, Theorem 5.1 also implies (see Remark 5.2) that EU (B)⊔L⊔R[1] = EU (B⊔V ) is support
τ -tilting in C(J (U)). This means (3) = (4) is a special case of equation (2) = (5) in Lemma 6.5.

We proceed to show that (4) ⊆ (5). First note that since R is projective in J (U), we have

that ⊥(τJ (U)L) ∩ R⊥ ∩ J (U) is closed under factors in J (U), and hence it suffices to show that

EU (B) ⊔ L ∈ ⊥(τJ (U)L) ∩R⊥ ∩ J (U). This follows from the fact that EU (B) ⊔ L ⊔R[1] is support

τ -tilting in C(J (U)).
We will conclude by showing that (5) ⊆ (2). Let B′ be the Bongartz complement of EU (V ) in

J (U). Since B′ is a module, Theorem 5.1 implies that B := E−1
U (B′) ∈ modΛ and that B ⊔ U ⊔ V

is support τ -tilting. We claim that

⊥(τJ (U)L) ∩R⊥ ∩ J (U) = Gen(B′ ⊔ L) ∩ J (U)

= Gen(B ⊔N ⊔M) ∩ J (U)

⊆ ⊥(τN ⊔ τM) ∩ (Q ⊔ P )⊥ ∩ J (U)

The first equality follows from Theorem 2.4, and the second from the equality (2) = (5) in
Lemma 6.5. The inclusion follows from the fact that B ⊔U ⊔ V is support τ -tilting, using that (2)
is closed under factors in J (U). �

We now proceed with our proof of Theorem 6.4

Proof of Theorem 6.4. Since W is equivalent to the module category of a basic finite-dimensional
algebra, it suffices to consider the case where W = modΛ. Write U = M ⊔P [1], V = N ⊔Q[1], and

EU (V ) = L ⊔ R[1]. For readability, denote T0 = Gen(N ⊔M) and T1 = ⊥(τN ⊔ τM) ∩ (Q ⊔ P )⊥.
Noting that J (U ⊔ V ) ⊆ J (U), Lemmas 6.5 and 6.6 then imply that

J (U ⊔ V ) = (T ⊥
0 ∩ J (U)) ∩ (T1 ∩ J (U))

= (GenL)⊥ ∩ ⊥(τJ (U)L) ∩R⊥ ∩ J (U)

= L⊥ ∩ ⊥(τJ (U)L) ∩R⊥ ∩ J (U)

= JJ (U)(EU (V )).

�

Before we proceed with proving the second main theorem, we note that Theorem 6.4 has some
interesting consequences.

Corollary 6.7 (Corollary 1.2). Let Λ be a finite-dimensional algebra. Let V ⊆ W ⊆ modΛ be a
chain of subcategories such that V is a τ -perpendicular subcategory of W and W is a τ -perpendicular
subcategory of modΛ. Then V is a τ -perpendicular subcategory of modΛ.

Proof. Let U ∈ C(modΛ) and V ∈ C(W) such that W = J (U) and V = JW(V ). By Theorem 5.1
and Theorem 6.4, it follows that U ⊔

(
E−1
U (V )

)
∈ C(modΛ) is support τ -rigid and satisfies

J
(
U ⊔

(
E−1
U (V )

))
= JJ (U)

(
EU ◦ E−1

U (V )
)
= JW(V ) = V.

We conclude that V is a τ -perpendicular subcategory of modΛ. �

In many cases, the converse of Corollary 1.2 holds as well. For example, in the τ -tilting finite case
all wide subcategories are τ -perpendicular and in the hereditary case, τ -perpendicular subcategories
and left finite wide subcategories coincide. Each of these implies that if V andW are τ -perpendicular
subcategories of modΛ with V ⊆ W, then V is a τ -perpendicular subcategory of W. We expect
that this is the case in general; that is, we propose the following conjecture.
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Conjecture 6.8. Let Λ be a finite-dimensional algebra. Let W ⊆ modΛ be a τ -perpendicular
subcategory of modΛ and let V ⊆ W be a wide subcategory of W. Then V is a τ -perpendicular
subcategory of modΛ if and only if V is a τ -perpendicular subcategory of W.

As another consequence of Theorem 6.4, we have the following.

Corollary 6.9. Let Λ be a finite-dimensional algebra and let W ⊆ modΛ be a subcategory. Then W
is a τ -perpendicular subcategory of modΛ if and only if there exists a subcategory V with W ⊆ V ⊆
modΛ such that V is a left finite wide subcategory of modΛ and W is a left finite wide subcategory
of V. Moreover, the statement is true if one or both instances of “left” are replaced with “right”.

Proof. First suppose W = J (U) is a τ -perpendicular subcategory of modΛ. By Theorem 4.5, there
exists W ⊆ V ⊆ modΛ such that V is a left finite wide subcategory of modΛ and W is a Serre
subcategory of V. By Corollary 3.8, it follows that W is a left finite wide subcategory of V as well.

Now suppose that there exists W ⊆ V ⊆ modΛ such that W is a left finite wide subcategory of
V and V is a left finite wide subcategory of modΛ. Then W is a τ -perpendicular subcategory of
modΛ as an immediate consequence of Lemma 4.3 and Corollary 6.7.

The proofs where one or both instances of “left” are replaced with “right” are identical. �

We now proceed with the proof of the main theorem. In [BM19], which deals with the τ -tilting
finite case, one establishes associativity of the composition operation, by proving that

(4) E
J (U)
EU (V ) ◦ EU = EU⊔V

for any basic support τ -rigid U ⊔V ∈ C(modΛ). This is shown to be a consequence of the fact that

(5) JW(U ⊔ V ) = JJW(U)(E
W
U (V ))

However, the proof that (5) implies (4) given in [BM19, Sections 5-9] does not use that Λ is τ -tilting
finite. We have shown in Theorem 6.4 that Equation (5) holds for τ -perpendicular subcategories
in the general case, and hence we obtain (4) for free. Note that in the τ -tilting finite case, in fact
all wide subcategories are τ -perpendicular.

We will here provide an alternative and much more efficient proof of why (5) implies (4) in the
general case, which only builds on two short lemmas in [BM19], namely Lemmas 5.5 (via Lemma 6.5
in the present paper) and 6.2. This is completed in Theorem 6.12 below, but we first prepare with
an additional technical lemma.

Lemma 6.10. Let U ⊔ V ∈ C(modΛ) and L ∈ modΛ such that U ⊔ V ⊔ L is support τ -rigid and
basic. Let N be the direct sum of the indecomposable direct summands of N which do not lie in
GenM . Let L′ be an indecomposable direct summand of L. Then the following are equivalent.

(1) EU⊔V (L
′) is a module.

(2) L′ /∈ Gen(M ⊔N)
(3) L′ /∈ GenM and f(M⊥)(L

′) /∈ (Gen(f(M⊥)(N))) ∩ J (U)

(4) EU (L
′) is a module and EU (L

′) /∈ (Gen(EU (N))) ∩ J (U)

(5) E
J (U)
EU (V ) ◦ EU (L

′) is a module.

Moreover, if (1)-(5) hold then E
J (U)
EU (V ) ◦ EU (L

′) = EU⊔V (L
′).

Proof. The equivalences (1 ⇐⇒ 2), (3 ⇐⇒ 4), and (4 ⇐⇒ 5) all follow from the definitions of
the “E-maps” given in Theorem 5.1.

For the equivalence (2 ⇐⇒ 3), we note that L′ /∈ Gen(M ⊔N) if and only if

f(M⊥)(L
′) /∈ f(M⊥)(Gen(M ⊔N)) = (Gen(f(M⊥)(N )) ∩ J (U)

by Lemma 6.5. This, together with that fact that if L′ /∈ Gen(M ⊔N) then L′ /∈ GenM , proves the
equivalence of (2) and (3).



18 ASLAK BAKKE BUAN AND ERIC J. HANSON

Now suppose that (1)-(5) hold. For readability, denote L′′ := f(M⊥)(L
′) and denote T :=

f(M⊥)(Gen(M ⊔N)). Recall from Lemma 6.5 that T = (Gen(f(M⊥)(N)))∩J (U). In particular, we

have T ⊆ J (U) ⊆ J (M). Now denote by

0 → tT (L
′′) → L′′ → f(T ⊥∩J (U))(L

′′) → 0

the canonical exact sequence with respect to the torsion pair (T ,T ⊥ ∩ J (U)) in J (U). Likewise,
denote by

0 → tT (L
′′) → L′′ → f(T ⊥∩J (M))(L

′′) → 0

the canonical exact sequence with respect to the torsion pair (T ,T ⊥∩J (M)) in J (M). Since both
sequences start with tT (L

′′), we see that f(T ⊥∩J (U))(L
′′) = f(T ⊥∩J (M))(L

′′).

We now observe that E
J (U)
EU (V ) ◦ EU (L

′) = f(T ⊥∩J (U))(L
′′) and E(U⊔V ) = f((M⊔N)⊥)(L

′) by con-

struction. Finally, it is shown in [BM19, Lemma 6.2] that f(T ⊥∩J (M))(L
′′) = f((M⊔N)⊥)(L

′). We

conclude that E
J (U)
EU (V ) ◦ EU (L

′) = EU⊔V (L
′) as desired. �

Remark 6.11. Since the bijections EU and EW
U are additive, the assumption that L′ is indecom-

posable in Lemma 6.6 can be replaced with the assumption that no direct summand of L′ lies in
Gen(M ⊔N).

We are now prepared to verify Equation (4).

Theorem 6.12. Let W ⊆ modΛ be a τ -perpendicular subcategory of modΛ and let U ⊔ V ∈ C(W)
be support τ -rigid and basic. Then

E
JW(U)
EU (V ) ◦ EW

U = EW
U⊔V .

Proof. Since W is equivalent to the module category of a basic finite-dimensional algebra, it suffices
to consider the case where W = modΛ.

Let W ∈ C(modΛ) such that U ⊔ V ⊔ W is support τ -rigid and basic. Write U = M ⊔ P [1]
and V = N ⊔Q[1]. Let L be the direct sum of the indecomposable direct summands of W which
are modules and do not lie in Gen(M ⊔ N), and let W ′ ∈ C(modΛ) such that L ⊔ W ′ = W . Let
B ∈ modΛ be the Bongartz complement of U ⊔ V ⊔W . We recall from Lemma 5.3 that no direct
summand of B lies in Gen(M ⊔ N). Therefore, by Lemma 6.10 and Remark 6.11, we have that

E
J (U)
EU (V ) ◦ EU (B ⊔ L) = EU⊔V (B ⊔ L). Moreover, this equation also holds if B ⊔ L is replaced with

any of its (not necessarily indecomposable) direct summands.
For readability, denote B′ := EU⊔V (B) and L′ := EU⊔V (L). Now recall from Theorem 6.4 that

J (U ⊔ V ) = JJ (U)(EU (V )). Theorem 2.4 and Lemma 6.6 then imply that (i) both EU⊔V (W
′) and

E
J (U)
EU (V )

◦ EU (W
′) lie in J (U ⊔V )[1], and (ii) both B′ ⊔L′⊔EU⊔V (W

′) and B′ ⊔L′⊔E
J (U)
EU (V )

◦ EU (W
′)

are support τ -tilting in C(J (U ⊔V )). This implies that EU (W
′) = E

J (U)
EU (V )◦EU (W

′), as both coincide

with the co-Bongartz complement of B′ ⊔ L′ in J (U ⊔ V ).

Now recall that W = L ⊔W ′. Since all of the bijections EU , EU⊔V , and E
J (U)
EU (V ) are additive, the

previous two paragraphs imply that E
J (U)
EU (V ) ◦ EU (W ) = EU⊔V (W ). This completes the proof. �

We are now ready to complete the proof that the τ -cluster morphism category is indeed a
category. This essentially follows from Theorem 6.12 identically as in [IT, Corollary 1.10], [Igu,
Section 1], and [BM19, Corollary 1.8].

Theorem 6.13. Let Λ be a finite-dimensional algebra. Then W(Λ) is a well-defined category.
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Proof. It is straightforward to show that for any τ -perpendicular subcategory W ⊆ modΛ, the
morphism gW0 is the identity of W. Thus we need only show that the composition law is associative.
Consider

W1
g
W1
U−−→ W2

g
W2
V−−→ W3

g
W3
W−−→ W4

a sequence of three composable morphisms in W. Then, by Theorem 6.12 and the additivity of the
“E-maps”, we have:

(
gW3

W ◦ gW2

V

)
◦ gW1

U = gW2

V ⊔

(
E
W2
V

)−1

(W )
◦ gW1

U

= gW1

U⊔

(
E
W1
U

)−1

(V )⊔
(
E
W2
V

◦E
W1
U

)−1

(W )

= gW3

W ◦ gW1

U⊔

(
E
W1
W

)−1

(V )

= gW3

W ◦
(
gW2

V ◦ gW1

W

)

�

For W ⊆ modΛ a τ -perpendicular subcategory, we can likewise define the τ -cluster morphism
category W(W) in the usual way; i.e., by identifying W with some module category. We then
obtain the following.

Proposition 6.14. Let W ⊆ modΛ be a τ -perpendicular subcategory. Then W(W) is equivalent
to the full subcategory of W(Λ) whose objects are the τ -perpendicular subcategories of W.

Proof. This is a straightforward consequence of Corollary 6.7. �

We conclude this section by generalizing the results of [BM19, Section 10].

Proposition 6.15.

(1) Let M be an indecomposable non-projective τ -rigid module and let BM be the Bongartz
complement of M . Then M ∈ GenBM and J (M) = WL(GenBM ).

(2) Let M and N be indecomposable τ -rigid modules. Then J (M) = J (N) if and only if
M ∼= N .

Proof. (1) As in the proof of [BM19, Lemma 10.6], we have that the indecomposable direct sum-

mands of B are split projective in ⊥(τM). If in addition M is split projective in ⊥(τM), then
Gen(B ⊔M) = modΛ by Theorem 2.4 and Proposition 2.7. Since B ⊔M is τ -tilting, this implies
that B ⊔M = Λ and M is projective, a contradiction. We conclude that M is not split projective

in ⊥(τM), and so the result is a special case of Lemma 4.3.
(2) Suppose that J (M) = J (N). We first consider the case where neither M nor N is projective.

Let BM be the Bongartz complement of M and BN the Bongartz complement of N . Then by (1)
we have WL(GenBM ) = J (M) = J (N) = WL(GenBN ). This then implies that GenBM = GenBN .
It follows that M ∼= N is the unique indecomposable ext-projective in this torsion class which is
not split-projective.

Now suppose that M is projective. Since M is indecomposable, we note that top(M) is simple.
Moreover, given an arbitrary simple S ∈ modΛ, we have that S ∈ J (M) if and only if S ≇ top(M).
In particular, if S ≇ top(M), then Hom(N,S) = 0 = Hom(S, τN). We conclude that top(M) ∼=
top(N) and that soc(τN) = 0. In particular, this means M ∼= N . �

Theorem 6.16. Let Λ be a finite-dimensional algebra and let W ⊆ modΛ be a τ -perpendicular
subcategory. Let V ⊆ W be a τ -perpendicular subcategory of W such that rk(W) = rk(V)+ 1. Then
exactly one of the following occurs:
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(1) There is exactly one morphism in W(Λ) from W to V and V = JW(M) for some indecom-
posable module M which is τ -rigid, but not projective, in W.

(2) There are exactly two morphisms in W(Λ) from W to V and V = JW(P ) = JW(P [1]) for
some indecomposable module P which is projective in W.

Proof. By Proposition 6.14, we can assume that W = modΛ. Theorem 3.3 then implies that there
exists an indecomposable support τ -rigid U ∈ C(modΛ) such that J (U) = V. The result then
follows from Proposition 6.15 and that fact that J (P ) = J (P [1]) for any projective module P . �

Remark 6.17. In [BM19, Section 10], the results generalized here are stated as relationships be-
tween the lattice of wide subcategories and the τ -cluster morphism category. (The partial order on
the lattice of wide subcategories is given by containment, and the meet of two wide subcategories is
their intersection.) In the τ -tilting infinite case, however, the set of τ -perpendicular subcategories
may not be closed under intersections and may not form a lattice. See for example [Rin16, Ex-

amples 3.2.2 and 3.2.3], which show that path algebras of type Ã2,1 and Ã2,2, respectively, exhibit
such behavior1. The authors thank Haruhisa Enomoto for sharing these examples with them.

7. An example

In this section, we consider a pair of examples. As examples in the τ -tilting finite case can be
found in [BM19, Section 12], our examples are both τ -tilting infinite. This means the corresponding
τ -cluster morphism categories are infinite as well.

We first consider the Kronecker path algebra Λ1 = K(1 ⇒ 2). For i ∈ N, we denote by M(i,i+1)

and M(i+1,i) the unique (up to isomorphism) indecomposable Λ1-modules with dimension vectors
(i, i + 1) and (i+ 1, i). We note that P (1) = M(1,2), S(1) = M(1,0), and P (2) = S(2) = M(0,1).

Figure 1 gives an illustration of the category W(Λ1). The vertices are the τ -perpendicular
subcategories of modΛ (which in this case are precisely the functorially finite wide subcategories).
An irreducible morphism gWU : W → V (so that U is indecomposable and support τ -rigid in C(W)
and JW(U) = V) is shown as an arrow W → V labeled by U . The wide subcategories add{M(i,i+1)}
generated by the preprojective modules all appear above the horizontal dashed line, with i increasing
as one moves counter clockwise. Likewise, the wide subcategories add{M(i+1,i)} generated by the
preinjective modules all appear below the horizontal dashed line, with i increasing as one moves
clockwise. The category is drawn so that every square commutes, and wide subcategories which
appear more than once in the figure should be identified.

For our second example, we consider quiver Q = 1 ⇒ 2 → 3 and the algebra Λ2 = KQ/rad2KQ.
Again for i ∈ N, we denote by M(i,i+1,0) and M(i+1,i,0) the unique (up to isomorphism) Λ2-modules
with dimension vectors (i, i+1, 0) and (i+1, i, 0). The irreducible morphisms in W(Λ2) with source

modΛ2 are shown in Figure 2. Similarly to before, a morphism gmodΛ2

U : modΛ2 → W is labeled by
U . Moreover, every module of the form M(i,i+1,0) or M(i+1,i,0) corresponds to some morphism with
source modΛ2.

To complete the picture, we can utilize Proposition 6.14. The Serre subcategory P (3)⊥ is equiv-
alent to modΛ1, so there is a copy of W(Λ1) sitting inside of W(Λ2) which has P (3)⊥ identified
with modΛ1. The Serre subcategory P (1)⊥ = add{P (2), S(2), P (3)} is equivalent to the module
category of the path algebra of type A2. Thus W(Λ2) contains five irreducible morphisms which
have source add{P (2), S(2), P (3)} and five morphisms add{P (2), S(2), P (3)} → 0. The remaining
subcategories shown are semisimple, so each is the source of four irreducible morphisms and four
morphisms with target 0 in W(Λ2).

1In these examples, the term “exceptional subcategory” is used to mean functorially finite wide subcategory. We
also recall from Remark 4.10 that over hereditary algebras, these are precisely the τ -perpendicular subcategories.
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P (1)M(2,3)

P (2)[1]S(1)

P (2)

P (1)[1]

P (2)[1]
P (1)

P (1)[1]

S(1)[1]
M(2,1)

M(2,1)[1]

S(1)

P (2)[1]

S(1)

P (2)

S(1)[1]

P (2)

modΛ1

0

0

0

0

0

0

0

add{P (2)}

add{P (1)}

add{S(1)}

add{M(2,1)}

add{S(1)}

add{P (2)}

...
...

...

...
...

...

Figure 1. The category W(Λ1) for Λ1 = K(1 ⇒ 2).

P (3)[1]P (3)

P (2)

P (2)[1]

P (1)

P (1)[1]

S(1)M(2,3,0)

M(2,1,0)M(3,4,0)

modΛ2

P (3)⊥

add{P (2), S(2), P (3)} add{S(1), P (3)}

add{M(2,1,0), P (3)}

add{M(3,2,0), P (3)}

add{M(1,2,0), P (3)}

add{M(2,3,0), P (3)}

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2. The irreducible morphisms in W(Λ2) with source modΛ2. Here, Λ2 =
K(1 ⇒ 2 → 3)/rad2.
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