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ABSTRACT

Immiscible two-phase flow in porous media produces different types of patterns depending on the capillary number Ca and viscosity ratio M.
At high Ca, viscous instability of the fluid–fluid interface occurs when the displaced fluid is the more viscous, and leads to viscous fingering,
which is believed to exhibit the same growth behavior as the viscously-unstable fingers observed in Hele–Shaw cells by Saffman and Taylor
[“The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid,” Proc. R. Soc. London 245, 312
(1958)], or as diffusion-limited aggregates (DLA). In such Laplacian growth processes, the interface velocity depends linearly on the local gra-
dient of the physical field that drives the growth process (for two-phase flow, the pressure field). However, a non-linear power-law depen-
dence between the flow rate and the global pressure drop, reminiscent of what has also been observed for steady-state two-phase flow in
porous media, was evidenced experimentally for the growth of viscously-unstable drainage fingers in two-dimensional porous media, 20 years
ago. Here, we revisit this flow regime using dynamic pore-network modeling and explore the non-linearity in the growth properties. We char-
acterize the previously unstudied dependencies of the statistical finger width and non-linear growth law’s exponent on Ca, and discuss quanti-
tatively, based on theoretical arguments, how disorder in the capillary barriers controls the growth process’ non-linearity, and why the flow
regime crosses over to Laplacian growth at sufficiently high Ca. In addition, the statistical properties of the fingering patterns are compared
to those of Saffman–Taylor fingers, DLA growth patterns, and the results from the aforementioned previous experimental study.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0193570

I. INTRODUCTION

Fingering patterns are one of many unique features of two-phase
flow, which are caused by hydrodynamic instabilities between two flu-
ids.1,2 When one fluid displaces another fluid inside a medium,
depending on the properties of the two fluids and the medium in
which they are flowing, the displacement front may exhibit fingering
instead of a stable interface between the two fluids.3–5 A wide variety
of fingering patterns are observed for different types of multiphase
flow, such as the flow of miscible6–9 and immiscible10,11 fluids in con-
tinuum1,12 and porous medium,13–15 reactive transport flow,16 and the

flow of frictional fluids in granular materials.17,18 The structural prop-
erties of different types of fingers are controlled by the underlying
physical forces, such as the viscous, capillary, inertial and frictional
forces. Furthermore, depending on the driving condition or the geom-
etry of the system, the displacement front can also undergo a transition
from fingering patterns to compact19 or foam-like structures.20

Our study here deals with non-reactive two-phase flow in a
non-deformable medium, where the two fluids are immiscible and sep-
arated by interfaces associated with a surface tension. Inside a contin-
uum medium, for example, a Hele–Shaw cell, which consists of two
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parallel plates separated by a small gap, the displaced fluid having a
higher viscosity than the displacing fluid leads to viscous instability of
the front and the development of fingers with a constant width, except
in the vicinity of the fingertip. The smooth rounded shape of these fin-
gers in a two-dimensional (2D) zx plane can be described by the fol-
lowing parametric equation given by Saffman and Taylor in their
pioneering work in 1958:12

zðxÞ ¼ Wð1� kÞ
2p

ln
1
2

1þ cos
2px
kW

� �� �
; (1)

where z is the direction of the overall front propagation,W is the width
of the flow cell, and the parameter k is the ratio of the width of the fin-
ger to the width of the channel. Note that this theory does not pre-
scribe k and that the surface tension between the two fluids does not
enter this equation, as it was not taken into account in its derivation.
However, Saffman and Taylor experimentally measured values of k
close to 0.5 over a wide range of flow rates, and it was later found that
the finger width was selected by surface tension.21 When the flow takes
place inside a porous medium, on the other hand, for example, a
Hele–Shaw cell randomly filled with glass beads, the fingers exhibit a
fractal structure.22 Properties of these fractal fingers are controlled by
the competition between viscous and capillary forces, the ratio of
which is called the capillary number, and the viscosity contrast of the
two fluids.23–25 For slow injection, the process is controlled by the dis-
order in the capillary forces at the pores, and the displacement front
generates capillary fingers with a fractal dimension similar to invasion
percolation clusters.26 For fast injection of a lower-viscous fluid into a
higher-viscous fluid inside a porous medium,27 the growth of the front
is governed by viscous instabilities, and it produces fractal viscous fin-
gers with a lower fractal dimension.15,28 It was pointed out that the sta-
tistical properties of viscous fingers in porous media are analogous to
diffusion-limited aggregation (DLA),29 which is a process of aggrega-
tion of matter limited by the diffusion of random walkers arriving
from a far distance with a steady flux.30 Both Saffman–Taylor viscous
fingering and DLA follow Laplacian growth:

r2p ¼ 0; (2)

where p is the probability density of the random walker for DLA or the
pressure drop across the interface between the two fluids for viscous
fingering.10,31,32 For Saffman–Taylor viscous fingering, the flow in
each of the fluid phases is governed by Darcy’s law33,34

v ¼ j
l
rp; (3)

where v is the fluid velocity, while j and l are, respectively, the perme-
ability of the porous medium and the fluid’s viscosity. Taking into
account the flow incompressibility, r � v ¼ 0 for incompressible flu-
ids, the Laplace equationrP2 (P being the pressure field) holds every-
where in both fluids. It follows from this that the same Eq. (2) holds
for the pressure drop across the interface, and thus, the interface dis-
placement is driven by Laplacian growth if the fluids’ viscosities are
different.

The linearity between the pressure drop and the velocity or the
flow rate indicated by Eq. (3) does not, however, hold for steady-state
flow in a certain range of capillary numbers. Steady-state flow implies
the simultaneous flow of both fluids in the porous medium for a suffi-
ciently long time so that the system has reached a state when the

statistical averages of macroscopic quantities, such as the saturation or
the global pressure drop, do not drift with time anymore, while both
fluids are still flowing. Experiments in a porous medium consisting of
a monolayer of glass beads in which air and a water–glycerol mixture
were displaced simultaneously have shown that the total flow rate Q in
steady state varied with the applied pressure drop DP as a non-linear
power law of exponent � 1:85.35,36 Later, experiments with two
incompressible fluids in the same porous medium found the
exponent to be � 1:35 or 1.5 depending on the fractional flow.37

Experiments with three-dimensional porous media made of glass bead
packings38–40 and real core samples,41–43 performed by different
groups, have further established this non-linearity with different expo-
nent values. Various theoretical approaches35,36,44,45 and numerical
modelings with variable-radii tubes,46 capillary bundles,47 pore-
networks models,40,44 and lattice Boltzmann simulations48 have been
carried out to understand the origin of the non-linearity that makes
the rheology to deviate from Eq. (3). In general, the non-linear power
law can be expressed by the expression

Q / ðDP � PtÞb; (4)

where Pt is a threshold pressure that may exist so that there will be no
flow in the system below Pt, and b > 1 is the non-linear exponent.
Fundamentally, this non-linearity is related to the distribution of the
capillary barriers at the pore throats, which result from surface tension
at the menisci between the two fluids; disorder in the pore geometry
induces disorder in the spatial distribution of the capillary barriers.
With the increase in DP, more and more pores progressively allow for
the barrier to be overcome and flow to be conducted, which makes Q
increase faster than the increase in DP, and hence, b > 1.49 When all
the available pores along the interface, at any time, start flowing at a
sufficiently high DP, the relation becomes linear. For a simplified
porous system such as a capillary bundle, the value of b can be deter-
mined analytically by integrating the individual flow rates of the tubes
over the distribution of the capillary barriers.47 For a porous network,
the distribution of pore throat sizes50 and the wettabilities51,52 strongly
control the value of b, as the distribution of capillary barriers depends
on them.

In this article, we investigate to which extent this non-linearity in
the flow rate, which has been demonstrated to exist for the steady state
due to disorder in the capillary barriers, also exists for the growth of
viscously-unstable fingers during drainage, and what its characteristics
are. Equation (2) for DLA considers p¼ 0 at the perimeter of the
aggregate, which, fingering in two-phase flow, would correspond to
the absence of surface tension. The analogy to DLA therefore only
applies to capillary numbers that are sufficiently high for capillary
forces to be insignificant as compared to viscous forces. In the interme-
diate regime between capillary and viscous fingerings, we may expect
that capillary forces will compete with viscous forces, so that the disor-
der in capillary barriers will play a role in the finger growth. Løvoll
et al.10 and Toussaint et al.53 have investigated this displacement
regime experimentally using two-dimensional (2D) porous media con-
sisting of Hele–Shaw cells filled with a monolayer of glass beads, and
measured the fractal dimension of the fingers and the statistical width
of the front,29,54,55 comparable to k in Eq. (1). Based on these measure-
ments, they showed that the drainage fingers are characteristically dif-
ferent from DLA. They further proposed a quadratic relationship
between the finger growth rate and the local pressure gradient in the
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intermediate flow regime, resulting from the pore-scale disorder. For
DLA however, an ad hoc-type surface tension was considered by intro-
ducing a sticking probability,31 which showed no change in the fractal
dimension.56,57 It was then argued that the two-phase flow fingers are
more similar to dielectric breakdown models (DBM) (or the g mod-
els),58–60 which are generalizations of DLAs with power-law relation-
ships of exponent g between the growth probability and the local
growth/displacement-driving field.

The experimental study on 2D porous media10,53 left a number of
open questions, in particular concerning the dependence of the non-
linear growth exponent and statistical width of the viscous fingers on
the capillary number. In this paper, we study viscously-unstable drain-
age as a function of the capillary number using large-scale simulations
in dynamic pore networks. We inject a lower-viscosity fluid at one
edge of the network filled with a higher viscosity fluid and characterize
the statistical properties of the resulting viscous finger in a reference
frame attached to the most advanced fingertip, as the finger grows
inside the porous medium. We explore in particular the relationship
between the finger’s growth rate and the local pressure drop across the
interface, and how it depends on the capillary number. We also focus
on the statistical width parameter k, analog to the k in Eq. (1), compare
it with the values obtained in the previous experimental study as well
as in studies of DLA and Saffman–Taylor viscous fingering, and char-
acterize its dependence on the capillary number.

In the following, we first describe the computational model and
the simulation procedure in Sec. II, which is based on dynamic pore-
network modeling61 with a specific boundary condition. In Sec. III, we
present our results, where we first characterize the statistical profiles
related to the volume and growth of the fingers in Subsection IIIA. In
Subsection IIIB, we characterize the shape profile and measure the
width ratio k. In Subsection III C, we then explore the relationship
between the growth rate and the local pressure drop across the inter-
face. Finally, we discuss the results and provide an overall conclusion
in Sec. IV.

II. SYSTEM DESCRIPTION AND MODELING

The core of our simulation consists of a dynamic pore-network
model,61 which we tweaked to adapt to the present problem. The
model has been developed for over a decade62 and tested against
numerous experimental,40,63 theoretical,44,64–66 and lattice Boltzmann
simulations.67 In this computational method, the pore space of a
porous medium is modeled by a network of links and nodes. Our net-
work is spread in two dimensions (2D) within a flat cuboid domain
similar to a Hele–Shaw cell and consists of NW � NL number of links
embedded in a diamond lattice. Such a network with NW¼ 20 and
NL¼ 80 is shown in Fig. 1. Here, the subscripts W and L refer to the
directions of the network orthogonal and parallel to the overall flow,
respectively. Each link of the network is of length l ¼ 1mm. The total
network is therefore W ¼ hNW mm wide and L ¼ hNL mm long,
where h ¼ l=

ffiffiffi
2

p
. We assign the entire pore space of the network to

the links, so the nodes only represent the position of the link intersec-
tions. The correspondence between this geometry and that of a granu-
lar quasi-two-dimensional porous medium consisting of cylinders is
illustrated in Fig. 2(a), where a small part of the porous medium is
shown. The links are therefore composite in nature, which means that
each link must represent a narrow pore throat in between two
wider pore bodies. Such a geometry is modeled by an hourglass-
shaped converging–diverging tube [as illustrated in Fig. 2(b)] whose

cross-sectional area varies along its length. This results in a variation in
the capillary pressure p0 as the interface (i.e., meniscus) between the
two fluids moves along a link. We model this variation with a modified
Young–Laplace equation45,62,68

jp0ið�Þj ¼
2c
ri

1� cos
2p�
l

� �� �
; (5)

where y is the position of an interface inside a link i. Such variation in
the capillary pressure is shown in Fig. 2(b). Here, c ¼ c0 cos h, where c0

and h represent the surface tension between the two fluids and the
contact angle, respectively. The ri is the average radius of the ith link,
the value of which we choose from a uniform distribution of random
numbers in the range between 0:1l and 0:4l, which introduces the dis-
order in the network.

The capillary numbers for both the viscous and capillary finger-
ing regimes are sufficiently small for any inertial effect to be negligible.
For fully developed laminar flow of incompressible fluids in each link,
we therefore consider the following equation for the flow rate of the
fluids:23,69

qi ¼ � ki
lli

Dpi �
X
b

p0ið�bÞ
� �

; (6)

FIG. 1. A pore-network of dimension L�W consisting of NW¼ 20 and NL¼ 80
links. The length of each link is l, and therefore, h ¼ l=

ffiffiffi
2

p
. The network was ini-

tially filled with high-viscosity fluid (represented in gray). The low-viscosity fluid (rep-
resented in blue) is injected with a total flow rate Q through NI¼ 2 inlet nodes at
the bottom, indicated by the black dots. All the other nodes at the bottom boundary
and all on the two vertical boundaries are closed, which is indicated by the thick
black lines. The nodes at the top boundary are open and work as outlets. The (x, z)
coordinate axes indicated by the orange lines are attached to the most advanced
fingertip and move with it. The part of the network between the two red horizontal
lines is used for the measurements of different quantities in order to avoid finite-size
effects at the inlet and the outlet.
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where Dpi is the pressure drop between the two nodes across the ith
link. The network is assumed to be placed horizontally, and no gravity
is considered. Here, li is the effective viscosity of the two fluids inside
the link, which is given by li ¼ siln þ ð1� siÞlw, where ln and lw
are the viscosities of the non-wetting and wetting fluids, respectively,
and si is the non-wetting saturation in the ith link, i.e., the proportion
of the link volume that is occupied by the non-wetting fluid. The term
ki represents the mobility of the link, given by ki ¼ air2i =8 for the
Hagen–Poiseuille flow in a circular cross section, where ai ¼ pr2i is the
cross-sectional area of the link. The summation of the capillary pres-
sures p0i in Eq. (6) is over all the interfaces inside the link i, obtained
using Eq. (5). For the link shown in Fig. 2(b), for example, the summa-
tion will be over the three interfaces at �1, �2, and �3.

To find out the pressures pj at every node j of the network, we use
the Kirchhoff equation for incompressible flow

P
i2nj qi ¼ 0 for each

node. Here the summation is over the links nj connected to a node j.
This provides a set of linear equations which we solve by conjugate-
gradient method70 with proper boundary conditions. This is illustrated
in Fig. 1 where the two nodes (NI¼ 2) at the bottom edge act as the
inlets. All the nodes at the top edge work as the outlets through which
fluids leave the system. The two vertical boundaries of the network
parallel to the overall flow are closed. The network is initially filled
with wetting fluid (gray colored in the figures), and we inject the non-
wetting fluid (blue colored in the figures) through inlet nodes with a
total constant flow rate Q. We therefore set pj¼ 0 for all the outlet
nodes and qi ¼ Q=NI for all the virtual links connected to the inlet
nodes, indicated by the two arrows in Fig. 1. These serve as the bound-
ary conditions for solving the linear system of equations for the node
pressures.

The positions of the two fluids inside every link are assigned by
the positions of the interfaces between the blobs of the two immiscible
fluids in every link as shown in Fig. 2(b). At every time step, the dis-
placements of the two fluids are performed by updating these positions
by a distance

D�i ¼ Dt qi=ai (7)

in the direction of the flow in the corresponding link. Here, Dt is a
time step chosen in such a way that the displacement of an interface
inside any link does not exceed more than 0:1l.

One final detail about the modeling is how to distribute the fluids
from links to their neighboring links through the nodes. For this, first,
the links carrying fluids toward and away from every node are identi-
fied, we call them the incoming and outgoing links, respectively. Then,
for every node j, the total volumes of the wetting and non-wetting flu-
ids (Vw

j and Vn
j , respectively, and Vj ¼ Vw

j þ Vn
j ) arriving from the

incoming links to the node are measured using Eq. (7). These volumes
are then distributed to each outgoing links i by placing new wetting
and non-wetting blobs of volumes Vw

i ¼ qiDtVw
j =Vj and

Vn
i ¼ qiDtVn

j =Vj, respectively. This means that the ratio of Vw
i to Vn

i
in any outgoing link is identical to the ratio between the incoming wet-
ting and non-wetting volumes at the corresponding node, and the ratio
between the total volumes (Vw

i þ Vn
i ) injected in different outgoing

links i is the same as the ratio between the flow rates qi in those links.
Furthermore, technical details about this algorithm can be found in
Ref. 61.

III. RESULTS AND DISCUSSION

We performed simulations of drainage displacement at constant
flow rate Q set by the capillary number Ca, which is a dimensionless
number that quantifies the typical ratio of the viscous to the capillary
forces across a pore positioned at the fluid–fluid interface. For a single
tube and if one of the fluids’ viscosity is negligible in comparison with
the other fluid’s viscosity, Ca is expressed as12,71

Ca ¼ lv
c
; (8)

where v is the velocity of the fluids in the tube and l is the viscosity of
the high-viscosity fluid. For a porous medium consisting of many
pores and without any assumption on the viscosity, this expression
was extended by many authors where the viscosity l was referred to as
the viscosity of the injected fluid into the porous medium.23,72

However, in the case of a low-viscosity fluid injected into a fluid of
much higher viscosity, as is the case in the configurations which we
consider, the viscous forces are controlled by the higher viscosity, and
l in Eq. (8) is therefore considered to be the viscosity of the defending
fluid in such cases.10,73 In experiments, the velocity v in Eq. (8) for a
porous medium is usually considered as the Darcy or filtration velocity
of the invading phases, which is the total flow rate per unit cross-
sectional area of the porous medium. However, for our pore network,
only the areas of the channels are properly defined, and therefore, we
define v as the true mean longitudinal fluid velocity, equal to the flow
rate per unit pore area. Furthermore, Eq. (8) assumes that the perme-
ability can be equated to the square of the typical channel cross section,
whereas many experimental studies including those addressing the
same topic,10,53 also considered that the viscous pressure drop should
involve the medium’s permeability, which leads to further differences
in the definition of Ca. In addition, the wetting angle could also be
taken into account in the capillary pressure drop, thus appearing in the
definition of Ca as well. When comparing our simulation results to
experimental results under identical flow conditions, the similarity of
the flow conditions must be assessed based on Ca estimates obtained

FIG. 2. (a) Illustration of the network of pores and nodes. The pore space is indi-
cated by white color, whereas the gray circles represent the grains in a porous rock
or the glass beads in a Hele–Shaw cell. One of the links is colored by dark gray.
The links intersect at nodes at the intersections of the dashed lines. (b) Shape of
individual pores in the mid-horizontal plane of the network, and variation of the capil-
lary pressure p0 , given by Eq. (5), along the length of the pore. The white and gray
segments inside the pore represent, respectively, the wetting and non-wetting fluid
blobs; there are three interfaces between them in this case, which are in contact
with the beads at positions �1, �2, and �3 along the pore length.
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from the same definition, so a conversion of the Ca values (either
experimental or numerical) may be necessary.

In order to find out the value of Q that must be imposed in the
simulation for a given Ca, we first define it as74

Ca ¼ Dpvisc
Dpcap

¼ DPWh=L
2c=�r

; (9)

where Dpvisc ¼ DPWh=L and Dpcap ¼ 2c=�r are, respectively, the aver-
age viscous and capillary pressure drops across a pore. Here, DPW is
the total viscous pressure drop across the network when it is
completely filled with the wetting fluid and �r is the average link radius.
We then first solve the viscous pressure drop DPvisc;1 for a test flow
rate Q1 for the network saturated with wetting fluid, and then deter-
mine the flow rate Q by using

Q ¼ 2cL
h�r

Q1

DPvisc;1
Ca: (10)

This is because Q / DPW for single-phase flow. The simulation is
then performed with qi ¼ Q=NI for all the virtual inlet links.

We have considered a network of dimension 32� 160 links in
this study, and this is based on the maximum computational time we

could spend reasonably. We had to make additional sweeps through
the entire network at every time step to compute the volume density,
the growth density, and the local pressure drops, which we will discuss
later. This made the simulations considerably more time-consuming
compared to usual pore-network simulations with the same model.
Furthermore, in the analyses, we discarded the regions of the network
that are distant from the inlet and the outlet by less than NW rows, as
shown by the red lines in Fig. 1, in order to avoid any boundary effect.
In Table I, we show the numbers of different realizations of the net-
work considered for different values of M and Ca. All the measured
quantities in different plots in this article are averaged over these many
samples. The surface tension between the fluids was chosen to
c ¼ 0:03N=m. Two viscosity ratios, M ¼ ln=lw ¼ 10�4 with ln ¼
10�5Pas and lw ¼ 10�1Pas, and M ¼ 10�5 with ln ¼ 10�5Pas and
lw ¼ 1Pas, were considered. A typical set of simulations for different
capillary numbers and viscosity ratios are shown in Fig. 3, where the
black and blue colors represent the wetting and non-wetting fluids,
respectively. The direction of the overall flow in these images is from
the bottom to the top as indicated by the arrow. The two red lines indi-
cate the aforementioned regions near the inlets and the outlets that are
not taken into account in the analyses. The gray shades indicate the
average volume density, which we describe in the following.

TABLE I. Number of samples simulated for different values of Ca and M. The values of M are 10�4 and 10�5, whereas the values of Ca are in the range 0.01–0.9. All the mea-
sured quantities are statistically averaged over these many samples for the respective values of Ca and M.

Ca 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

M ¼ 10�4 57 79 93 105 112 117 123 125 125 125 121 105 98 90 84 81 76 73
M ¼ 10�5 30 49 56 66 71 74 81 81 82 81 80 65 62 57 54 51 46 45

FIG. 3. Drainage fingers generated for viscosity ratio M ¼ 10�4, and for different values of Ca. The blue and black colors, respectively, denote the invading non-wetting and
the defending wetting fluids. The inlets are at the bottom edge of the networks, and the overall flow direction is toward the top. The gray shade indicates the non-wetting volume
density ~rðx; zÞ, averaged over time and samples in the moving coordinate system.
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A. Longitudinal profiles of volume density and
volumetric growth rate

The volume density of the fingers represents a statistical map of
the occupation of the two-dimensional network space by the invading
non-wetting fluid. This provides a statistical shape of the displacement
structure, which is comparable with the smooth continuum-medium
fingers.12 The density maps are functions of the distance from the
most advanced fingertip, z, as the displacement process can be consid-
ered statistically stationary in an (x, z) reference frame attached to that
tip (see Fig. 1), as previously shown for experimental drainage fin-
gers,10,53 as well as for DLA fingers.29,54 With respect to this dynamic
(x, z) reference frame, we define the volume density ~rðx; zÞ as

~rðx; zÞ ¼ 1
h2nðx; zÞ

Xnðx;zÞ
k¼1

Vkðx; zÞ; (11)

which is essentially the volume of injected fluid per unit area at a given
position in the (x, z) reference plane, averaged over time, Vkðx; zÞ being
the non-wetting volume in the link positioned at position (x, z) at time
step k. Here, we point out that the lowest unit of resolution for our mea-
surements is one single link, which means that we have only one data
point within an area of h2. Furthermore, as the available window of the
network for the measurements varies with time, the number of elements
within the summation is different for different links. This is accounted
by n(x, z) in the above expression, which is the number of times the vol-
ume in the link at (x, z) is added in the summation. This also means
that the data near the fingertip contain better statistical averages com-
pared to those far behind the tip. The map is then further averaged over
a number of different samples of the network as indicated in Table I to
obtain statistically averaged ~rðx; zÞ map. In Fig. 3, we show the spatial
distribution of ~rðx; zÞ as gray-scale maps where the dark and light
shades correspond to the smallest and largest values, respectively. For an
observer sitting at the origin of the moving coordinate system, this vol-
ume profile of the finger will remain the same statistically during the
invasion of the fingers in an infinitely long network, and only the length
of the profile will increase in the z direction.

We next measure the volumetric growth rate ~�ðx; zÞ of the invad-
ing fingers, which is defined as the average increase in the volume of
the finger per unit time and unit area at (x, z),

~�ðx; zÞ ¼ 1
h2nðx; zÞ

Xnðx;zÞ
k¼1

1
Dtk

Vkðx; zÞ � Vk�1ðx; zÞ½ �; (12)

where Dtk is the time interval between the time steps k and k – 1. Note
that ~�ðx; zÞ has the dimension of a velocity. By integrating ~�ðx; zÞ in
both x and z directions, we have

ðL
0

ðW
0
~�ðx; zÞdxdz ¼ Q (13)

as the total increase in the volume of the whole finger per unit time is
equal to the volumetric rate of the steady fluid injection into the sys-
tem. By normalizing ~�ðx; zÞ by Q, we then define the growth density as

~/ðx; zÞ ¼ 1
Q
~�ðx; zÞ: (14)

We assume that the system is statistically symmetric with respect
to the longitudinal mid-section (x ¼ w=2) of the flow cell, and we
define the quantities rðzÞ; �ðzÞ, and /ðzÞ in the longitudinal direction
as a function of the sole distance z from the tip, by integrating
~rðx; zÞ; ~�ðx; zÞ, and ~/ðx; zÞ in the x direction,

rðzÞ ¼
ðW
0

~rðx; zÞdx ;

�ðzÞ ¼
ðW
0
~�ðx; zÞdx ;

/ðzÞ ¼
ðW
0

~/ðx; zÞdx

(15)

from which we can also define /ðzÞ ¼ �ðzÞ=Q. In Fig. 4, we plot
h/ðzÞ as a function of the number of rows from the most advanced
tip, z/h, for different values of Ca and M. Near the fingertips, the data
show an exponential-type decay of /ðzÞ. This is indicated by the solid
line where we plot a model function B exp � z

hn

� �
with n ¼ 4:6 and

B¼ 0.18. Here, n is a characteristic decay length or screening length,
which characterizes the active invasion zone. The value of n appears to
be the same for the whole range of capillary numbers and viscosity
ratios, showing that it is a characteristic of the porous medium, which

FIG. 4. Plot of the dimensionless growth density h/ðzÞ as a function of the row numbers from the tip, z/h, for the viscosity ratios (a) M ¼ 10�4 and (b) M ¼ 10�5. The different
sets in each plot correspond to different values of Ca indicated in the legend of both plots. The solid line corresponds to the model function B exp � z

hn

� �
with n ¼ 4:6 and

B¼ 0.18, for both plots. The inset shows a linear-logarithmic plot of the same data where the dashed line has a slope of �1=n and intercept of ln B.
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was also observed in the drainage experiments Hele–Shaw cell filled
with a monolayer of glass beads.10 The same data are plotted in a
linear-logarithmic scale in the insets, which show that the exponen-
tial decay is valid for z < W=2 for lower capillary numbers,
whereas the validity increases up to z<W at high capillary num-
bers. This is indicated by the linear dashed line, which has a slope
�1=n and intercept ln ðBÞ. This characteristic is also in agreement
with experiments,10 which showed similar exponential decay of fin-
ger growth within the same range from the tip. Away from the tip,
/ðzÞ is negligibly small as seen from the scattered data points in the
insets, which means that the active growth of the fingers happens
near the fingertip, whereas they are almost frozen far behind the
tip.

Note that rðzÞ and /ðzÞ are related to each other. Indeed, let
us now examine the displacement process in the referential ðx;~zÞ
attached to the inlet boundary of the network, with ~z and z related
to each other according to z ¼ ~z tipðtÞ � ~z ¼ vtipt � ~z , where vtip is
the velocity of the most advanced tip of the non-wetting fluid phase
and ~z tipðtÞ is its position along ~z . That velocity is constant in time,
as shown in Fig. 5, where ~z tip is plotted as a function of the time
normalize by the time t scaled by tf, where tf is the time at which
the tip reaches the outlet boundary of the porous network. At any
time t, the volume of non-wetting fluid in a slice of the network
normal to the mean flow direction and located between ~z and
~z þ D~z is r̂ð~z ; tÞD~z , with D~z ¼ Dz. It results from the cumulative
growth of the fingers between the time t0 ¼ ~z=vtip at which the
most advanced tip first arrived at ~z and t, and can thus be expressed
as

r̂ð~z ; tÞDz ¼ Dz
ðt
~z=vtip

�̂ð~z ; uÞdu: (16)

The steady volumetric density defined above in the (x, z) reference
frame, rðzÞ, is related to r̂ð~z ; tÞ through the following relation:

8t rðzÞ ¼ r̂ vtipt � z; tð Þ: (17)

A similar expression relates the volumetric growth rate expressed in
the moving reference frame, �ðzÞ, and that expressed in the laboratory
frame, �̂ð~z ; tÞ. Hence,

8t rðzÞDz ¼ Dz
ðt
t0

�̂ vtipt
0 � z; t0

� �
dt0;

i:e:; rðzÞDz ¼ Dz
ðz
0
�ðz0Þ dz

0

vtip
;

i:e:; rðzÞDz ¼ QDz
vtip

ðz
0
/ðz0Þdz0:

(18)

Defining the cumulative growth density in the z direction as UðzÞ
¼ Ð z

0 /ðz0Þdz0 and rc ¼ Q=vtip leads to

UðzÞ ¼ rðzÞ
rc

; (19)

which relates the volume density with the cumulative growth density.
To verify this functional form, the tip velocity is first measured

from the slopes as the straight lines in Fig. 5 multiplied by tf. We then
plot rðzÞ scaled by rc, for different values of Ca andM (Fig. 6). Notice
that, though rðzÞ is a function of the capillary numbers as shown in
the insets, all rðzÞ=rc plots collapse on a single master curve for differ-
ent values of Ca. With Eq. (19), it therefore implies that there is one
unique cumulative growth density UðzÞ, independent of Ca. We there-
fore calculate the average cumulative growth density UðzÞ from the
data in Fig. 4 and plot it in Fig. 6 as a solid black line. The line shows
an excellent agreement with the rðzÞ=rc plots, as expected from Eq.
(19). Such a growth property of the front is characteristic of the
viscous-dominated regime, or of a regime where viscous forces com-
pete with capillary forces, and therefore will not be observed in the
pure capillary fingering regime where the invasion is completely con-
trolled by the disorder in the capillary thresholds.

B. The “continuum” shape

The average volume densities of the fractal fingers can be used to
compare their shapes statistically with the smooth shapes of
continuum-medium fingers, as well as with the shapes of DLA. By
mapping the volume density function rðzÞ to the Saffman–Taylor
equation [Eq. (1)] for continuum viscous fingers, one can calculate the
width ratio k and use that to compare the statistical shape profile of
different fingers. Before presenting the detailed measurements of k, we
show a quick comparison in Fig. 7 where only the part of the network

FIG. 5. Plot of the position of the most advanced fingertip, ~z tip, as a function of the scaled time t=tf , where tf is the time when the most advanced fingertip reaches the final posi-
tion in the simulation. The two plots correspond to the viscosity ratios (a) M ¼ 10�4 and (b) M ¼ 10�5; the different symbols correspond to the different values of Ca indicated
in the plot legends.
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with volume density ~rðx; zÞ � rmax=2 are shown. This region corre-
sponds to the porous media with large invasion54,55,76 and is compara-
ble to the Saffman–Taylor equation. For the viscous fingers in the
continuum Hele–Shaw cell without any porous structure, the width
ratio k in Eq. (1) has a value of 0.5 in the limit of negligible surface ten-
sion, and it increases with the increase in surface tension.21,77 For
experiments with porous Hele–Shaw cells on the other hand, k was
found to be around 0.4,10,53 whereas for off-lattice DLAs, k was found

to be around 0.62 for linear channels.55,75 The solutions of Eq. (1) for
these three values are shown in Fig. 7, where the green, yellow, and
blue lines correspond to k ¼ 0:4, 0.5, and 0.62, respectively. The lines
show deviations from the gray-scale region, and the deviations also
depend on Ca. We also show the solutions of Eq. (1) for these three
values of k in Fig. 6 by the dashed lines, which again show some devia-
tions from the results for the drainage fingers here.

In order to measure the value of the width parameter k, we mea-
sure a transverse volume density qðxÞ in a region where the growth is
almost frozen, that is, far behind the most advanced fingertip. If Lf is
the length of this frozen zone in the z direction, then one has

ðW
0

ðWþLf

W
~rðx; yÞdzdx ¼ rcLf (20)

as Lf increases with the same velocity vtip. We therefore define qðxÞ as

qðxÞ ¼ W
rcLf

ðWþLf

W
~rðx; zÞdz (21)

with
ÐW
0 qðxÞdx ¼ W. In Figs. 8(a) and 8(b), we plot qðxÞ as a func-

tion of the scaled transverse position x/W for the two different viscos-
ity ratios. The datasets show a maximum at the middle and then
decrease on both sides. This is an expected behavior, similar to what is
observed for DLA55 and for the experiments of viscous fingers in
porous media.10,53 However, the plots drift with Ca, indicating a varia-
tion of k with Ca. From these data, the width ratio k can be estimated
in two ways: either from (A) k ¼ ðxþ � x�Þ=W, where qðxþÞ ¼
qðx�Þ ¼ kmax=2 or alternatively from (B) k ¼ 1=qmax.

54,76 The two
measurements are shown in Fig. 8(c), where k seems to vary systemati-
cally with Ca. Interestingly, the lowest value here is at � 0:5, which is
the solution for the continuum Saffman–Taylor fingers for negligible
surface tension limit.12 Higher values of k were found for increasing
surface tension for the continuum fingers.21,77,78 The value of k � 0:62
for DLAs in linear channels55,75 coincides with some of the data points
here; however, the two-phase flow experiments in porous Hele–Shaw
cells showed a much lower value of k � 0:4.10,53 Note however that in
contrast to the present system, the capillary threshold distribution was

FIG. 6. Plot of the scaled longitudinal volume density rðzÞ=rc as a function of the row numbers z/h behind the most advanced fingertip. The two figures correspond to the vis-
cosity ratios (a) M ¼ 10�4 and (b) M ¼ 10�5, and the different data sets correspond to simulations with different injection rates Q, and thus to different capillary numbers Ca.
The values of Ca are indicated in the figure legends. The average cumulative growth density UðzÞ is plotted as solid black line, which shows the agreement with Eq. (19). The
black, blue, and red dashed lines are plotted using Eq. (1) with k ¼ 0:4, 0.5, and 0.62, which correspond to the experimental observation for porous Hele–Shaw cell,10,53 the
DLA,55,75 and the Saffman–Taylor solution for low surface tension limit,12 respectively. The insets show the variations of unscaled rðzÞ for different values of Ca.

FIG. 7. Volume density maps thresholded with ~rðx; zÞ � ~rmax=2 for M ¼ 10�4

and for Ca ¼ 0:04, 0.08, and 0.1, as indicated below the figures. The gray shades
correspond to the same density map as shown in Fig. 3 for the respective values of
Ca, but now only the links preserved by the cutoff are shown. The green, yellow,
and blue lines are drawn using the Saffman–Taylor equation [Eq. (1)] with k ¼ 0:4,
0.5 and 0.62, which correspond to the experimental observation for porous Hele–
Shaw cell, the continuum-medium Saffman–Taylor finger and the DLA finger,
respectively.
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not uniform in these experiments, despite the fact that a uniform dis-
tribution was assumed for some of the interpretations. Here, for our
system, k increases up to a much higher value of around 0.8. Such val-
ues are similar to the fingers in divergent cells, which are linear cells
with an angular wedge at the inlet, a geometry that is in between the
linear and circular geometries.79 There, k was found to increase when
increasing the angle of the wedge, for example, 0.77–0.82 for a wedge
angle of 90�.29,55 Note that, in our simulations, we inject fluid only
through a few of the nodes at the center of the network’s inlet bound-
ary, and all other nodes on the two sides of these injection nodes are
blocked, see Fig. 1. This may have a wedge effect on the value of k, sim-
ilar to the divergent inlets. However, the fact that here k shows a mini-
mum at an intermediate Ca and increases on both sides indicates that
there is a combined effect of surface tension and inlet geometry, and it
therefore needs further in-depth study. We leave this for the future, as
our main focus here is to explore the effect of disorder on the relation-
ship between the growth and pressure drop.

C. Growth rate vs local pressure drop

The volumetric growth of the region occupied by the invading
fluid inside a pore depends on whether the viscous pressure drop
between the invading and defending fluids is able to overcome the
capillary barrier inside the pore and thus to displace the interface
between the two fluids. Assuming that the movement of the interfaces
follows Eq. (6), a theoretical methodology was suggested in Refs. 10
and 53 to find the relationship between the growth rate and the local
pressure drop across the fluid–fluid interface by integrating over the
distribution of the capillary barriers. We follow their approach in the
following and modify it to adapt our system. If P0 is the threshold pres-
sure required to invade a link and gðP0Þ is the normalized distribution
of the thresholds over the network, we may integrate over gðP0Þ to
obtain the growth rate

~�ðx; zÞ ¼ 1
h2

ð
qðx; zÞgðP0ÞdP0

¼ j
h2

ð
ðDpðx; zÞ � P0ÞHðDpðx; zÞ � P0ÞgðP0ÞdP0 ; (22)

where Dpðx; zÞ is the pressure drop between the invading and defend-
ing fluids inside a link i at (x, z) and q(x, z) is the corresponding flow
rate of the fluids in that link. Here, we consider j ¼ �k=lw, where �k is

the average mobility of the pores and lw is the viscosity of the high-
viscosity defending fluid. A pore will be invaded only when
Dpðx; zÞ > P0, hence the Heaviside functionHðDpðx; zÞ � P0Þ.

If we consider P0 to be uniformly distributed between Pt and Pm,
in the form

gðP0Þ ¼ 1
G
HðP0 � PtÞHðPm � P0Þ; (23)

where G ¼ Pm � Pt, then Eq. (22) becomes

~�ðx; zÞ ¼ j
h2G

ðPm
Pt

ðDp� P0ÞHðDp� P0ÞdP0; (24)

where Dp 	 Dpðx; zÞ. If the viscous pressure drop exceeds the capil-
lary threshold for all pores, i.e., if Dpðx; zÞ > Pm, then Eq. (24) reduces
to

~�ðx; zÞ ¼ j
h2G

ðPm
Pt

ðDp� P0ÞdP0

¼ j
2h2ðPm � PtÞ � Dp� P0� �2h iPm

Pt
;

~�ðx; zÞ ¼ j
h2

Dp� Pm þ Pt
2

� �
:

(25)

The growth rate in this regime then varies linearly with the excess
pressure drop with respect to the mean capillary threshold
ðPm þ PtÞ=2.

For Dpðx; zÞ < Pt on the other hand, Eq. (24) reduces to

~�ðx; zÞ ¼ j
h2G

ðDp
Pt

ðDp� P0ÞdP0;

~�ðx; zÞ ¼ j
2h2

Dp� Ptð Þ2
Pm � Pt

/ Dp� Ptð Þ2 :
(26)

The growth rate thus varies quadratically with ½Dpðx; zÞ � Pt�. This
regime corresponds to moderate capillary numbers where the pressure
drop Dpðx; zÞ competes with the capillary thresholds, and the number
of invaded pores thus increases with an increase in Dpðx; zÞ.

If we further assume that Dpðx; zÞ is a function of z only, we may
average Dpðx; zÞ over x, which yields

�ðzÞ 
 DPðzÞ � Ptð Þ2; (27)

FIG. 8. Plots of the average transverse volume density profile qðxÞ as a function of the transverse normalized coordinate x/W are shown for (a) M ¼ 10�4 and (b) M ¼ 10�5.
The different symbols show the results for different values of Ca, and the solid line shows the profile averaged over all datasets. The values of k measured using the two differ-
ent methods, (A) k ¼ 1=qmax and (B) k ¼ ðxþ � x�Þ=W , where qðxþÞ ¼ qðx�Þ ¼ kmax=2, are shown in (c) as a function of the capillary number.
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where DPðzÞ ¼ hDpðx; zÞix . Hence, in this regime, the average growth
rate �ðzÞ depends quadratically on the excess pressure drop at z,
½DPðzÞ � Pt�. Such a quadratic relationship between excess pressure
drop and flow rate was also suggested for steady-state two-phase flow
in porous media by mean-field calculations44 and observed by numeri-
cal simulations.40,44,48

Note however that the threshold distribution function gðPtÞ con-
sidered in the above derivation was assumed to be uniform. In our pore
network, it is a more complex function, which is not straightforward to
determine. It not only depends on the pore properties such as the size
distribution50 and the pore wettabilities51,52 but also on the structure of
the finger itself, that is, the distribution of the number of fingertips at
any z. We therefore may assume a generalization of Eq. (27),

�ðzÞ 
 DPðzÞ � Ptð Þb; (28)

where b is an exponent of non-linearity. As mentioned in the
Introduction, such non-linear relationships with b > 1 have been
widely observed for steady-state flow in a certain regime of capillary
numbers.35–48

In order to examine the form of Eq. (28), we need to measure two
quantities: (a) the average pressure difference between the defending
and invading fluids, DPðzÞ, as a function of z, and (b) the threshold
pressure Pt. At every time step, we obtain the pressures at the nodes of
the network from the conjugate-gradient solver by solving Eqs. (6) and
(5). An example is shown in Fig. 9, where the pressure values are indi-
cated by different colors. Notice that the nodes connected by the
invading non-wetting low-viscosity fluid (blue links) are at much
higher pressures than those that are connected with the defending wet-
ting fluid. The conjugate-gradient solver does not distinguish between
the wetting and non-wetting pressures; we therefore identify, at every
time step, the links filled with invading fluid as those with a non-
wetting saturation larger than a threshold value (si > 0:98), and the

nodes that are connected to them are marked as the non-wetting
nodes. The rest of the nodes are then marked as the wetting nodes. We
then measure the average excess wetting and non-wetting pressures as
a function of the distance z from the most advanced fingertip as

PwðzÞ ¼ 1
nwðzÞ

XnwðzÞ
k¼1

pkðzÞ � P0;

and PnðzÞ ¼ 1
nnðzÞ

XnnðzÞ
k¼1

pkðzÞ � P0 ;

(29)

where nwðzÞ and nnðzÞ are the number of wetting and non-wetting
nodes at z, and P0 is the average wetting pressure at the most advanced
fingertip, z¼ 0. The pressure drop DPðzÞ between the wetting and
non-wetting fluids at z is then calculated as

DPðzÞ ¼ PnðzÞ � PwðzÞ; (30)

which is then averaged over different time steps during the propaga-
tion of the fingers, and over different samples.

In Fig. 10, PnðzÞ; PwðzÞ, and DPðzÞ are plotted as functions of
the row distance z/h from the fingertip for different values of Ca and
M. We can notice a few things here. First, the wetting pressure Pw
shows a sharp variation with z, whereas the non-wetting pressure Pn
does not show any noticeable variation. This is because of the low vis-
cosity of the invading fluid compared to the defending fluid. Second,
the pressure drop DPðzÞ starts from a high value at z¼ 0, then falls
rapidly within a distance z < W=2 and almost goes to a plateau. This
behavior is similar to the growth density /ðzÞ in Fig. 4, which showed
a rapid exponential fall within a similar distance, indicating that the
growth /ðzÞ is directly related to DPðzÞ. Furthermore, we note that
the plateau regimes of DP far behind the tip have finite values instead
of zero. This however is the stagnant zone, where the fingers do not
show any visible growth and /ðzÞ is essentially zero as seen in Fig. 4.
Therefore, in this regime, the capillary barriers compete with the vis-
cous pressure drop and prevent the interfaces from moving. The pla-
teau value thus corresponds to the threshold pressure Pt in Eq. (28),
below which there is no growth. We can therefore measure Pt from
this plateau regime, by taking the average of DPðzÞ over its farthest
data points. However, if we look carefully at the plots, we notice that
not all data sets at the plateau exhibit a perfectly constant behavior,
some of them are still decreasing slowly and therefore would need a
much larger system to saturate. We therefore estimate the threshold
pressure Pt in one more way where we minimize the least-square fit
error for Eq. (28). We try a set of trial values for Pt around the plateau
of DPðzÞ and then choose the one that provides the lowest least-square
error for the straight-line fit for log ½�ðzÞ� vs log ½DPðzÞ � Pt�. These
estimated values of Pt are shown in Fig. 11 with blue triangles, where
we also compare them with themeasured values of Pt, which are calcu-
lated as the average of DP over the farthest 20% rows from the finger-
tip. Notice that the values of Pt from these two different calculations
are very close to each other for the whole range of the capillary num-
bers. Furthermore, Pt does not seem to depend on the viscosity ratio
M, which confirms that the threshold is a quantity controlled solely by
the capillary barriers, which are functions of the interfacial tension
between the two fluids.

Finally, we now set out to verify the agreement with Eq. (28) and
determine the exponent b. In Fig. 12, we plot the growth rate �ðzÞ as a

FIG. 9. Node pressures (pj) obtained from conjugate-gradient solver, normalized by
the maximum pressure pmax at that time step, shown by colors for a network of
32� 96 links. The color scale shows the normalized pressure values, where the
darkest red corresponds to pj¼ 0 and the lightest yellow corresponds to the highest
pressure. Here, Ca ¼ 0:05 and M ¼ 10�5. The injected fluid is colored blue. The
box at the top right shows a close view of a small slice of the network. Notice that
the nodes belonging to the low-viscosity finger are at much higher pressures than
those belonging to the defending fluid.
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function of the excess local pressure drop ½DPðzÞ � Pt� in log scale,
where we use the values of Pt estimated from Fig. 11. The plots show a
linear trend over one to three decades, depending on the capillary
number, for the entire range of capillary numbers, with a linear range
of the log–log plot that is all the larger as Ca is larger. The power-law
exponents vary systematically with Ca within a range of 1–3 as shown
by the blue and red straight lines in the plots. However, at very small
values of the pressure drops, the data are noisy and deviate from the
linearity, which corresponds to the gray symbols in the plots. This cor-
responds to the zone far behind the fingertip, where the DPðzÞ is very
close to Pt and the growth structure is almost frozen. As mentioned
before, the statistical averaging becomes poorer as we move away from

the fingertip, which therefore adds to the statistical noise in that region.
We have therefore disregarded these points when fitting power laws to
the data, and only rely on the points shown as colored symbols in the
plots. The exponent b is thus measured from least-square fitting a
power law to the colored data points. In Fig. 13, we plot the depen-
dence of b on Ca for the two viscosity ratios, which exhibit a very simi-
lar trend, i.e., two plateaus for Ca�10�1:3 and Ca� 10�0:2, and a
crossover in between them. On the lower capillary number plateau, the
values fluctuate within a range of� 2:5–3.0. It then undergoes a cross-
over with the increase in Ca and then approaches another plateau
toward 1. This is very similar to the rheological behavior of the widely
studied steady-state flow, where the total two-phase flow rate varies

FIG. 10. Plots of the non-wetting pressure PnðzÞ, the non-wetting pressures PwðzÞ, and the pressure drop DPðzÞ, obtained using Eqs. (29) and (30), as a function of the dis-
tance from the most advanced fingertip z/h, for different capillary numbers. The top row corresponds to M ¼ 10�4 and the bottom row to M ¼ 10�5.

FIG. 11. Dependence of the threshold pressures Pt on the capillary numbers Ca for the two different viscosity ratios (M), (a) 10
�4 and (b) 10�5. The measured values of Pt rep-

resented by the red circles are obtained by taking the averages of DPðzÞ for z=h > 76, i.e., over the last 20% of the data points on the plateau of DPðzÞ in Fig. 10. The esti-
mated values of Pt represented by the blue triangles are obtained by minimizing the least-square fit error of Eq. (28).
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non-linearly with the excess pressure drop at low capillary numbers,
and then undergoes a crossover to a linear Darcy regime at high Ca.35–
43 The origin of that non-linearity and the linear crossover has been
well explained in terms of the pore-scale disorders in the capillary pres-
sures,44,47 radii distribution,50 and wettabilities.51,52 Though the values
of the steady-state non-linear exponent have been reported to differ
for different systems, the range of them was similar to what we find
here in Fig. 13.

IV. DISCUSSION AND CONCLUSIONS

We have addressed in this article how the growth rate of fingers
during immiscible two-phase flow (drainage) in porous media depends
on the local viscous pressure drops between the two fluids. In other
words, we revisited the comparison of immiscible viscous fingers with
Saffman–Taylor viscous fingering and DLA, for which a linear
Laplacian growth is assumed. We considered pore networks with a

regular geometry but with disorder in the pore/channel widths, and
focused on the intermediate to higher capillary numbers, which
include the intermediate regime between capillary and viscous fingers
and the regime of pure viscous fingering. First, we looked into the geo-
metrical properties of the drainage fingers and compared their statisti-
cal shape in the reference frame of the advancing finger to the smooth
Saffman–Taylor fingers that develop in the continuum scale descrip-
tion of two-phase flow in porous media. Saffman and Taylor men-
tioned that viscous fingering in an empty Hele–Shaw cell without any
porous structure is equivalent to what should be expected in a porous
medium.12 Though this is true for single-phase flow, it is not necessar-
ily true for two-phase flow, except perhaps if the porous medium is a
regular lattice (no disorder), because the continuum description can-
not account for the role of surface tension in a disordered porous
medium. Indeed, in an empty Hele–Shaw cell, the fluid–fluid interface
is continuous, and the long-range in-plane component of its curvature
induces long-range forces, whereas in a porous medium, the interface
is broken up into many small menisci, and surface tension acts at the
scale of these menisci, which is the pore scale. The in-plane component
of the curvature is then much larger, and, furthermore, stochasticity in
the pore sizes plays an important role in shaping the displacement pro-
cess by inducing a stochasticity in the capillary pressure thresholds.

We thus measured the statistical longitudinal volumetric density
and growth rate profiles of the fractal drainage fingers in the dynamic
reference frame attached to the most advanced fingertip, and com-
pared them with the properties of smooth Saffman–Taylor fingers and
of DLA growth structures. The width ratio with respect to the
medium’s width, k, of the fingers’ statistical density map, was found to
approach the 0.5 Saffman–Taylor value at intermediate capillary num-
bers Ca, and then increase to around 0.8 when either increasing or
decreasing the capillary numbers from that intermediate Ca range.
The corresponding longitudinal volumetric density and growth rate
profiles behave accordingly. For Saffman–Taylor fingers in
continuum-medium, k was observed to increase with the increase in
surface tension,21,77,78 and it also increases with the angle of inlet
wedge for systems with divergent wedges.29,55 In the case of our pre-
sent system, it may be due to a combined effect of these two and needs
further study.

FIG. 12. Plot of the local excess pressure drop log10½DðPðzÞ � Pt� between the invading and defending fluids as a function of the local growth rate of the finger, log10½�ðzÞ�,
for the viscosity ratios (a) M ¼ 10�4 and (b) M ¼ 10�5. Different sets correspond to different values of Ca as indicated by the symbols. The exponent b defined in Eq. (28) is
calculated from the slopes. The slopes are calculated only for the range plotted with colored symbols, as the growth far behind the fingertip is almost frozen and leads to noisy
data points as shown by the gray symbols. The blue and red straight lines are drawn with slopes 1 and 3.

FIG. 13. Dependence of the growth exponent b obtained from Fig. 12 on Ca. The
error bars are of order 0.07 toward the lower side of Ca, whereas they are 0.01 on
the higher side. They are too small compared to the scale of the plot, and therefore
not shown. The two types of symbols correspond to the two values of M as indi-
cated in the legend of the plot.
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The maximum growth happens at the most advanced fingertip
and decreases exponentially behind it. Far behind the tip, the growth is
almost frozen: the interfaces between the two fluids are held in place
by the capillary barriers and thus do not move. We show that this
growth behavior is directly correlated with the local pressure drop
between the two phases, and controlled by the distribution of the capil-
lary forces. By computing numerically an effective capillary threshold,
we show that there exists a regime at intermediate capillary numbers
where the linear Laplacian growth property does not hold as the local
growth rate varies non-linearly with the excess local pressure drop
across the interface (i.e., the excess between the local porous pressure
drop and the capillary pressure threshold), DP. This non-linear regime
of the growth of the invading finger is explained by accounting for the
disorder distribution in the capillary thresholds in a theoretical assess-
ment of the link between DP and the local growth rate. Indeed, when
DP falls within the range of the capillary pressure thresholds, increas-
ing the capillary number means that not only will the invasion velocity
increase linearly with DP, but the number of pores along the front that
are invaded at any time will also increase, thus rendering the growth
rate non-linear. For a uniform capillary threshold distribution, the
resulting growth law is expected to be quadratic. In our disorder pore
networks, that distribution is not uniform, and consequently, the non-
linear growth exponent b depends on the capillary number. The
numerical simulations provide a range of b values similar to that of the
rheology exponent previously reported for steady-state flow. In fact, it
transitions from a plateau at values as large as 2.5–3 at the smallest
investigated capillary numbers, to another plateau at 1 for the largest
investigated capillary numbers. This large capillary number limit of
b¼ 1 is to be expected, since it corresponds to configurations in which
DP is larger than the upper boundary of the medium’s capillary pres-
sure thresholds; in such configurations, our theoretical assessment pre-
dicts a crossover of the flow regime to the linear Laplacian growth.

This study opens many prospects for future studies. One of them
is the systematic investigation of the link between the capillary thresh-
old distribution of the porous medium and the non-linear growth
exponent b. Another one would be to study whether the values of b
are comparable for steady-state flow and the present viscous fingering
process in the same porous geometry. In order for the distribution of
the capillary barriers to only depend on the pore-network geometry,
the fluid–fluid interface must sample the entire barrier distribution at
any time; otherwise, the capillary barrier/capillary threshold distribu-
tion will also depend on the flow patterns, in a manner that may differ
between the steady-state flow and viscous fingering configurations.
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