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A B S T R A C T

In this paper we study the integrated planning problem of determining car-sharing prices between zones of the
operating area and routing employees (operators) to relocate cars in preparation for future uncertain demand.
We present a novel two-stage integer stochastic programming model for this problem together with a heuristic
algorithm, based on Adaptive Large Neighborhood Search (ALNS), to obtain solutions to realistically sized
instances. We test the ALNS heuristic on a set of instances generated based on data from a real car-sharing
organization and show that it outperforms a commercial solver.
1. Introduction

Car-sharing has experienced significant growth in recent years and
is expected to further increase in popularity (Schiller et al., 2017). Car-
sharing systems are typically divided into station-based and free-floating.
In station-based systems, cars must be picked up from and returned to
one of the available service stations. In free-floating systems, cars can
be returned to any common parking space within the operating area.
Both systems can be configured for either one-way rentals, where cars
can returned to a station/location different from the pick-up location,
or two-way rentals, where cars must be returned where they were
picked up.

One-way free-floating systems have gained popularity due to the
higher level of flexibility for the users. However, such configuration
makes the system vulnerable to geographical and temporal mismatches
between supply and demand. As a prime form of response, the car-
sharing organization (CSO) normally relocates cars to areas where
demand is high and away from areas where demand is low (Boldrini
et al., 2017). These rebalancing activities are performed by dedicated
staff, hence the name operator-based rebalancing. In the situation when
the fleet consists of electric cars – which has become very common in
recent years (Cheng et al., 2019) – an even more important task for the
employees is to ensure that cars with depleted batteries are driven to
charging stations.

Most CSOs today use pricing strategies that consist of a fixed per-
minute fee independent of time of the day, origin and destination
of the trip, or other factors. However, in many industries revenue
management practices help better utilize customers’ differences in their
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willingness to pay for a given service, and through that increase profits,
e.g., Klein et al. (2020). In car-sharing systems, this could translate
e.g., into time- or zone-dependent fees. In addition, such pricing strate-
gies may become instrumental in reducing the need for operator-based
relocations. For example, a CSO could set a low, or even negative, price
for trips originating in a zone where there is already an abundance of
cars and terminating to a zone where the demand exceeds supply, or to
a charging station if the battery level of the car is low. Synergies could
arise from jointly optimizing pricing and relocation decisions.

Therefore, in this paper we consider the operational planning prob-
lem faced by a CSO of jointly setting car-sharing prices and deciding
operator-based relocations to face future (uncertain) demand and max-
imize (expected) profits. Particularly, the pricing strategy we consider
consists of setting origin- and destination-specific prices in order to
favor (prevent) (un)favorable movements of cars. To account for uncer-
tainty in customer preferences with respect to the mode of transport, we
model this problem as a stochastic program and denote it as the Stochas-
tic Electric Vehicle Relocation and Pricing Problem (SE-VRePP). The main
contributions of this paper can be summarized as follows: (1) we pro-
pose a novel two-stage stochastic integer programming model for the
SE-VRePP which addresses pricing decisions as well as the relocation
activities, including detailed routing and scheduling of the operators’
(employees’) tasks; (2) we develop an Adaptive Large Neighborhood
Search (ALNS) heuristic for solving realistically-sized instances; (3) we
test the ALNS heuristic on a set of instances generated based on data
from Vybil, which is a real CSO operating in Oslo, Norway; and (4) we
analyze the effect of jointly planning pricing and relocation decisions
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through simulations offering managerial insights. As further explained
in Section 2, the literature on joint pricing and relocation decisions is
sparse and this study extends it in a number of ways.

The outline of the remainder of this paper is as follows. Section 2
presents a review of the relevant literature, while Section 3 gives a
detailed description of the SE-VRePP and formulates it as a two-stage
stochastic programming model. Section 4 outlines the heuristic solution
algorithm. Finally, the computational study is presented in Section 5,
before we draw some concluding remarks in Section 6.

2. Summary of the available literature

Operator-based rebalancing of cars is one of the main challenges
for CSOs. To address this challenge, the scientific literature has grown
substantially since the onset of car-sharing services, providing methods
for various configurations of the system. Examples are methods that
focus on addressing rental demand uncertainty using a variety of meth-
ods including prediction, (Hellem et al., 2021; Weikl & Bogenberger,
2013), machine learning, and data driven optimization or stochastic
programming (Brandstätter et al., 2017; Fan, 2013; Huo et al., 2020;
Li et al., 2019; Santoso et al., 2005). Particular attention has also been
paid to the growing adoption of electric fleets, see e.g., Boyacı et al.
(2015, 2017), Bruglieri et al. (2014), Folkestad et al. (2019), Hellem
et al. (2021), Xu and Meng (2019). The surveys in Golalikhani et al.
(2021), Illgen and Höck (2019), Wu and Xu (2022) provide thorough
analyses of the available models and methods.

Operator-based rebalancing is, however, inherently inefficient and
expensive in the large scale, especially if performed while the system
in being used most (e.g., during day hours). For this reason, pricing-
based mechanisms to balance demand and supply at the geographical
and temporal level have been proposed. The central concept of such
method is to make more attractive certain movements of cars that are,
for various reasons, considered beneficial by the CSO.

The research literature on pricing method is also growing consider-
ably. A classification of the literature is proposed by Pantuso (2022),
who divide the proposed pricing strategies in individual and collective.
ndividual pricing strategies require an interaction between the CSO
nd the individual user by means of which the trip details (including
rice) are agreed upon. As an example, the CSO may offer a specific
ser a reward in exchange for returning the car to a more favorable
osition. Further examples of individual pricing strategies can be found,
.g., in Wagner et al. (2015), Waserhole and Jost (2016), Di Febbraro
t al. (2018),Stokkink and Geroliminis (2021), Liu et al. (2021), Wu
t al. (2021), Wang et al. (2021) and Wang and Ma (2019). Collective
ricing strategies are instead targeted to the entire user base and aim
o influence the rental demand by means of prices. As an example, the
SO may decrease the price of rentals to/from selected zones. Further
xamples of collective pricing strategies can be found, e.g., in Jorge
t al. (2015), Hansen and Pantuso (2018), Kamatani et al. (2019), Xu
t al. (2018), Xie et al. (2019), Ren et al. (2019), Lu et al. (2021),
ikuchi and Miwa (2021), Pantuso (2020), Li et al. (2022) and Pantuso
2022). It should be noted however, that the classification is not meant
o be precise as some methods could be classified equally well in both
ategories.

From the analysis of the research literature, it emerges that both
ricing and relocation decisions have received considerable attention in
he research literature, and method are available for various configura-
ions of the car-sharing service. Nevertheless, the gap that emerges from
he literature, is that pricing and relocation decisions have mainly been
onsidered as separate entities. We argue instead that since they may
e used to ease the balance between demand and supply, they should
e considered in the same decision process, and that the combination
f the two can reinforce the ability of the CSO to prevent imbalances.
ontributions in this direction, can be found in Xu et al. (2018), Li
t al. (2022) and Pantuso (2022). Xu et al. (2018) formulate the
2

oint pricing and relocation problem as a non-linear mixed-integer
rogramming problem in order to account for demand elasticity. We
how that the problem can be formulated using a linear mixed-integer
wo-stage stochastic programming problem by accounting directly for
ncertainty in individual customers preferences. Li et al. (2022) present
simulation–optimization framework to determine both the prices

etween car-sharing stations and the relocations to perform. However,
he optimization model does not explicitly determine the activities
f the operations, which are instead taken care of by the simulation
ramework. In this paper, we extend the recipe of Pantuso (2022),
hich model the joint problem of deciding car-sharing prices and relo-

ations by a two-stage stochastic program to account for the uncertainty
n customer’s preferences in terms of transport mode. However, in
ontrast to our work, rebalancing decisions are modeled at a rather high
evel of abstraction. Particularly, they model the number of relocations
o perform between zones without addressing how such movements
hould be performed in practice by operators (and even if these are
easible given the available staff). We fill this gap by adding to pricing
ecisions a more detailed model of operators activities. In addition,
e ensure that the expected number of cars with low battery levels

elocated to charging stations (either by employees or by customers)
xceeds a given threshold. This allows us to adjust prices also in such
way to incentivize recharging activities made by customers.

. Problem description and mathematical model

We formulate the SE-VRePP as a two-stage stochastic integer pro-
ram where prices and relocations are decided in the first decision
tage and rentals are decided in the second decision stage. We start
y describing the problem and introducing the mathematical nota-
ion in Section 3.1 before presenting the full mathematical model in
ection 3.2.

.1. Problem description and notation

We assume the CSO operates a homogeneous set  of electric
ehicles in a business area which is suitably partitioned in a set  of
ones. A subset 𝐶𝑆 ⊆  of the zones includes the zones containing
harging stations. The number of available charging spots in zone
∈ 𝐶𝑆 is given by 𝑁𝐶𝑆

𝑖 . Observe that the zones containing charging
tations can be used both for normal parking as well as for charging
ars.

In order to maximize expected profits for a given target period
e.g., two hours in the morning or afternoon), some time before the
eginning of the target period, the CSO makes decisions regarding the
rices applicable during the target period and how to relocate cars
ithin the business area in preparation for the target period.

At the time decisions are made, each car 𝑣 initially located in zone
(𝑣) ∈ . A subset of cars 𝐵 ⊂  contains the cars in need of charging.
e assume that, in order to ensure continuity of the service, at least
fraction 𝑁𝐵 of the cars in need of charging must be brought to a

harging station, either by operators or as a result of rentals.
In order to perform relocations and recharging activities, we assume

hat the CSO employs a homogeneous set  of operators with operator 𝑒
ocated in zone 𝑜(𝑒) at the time decisions are made. We assume operator
re possibly initially occupied in relocation tasks assigned to them
uring previous planning phases. The earliest start time employee 𝑒 is
vailable for performing a task is given by 𝑇 𝑆𝑂

𝑒 .
Each operator has a set  of abstract tasks used to keep track of the

equence of car moves to perform. The set of possible car-moves that
an be performed by operators for all cars is given by . We identify the
rigin and the destination of car-move 𝑟 by 𝑜(𝑟) and 𝑑(𝑟). An abstract
ask 𝑚 ∈  becomes concrete once it is assigned to a specific car-
ove 𝑟 ∈ . We also define the subset 𝑉

𝑣 of car-moves available for
ach car 𝑣 (observe, e.g., that for cars in need of charging 𝑉

𝑣 only
ncludes moves to charging stations), and the subset 𝑁

𝑖 for all car-
oves with destination zone 𝑖. 𝐶𝐷 ⊆ 𝑁 contains the set of car-moves
𝑖 𝑖
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with destination at charging zone 𝑖 (also referred to as charging moves).
t should be noted that cars in need of charging can only be moved to
charging zone (a zone with at least one charging station). This move

an be done by either an operator or a customer. Cars not in need of
harging can be moved to all zones, including charging zones. However,
ars not in need of charging will not occupy a charging station slot if
oved to a charging zone. Furthermore, we assume that a car is labeled

in need of charging’ if its battery level is below a certain threshold. At
his point, if the car is to be moved, it must be moved to a charging
one (a zone with at least one charging station), and further be put
o charging (either by an employee or a customer). This means that a
ar in need of charging is still available for a customer to rent, but the
ustomer must drive it to a charging station within a charging zone (and
he customer will be informed about it). For this to work, we assume
car in need of charging always has enough battery capacity to reach

ny available charging station in the operating area. Since cars may be
usy at the time of planning (e.g., due to ongoing relocations) we let
he first time point when a car is available for a car-move 𝑟 be 𝑇 𝑆𝐶

𝑟 .
Similar to Hellem et al. (2021) and others, we assume that the

operators can travel between car moves by using folding bicycles that
can fit into the trunk of the cars or by using public transport (whichever
is fastest). Therefore, we let 𝑇𝐻

𝑟 be the time necessary to complete car-
move 𝑟. This parameter includes the time it takes to get from the origin
to the destination zone of the car-move, in addition to the approximated
time it takes to find a parking spot or initiate charging. The time it takes
to travel between zones 𝑖 and 𝑗 is given by 𝑇𝑖𝑗 . Let also 𝐶𝑅 be the cost
per time unity of driving a car. The salary for the given set of employees
is assumed fixed and therefore not a part of the model. We let time 𝑇

1

epresent the time when the target period starts. This entails that all
elocation activities must be completed before 𝑇

1
.

We let binary variable 𝑧𝑖𝑣 take the value 1 if car 𝑣 is made available
o customers in zone 𝑖 at the beginning of the target period, 0 other-
ise, as a result of the operator-based relocations. Furthermore, binary
ariable 𝑥𝑒𝑟𝑚 takes the value 1 if operator 𝑒 performs car-move 𝑟 as
heir task number 𝑚, 0 otherwise. We also let non-negative variable 𝑡𝑒𝑚
epresent the time when operator 𝑒 starts performing task 𝑚.

In addition to relocation activities, by adjusting rental prices be-
ween the different zones of the operating area, the CSO can make
ertain cars and trips more (or less) attractive to customers. Particu-
arly, similarly to Pantuso (2020, 2022), we assume that the pricing
echanism is made of a per-minute fee independent of the origin

nd destination of the trip, and a pick-up/drop-off fee which instead
epends on the origin and destination zones of the trip. We assume the
SO can adopt a set  of pick-up/drop-off fee levels, with 𝐿𝑙 being the
ollar value of fee 𝑙. Consequently, we define binary variable 𝜆𝑖𝑗𝑙 to
ake value 1 if level 𝑙 is chosen between zone 𝑖 and 𝑗, 0 otherwise.

Once pricing and relocation decisions have been made, during the
arget period customers interact with the car-sharing service. We let 
e the set of all potential car-sharing customers. Particularly, this set
ncludes all the customers requiring transportation within the operating
rea, independently of the transportation mode. We define subsets 𝑖
nd 𝑖𝑗 containing the customers traveling from zone 𝑖, and from zone
to zone 𝑗, respectively.

Rental demand is, nevertheless, uncertain at the time of planning.
n fact, customers react to pricing decisions and choose their preferred
ode of transport in a way that is partially unknown to the decision
aker. Particularly, we assume each customer is characterized by
nique preferences, captured by a well-specified choice model (Bier-
aire & Sharif Azadeh, 2016). This entails that the random term of the
hoice model is a fully specified random variable. In line with Paneque
t al. (2021), Pantuso (2020, 2022), we assume that each customer
hooses the transport mode that maximizes their utility. Given a set
= {𝐶𝑆,…} of transport services (which includes car-sharing), the

tility received by customer 𝑘 when using transport service 𝑡 to move
rom its origin 𝑜(𝑘) to its destination 𝑑(𝑘) is given by

𝑘𝑡 = 𝐹𝑘

(

𝑝𝑜(𝑘),𝑑(𝑘),𝑡, 𝜋1,… , 𝜋𝑁

)

+ 𝜉𝑘𝑡
3

here 𝐹𝑘(⋅) is a function that describes the preferences of the customer
ith respect to the price 𝑝𝑜(𝑘),𝑑(𝑘),𝑡, and a number of additional char-
cteristics of the service 𝜋1,… , 𝜋𝑁 which we assume are exogenous
o the decision problem at hand. For car-sharing services, 𝑝𝑜(𝑘),𝑑(𝑘),𝑡 =
𝑀𝑇𝐷

𝑜(𝑘),𝑑(𝑘) +
∑

𝑙∈ 𝐿𝑙𝜆𝑜(𝑘),𝑑(𝑘),𝑙, where 𝑃𝑀 is the per-minute fee and
𝐷
𝑜(𝑘),𝑑(𝑘) is the driving time between 𝑜(𝑘) and 𝑑(𝑘). For other transport
ervices 𝑡, 𝑝𝑜(𝑘),𝑑(𝑘),𝑡 is a known parameter. The random variable 𝜉𝑘𝑡, with
̃ ∶= (𝜉𝑘𝑡)𝑘∈,𝑡∈ , captures the portion of the customer’s preferences
nknown to the CSO. Different specifications of a probability distri-
ution for 𝜉 lead to different choice models, see e.g., Train (2009).
e let  be a set of realizations (scenarios) of 𝜉, with 𝑃𝑠 being the

robability of scenario 𝑠, and 𝜉𝑠 the realization of 𝜉 under scenario 𝑠,
hat is 𝜉𝑠 ∶= (𝜉𝑘𝑡𝑠)𝑘∈,𝑡∈ .

Given a scenario 𝑠, the random element of the choice model 𝜉𝑠
aterializes, and the preferences of each customer with respect to the

ransport mode are fully known for that scenario. For each scenario
e initialize a set of customer requests, (𝜉𝑠). The set (𝜉𝑠) contains
request for each customer 𝑘 for which there exists at least one fee

evel 𝑙 in  for which the customer would prefer car-sharing over
ther transport alternative. That is, there exists at least one fee level
or which the customer finds their highest utility in using car-sharing.
Observe, thus, that the customers which would never prefer car-
haring regardless of the fee, are not in the set). More formally, there
xists one request for each customer 𝑘 for which

𝑘 ∶=
{

𝑙 ∈ |𝐹𝑘(𝑝𝑜(𝑘),𝑑(𝑘),𝐶𝑆 , 𝜋1,… , 𝜋𝑁 ) + 𝜉𝑘𝑡𝑠>𝑈𝑘𝑡∀𝑡 ∈  , 𝑡 ≠ 𝐶𝑆
}

≠ ∅

he origin, destination and customer of request 𝑑 ∈ (𝜉𝑠) are denoted
y 𝑖(𝑑), 𝑗(𝑑) and 𝑘(𝑑), respectively, and the highest fee level at which
ustomer 𝑘(𝑑) would prefer car-sharing to other transportation modes is
epresented by 𝑙(𝑑), that is 𝑙(𝑑) ∶= argmax𝑙∈𝑘(𝑑)

{𝐿𝑙}. We further create
ubsets 𝑖𝑗 (𝜉𝑠) ⊆ (𝜉𝑠), containing the requests going from zone 𝑖 to
one 𝑗, 𝐶𝐷(𝜉𝑠) ⊆ (𝜉𝑠) containing the requests with destination in a
harging zone, and 𝐶𝐷

𝑖 (𝜉𝑠) ⊆ 𝐶𝐷(𝜉𝑠) containing the requests going to
harging zone 𝑖 ∈ 𝐶𝑆 .

Most car-sharing services operate with a First-Come-First-Served
echanism (Wang & Liao, 2021). For this reason we let set 𝑑 (𝜉𝑠) =
𝑝 ∈ (𝜉𝑠) ∶ 𝑖(𝑝) = 𝑖(𝑑), 𝑘(𝑝) < 𝑘(𝑑)} ⊆ (𝜉𝑠) contain the requests that
ave precedence over request 𝑑, i.e., we simply assume that the index
f the customer indicates the arrival time at the vehicle. Finally, we let
𝑑 ⊆  be the subset of fees that are less than the highest fee level
cceptable for request 𝑑, 𝑙(𝑑) and 𝑅𝑑𝑙 be the profit of satisfying request
with fee level 𝑙 (i.e., the sum of the per-minute fee of the trip and the

ick-up and drop-off fees).
During the target period (second decision stage) cars are rented

y customers. We let binary variable 𝑦𝑣𝑑𝑙𝑠 take the value 1 if car 𝑣
atisfies request 𝑑 with the fee level 𝑙 in scenario 𝑠, 0 otherwise. Observe
hat 𝑦𝑣𝑑𝑙𝑠 are second-stage decision variables and are defined for each
cenario 𝑠.

All the notation is summarized in Appendix A.

.2. Model

In this section, we present the mathematical model for the SE-
RePP.

max 𝑧 = max−
∑

𝑒∈

∑

𝑟∈

∑

𝑚∈
𝐶𝑅𝑇𝐻

𝑟 𝑥𝑒𝑟𝑚 +
∑

𝑠∈
𝑃𝑠

(

∑

𝑑∈(𝜉𝑠)

∑

𝑣∈

∑

𝑙∈𝑑

𝑅𝑑𝑙𝑦𝑣𝑑𝑙𝑠

)

(1a)

The objective function (1a) represents the total expected profit for
he CSO. The first term represents the (deterministic) costs born to
erform operator-based relocations, while the second term represents
he expected revenue for the rentals occurred during the target period.

∑

𝜆𝑖𝑗𝑙 = 1, 𝑖, 𝑗 ∈  (1b)

𝑙∈
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1 −
∑

𝑒∈

∑

𝑟∈𝑉
𝑣

∑

𝑚∈
𝑥𝑒𝑟𝑚 =

∑

𝑖∈
𝑧𝑖𝑣, 𝑣 ∈ 𝐵 (1c)

∑

𝑒∈

∑

𝑟∈𝑁
𝑖 ∩𝑉

𝑣

∑

𝑚∈
𝑥𝑒𝑟𝑚 = 𝑧𝑖𝑣, 𝑖 ∈ ∖{𝑜(𝑣)}, 𝑣 ∈ ∖{𝐵} (1d)

1 −
∑

𝑒∈

∑

𝑟∈𝑉
𝑣

∑

𝑚∈
𝑥𝑒𝑟𝑚 = 𝑧𝑜(𝑣),𝑣, 𝑣 ∈  (1e)

∑

𝑖∈
𝑧𝑖𝑣 ≤ 1, 𝑣 ∈  (1f)

The constraints that handle the logic of the first decision stage are
as follows. Constraints (1b) ensure that exactly one fee is assigned
between each pair of zones. Constraints (1c)–(1f) handle the logic
concerning the availability of cars in each zone. Constraints (1c) state
that a car in need of charging is not available for rentals if any employee
has moved it to a charging station. Constraints (1d) ensure that if a car
is relocated to a given zone, it becomes available for rentals in that zone
during the target period. Constraints (1e) force a car to be available in
its original zone if it is not relocated and similarly unavailable in its
original zone if it is moved. Finally, Constraints (1f) make sure that a
car is available for rental in at most one zone.
∑

𝑟∈
𝑥𝑒,𝑟,(𝑚+1) ≤

∑

𝑟∈
𝑥𝑒𝑟𝑚, 𝑒 ∈ 𝐸,𝑚 ∈ ∖{||} (1g)

∑

𝑟∈
𝑥𝑒𝑟𝑚 ≤ 1, 𝑒 ∈  , 𝑚 ∈  (1h)

∑

𝑒∈

∑

𝑟∈𝑉
𝑣

∑

𝑚∈
𝑥𝑒𝑟𝑚 ≤ 1, 𝑣 ∈  (1i)

∑

𝑒∈

∑

𝑖∈𝐶𝑆

∑

𝑟∈𝐶𝐷
𝑖

∑

𝑚∈
𝑥𝑒𝑟𝑚 +

∑

𝑠∈
𝑃𝑠

(

∑

𝑣∈𝐵

∑

𝑑∈𝐶𝐷(𝜉𝑠)

∑

𝑙∈
𝑦𝑣𝑑𝑙𝑠

)

≥ 𝑁𝐵 ⋅ |𝐵
|

(1j)

Constraints (1g)–(1j) handle the logic concerning the relocation of
cars. Constraints (1g) ensure that the tasks assigned to the employees
are performed in the given order, that is task 𝑚 is performed before task
𝑚 + 1. Constraints (1h) state that any employee task can consist of at
most one car-move. Constraints (1i) ensure that each car is relocated at
most once. Finally, Constraint (1j) ensures that the expected number of
cars in need of charging that are moved to charging stations, either by
employees or customers, is higher than the defined threshold. Observe
that the number of cars moved by customers to charging stations is
influenced by the prices set to and from the charging stations, as it
will be more evident in the second-stage constraints. Furthermore, note
that this constraint ensures that the threshold is exceeded only on
expectation. It is therefore possible that, in some scenarios, there result
fewer cars plugged in than desired. However, in the long term, over
many repetitions, the Law of Large Numbers ensures that the number of
cars plugged in coincides with the expectation. It should be noted that
the parameter 𝑁𝐵 can be changed over the course of a day, i.e., from
one model run to another. This means for example that if the CSO
knows that they will need many cars in the near future, they can
increase 𝑁𝐵 and vice versa. In this way, our approach can easily be
adapted to the case for when we aim to have a given number of cars
available. As an example, suppose there are 30 cars in the fleet out of
which six cars are in need of charging, and we aim to have at least 27
cars (i.e., minimum 90% of the fleet should be sufficiently charged). In
this case we can set 𝑁𝐵 = 0.5, which will make sure that at least three
out of the six cars in need of charging will be moved to a charging
station, and we end up with the desired number of available cars of 27
(on average).

𝑡𝑒𝑚 + 𝑇𝐻
𝑟 ⋅ 𝑥𝑒𝑟𝑚 +

∑

𝑟1∈∖{𝑟}
𝑇𝑑(𝑟),𝑜(𝑟1)𝑥𝑒,𝑟1 ,(𝑚+1) −𝑀𝑟(1 − 𝑥𝑒𝑟𝑚) ≤ 𝑡𝑒,(𝑚+1),

𝑒 ∈  , 𝑟 ∈ , 𝑚 ∈ ∖{||} (1k)
4

𝜆

(𝑇 𝑆𝑂
𝑒 + 𝑇𝑜(𝑒),𝑜(𝑟)) ⋅ 𝑥𝑒𝑟1 ≤ 𝑡𝑒1, 𝑒 ∈  , 𝑟 ∈  (1l)

𝑇 𝑆𝐶
𝑟 𝑥𝑒𝑟𝑚 ≤ 𝑡𝑒𝑚, 𝑒 ∈  , 𝑟 ∈ , 𝑚 ∈  (1m)

𝑡𝑒||

+
∑

𝑟∈
𝑇𝐻
𝑟 𝑥𝑒𝑟||

≤ 𝑇
1
, 𝑒 ∈  (1n)

Constraints (1k)–(1n) handle the temporal aspects of the relocation
tasks. Constraints (1k) state that a new task cannot start until the
previous task has been completed. Here 𝑀𝑟 is a sufficiently large
constant. Note here that the parameter 𝑇𝑑(𝑟),𝑜(𝑟1) is the travel time (either
by folding bikes or public transport, whichever is fastest) between
the destination zone of car-move 𝑟 to the origin zone of car-move 𝑟1.
Hence, the constraints ensure that if an employee performs car-move
𝑟 as it task number 𝑚, it cannot perform any car-move 𝑟1 as it next
ask 𝑚 + 1 before the employee has finished car-move 𝑟 (second term

on the lhs) plus the time to travel between the two car-moves (third
term on the lhs). Constraints (1l) make sure that the first task of each
employee starts after the earliest start time for the employee adjusted
with the travel time from the employee’s origin to the origin of the
car-move. Constraints (1m) ensure that the start time of each task for
each employee is after the earliest start time for the specific car-move.
Finally, Constraints (1n) make sure that the last task for each employee
is completed before the beginning of the target period.

Constraints (1o)–(1y) handle the logic of the second decision stage
concerning the assignment of cars to customer requests. Observe that
these constraints have to hold almost surely and thus for each scenario.
∑

𝑒∈

∑

𝑣∈𝐵

∑

𝑟∈𝐶𝐷
𝑖 ∩𝑉

𝑣

∑

𝑚∈
𝑥𝑒𝑟𝑚 +

∑

𝑣∈𝐵

∑

𝑑∈𝐶𝐷
𝑖 (𝜉𝑠)

∑

𝑙∈
𝑦𝑣𝑑𝑙𝑠 ≤ 𝑁𝐶𝑆

𝑖 ,

∈ 𝐶𝑆 , 𝑠 ∈  (1o)

Constraints (1o) ensure that in none of the scenarios considered the
apacities of the charging zones are exceeded.
∑

𝑣∈

∑

𝑙∈𝑑

𝑦𝑣𝑑𝑙𝑠 ≤ 1, 𝑑 ∈ (𝜉𝑠), 𝑠 ∈  (1p)

∑

𝑑∈(𝜉𝑠)

∑

𝑙∈𝑑

𝑦𝑣𝑑𝑙𝑠 ≤ 1, 𝑣 ∈  , 𝑠 ∈  (1q)

Constraints (1p) make sure that, for each scenario, each request is
atisfied at most by one car at some fee level. Constraints (1q) ensure
hat each car satisfies at most one request at some fee level.
∑

𝑙∈𝑑1

𝑦𝑣𝑑1𝑙𝑠 +
∑

𝑑2∈𝑑1 (𝜉𝑠)

∑

𝑙∈𝑑2

𝑦𝑣𝑑2𝑙𝑠 ≤ 𝑧𝑖(𝑑1),𝑣, 𝑑1 ∈ (𝜉𝑠), 𝑣 ∈  , 𝑠 ∈ 

(1r)

𝑣𝑑1𝑙1𝑠 +
∑

𝑑2∈𝑑1 (𝜉𝑠)

∑

𝑙2∈𝑑2

𝑦𝑣𝑑2𝑙2𝑠 +
∑

𝑣1∈∶𝑣1≠𝑣
𝑦𝑣1𝑑1𝑙1𝑠 ≥ 𝜆𝑖(𝑑1),𝑗(𝑑1),𝑙1 + 𝑧𝑖(𝑑1),𝑣 − 1,

1 ∈ (𝜉𝑠), 𝑣 ∈  , 𝑙1 ∈ 𝑑1 , 𝑠 ∈  (1s)

Constraints (1r) state that a given car can satisfy a request 𝑑1 only if
t is available in the zone of the request and it is not used by a customer
rriving earlier, i.e., a customer with a lower index. Constraints (1s)
tate that a request 𝑑1 at a given fee level 𝑙1 must be satisfied by car 𝑣
f fee level 𝑙1 is chosen for that request and the car is available in the
rigin zone, unless the car has been used to satisfy a request 𝑑2 with
igher priority or the request 𝑑1 has been satisfied by another car 𝑣1.
∑

𝑣∈
𝑦𝑣𝑑𝑙𝑠 ≤ 𝜆𝑖(𝑑),𝑗(𝑑),𝑙 , 𝑑 ∈ (𝜉𝑠), 𝑙 ∈ 𝑑 , 𝑠 ∈  (1t)

Constraints (1t) state that request can be satisfied at a given fee
evel 𝑙 only if the fee level between its origin and destination has been
hosen in the first stage.
𝑖𝑗𝑙 ∈ {0, 1}, 𝑖, 𝑗 ∈ , 𝑙 ∈  (1u)
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Fig. 1. Flowchart presenting the different elements of the heuristic.
𝑧𝑖𝑣 ∈ {0, 1}, 𝑖 ∈ , 𝑣 ∈  (1v)

𝑥𝑒𝑟𝑚 ∈ {0, 1}, 𝑒 ∈  , 𝑟 ∈ , 𝑚 ∈  (1w)

𝑡𝑒𝑚 ≥ 0, 𝑒 ∈  , 𝑚 ∈  (1x)

𝑦𝑣𝑑𝑙𝑠 ∈ {0, 1}, 𝑣 ∈  , 𝑑 ∈ (𝜉𝑠), 𝑙 ∈ , 𝑠 ∈  (1y)

Finally, Constraints (1u)–(1y) define the domain of the decision
variables.

Observe that the model assumes that, in the target period, each car
satisfies at most one request. In practice, it is possible that the same car
is used more than once during the target period, e.g., for several short
trips. Therefore, the model proposed provides a pessimistic estimate of
actual profits during the target period.

4. Solution algorithm

The SE-VRePP is an extension of the car-sharing relocation studied
by Hellem et al. (2021), where it was shown that a heuristic was needed
to solve the problem. Furthermore, the problem is to be solved in a
setting where relatively short solution times (i.e., around 10 min) are
required to work in a real life setting. For this reason, we propose
a heuristic solution algorithm. Particularly, we develop an Adaptive
Large Neighborhood Search (ALNS) that addresses pricing decisions, in-
tegrated with two different local search algorithms that address pricing
and relocation decisions, respectively. An overview of the algorithm is
given in Fig. 1.

The algorithm starts by providing an initial solution using a con-
struction heuristic. The initial solution is continuously improved based
on different destroy and repair operators that act on the pricing deci-
sions only, following the principles of ALNS (Ropke & Pisinger, 2006).
Following, two local search heuristics apply smaller changes to the
pricing and relocation decisions, respectively. The motivation for this
choice is that we saw in the preliminary testing with the commercial
MIP solver (Gurobi) that changes in the pricing decisions had a much
larger impact on the objective value than changes in the relocation de-
cisions. Hence, we decided to use a ‘‘heavy machinery’’ (i.e., the ALNS)
for the pricing, while only using a ‘‘light machinery’’ (i.e., local search)
for the relocation part. This process continues until a termination
condition is met. The final element of the algorithm is the perturbation
process following a principle based on Lourenço et al. (2003). This aims
for diversifying the search even further in a somewhat similar manner
as in Li et al. (2016) where they (i) both run their ALNS algorithm with
multiple initial solutions, and (ii) use two destroy operators combined
5

if the best solution has not improved in a number of iterations. In our
algorithm, the perturbation is performed only when the solution has not
improved for a number of iterations, and it works in a similar manner
as a random destroy operator, although destroying a larger part of the
pricing solution.

The different elements of the algorithm are described in detail in
the following sections.

4.1. Solution representation and heuristic objective function

A solution 𝛾 consists of both a relocation solution, 𝛾𝐸 , and a pric-
ing solution, 𝛾𝑃 (the 𝑥 and 𝜆 variables of the model presented in
Section 3.2, respectively). The relocation solution, 𝛾𝐸 , consists of an
ordered set of tasks (car-moves) to be performed by each employee. The
pricing solution, 𝛾𝑃 , is an || × || matrix where entry (𝑖, 𝑗) represents
the fees between zones 𝑖 and 𝑗.

The calculation of the value of a heuristic solution is based on
objective function (1a). As the representation of the model is different
in the heuristic model than in the mathematical formulation, we use
a different notation to formulate the heuristic objective function. Let 𝛾𝐸𝑒
denote the ordered list of car-moves to be performed by employee 𝑒 in
the relocation solution, and 𝑟 denote a car-move in this list. Further,
recall that the per-minute cost of performing a car-move is 𝐶𝑅, and
that the time to complete car-move 𝑟 is denoted as 𝑇𝐻

𝑟 . The heuristic
evaluation of the relocation solution can then be written as

𝑓𝐸 = −
∑

𝑒∈

∑

𝑟∈𝛾𝐸𝑒

𝐶𝑅𝑇𝐻
𝑟 . (2)

Let 𝛾𝑃𝑖𝑗 denote the assigned fee 𝑙 between zones 𝑖 and 𝑗 in the pricing
solution. Further recall that (𝜉𝑠) is the set of requests 𝑑 for a given
realization of 𝜉𝑠 in scenario 𝑠, and that 𝑑 is the set of fees 𝑙 sufficiently
low to satisfy request 𝑑 ∈ (𝜉𝑠) for a given realization of 𝜉𝑠 in scenario
𝑠. Each request 𝑑 has an origin zone 𝑖(𝑑) and a destination zone 𝑗(𝑑). For
a given pricing solution 𝛾𝑃𝑖𝑗 , we create a subset of (𝜉𝑠) with all potential
requests 𝑑 ∈ (𝜉𝑠) with origins 𝑖(𝑑) and destinations 𝑗(𝑑) which could
be satisfied by the fee 𝑙 = 𝛾𝑃𝑖(𝑑),𝑗(𝑑). Mathematically, this subset, denoted
as 𝐻 (𝜉𝑠), is

𝐻 (𝜉𝑠) = {𝑑 ∣ 𝑑 ∈ (𝜉𝑠) ∧ 𝛾𝑃𝑖(𝑑),𝑗(𝑑) ∈ 𝑑}.

The set 𝐻 (𝜉𝑠) is ordered by customer priority, so a request in the
set has precedence over all subsequent requests. To determine whether
a request 𝑑 ∈ 𝐻 (𝜉𝑠) is allocated a vehicle in scenario 𝑠, we must
consider the following three requirements: There is a vehicle in the
request origin zone, 𝑖(𝑑); If the vehicle is in need of charging, the desti-
nation zone, 𝑗(𝑑), must have a charging station with available capacity;
The vehicle has not previously been allocated to serve another request
with precedence over the current request. The heuristic handles this by
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iterating over the ordered set of requests 𝐻 (𝜉𝑠) for each scenario 𝑠
while checking the three requirements, resulting in the set of satisfied
requests for each realization of 𝜉𝑠 for all scenarios 𝑠, 𝑆𝑅(𝜉𝑠). We can
therefore express the heuristic evaluation of the pricing solution as

𝑓𝑃 = 1
||

∑

𝑠∈

⎛

⎜

⎜

⎝

∑

𝑑∈𝑆𝑅(𝜉𝑠)

𝑅𝑑,𝛾𝑃𝑖(𝑑),𝑗(𝑑)

⎞

⎟

⎟

⎠

. (3)

Here  is the set of scenarios and 𝑅𝑑,𝛾𝑃𝑖(𝑑),𝑗(𝑑)
is the profit of satisfying

equest 𝑑 with fee level 𝑙 = 𝛾𝑃𝑖(𝑑),𝑗(𝑑), as described in Section 3.1.
ombining and maximizing the expressions in Eqs. (2) and (3), we get
he heuristic objective function defined as 𝑓𝐻 = 𝑓𝐸 + 𝑓𝑃 .

.2. Constructing the initial solution

The construction heuristic starts with an empty solution, 𝛾∅, and
odifies it until a feasible solution is obtained. In the relocation part

f the empty solution, 𝛾𝐸∅ , none of the employees have any tasks to
erform. In the pricing part of the empty solution, 𝛾𝑃∅ , the fee assigned
or all pairs of zones is the lowest fee.

The only constraint that might make an empty solution infeasible
s Constraint (1j), which requires a certain share of the cars with
ow battery to be plugged in within the target period. To satisfy this
onstraint, either employees need to relocate the cars to charging
tations or customers need to drop off cars to charging stations. To
ind a feasible solution, charging-moves are added to the task-list of
he employees 𝛾𝐸 , provided there is space left. This procedure of adding
harging-moves is repeated until the solution satisfies Constraint (1j).

To illustrate this, consider a case with six cars in need of charging.
ssume Constraints (1j) demand that at least 50% of the cars in need
f charging are to be put to charging. Furthermore, assume that in
very scenario, only one customer wants to drop off the car in need
f charging at a charging zone. In this case, two cars still need to be
oved to charging stations. To meet this requirement, these cars must

e relocated by employees. The construction heuristic then iterates over
ll car-moves moving a car in need of charging to a charging zone,
nless the car is the one moved by a customer. Car moves are then
andomly assigned to employees provided that their set of tasks respects
ime limit constraints.

.3. Adaptive large neighborhood search

An outline of the Adaptive Large Neighborhood Search (ALNS) is
hown in Algorithm 1. A set of operators are used in the ALNS to
xplore the neighborhood of a pricing solution. These are divided
nto two categories, namely destroy and repair operators. The destroy
perator breaks down a pricing solution, bringing the solution closer
o an empty solution. The repair operator takes the destroyed pricing
olution and rebuilds it to a complete solution.

estroy operators

The destroy operators break down the pricing solution by removing
he assigned fees for a predefined number of zone pairs, 𝜂. The ALNS
lgorithm has three different destroy operators to choose from.

The random removal operator randomly chooses 𝜂 pairs of zones and
emoves their assigned fees. Random removal helps diversify the search
pace and therefore decreases the chance of getting stuck in a local
ptimum.

The worst removal operator removes the 𝜂 zone pairs that contribute
he least to the objective value. In combination with a repair operator,
his operator helps replace the worst fees with potentially better ones.
o help diversify the search, a determinism parameter, 𝑝𝑤𝑜𝑟𝑠𝑡 ≥ 1, is

ncluded. The list, 𝐿, of zone pairs is sorted in non-decreasing order
f contribution to the objective value (the zone pair at the top of the
6

anking is the one with the fee that contributes the least to the objective 𝑅
Algorithm 1 ALNS of the current solution
function 𝐴𝐿𝑁𝑆(𝛾)

currentSolution = 𝛾
bestSolution = 𝛾
visitedSolutions = [currentSolution] ⊳ list of all solutions visited

to this point
temp = calculate initial temperature
coolingRate = calculate cooling rate
while Stopping criterion not met do

newSolution = choose destroy operator and destroy currentSo-
lution

newSolution = choose repair operator and repair newSolution
if (newSolution not in visitedSolutions) AND (newSolution

accepted by simulated annealing) then
add newSolution to visitedSolutions
if newSolution better than currentSolution then

perform best improving local search on prices in
newSolution

else
perform first improving local search in newSolution

end if
perform local search on relocations in newSolution
if newSolution better than bestSolution then

bestSolution = newSolution
end if
add newSolution to visitedSolutions ⊳ newSolution has

been updated
currentSolution = newSolution

end if
update temperature based on cooling rate
if Time for new segment then

Start new segment
end if

end while
return bestSolution

end function

value). The zone pair to be removed from the solution and 𝐿 is found
in 𝐿 at index 𝑖 = 𝑦(𝑝𝑤𝑜𝑟𝑠𝑡) ∗ |𝐿|, where 𝑦 ∈ [0, 1) is a uniformly random
number. Consequently, a low value of 𝑝𝑤𝑜𝑟𝑠𝑡 increases the degree of
randomness, and vice versa. This process is repeated 𝜂 times.

The related removal operator removes 𝜂 zone pair fees that are
similar based on certain criteria. Shaw (1998) first introduced related
removal with the intention of removing similar parts of a solution so
that the reconstruction and maintenance of feasibility would be easier.
This was also used in the original ALNS by Ropke and Pisinger (2006).
We adapt the related removal operator to fit the pricing solution of
the SE-VRePP. In order to compare different tuples of zone pairs and
fees, 𝑡 = ((𝑖, 𝑗), 𝑙), a relatedness measure 𝑅(𝑡1, 𝑡2) is used. This measure
examines the travel distance between both the origin, 𝑑𝑜(𝑡1, 𝑡2) and
destination 𝑑𝑑 (𝑡1, 𝑡2) of the tuples 𝑡1 and 𝑡2. In addition, the relatedness
considers the difference in fees for 𝑡1 and 𝑡2. Let 𝑙1 and 𝑙2 be the fees
of the zone pairs of 𝑡1 and 𝑡2, respectively. The complete relatedness
measure between 𝑡1 and 𝑡2 is then given by

𝑅(𝑡1, 𝑡2) = 𝑞𝑜𝑑
𝑜(𝑡1, 𝑡2) + 𝑞𝑑𝑑

𝑑 (𝑡1, 𝑡2) + 𝑞𝑓 |𝑙1 − 𝑙2|, (4)

here 𝑞𝑜, 𝑞𝑑 and 𝑞𝑓 are weights for the origin zone distance, destination
one distance and difference in fees, respectively.

First, a tuple 𝑡1 with its zone pair is randomly selected and added to
list of removed zone pairs, 𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑 . Next, a random zone pair from
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 is used to compare to the other zone pairs that are not yet

ncluded in 𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑 . The relatedness measure is calculated and sorted
n ascending order in a new list 𝐿𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠. The lower the relatedness
(𝑡 , 𝑡 ) is, where 𝑡 is a tuple with a zone pair not in 𝐿 , the more
1 2 2 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
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Table 1
Rewards for destroy and repair operators.

Parameter Reward criterion Description

𝜌𝐺 𝑓𝐻 (𝛾 ′) > 𝑓𝐻 (𝛾𝑏𝑒𝑠𝑡) The new solution is a new global best.
𝜌𝐿 𝑓𝐻 (𝛾 ′) > 𝑓𝐻 (𝛾𝑐𝑢𝑟𝑟𝑒𝑛𝑡) The new solution is a new local best, but not a new global best.
𝜌𝑁 𝑓𝐻 (𝛾 ′) < 𝑓𝐻 (𝛾𝑐𝑢𝑟𝑟𝑒𝑛𝑡), Accepted The new solution is non-improving, but is accepted.
p
s
p
s
o
c
a

c
t
o

t
o

A

a
s
i
e
a
a

i

4

o
s
t
s
b
W
g
p
i
a

L

o
z
n
f
o
l
t
e
w
s

similar the two pairs are. To allow for some randomness when selecting
zone pair from 𝐿𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 to remove and add to 𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑 , a determinism
parameter 𝑝𝑟𝑒𝑙𝑎𝑡𝑒𝑑 ≥ 1 is included. This works in the same manner as
for the worst removal operator. The process of choosing zone pairs
from 𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑 , calculating relatedness with other zone pairs, sorting,
and finally selecting the zone pair to remove is repeated 𝜂 times.

Repair operators

The repair operators take an incomplete pricing solution as input
and returns a complete one where all zone pairs have an assigned fee.
The repair operators go through the 𝜂 zone pairs with missing fees and
ssign these a new fee. The assignment of fees is done according to one
ut of three different repair operators.

The random insertion operator goes through the set of 𝜂 zone pairs
ith missing fees, and randomly assigns it a new fee 𝑙 from the set of

ees . This operator helps diversify the search and can help mitigate
he risk of getting stuck in a local optimum.

The greedy insertion operator greedily chooses the fee that increases
he objective value the most for each of the 𝜂 destroyed zone pairs.
he order of reassigning new fees to these zone pairs is random. This
perator is an efficient way of finding potentially improving fees for
he destroyed zone pairs.

The random greedy insertion operator includes some degree of ran-
omness to the greedy insertion operator described above. Similar to
orst and related removal, there is a determinism parameter 𝑝𝑔𝑟𝑒𝑒𝑑𝑦 ≥ 1.
or each destroyed zone pair, the random greedy operator evaluates the
ossible fees, and inserts the fee and the heuristic objective value for
sing that fee into a list 𝐿𝑜𝑏𝑗.𝑣𝑎𝑙. The list is sorted in descending order,
o the fee with the highest objective value is at the first index. The
ee to be assigned to the zone pair is then chosen in the same manner
s for the worst and related removal, where a value of 𝑝𝑔𝑟𝑒𝑒𝑑𝑦 close
o one increases the randomness, and a high value of 𝑝𝑔𝑟𝑒𝑒𝑑𝑦 increases
he chance of choosing the fee with the highest objective value. This
rocess is repeated for each of the 𝜂 destroyed zone pairs. This operator
ombines the increased diversification from random insertion with
he increased possibilities of choosing fees that positively affect the
bjective value from the greedy insertion operator.

hoosing destroy and repair operators

Let 𝛺𝐷 and 𝛺𝑅 be the set of all destroy operators and repair
perators, respectively, and let 𝛺𝑂 = 𝛺𝐷 ∪ 𝛺𝑅. A pair containing
ne destroy operator, 𝑑 ∈ 𝛺𝐷, and one repair operator, 𝑟 ∈ 𝛺𝑅, is
hosen in each iteration of the ALNS. The selection is based on the
oulette wheel selection principle where the destroy and repair operators
re drawn from a weighted probability distribution of all possible
estroy and repair operators. Each pair of destroy and repair operators
s associated with a weight, 𝑤𝑜, where 𝑜 ∈ 𝛺𝑂, and operators with a
ood performance in the past get a higher chance of being selected.

Running the ALNS is an iterative process divided into segments,
.e., a batch of iterations. During a segment, data regarding perfor-
ance for each operator is collected. When a segment is over, we
pdate the operator weights based on these data. The purpose of a seg-
ent is to update the weights at regular intervals, after the performance

f the destroy and repair operators have been evaluated. This process
efines the adaptive part of the ALNS.
7

s

At initialization, all weights are assigned a value of 1, making the
robability of choosing an operator equal for all operators. During a
egment, the chosen operators are assigned a reward, 𝜌, based on their
erformance. The rewards are accumulated over the iterations in a
egment, resulting in an overall segment evaluation denoted as 𝜋. An
perator can receive different rewards based on whether an operator
ontributes to a new global best solution, a new local best solution or
ccepts a non-improving local solution, as shown in Table 1.

At the end of a segment, the operators’ weights are updated ac-
ording to the following equation: 𝑤𝑜 = 𝑤𝑜(1 − 𝛼) + 𝛼 𝜋𝑜

𝜎𝑜
, where 𝜋𝑜 is

he accumulated reward for operator 𝑜, and 𝜎𝑜 is the number of times
perator 𝑜 is used in the most recent segment. 𝛼 is a parameter between

zero and one, used to control how large an impact the evaluation of an
operator in the most recent segment has on the operator’s weight. If 𝛼
is closer to one, the weights are highly determined by the associated
operators’ success in the most recent segment. However, if 𝛼 is closer
o zero, the weights remain rather stable, only adapting slightly based
n the evaluation from the most recent segment.

cceptance and stopping criterion

When a new solution is constructed by the destroy and repair oper-
tors, it is evaluated to see whether it is accepted as the current new
olution. We use the simulated annealing acceptance criterion, which
s the most commonly used acceptance criterion within ALNS (Santini
t al., 2018). We extend this acceptance criterion with the addition of
tabu list to keep track of already explored solutions, in order not to

ccept any previously evaluated solutions.
The ALNS algorithm stops after a predefined maximum number of

terations.

.4. Local search algorithms

We extend the ALNS with local search heuristics with the aim
f finding better solutions in the close neighborhood of the current
olution. We include two different local search components, i.e., one
o improve the pricing solution, 𝛾𝑃 , and one to improve the relocation
olution, 𝛾𝐸 . The inputs to each of the local searches are the solution to
e explored and a strategy, either being best improving or first improving.
ith a best improving search, the entire neighborhood defined by the

iven Local Search Operators (LSOs) is evaluated, while the first im-
roving search explores the given neighborhood until a better neighbor
s found, after which the solution is updated. Independently of the LSO
pplied, this process is repeated until a stopping criterion is met.

ocal search for the pricing solution

We use a single LSO for the pricing solution denoted the price move
perator. Recall that the pricing solution consists of a fee between all
one pairs. With the price move operator a solution is said to be a
eighboring solution if all fees except one remain the same. Thereby,
or a certain solution, one finds the neighbors by altering exactly one
f the fees. The price move operator represents the neighborhood as a
ist of zone pairs. The list is constructed in a random order to broaden
he search. The operator iterates over the list, testing different fees for
ach zone pair. With a first improving search strategy, the iteration stops
hen an improving solution is found. With a best improving search, the

earch would span ||2 ⋅ || zone pair fees, returning the best found

olution.
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Table 2
The test instance types used in the computational study. For each type of test instance, three different versions are generated.

Test instance type Zones Cars Employees Customers per zone Scenarios Size

5-4-1 5 4 1 10 25
Small6-6-1 6 6 1 10 25

8-8-1 8 8 1 10 25

10-9-2 10 9 2 10 25
Medium15-12-2 15 12 2 10 25

20-15-2 20 15 2 10 25

30-20-2 30 20 2 10 25
Large40-25-2 40 25 2 10 25

50-30-2 50 30 2 10 25
Fig. 2. The operating area set to Oslo, divided into a grid of 113 zones of sizes 800 × 800 m or 400 × 400 m, defined by the green lines.
Local search for the operator-based relocation

We propose three LSOs in this search. The add move and the remove
move operators investigate whether it is profitable to add or remove
a car-move from one of the employees’ task lists, respectively. The
evaluation is performed by calculating the objective values of the new
solutions obtained. The inter swap operator investigates the effect of
swapping car-moves present in the solution between employees. This
will not have effects on the expected revenues but may reduce the
relocation cost and time for each employee, and hence impact the
objective value.

4.5. Complexity reduction

In order to increase the efficiency of the heuristic search, size
reduction techniques and certain computational simplifications have
been utilized.

Customers

As discussed in 3.2, the utility a transportation mode yields for a
potential customer is composed of a deterministic and a stochastic term.
This entails that a potential customer might have different preferences
in different scenarios. This may result in a customer preferring car-
sharing with given price levels in some scenarios, while preferring
other means of transportation in others. To reduce the search space, we
attempt to separate the customers into two categories: those considered
8

relevant customers and those considered irrelevant customers. A potential
customer is considered relevant if he/she prefers the car-sharing option
in at least 𝜙𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ⋅ 100% of the scenarios, and irrelevant if not. Only
the relevant customers are considered in the search. As an example,
suppose 𝜙𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 = 0.7 and there are 25 scenarios (which are the values
we use in our tests). In this case, only the customers that have car-
sharing as their preferred mode of transportation in at least 0.7 ⋅ 25 =
17.5 (i.e., 18) of the scenarios will be included.

ALNS search space

To improve the performance of the ALNS, the destroy and repair
operators are only changing the prices of zone pairs that are found
relevant. A zone pair is considered relevant if it fulfills three conditions:
(1) There is at least one car present in the zone pair’s origin zone.
This might be due to the car being there in the first place or that an
employee has relocated a car to this zone. (2) There is at least one
relevant customer in the zone pair’s origin zone. This has the effect
of finding a zone where there is demand for cars. (3) Among the
relevant customers, at least one has the zone pair’s destination zone
as its desired destination. By only evaluating the relevant zone pairs,
we avoid evaluating changes in zone pairs that do not have an impact
on the objective value. It should be noted that this concept of relevant
zone pairs is considered also when the initial solution is constructed.

Local search space

The local search for pricing solutions uses the same search space as
defined for the ALNS by only investigating what we define as relevant
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Table 3
Comparison of the ALNS and Gurobi. Three versions of each test instance type are generated. Each test
instance is solved ten times with the ALNS for a maximum of 600 s each time. Gurobi is likewise used to
solve the full stochastic program with a 600 s time limit. Average objective values, runtimes and gaps are
reported. The gap is based on the distance to the best upper bound found by Gurobi.

Test instance type Gurobi (600 s) ALNS Heuristic (600 s)

Objective value Gap (%) Time (s) Objective value Gap (%) Time (s)

5-4-1 252.76 0.00 13.11 252.76 0.00 3.45
6-6-1 411.32 0.00 32.43 411.32 0.00 8.31
8-8-1 570.81 0.00 132.77 570.81 0.00 67.82
10-9-2 579.98 3.28 600.00 590.50 1.40 133.83
15-12-2 819.51 13.06 600.00 817.68 13.30 274.80
20-15-2 833.49 44.56 600.00 968.09 17.62 318.13
30-20-2 1454.11 27.65 600.00 1567.24 17.06 376.45
40-25-2 1264.69 79.10 600.00 1786.20 22.65 426.45
50-30-2 (–) (–) 600.00 2037.64 (–) 370.77

Average Total 687.42 18.63 419.81 1001.47 11.91 393.71

(–) in Objective Value indicates no feasible solution found.
(–) in Gap (%) indicates no feasible upper bound found.
Average values are found replacing (–) with 0.
Table 4
Comparison of the ALNS heuristic and the commercial solver Gurobi. Three versions of each test instance type are generated.
Each test instance is run ten times with the ALNS heuristic for a maximum of 3600 s. The results from Gurobi after a
maximum of 3600 s are registered as a benchmark. Average objective values, runtimes and gaps are reported. The gap is
based on the distance to the best upper bound found by Gurobi.

Test instance type Gurobi (3600 s) ALNS Heuristic (3600 s)

Objective value Time (s) Gap (%) Objective value Time (s) Gap (%)

10-9-2 597.65 2844.57 0.00 588.71 402.91 1.53
15-12-2 861.34 3600.96 4.82 821.18 494.93 9.93
20-15-2 1099.88 3600.29 3.24 993.66 584.22 14.28
30-20-2 1746.79 3601.52 6.61 1607.98 1801.81 15.78
40-20-2 2155.20 3600.31 10.02 1993.30 2973.28 18.89
50-30-2 (–) 3600.57 (–) 2222.51 1875.70 (–)

Average Total 1076.81 3334.17 4.11 1200.97 1355.48 10.07

(–) in Objective Value indicates no feasible solution found.
(–) in Gap (%) indicates no feasible upper bound found.
Averages are found replacing (–) with 0.
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Table 5
Number of operator-based relocations performed with and without adaptable prices.
The results are average values from running the ALNS heuristic ten times on three
versions of each test instance type, with a time limit of 600 s per run.

Instance type Uniform pricing Adaptable pricing

5-4-1 1.00 2.10
6-6-1 1.00 2.77
8-8-1 1.00 1.83
10-9-2 1.00 2.33
15-12-2 1.00 4.63
20-15-2 1.93 7.27
30-20-2 2.87 7.13
40-25-2 2.63 5.70
50-30-2 4.00 6.13

Average 1.83 4.43

zone pairs. The local search for relocations has extended this definition
to include car-moves that are considered relevant when using the add
ove LSO. For each zone, we calculate a cars-to-customers ratio. This

atio is calculated by including only relevant customers in the zone,
nd all cars originating or currently being in the zone as a consequence
f relocation. If a given zone has a cars-to-customers ratio exceeding
𝑐𝑎𝑟𝑠−𝑡𝑜−𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, all car-moves with the given zone as destination zone
re excluded from the relevant car-moves. This reduction in search
pace makes the algorithm only consider moving cars to areas which
o not already have a high density of cars compared to customers.

To restrict the search space even further, the car-moves are filtered
ased on the time it takes to perform them. If the relocation time
f a car-move exceeds 𝜙𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝑡𝑖𝑚𝑒 ⋅ 𝑇

1
the car-move is considered

irrelevant. The only exception is if the car to be relocated is in need
9

of charging. This is done to eliminate very time-consuming car-moves
which are unlikely to be part of the optimal solution.

A final effort to reduce runtime is defined through the LSOs them-
selves. Each LSO has a time limit of 𝑇𝐿𝑆𝑂 seconds, avoiding a best
mproving search from being a bottleneck in larger instances of the
roblem. Furthermore, the local search has an overall time limit of 𝑇𝐿𝑆
econds. To avoid repeatedly investigating the same part of the search
pace for 𝑇𝐿𝑆𝑂 seconds, the search space is randomly ordered at the
eginning of each local search.

. Computational study

This section presents the computational study. The solution algo-
ithm was implemented in Python 3.9.6 while we used Gurobi 9.5.0
s the solver of the two-stage stochastic program. In the following,
ection 5.1 describes the generation of the test instances, before we
est the performance of the proposed heuristic in Section 5.2. Finally,
e test the effect of including pricing decisions in Section 5.3.

.1. Data and test instances

We generate a number of test instances based on data from Vybil, a
SO operating in Oslo, Norway. Particularly, we divide the operating
rea into 113 zones of size 800 × 800 or 400 × 400 meters as shown
n Fig. 2. Each test instance is denoted by a code X-Y-Z, where X is

the number of zones, Y is the number of cars, and Z is the number
of employees. Table 2 summarizes the instances we generate and the
respective number of zones, cars, employees, customers, and scenarios.

The test instance types are divided into categories based on their sizes.
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Table 6
The number of customers served (Requests Satisfied) and the average profit they generate (Profit per Request)
using uniform and adaptable pricing strategies. The results are average values from running the ALNS
heuristic ten times on three versions of each test instance type, with a time limit of 600 s per run.

Instance type Uniform pricing Adaptable pricing

Requests satisfied Profit per request Request satisfied Profit per request

5-4-1 2.53 57.04 3.36 79.23
6-6-1 4.45 54.18 4.75 79.11
8-8-1 6.16 64.13 6.77 79.25
10-9-2 7.40 52.98 7.71 75.41
15-12-2 10.37 57.41 10.45 76.20
20-15-2 11.54 56.40 12.18 76.92
30-20-2 16.26 66.93 17.11 75.96
40-25-2 20.59 69.99 20.48 76.51
50-30-2 25.01 74.46 24.51 77.56

Average 11.59 61.50 11.93 77.35
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Table 7
Evaluation of how pricing decisions affect the overall profit during a work day. The
accumulated objective values over the ten hours in the work day are displayed in the
columns Objective Value. The column ‘‘Increase’’ shows the average increase in profit
from having adaptable prices. The average runtimes the ALNS heuristic spent finding
the best known solution for each hour are displayed in the columns Time (s).

Instance type Uniform prices Adaptable prices

Obj. Value Runtime Obj. Value Increase (%) Runtime

5-4-1 1731.09 3.17 2246.12 29.8 40.12
6-6-1 2842.57 6.85 3514.55 23.6 101.71
8-8-1 3838.62 18.05 4757.58 23.9 261.65
10-9-2 3674.10 52.82 5071.25 38.0 297.26
15-12-2 5190.65 101.00 6817.08 31.3 520.91
20-15-2 6951.42 185.79 8686.37 25.0 521.26
30-20-2 10 101.74 276.44 11 069.95 9.6 441.68
40-25-2 13 746.34 429.30 15 238.85 10.9 456.56
50-30-2 17 335.61 442.62 18 860.54 8.8 480.31

Average 7268.02 168.45 8473.59 16.6 346.83

For each type of test instance, three different random instances are
generated.

The number of charging zones is dependent on the number of zones
in the test instance. As Vybil offers 35 parking lots, out of which nine
re equipped with charging stations,1 we apply a ratio of charging
ones per zone of 25%. We assume that each charging station has a
apacity of three cars. Furthermore, the number of cars used by Vybil
n need of charging is typically between 10% and 15% of their fleet.
hus, in what follows we assume that 15% of the cars require charging
y the end of the target period. The size of the set of customers, ||,
s arbitrarily set to ten times the number of zones in the instance. We
se Google Maps API Distance Matrix,2 to generate travel times for the
arious transport means (𝑇 𝑇

𝑖𝑗𝑡) and relocation times (𝑇𝐻
𝑟 ).

For a given instance, the initial position of cars and employees and
he origin and destination of the customers are randomly generated
sing the technique of Pantuso (2020, 2022), which assigns to each
one a probability depending on the distance from the center. The
nstances are generated in such a way that the zones closer to the center
re more probable.

Employees are defined by their origin location and the earliest time
t which they can start performing relocations. The start time is drawn
rom a weighted distribution ranging from 0 to 15 (minutes), where
alues closer to 0 are more likely to be drawn. A car is defined by
ts origin zone and whether or not it is in need of charging. Cars in
eed of charging are uniformly drawn among the set of all cars. The
et of possible car-moves that are generated for a car 𝑣, 𝑣, includes

1 https://www.vy.no/alt-om-reisen/andre-transportmidler/vybil/vybil-
arkeringsplass accessed 2022-05-26.

2 https://developers.google.com/maps/documentation/distance-
atrix/overview accessed 2021-11-10.
10
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car-moves to all zones to which car 𝑣 can be relocated. If a car 𝑣 requires
charging, 𝑣 ∈ 𝐵 , only car-moves to charging zones are allowed. We
assume we plan one hour in advance of the target period, thus we set
𝑇
1
= 60 minutes, and we assume that each employee can perform at

most || = 5 car moves during the 60 minutes. The cost of relocation
activities is set to NOK (Norwegian Kroner) 0.43 per minute, based on
the typical energy consumption of the electric cars used and Norwegian
electricity prices.

We assume that the city offers public transportation (PT) and bicycle
(B) as alternatives to car-sharing, that is  = {𝐶𝑆, 𝑃𝑇 , 𝐵}. We use
choice model (5), introduced by Modesti and Sciomachen (1998) and
used, e.g., by Hansen and Pantuso (2018), Pantuso (2020, 2022) as
a proxy for the behavioral model of the customers. It must be noted,
however, that since the model is not validated by data, it does not allow
us to draw sensible conclusions related to how people react to prices
and incentives. Its purpose is solely that of testing the model and the
method introduced.

𝐹𝑘𝑡(𝑝𝑖𝑗𝑡, 𝑇 𝑇
𝑖𝑗𝑡, 𝑇

𝑊 𝑎𝑙𝑘
𝑖𝑗𝑡 , 𝑇𝑊 𝑎𝑖𝑡

𝑖𝑗𝑡 ) = 𝛽𝑃𝑘 𝑝𝑖𝑗𝑡 + 𝛽𝐶𝑆
𝑘 𝑇 𝑇

𝑖𝑗𝑡𝛿𝐶𝑆 (𝑡) + 𝛽𝑃𝑇𝑘 𝑇 𝑇
𝑖𝑗𝑡𝛿𝑃𝑇 (𝑡)

+ 𝛽𝐵𝑘 𝑇
𝑇
𝑖𝑗𝑡𝛿𝐵(𝑡) + 𝛽𝑊 𝑎𝑙𝑘

𝑘 𝑇𝑊 𝑎𝑙𝑘
𝑖𝑗𝑡 + 𝛽𝑊 𝑎𝑖𝑡

𝑘 𝑇𝑊 𝑎𝑖𝑡
𝑖𝑗𝑡 + 𝜉𝑘𝑡𝑠. (5)

he model expresses the (dis)utility of customer 𝑘 traveling between
heir origin and destination, say 𝑖 and 𝑗, with a given transport mean 𝑡,
s a function of price 𝑝𝑖𝑗𝑡, walking time 𝑇𝑊 𝑎𝑙𝑘

𝑖𝑗𝑡 required e.g., to commute
r to reach transit stations, waiting time 𝑇𝑊 𝑎𝑖𝑡

𝑖𝑗𝑡 , and travel time 𝑇 𝑇
𝑖𝑗𝑡.

unction 𝛿𝐴(𝑡) ∶  → {0, 1} is the indicator function 𝛿𝐴(𝑡) = 1 if 𝑡 ∈ {𝐴},
otherwise. The 𝛽 parameters reflect the sensitivity of the customer
ith respect to the different attributes and their values are provided
able 11 in Appendix A. Particularly, we assume all customers have
he same sensitivity to all parameters except price. To model different
rice sensitivities we set two different values of 𝛽𝑃𝑘 , say high and low
also provided in Table 11), and assign each customer a price sensitivity
evel with equal probability. We assume the 𝜉𝑘𝑡 random variables are
ndependent and follow a Gumbel distribution, thus obtaining a Logit
hoice model. Particularly, for the Gumbel distribution we use the
tandard deviation of the deterministic part of the customers utility
𝐹𝑘𝑡) across all 𝑡 and 𝑘. We use 25 scenarios given by iid samples from
he underlying Gumbel distribution.

Finally, we set a NOK 6 per-minute fee for car-sharing and we define
ive different pick-up/drop-off fees, namely  = {−40,−20, 0, 20, 40}
OK. Observe that negative fees represent a bonus for the user. Bicycles
re assumed to be free of charge and we assume a public transport
icket costs NOK 38 between all pairs of relevant zones, as is the case
n Oslo.

.2. Computational results

We performed a parameter tuning of the ALNS heuristic on a
eparate set of test instances, following the procedure by Ropke and

isinger (2006). The parameters to tune, their initial values, their

https://www.vy.no/alt-om-reisen/andre-transportmidler/vybil/vybil-parkeringsplass
https://www.vy.no/alt-om-reisen/andre-transportmidler/vybil/vybil-parkeringsplass
https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
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Table 8
Sets used in the model.
Notation Explanation

 Set of zones
𝐶𝑆 Set of charging zones
 Set of employees
 Set of abstract employee tasks
 Set of car-sharing vehicles
𝐵 Set of vehicles in need of charging
 Set of car-moves
𝑉

𝑣 Set of car-moves for vehicle 𝑣
𝑁

𝑖 Set of car-moves with destination zone 𝑖
𝐶𝐷

𝑖 Set of car-moves with destination zone 𝑖 ∈ 𝐶𝑆

 Set of customers
𝑖 Set of customers traveling from zone 𝑖
𝑖𝑗 Set of customers traveling from zone 𝑖 to 𝑗
 Set of scenarios
 Set of possible combined pick-up and drop-off fee levels
(𝜉𝑠) Set of requests for a given realization of 𝜉𝑠 in scenario 𝑠
𝐶𝐷(𝜉𝑠) Set of requests with destination in a charging zone for a given realization of 𝜉𝑠 in scenario 𝑠
𝐶𝐷

𝑖 (𝜉𝑠) Set of requests with destination in charging zone 𝑖 for a given realization of 𝜉𝑠 in scenario 𝑠
𝑑 (𝜉𝑠) Set of requests that has precedence over request 𝑑 in scenario 𝑠
𝑖𝑗 (𝜉𝑠) Set of requests going from zone 𝑖 to 𝑗 in scenario 𝑠
𝑑 Set of combined pick-up and drop-off fee levels that are less than or equal to the highest fee accepted for request 𝑑
Table 9
Parameters used in the model.
Notation Explanation

𝐶𝑅 Accumulated toll, maintenance and energy (electricity) cost per minute of driving a car
𝑇𝐻
𝑟 The time it takes to perform the car-move 𝑟

𝑃𝑠 Probability of scenario 𝑠 occurring
𝑅𝑑𝑙 Profit of satisfying request 𝑑 with pick-up fee level 𝑙
𝑜(𝑣) Origin of car 𝑣 at start of planning horizon
𝑜(𝑟), 𝑑(𝑟) Origin and destination of car-move 𝑟, respectively
𝑇 𝑆𝑂
𝑒 Earliest start time employee 𝑒 is available to perform a task

𝑜(𝑒) Origin of employee 𝑒 at start of planning horizon
𝑇

1
Time length of the first stage

𝑇 𝑆𝐶
𝑟 First available time a car is available for car-move 𝑟

𝑇𝑖𝑗 The time it takes to travel between zone 𝑖 and 𝑗 by bicycle
𝐿𝑙 Value of a fee at fee level 𝑙
𝑁𝐶𝑆

𝑖 Number of available charging slots in zone 𝑖 ∈ 𝐶𝑆

𝑁𝐵 Share of cars in need of charging which needs to be charged in the planning horizon
𝑖(𝑑), 𝑗(𝑑) Origin and destination of customer request 𝑑, respectively
𝑘(𝑑) Customer of customer request 𝑑
𝑙(𝑑) The highest fee level at which customer 𝑘(𝑑) would prefer car-sharing to other transportation modes
𝑀𝑟 Big-M notation for each car-move 𝑟
Table 10
Decision variables used in the model.
Notation Explanation

𝑧𝑖𝑣 1 if vehicle 𝑣 is available to customers in zone 𝑖 at the beginning of the second stage, at time 𝑇
1
, 0 otherwise.

𝜆𝑖𝑗𝑙 1 if fee level 𝑙 is used between zones 𝑖 and 𝑗, 0 otherwise.
𝑥𝑒𝑟𝑚 1 if employee 𝑒 performs car-move 𝑟 as her task number 𝑚, 0 otherwise.
𝑦𝑣𝑑𝑙𝑠 1 if vehicle 𝑣 satisfies request 𝑑 with the fee level 𝑙 in scenario 𝑠, 0 otherwise.
tuning intervals and their final values are summarized in Appendix C.
It should be noted that the performance of the ALNS was quite robust
with respect to its parameter values. We also assessed the value of
adaptivity in the ALNS, and it emerged that it yields an average
objective value improvement of 2.4%, which is higher that what was
found in the meta-analysis by Turkeš et al. (2021). We also tested the
value of including the two local search algorithms on the pricing part
of the problem (i.e., on top of the ALNS). This showed that including
the local search gave an average improvement of 6.4%.

In the following we compare the performance of our heuristic with
the commercial solver. We use a time limit of 600 seconds to test the
algorithm on real-life-like settings. The average results over the three
versions of each instance type are presented in Table 3. To account for
the randomness of the algorithm, the objective values reported for the
heuristic are averages over ten runs of each of the three versions of the
instance types. The gaps are measured as the distance in the objective
values in percentage to the best upper bounds found by the commercial
11
solver, Gurobi. Note that these gaps are pessimistic as they represent
maximum distances to the optimal solutions.

We observe from Table 3 that the two solution methods have
achieved the same optimal solutions for the small instances, with the
ALNS being faster. For the remaining instances, the ALNS is superior to
Gurobi in all but the instances of type 15−12−2, where there is a minor
difference in the gaps of 0.24%. The runtimes indicate that the ALNS
heuristic finds the best-known solutions more efficiently than Gurobi.
This supports the applicability of the ALNS heuristic as opposed to
Gurobi in a real-life situation where decisions must be made frequently.
The gaps to the upper bounds are somewhat large for the larger test
instances, most likely due to poor upper bounds, but still smaller than
those of the solutions found by Gurobi.

In Table 4 we compare the performance of Gurobi and the ALNS
with a time limit of one hour (3600 s). It should be emphasized that
a running time of one hour is significantly longer than what can be
accepted in a real-life setting (as discussed above), which is considered
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Table 11
Predefined parameters and set sizes common to all test instances.

Notation Value

Number of scenarios || 25
Probability of scenarios 𝑃𝑠 , 𝑠 ∈  1∕||
Number of fees || 5
Fees [NOK] 𝐿𝑙 , 𝑙 ∈  {-40, 20, 0, 20, 40}
Beginning of the target period [minutes] 𝑇

1
60

Initial capacity at charging station 𝑁𝐶𝑆
𝑖 , 𝑖 ∈ 𝐶𝑆 3

Cost of relocation per minute [NOK] 𝐶𝑅 0.43
Customer sensitivity to:

Price (P) 𝛽𝑃𝑘 {-7, -19}
Car-sharing travel time (CS) 𝛽𝐶𝑆

𝑘 −1
Pubic transportation travel time (PT) 𝛽𝑃𝑇𝑘 −2
Bicycle travel time 𝛽𝐵𝑘 −2.5
Walking distance 𝛽𝑊 𝑎𝑙𝑘

𝑘 −3
Waiting time 𝛽𝑊 𝑎𝑖𝑡

𝑘 −6
Prices per trip [NOK] using:

Car-sharing (CS) 𝑝𝑖𝑗𝐶𝑆 6 ⋅ 𝑇𝑖𝑗𝐶𝑆 + fee
Public transportation (PT) 𝑝𝑖𝑗𝑃𝑇 38
Bicycle 𝑝𝑖𝑗𝐵 0

to be around ten minutes. We can observe that in the long run Gurobi
delivers better solutions than the ALNS on most instances. Nevertheless,
Gurobi fails to deliver a solution on the largest instances, which shows
that a heuristic is needed (especially since we in practice need solutions
within at around ten minutes).

5.3. Effects from pricing decisions and simulation over a longer planning
period

In this section, we report on the effect of including pricing decisions.
We start by assessing the effect of adjustable prices. Particularly,

we compare the results obtained when solving the problem with and
without the possibility to set zone-specific pick-up and drop-off fees. In
the latter case we simply set the fee to 0 on all origin–destination pair,
o that the only price paid by the customers is the per minute fee, as
s common in most car-sharing services, including our case company.
ur tests indicate that, on the instances presented in Table 2, the profit

rom including pricing decisions increases by 19.5% on average.
Pricing decisions have an impact also on the relocation decisions.

he results in Table 5 illustrate that, when prices can adapt to the origin
nd destination zone, the number of relocations increases on average.
articularly, for instances larger than 10 − 9 − 2, the average number
f relocations performed nearly triples when introducing pricing de-
isions, going from 2.49 to 6.17. These results can be explained with
he fact that pricing decisions allow exploiting the potential customers’
illingness to pay. In fact, in Table 6, showing the number of customers

erved and their average profits, it can be observed that the average
rofit per request satisfied is significantly higher when adapting prices.
s a consequence, a higher number of zones become attractive desti-
ations for operator-based relocations. On the contrary, keeping prices
ixed on the entire business area exposes to the risk of underselling the
ervice in certain zones.

In a real-life setting, the pricing and relocation problem would be
olved periodically, e.g., every hour in preparation for the following
our. The long-term effects of adjusting prices during the day can
herefore be properly assessed only in a simulation framework. Hence,
e developed a rolling horizon simulation framework, which attempts

o replicate a real-life situation where the CSO makes frequent decisions
oncerning prices and operator-based relocations.

We periodically solve the SE-VRePP with our heuristic as follows.
irst, pricing and relocation decisions are made one hour ahead of the
arget period. Following, all operator-based relocations are performed
uring the first hour, thus before the beginning of the target period.
fter the relocations are performed, we enter the second stage (the

arget period) of the problem. A random scenario among all 25 pos-
ible scenarios is selected to be rolled out, and cars are allocated to
12
customers. After this, we update the state of the system (i.e., for cars
and employees) and move one hour ahead in time and do the same
over again, until we have reached the end of the simulation period.
Following this procedure, we simulate each test instance ten times for
ten hours representing a work day from 7 a.m. to 5 p.m. The same
procedure is adopted assuming no pricing decision are made, i.e., static
pricing (only relocations). Table 7 summarizes the results of these
simulations. Note that each line in the table represents the average
values over three instances of the given instance type.

As shown in Table 7, we observe a significant improvement in
objective values for all test instances when optimizing pricing decisions
(adaptable prices) compared to having uniform prices. The average
improvement over all test instances is 16.6%. An interesting aspect to
consider is how the joint optimization of prices and relocations affects
the need for employees to perform charging-moves. We notice that
the numbers of customers satisfied do not significantly differ for the
two pricing strategies, i.e., on average 120.7 customers satisfied with
a uniform pricing strategy versus 118.2 with optimized prices. On the
other hand, the average profit per request is significantly higher with
optimized zone prices, i.e., 71.6 vs. 58.3 NOK/request. However, we
have to stress that the behavioral model utilized is only a proxy for a
validated model. Therefore, we are not able to provide a more thorough
assessment of customer’s choices.

Finally, from Table 7 it also emerges that the added value of
adaptable prices decreases with the size of the fleet. This signals that
a sufficiently large fleet is able to cover enough demand to partially
compensate a uniform pricing strategy.

6. Summary and concluding remarks

We have in this paper studied the Stochastic Electric Vehicle Reloca-
tion and Pricing Problem (SE-VRePP), which integrates operator-based
relocation decisions and pricing decisions in car-sharing systems when
faced with uncertain future demand/customer behavior. We modeled
the SE-VRePP as a two-stage stochastic programming model. Since this
model could only be solved by a commercial solver for very small
problem instances, we proposed a new heuristic solution algorithm,
which uses an Adaptive Large Neighborhood Search (ALNS) heuristic
combined with local search for the pricing part of the problem and
another local search for the operator-based relocations.

We performed a computational study on test instances generated
using realistic data from our case company, Vybil, which is a car-
sharing organization (CSO) in Oslo, Norway. The tests showed that our
heuristic found the same optimal solutions as the commercial solver
for small instances and significantly better solutions for the larger and
more realistic ones. Furthermore, simulation results linked optimized
prices to substantial profit increases. Nevertheless, these results were
obtained with a non-validated model of customer behavior, therefore
no general conclusions can be drawn in this sense.

The research presented in this paper leaves room for further im-
provements. Particularly, in practice, customers choose not only based
on pricing decisions but also based on the distance to the nearest shared
car. This distance, in turn, depends on or can be influenced by reloca-
tion decisions. Extensions of the model presented could be developed to
model more precisely the interaction between decisions and customers
preferences. Furthermore, pricing and relocation decisions are in prac-
tice made periodically during the day as a result of the updated status
of the system. A multistage extension of the model presented would
serve better to capture this dynamics. Finally, our ALNS algorithm is
relatively complex as it includes many components. It probably also has
room for other improvements in order to provide even better solutions.
Hence, there is a value in simplifying and improving our heuristic,
something we leave for future research.

Appendix A. Summary of notation

See Tables 8–10.
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Table 12
The parameters used in the ALNS heuristic. The initial values, the tuning intervals and the determined values are displayed. Untuned parameters
are displayed only with their determined values.

Parameter Initial value Tuning interval Determined value Description

𝜙𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 1.0 [0.3, 0.7] 0.7 Relevant request threshold.
𝜙𝑐𝑎𝑟𝑠−𝑡𝑜−𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 1.0 [0.3, 0.7] 0.7 Car-to-customer ratio threshold.
𝜙𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝑡𝑖𝑚𝑒 1.0 [0.3, 0.7] 0.7 Relocation time threshold.
𝜌𝐺 10 [10, 40] 20 Weight reward parameter for a new globally best solution.
𝜌𝐿 5 [10, 20] 15 Weight reward parameter for a new locally best solution.
𝜌𝑁 1 [5, 10] 10 Weight reward parameter for a new non-improving solution.
𝛼 0.1 [0.4, 0.7] 0.7 Reward decay parameter.
𝜂 [0.05, 1.00] [0.05, 0.70] [0.15, 0.70] Neighborhood size distribution interval.
𝑞𝑜 0.05 [0.05, 0.2] 0.05 Related Removal weight for origin zone distance.
𝑞𝑑 0.05 [0.05, 0.2] 0.05 Related Removal weight for destination zone distance.
𝑞𝑓 0.1 [0.1, 0.4] 0.1 Related Removal weight for fee difference.
𝑝𝑤𝑜𝑟𝑠𝑡 1 [1, 6] 2 Worst Removal determinism parameter.
𝑝𝑟𝑒𝑙𝑎𝑡𝑒𝑑 1 [1, 6] 2 Related Removal determinism parameter.
𝑝𝑔𝑟𝑒𝑒𝑑𝑦 1 [1, 6] 4 Random Greedy Insertion determinism parameter.
𝜏𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑟𝑒ℎ𝑒𝑎𝑡 𝑟𝑒ℎ𝑒𝑎𝑡, 𝑛𝑜 − 𝑟𝑒ℎ𝑒𝑎𝑡 𝑟𝑒ℎ𝑒𝑎𝑡 Reheat strategy for Simulated Annealing.

𝜏𝑖𝑛𝑖𝑡
𝑓 (𝛾𝑖𝑛𝑖𝑡) ⋅ 0.1

ln 0.5
Initial temperature for Simulated Annealing.

𝜏𝑓𝑖𝑛𝑎𝑙
𝑓 (𝛾𝑏𝑒𝑠𝑡) ⋅ 0.1
ln (0.01)

Final temperature for Simulated Annealing.

𝜁 1 − (
𝜏𝑓𝑖𝑛𝑎𝑙
𝜏𝑖𝑛𝑖𝑡

)
1

𝐼𝐴𝐿𝑁𝑆 Cooling rate for Simulated Annealing.

𝐼𝐴𝐿𝑁𝑆 100 Number of iterations within the ALNS.
𝐼𝑆 10 Number of iterations within a segment.
𝐼𝑚𝑎𝑖𝑛 50 Number of iterations in the main framework.
𝑇 𝑙𝑖𝑚𝑖𝑡 600 s Runtime limit for the heuristic.
𝑇 𝐿𝑆𝑂 0.5 s Runtime limit for a local search operator.
𝑇 𝐿𝑆 2.0 s Runtime limit for local search.
𝜅 50% Share of pricing solution set to initial values in perturbation process
K

K

L

L

L

L

L

L

M

Appendix B. Predefined parameters common to all test instances

See Table 11.

Appendix C. Summary of the tuning of the parameters of the ALNS
heuristic

See Table 12.
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