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Abstract: Cancer is one of the leading significant causes of illness and chronic disease worldwide.
Skin cancer, particularly melanoma, is becoming a severe health problem due to its rising prevalence.
The considerable death rate linked with melanoma requires early detection to receive immediate
and successful treatment. Lesion detection and classification are more challenging due to many
forms of artifacts such as hairs, noise, and irregularity of lesion shape, color, irrelevant features,
and textures. In this work, we proposed a deep-learning architecture for classifying multiclass
skin cancer and melanoma detection. The proposed architecture consists of four core steps: image
preprocessing, feature extraction and fusion, feature selection, and classification. A novel contrast
enhancement technique is proposed based on the image luminance information. After that, two
pre-trained deep models, DarkNet-53 and DensNet-201, are modified in terms of a residual block
at the end and trained through transfer learning. In the learning process, the Genetic algorithm
is applied to select hyperparameters. The resultant features are fused using a two-step approach
named serial-harmonic mean. This step increases the accuracy of the correct classification, but some
irrelevant information is also observed. Therefore, an algorithm is developed to select the best features
called marine predator optimization (MPA) controlled Reyni Entropy. The selected features are finally
classified using machine learning classifiers for the final classification. Two datasets, ISIC2018 and
ISIC2019, have been selected for the experimental process. On these datasets, the obtained maximum
accuracy of 85.4% and 98.80%, respectively. To prove the effectiveness of the proposed methods, a
detailed comparison is conducted with several recent techniques and shows the proposed framework
outperforms.

Keywords: skin cancer; contrast enhancement; deep learning; feature selection; classification; marine
predator optimization; fusion

1. Introduction

The most deadly kind of skin cancer, melanoma, has increased dramatically worldwide.
Consequently, early and prompt diagnosis is crucial for reducing the severity of the disease.
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The analysis of medical images of different organs of the body to detect irregular behavior
plays a vital role in the medical field, such as skin cancer [1], brain cancer [2], lung cancer [3],
breast cancer [4], and retina [5]. Skin cancer is one of the more prevalent diseases today [6].
It is one of the most common forms of cancer in humans because it is the body’s largest
organ [7]. The skin lesion is generally divided into two classes, i.e., melanoma and non-
melanoma [8]. The World Health Organization (WHO) reports that there were 104,350
cases of skin cancer overall and 11,650 fatalities in the United States in 2019 [9]. In 2020,
196,060 new cases of skin cancer are anticipated. It is believed that 40,160 and 60,190 of
the latter are men and women, respectively [10]. Based on these figures, it is possible to
anticipate that in 2020, the situations will more than triple while the death rate will decrease
by over 5.3%. In the United States, 106,110 new instances of melanoma are anticipated to
be diagnosed in 2021, while 7180 people will pass away from the disease.

Melanocytes are the cells in which melanoma develops when these cells overgrow
and form a malignant tumor [11]. The hands, face, neck, lips, and other exposed skin parts
are particularly affected by it [12]. Early detection of melanoma increases the likelihood
of being successfully treated; otherwise, it will spread to other body areas and cause an
agonizing death [13]. After an eye exam, it might be challenging for specialists to diagnose
skin cancer in its early stages [14] as modern specialized, computer-aided detection (CAD)
technology has been employed to identify all types of tumors since the early 2000s [15].

Melanoma includes complex patterns of multiple components and exhibits asymmet-
rical pigment distribution on the acral skin. The blue nevus (blue-grey region) aids in
detecting malignancy, whereas these pigment networks, dots, or globule distributions help
identify melanocytic diseases. Any lesion that does not exhibit the traits above is said to be
non-melanocytic.

Dermoscopy, a non-invasive imaging technique, has been created to assist dermatolo-
gists in their clinical examination to effectively diagnose melanoma [16]. Due to good visual
perception, the dermoscopy device can be useful for discriminating between malignant
and benign skin lesions. The capacity of dermatologists to discriminate between melanoma
and non-melanoma images has been improved by the development of several traditional
approaches, including the ABCD rule [17], 7-point checklist [18], Menzies procedure [19],
and CASH [20]. Due to intra-class similarity, an expert person’s accurate diagnosis of skin
cancer is challenging. Furthermore, melanoma and non-melanoma skin cancer kinds are
very similar in color, size, and other characteristics.

Additionally, eye examination-based melanoma diagnosis is laborious, expensive, and
time-consuming [21]. Hence, developing a computerized technique for accurately diagnos-
ing and classifying skin cancer is very important. Several computerized techniques have
been introduced in the literature for detecting and classifying skin cancer. A computerized
technique is based on a few important steps such as preprocessing the dermoscopic images,
lesion detection, feature extraction, and classification. Deep learning (DL) techniques have
successfully detected and classified cancer diseases in medical imaging [22,23]. For the skin
cancer classification, DL techniques give promising results that reveal its importance in
medical imaging [24].

1.1. Motivation

The skin is the largest and most important organ in the human body. Skin cancer is
currently the most common and deadliest type of cancer. It is a very specific area of research
in image processing and computer vision [25]. As was previously mentioned, melanoma
is the cancer that causes the greatest destruction and spreads the fastest worldwide. The
exceedingly complicated makeup of the lesion makes a clinical diagnosis a poor choice.
Despite extensive research and the development of numerous techniques, the issue of
accurately detecting and classifying skin lesions remains difficult. The primary objective of
this research is to develop a trustworthy computer-based melanoma detection technique
that can surpass existing computer-aided detection methods [26].
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1.2. Problem Statement

Advanced machine learning techniques like deep learning are frequently applied in
medical imaging for detection and classification. Experts are actively studying skin cancer,
and computer vision experts have developed several strategies. Many obstacles make skin
lesion segmentation and classification less accurate. This scientific project faces several
obstacles, including Low-contrast skin lesions, variations in lesion shape, and irregularity,
which degrade the performance of accurate feature extraction. Imbalanced skin classes
increase the probability rate of a higher number of image classes that impact the prediction
performance of other classes. The researcher occasionally combined data from multiple
sources to improve forecast accuracy, but this process significantly influenced the system’s
calculation time. Redundant and irrelevant features increase the mistake rate and testing
time during training and testing. Furthermore, melanoma, akiec, and nevi were all mistaken
for one another during the prediction process. For an accurate multiclass classification
problem, adding hidden layers to a neural network or other classifier is always difficult.

1.3. Major Contributions

The major contributions of this work are as follows:

• A contrast enhancement technique is proposed based on the luminance channel and
Retinex Model. The proposed technique enhanced the quality of contrast between
infected and healthy regions.

• Fine-tuned two pretrained models and added residual blocks at the end for better
learning on the selected datasets.

• Proposed a serial-Harmonic mean fusion technique
• We developed an optimization technique named Marine Predator controlled Reyni

Entropy for best feature selection.

2. Related Work

Nowadays, traditional clinical methods for melanoma diagnosis are ineffective. There
is room for a CAD system to classify skin cancer accurately [27]. Colored skin lesions are
examined and researched via a method called dermoscopy. It showed a new aspect of skin
lesions, enabling diagnostic tools to accurately differentiate between melanoma and non-
melanoma lesions. A computer uses dermoscopy to accurately diagnose and categorize
skin abnormalities [28–30]. The next four important processes are preprocessing, lesion
segmentation, feature extraction, and lesion classification. There are a lot of unanswered
issues when it comes to accurately detecting and classifying skin lesions.

Deep learning models can be used to optimize the efficiency and quality of skin
cancer classification [21]. According to previous literature, the most common approach in
dermoscopic Image Analysis (DIA) since 2015 is a convolutional neural network used as a
classifier. The latest Advanced computer vision and digital image processing research have
revealed the significance of deep learning techniques to attain excellent accuracy in image
segmentation, detection, and classification in complex problems [31]. To identify malignant
lesions, Codella et al. [32] studied and presented mostly used deep neural networks, such
as deep residual networks and deep convolutional neural network models. Simon et al. [33]
presented a Deep Learning structure for skin lesion segmentation and classification. The
main strength of this work was categorizing the tissues into 12 dermatologist classes. After
that, they trained a deep CNN using these characteristics for final classification. They tested
the introduced framework on dermoscopy images and compared it with clinical accuracy.
During the comparison phase, the clinical method achieved an accuracy of 93.6, whereas
the computerized method attained 97.9%. This shows that the computerized methods
would perform better than the clinical techniques. Amin et al. [34] introduced an integrated
design for deep feature fusion through preprocessing, segmentation, and feature extraction;
firstly, they resized the images and converted RGB into luminance channel, then they
used the Otsu algorithm and Biorthogonal 2-D wavelet transform to segment the infected
part of skin after that pre-trained Alex net and VGG16 use to extract the deep features
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after that optimal feature is selected by using PCA for classification. Al.masni et al. [35]
suggested a frequently used deep learning framework, merging both segmentation and skin
lesion classification phases. They utilized a resolution convolutional network (FRCN) to
perform the segmentation process over dermoscopic images. After that, different classifiers
Inception-v3, ResNet-50, and Inception-ResNet-v2, are used over segmented images. The
proposed structure of the deep learning model is experienced by three different dataset
ISIC2016, ISIC2017 and ISIC2018 which hold two, three or seven classes of skin lesion
with highly balanced, segmentation, and augmentation. The classifiers of Inception-v with
377.04%, ResNet-50 with 79.95%, Inception-ResNet-v2 with 81.79%, and DenseNet-201
with 81.27% showed their predicted accuracies for the dataset of ISIC2016. ResNet-50
outperformed ISIC 2017 in three classes (81.2%, 81.5%, 81.3%, and 73.4%), and ISIC2018 in
seven classes (88.05%, 89.28%, 87.74%, and 88.70%), indicating its better performance.

Pacheco et al. [36] used the Thirteen best deep learning networks and observed that the
SENet convolutional neural network and Adam optimization are the perfect architecture.
The proposed model obtained 91% performance on the ISIC2019 Dataset. The research
presented by Farooq et al. [37] enhances the classification performance of 86% of two
excellent neural networks, Mobile Net and Inception Net, by utilizing the Kaggle updated
dataset of skin cancer. A pioneering-based CNN-based research was conducted by Esteva
et al. Lui et al. [38] Proposed a method of categorization of skin lesions; they used a
traditional deep learning mode that included Dense Net and Resnet, as well as the MFL
module, and achieved an accuracy of 87% on the ISIC 2017 dataset. Pedro et al. [39]
introduced a classification model based on Linear SVM and Feedforward Neural Network
(FNN), achieving a 90% accuracy on the dermo fit dataset. Milton et al. [40] proposed a
comprehensive study of numerous deep learning methods for skin cancer. This study was
conducted on many neural networks like Inception Resnet-V2, PNASNet-5, SENet-154,
and Inception-V4 on publicly available ISIC-2018 Dataset. The best performance of 76%
results was obtained on the PNASNet-5 model. Khatib et al. [41] Resnet-101 Architecture
was presented for the classification of skin lesions. On a well-known PH2 database, the
suggested model used fine-tuned CNN models to identify the multiple types of skin lesions
via transfer learning and achieved an accuracy of 90%. Almaraz et al. [42] used the ABCD
rule based on color, shapes, and texture as handcrafted features and Mobile NetV2 neural
network architecture by using information measures for the classification of melanoma.
The presented technique achieved excellent accuracy of 92.4% on the HAM10000 dataset.
Table 1 presented the summary of the few existing techniques.

Table 1. Summary of deep learning based classification technique.

Author Year Methods Method Type Dataset Accuracy

Simon et al. [33] 2021 Interpretable deep
learning framework

Detection +
Classification Private Collected 97.1%

Amin et al. [34] 2020 Alex net and VGG16
Neural Networks

Detection +
Classification Kaggle Skin Cancer 96.0%

Al-Masni et al. [35] 2020 ResNet-50
andDenseNet-201 Classification ISIC 2016 ISIC 2017

and ISIC 2018. 88.0%

Pacheco et al. [36] 2020 SE Net with Adam
Optimization

Detection +
Classification ISIC 2019 91.0%

Farooq et al. [37] 2019
Inception-V3 and

Mobile Net Neural
Networks

Classification Kaggle Skin Cancer 86.0%

Liu et al. [38] 2019 Dense Net and Res
Net use MFL module Classification ISIC 2017 87.0%
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Table 1. Cont.

Author Year Methods Method Type Dataset Accuracy

Pereira et al. [39] 2020
Linear SVM and

Feedforward Neural
Network (FNN)

Detection +
Classification Dermo fit Dataset 90.0%

El-Khitib et al. [41] 2020 Res Net-101 CNN
Architecture

Detection +
Classification PH2 Dataset 90.0%

Almaraz et al. [42] 2020
Handcrafted features

and Mobile Netv2
Architecture

Detection +
Classification HAM1000 Dataset 92.4%

Pacheco et al. [43] 2020
VGG-16, Mobile Net,

Resnet-101 using
clinical features

Classification PAD-UFES-20 76.4%

3. Proposed Work

In this section, the proposed method for melanoma classification is presented. The
proposed method comprises preprocessing, feature extraction and fusion, feature selection,
and classification steps. Figure 1 shows the proposed melanoma classification using deep
learning. This figure shows that the deep features are extracted from two pre-trained CNN
models, DarkNet-53 and DenseNet-201. The extracted deep features are fused using a
novel technique that is later optimized using a feature selection algorithm. The selected
features are finally employed for the classification. The description of each step is given in
the below sub-sections.

Figure 1. Main flow of proposed automated melanoma recognition using deep learning.

3.1. Proposed Contrast Enhancement
3.1.1. Datasets Description

In this work, two datasets have been utilized for the experimental process, such as
ISIC2018 [40] and ISIC2019 [44]. Both datasets have been publically available for research
purposes (https://challenge.isic-archive.com/data/#2019, accessed on 11 August 2023).
The ISIC2018 dataset consists of 10,015 dermoscopic images for training and 1512 testing
images. The training images include 1113 of Melanoma (MEL), 6705 of Melanocytic nevus
(NV), 514 samples of Basal cell carcinoma (BCC), 327 images of Actinic keratosis (AK), 1099
images of Benign keratosis (BKL), 115 images of Dermatofibroma (DF), and 142 images of
Vascular (VASC), respectively.

The ISIC2019 [44] dataset comprises 25,331 training images and 8238 test images.
Overall, the total number of images is 33,569. This dataset consists of eight classes: MEL,
NV, BCC, AK, BKL, DF, VASC, and SCC (squamous cell carcinoma). All images of both

https://challenge.isic-archive.com/data/#2019
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datasets have been in RGB format with different resolutions. We resized all the images
into 512 × 512 × 3, which was later resized according to the selected CNN models. A few
sample images are shown in Figure 2.

Figure 2. A sample image of the ISIC2019 dermoscopic dataset.

3.1.2. Contrast Enhancement

The lesion diagnosis system’s most crucial phase is contrast enhancement. The issue
of low contrast is addressed in the literature using a diversity of enhancing approaches.
This article uses a novel technique that uses texture and color information for improvement.
Because it is observed that, in contrast to patches of healthy skin, skin lesions are more
likely to have texture and color information. The textural information is calculated using
normalized luminance channels as follows:

ϕL(u, v) = (λ× F(Y))− 16, (1)

F(Y) =
{ 3

√
Y for Y > 0.01

(7.787 ∗ Y) + 16
λ elsewhere

(2)

where λ = 116, (Y) =
∼
Y

100 ,
∼
Y = ωi × G, i ∈ {0.212, 0.715, 0.072}. The G denotes the

green channel, which is extracted from the original RGB image as G = G
3
∑

j=1
φj

. The whole

expression is simplified as follows:

L(u, v) = ϕL(
3

∑
j=1

I(u, v)
3

) (3)

where I(u, v) the original RGB is an image and ϕL is luminance function. Then the Gaussian
function is performed on the luminance image to examine the textural information in the
lesion area. The Gaussian function is defined as follows:

ρ(u, v,σ) =
L(u, v)
ϕ(u, v,σ)

− L(u, v) (4)

where ϕ(u, v,σ) = L(u, v)×G(σ). It means that L(u, v) is smoothed by a Gaussian filter
with parameter σ (standard deviation). The σ is calculated as follows:

σ =

√
∑(uv)2

N
−
(

∑ uv
N

)2
(5)
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The above expression ρ(u, v,σ) is simplified as:

ρ(u, v,σ) =
L(u, v)− L(u, v)×ϕ(u, v,σ)

ϕ(u, v,σ)
(6)

=
L(u, v)[1−ϕ(u, v,σ)]

ϕ(u, v,σ)
, (7)

=
L(u, v)× Z
ϕ(u, v,σ)

(8)

where Z = 1−ϕ(u, v,σ). Generally, the low-intensity pixel in dermoscopic images occurs
in the lesion area. Hence, we perform an activation function to differentiate the lesion and
skin pixels in the image. The activation function is defined as:

F(A) =

{ ∼
ϕL(u, v) ifρ(u, v,σ) > ϕ(u, v,σ) Lesion Area
∼
ϕH(u, v) otherwise Healthy Skin Area

(9)

where,
∼
ϕL(u, v),

∼
ϕH(u, v) represents the lesion and healthy skin area, respectively. Finally,

to adjust the color intensities of resultant pixels, we utilized the Retinex Model [45]. This
model is utilized for color adjustment, which is defined as follows:

ϕRetinex(u, v) =

∼
ϕi

L(u, v)
∼
ϕi

L(u, v)⊗G(σ)

(10)

where i ∈ L, A, B; ⊗ denotes the convolution operation and G(σ) is the Gaussian filter with
standard deviation. Some sample results of the preprocessing step are shown in Figure 3.
This figure clearly shows that the problem of poor contrast is resolved by implementing the
proposed technique. These enhanced images are further utilized in the model’s learning
phase.

Figure 3. Lesion Contrast Enhancement Results: (a,c) Original Image; (b,d) Enhanced Image.

3.1.3. Transfer Learning

Transfer learning (TL) is used to improve the efficiency of the process and reduce
the number of resources essential. When elements of a pre-trained machine learning
model are reused in a new machine learning model, this is known as transfer learning. In
transfer learning, define feature vector and probability distribution as A = { fv, P(f v)} and
fv = {v1, v2, . . . .., vn}. In which ground truth G = g1, g2, . . . .., gn and objective function
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O ={G, l(x) , whereas l(x) is an unknown label class. P(g|x) is a probabilistic representation
of the function. Transfer learning and the learning rate are denoted as To and Lo. Tf will
be used to show the targeted function and targeted output is Tf. The main goal of transfer
learning is to improve the learning rate for predicting the targeted item using the recognition
function (l(x)) depending upon that training for learning from To and Tf where To 6= Tf
and Lo 6= Tf. Pattern recognition is improved via inductive transfer learning. You’ll need
an annotated database for fast training and testing when using inductive transfer learning.
A general model of TL is shown in Figure 4.

Figure 4. Transfer learning model for the learning of deep model for skin lesion classification.

3.2. Deep Models Fine-Tuning and Feature Extraction

In this work, two pretrained deep learning models, such as DarkNet-53 and DensNet-
201 are fine-tuned and trained through TL for deep feature extraction.

Fine-Tuned DarkNet-53 Model: A convolutional neural network with 53 layers is
known as DarkNet-53 [46]. The ImageNet database contains a pre-trained version of
the network trained on more than a million images. This network mainly comprises
53 convolutional layers, 1 × 1 and 3 × 3, located at the front of the residual layer. A batch
normalization (BN) layer and a LeakyReLU layer follow each convolutional layer. Several
residual blocks of this network are repeated, such as 1, 2, 4, and 8. We deleted the last three
layers of the model for the fine-tuning model and added three new layers. In addition, we
added a new residual block having three convolutional layers of filter size 3 × 3 and stride
1. After that, the training of this model is performed using TL. After the training, features
are extracted from the deeper layer called the global average pool layer of dimensional
Nx1024.

Fine-Tuned DenseNet-201 Model: DenseNet-201 [47] is the name of a convolutional
neural network with 201 layers. A pretrained version of the model that has been tested
on more than a million images is present in the ImageNet database. The DenseNet-201
uses the condensed network to produce models that are easy to train and incredibly
computationally effective since feature recycling by several layers improves variety in the
input to the subsequent layer and performs better.

Figure 5 shows the original architecture of DensNet-201. In the fine-tuning process, we
replaced the last three layers at the initial stage with three new layers. After that, a residual
block of six layers was added, including three convolutional filter sizes 3 × 3 and stride 1.
This block is added after the T3. This fine-tuned model is trained using TL, whereas the
global average pooling layer is selected for the deep feature extraction. On this layer, 1920
features are extracted for each image.
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Figure 5. Original architecture of DensNet-201 CNN model.

3.3. Feature Fusion

We are taking two feature vectors Fv1Dar, Fv2
Squ and fusion vector represented as

Fusv. The dimension of these vectors is R × N. Where N is represented the length of
extracted features and R denotes the number of training images. The initial vector length
of each feature vector is R× 1024 and R× 1920, appropriately. The following formula is
used to compute the correlation coefficient between both feature vectors Dar and Squ of
each row.

f (Dar , Squ) =
COV (Dar , Squ)√

Var(Dar)
√

Var(Squ)
(11)

The range of these values lies between (−1,1), where −1 for weak correlation and +1
for strong correlation. The equation of the maximum correlation vector is as follows:

CV(Dar , Squ) = ϕ f ((m1(Dar), m2(Squ)) (12)

In this case, ϕ denotes the Supremum of the overall Borel functions ; Squ: ω→ ω

which is located between (0, 1). The CV(Dar, Squ) is the maximum correlation. After that,
a harmonic mean-based threshold function is designed for the final fusion as follows:

H =
n

1
f1
+ 1

f2
+ . . . + 1

fk

(13)

where H denotes the harmonic mean, f denotes the features of CV(Dar , Squ) and k denotes
the feature of a single row. A harmonic mean is used to give a higher weightage of the small
value features. The main reason is the reduction of several small value features important
for classification. Finally, a threshold function is employed and a fused vector is obtained.

Th =

{
Fusion (k) f or CVk ≥ H

Extra f eatures (m) f or CVm < H
(14)

The Fusion (k) feature vector is considered for further processing. In this work, a
fused vector is obtained of dimension N × 2012, where N is the number of training images.

3.4. Feature Selection

Feature selection is a hot research area in computer vision for the curse of dimen-
sionality. Many techniques have been introduced in the literature for feature selection for
improved accuracy and less computational time. In this work, a metaheuristic algorithm is
implemented named the Marine Predator Algorithm (MPA) [48] and modified further with
an entropy technique called Reyni Entropy.

The MPA was proposed to mimic the behavior of marine predators in search of Prey,
in which the predators use L’evy and Brownian movements as their optimal foraging
mechanisms. The velocity ratio v of the Prey to the predator is used to make a tradeoff
between L’evy and Brownian strategies. When v is small or equal to 0.1, the best strategy
for the predator is to move in the L’evy steps (exploration phase) regardless of whether the
Prey is moving in Brownian or L’evy. However, if v is equal to 1, then the best approach
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for the predator is to move in Brownian steps if the Prey is moving in L’evy steps. Finally,
when >10v, the predator should not move at all, regardless of whether the Prey is moving
in Brownian or L’evy because it will come in itself (exploitation phase). The mathematical
model of the MPA is as follows:

Initialization: In the first step, the initial solution is uniformly distributed over the
search space area using the following formula, where A ∈ Fusion(k).

→
x = Amin +

→
i ⊗ (Amax − Amin) (15)

where i→ is a vector generated randomly within⊗ represents the entry-wise multiplication,
and A→min, and A→max are the vectors containing the dimensions’ lower and upper
bounds.

Elite and Prey matrix construction: Based on the survival of the fitness theory, the top
predator is the one that is best in foraging. Thus, the top predator is used to construct a
matrix called Elite.

Elite =

A1
1,1 A1

1,2 · · · · · · A1
1,d

A1
2,1 A1

2,1 · · · · · · A1
2,d

A1
N,1 A1

N,2 · · · · · · A1
N,d

 (16)

where A1 → represents the top predator vector and is replicated N times to build up the
elite matrix (N is the number of individuals in the population), and d is the number of
dimensions. This matrix will be updated at the end of each iteration if the top predator is
updated. Another matrix, p, represents Prey and has the same dimensions as Elite and is
used by the predators to update their positions as follows:

→
P

A1
1,1 A1

1,2 · · · · · · A1
1,d

A1
2,1 A1

2,1 · · · · · · A1
2,d

A1
N,1 A1

N,2 · · · · · · A1
N,d

 (17)

where AN,d denotes the nth dimensional of d Prey. The optimization process consists of
three steps, high-velocity ratio, unit-velocity ratio, and low-velocity ratio. In the high-
velocity ratio, the Prey quickly searches the food, and mathematically, it is defined as
follows:

i f t <
1
3

tmax (18)

→
Vi =

→
Rx
⊗( →

Elitei −
→
Rx
⊗→

Pi

)
(19)

→
Pi =

→
Pi + F.

→
N
⊗→

Vi (20)

where,
→
Rx denotes the numerical vector,

⊗
denotes the entry-wise multiplication, F denotes

the fixed numerical value that is 0.4 in this work,
→
N denotes the numerically generated ran-

dom vector, t is a current iteration, and tmax denotes the maximum iterations, respectively.
After that, a unit velocity ratio-based transition stage is considered that is defined as

follows:
i f

1
3

tmax < t <
2
3

tmax (21)

For the first half, the population is calculated as:

→
Vi =

→
RL
⊗( →

Elitei −
→
RL
⊗→

Pi

)
(22)

→
Pi =

→
Pi + F.

→
N
⊗→

Vi (23)
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For the second half, the population is computed as follows:

→
Vi =

→
RB
⊗( →

RB
⊗ →

Elitei −
→
Pi

)
(24)

→
Pi =

→
Pi + F.AP

⊗→
Vi (25)

where AP is an adaptive parameter that is used for the computation of step size as follows:

AP =

(
1− t

tmax

)(2 t
tmax )

(26)

In the last step, a low velocity ratio is opted [48]. Then, a FAD is computed for the
final prey selection as follows:

→
Pi =


→
Pi + AP

[
xmin +

→
R
⊗
(xmax − xmin)

]⊗→
B i f r < 0.4

→
Pi + [0.4(1− r) + r]

( →
Pr1 −

→
Pr1

)
i f r ≥ 0.4

(27)

Here,
→
B is a binary vector of value 1 or 0. The Reyni entropy is computed to remove

the uncertainty among selected Prey
→
Pi and then compute the fitness. The Prey, which

satisfied the entropy function, is passed for the fitness calculation.

Ent
(→

Pi

)
=

1
1− α

log
n

∑
i=1

→
Pi

α

, α > 1 and 6= 1 (28)

Here, Ent denotes the entropy value of each row of selected ith prey. We are using this
value in the following for the final selection.

Fnc =

{ →
Sel(k) f or

→
Pi ≥ Ent

ignore, Elsewhere
(29)

The selected vector
→

Sel(k) is finally employed for the fitness calculation. This process
continues until the number of iterations is completed. In this work, 200 iterations have been
selected. After 200 iterations, we got the final feature vector of dimensional N × 1768 for
ISIC2018 and N × 1559 for ISIC2019 dataset, respectively. The selected features are finally
classified using machine learning classifiers.

4. Experiments and Results

The experimental process of the proposed method is discussed in this section. The
proposed method is examined using two different datasets such as ISIC2018 and ISIC2019.
These datasets are publicly available for the researchers of medical imaging. Ten classifiers
are used to examine the classification accuracy, including Quadratic SVM (QSVM), Wide
Neural Network (WNN), Cubic SVM (CSVM), Fine Tree (FT), Gaussian Naive Bayes (GNB),
Weighted KNN (WKNN), Cubic KNN (CKNN), Narrow Neural Network (NNN), Bilayered
Neural Network (BNN), and Trilayered Neural Network (TNN). The best one is selected
based on the highest accuracy value employed for the visual prediction. Each classifier
performance is computed based on performance measures such as sensitivity, F1-Score,
precision rate, accuracy, FPR, and testing time (sec). Training and testing sets were split
before data augmentation into 50:50, meaning 50% of the images in each class were used
for training, while the remaining 50% were taken for testing. The validation images are
merged into testing images that are utilized for the classification results. The total number
of epochs is 100 with a learning rate of 0.0002, momentum of 0.6557, and batch size of 128.
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All the experiments are evaluated in MATLAB2022b on an Intel Core i7 7th generation CPU
possessing 8 GB of RAM and 8 GB graphics card of RTX3060.

4.1. ISIC 2018 Dataset Results

The results of this ISIC2018 dataset are presented in four steps. In the first step, fine-
tuned DarkNet-53 deep model features are extracted and performed classification. The
classification results are given in Table 2. This table shows that the highest noted accuracy
is 79.3% of Cubic SVM. The recall rate of this classifier is 49.2%, the sensitivity rate of 72%,
the F1-score of 58.6, and the FNR is 27.3%, respectively. Furthermore, the computed time of
the Cubic SVM classifier during the testing process is 114.2 s (sec). The rest of the classifiers
obtained an accuracy in the range of 55.3–79%.

Table 3 presents the results of DensNet-201 deep features using the ISIC2018 dataset.
On this dataset, the obtained highest accuracy of 81.5% by Cubic SVM. The recall rate of
this classifier is 53.8%, the sensitivity rate is 74.5%, the F1-score is 62.4%, and FNR is 25.5%.
Furthermore, the computational time of the Cubic SVM is 259.6 s (sec). The rest of the
classifiers’ accuracy range is between 59 and 81.3%. Compared to the accuracy and other
performance measures of both tables (Tables 2 and 3), it is observed that the accuracy of the
DenseNet-201 model is improved than the DarkNet-53 model. However, the DarkNet-53
model is computationally faster than the DenseNet features.

Table 2. Proposed classification results by employing DarkNet-53 deep features on ISIC2018 dataset.

Sr. Classifier
(%)

Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 49.7 72.9 59.1 27.1 79.0 109.98

2 CSVM 49.2 72.7 58.6 27.3 79.3 114.2

3 FT 25.9 31.6 28.4 68.4 66.6 12.44

4 GNB 49.4 33.3 39.7 66.7 55.3 24.2

5 WKNN 34.9 64.5 45.2 35.5 73.7 27.3

6 CKNN 72.2 46.7 56.7 53.3 72.2 467.3

7 NNN 72.9 48.0 57.8 52 72.9 411.4

8 WNN 72.5 46.2 56.4 53.8 72.5 371.6

9 BNN 76.3 55 63.9 45 76.3 26.7

10 TNN 71.4 41.7 52.6 58.3 71.4 345.16

Bold denotes the max values.

Table 4 shows the proposed fusion results on the ISIC2018 dataset. In this table,
quadratic SVM obtained the highest accuracy of 86.2%, while other computed metrics, such
as recall rate, precision rate, F1-Score, and last FNR, are 61%, 80%, and 69.2, respectively.
The Cubic SVM achieved an accuracy of 86.1%. The computational time of the fusion
process is increased, which is a drawback of this step; however, the improvement in
accuracy is strength. Compared to the fusion results with Tables 2 and 3, an almost 5%
improvement in the accuracy is observed for Cubic SVM. For the quadratic SVM, the
improvement is also above 5%.
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Table 3. Results of classification utilizing DarkNet-201 deep features using the ISIC2018 dataset.

Sr. Classifier
(%)

Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 53.3 73.9 61.9 26.1 81.3 228.24

2 CSVM 53.8 74.5 62.4 25.5 81.5 259.6

3 FT 27.5 32.6 29.8 67.4 66.5 24.6

4 GNB 49.9 31.8 38.8 68.2 59 66

5 WKNN 35.9 67.5 46.8 32.5 74.7 54.172

6 CKNN 32.9 51.1 40.0 48.9 73.5 1103.2

7 NNN 49.6 50.3 49.9 49.7 75.1 604.1

8 WNN 56.9 56.9 56.9 43.1 79.3 653.42

9 BNN 46.5 46.5 46.5 53.5 74.4 52.0

10 TNN 42.7 42.3 42.4 57.7 72.8 253.2

Bold denotes the max values.

Table 4. Classification results of the proposed feature fusion technique using the ISIC2018 dataset.

Sr. Classifier
(%)

Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 61 80 69.2 20 86.2 448.7

2 CSVM 59 81 68.2 19 86.1 552.49

3 FT 31 34 32.4 66 69.6 66.55

4 GNB 58 43 49.3 57 68.3 150.82

5 WKNN 39 48 43.0 52 77.1 96.49

6 CKNN 35 54 42.4 46 75.9 2537.2

7 NNN 58.4 60 59.1 40 81.8 545.7

8 WNN 66.4 71.7 68.9 28.3 85.5 81.6

9 BNN 57.4 57.9 57.6 42.1 81.4 1031.6

10 TNN 57.4 56 56.6 44 80 839.5

Bold denotes the max values.

The classification results of the proposed feature selection method are given in Table 5.
The quadratic SVM obtained the highest accuracy of 85.4%, while other computed measures
included a recall rate of 60.8%, precision rate of 78.1%, F1-Score of 68.3%, and FNR of 21.9%,
respectively. After the fusion process, the computational time is almost half, as shown
in this table. Overall, the selection process maintains consistent accuracy and reduces
computational time. The confusion matrix of quadratic SVM is shown in Figure 6 to verify
the proposed feature selection performance.
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Table 5. Classification results of the proposed feature selection technique on the ISIC2018 dataset.

Sr. Classifier
(%)

Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 60.8 78.1 68.3 21.9 85.4 277.9

2 CSVM 59.5 79.2 67.9 20.8 85.4 23.0

3 FT 29.3 32.2 30.6 67.8 68.8 36.6

4 GNB 57.5 44.4 50.1 55.6 68.5 56.5

5 WKNN 37.1 70.2 48.5 29.8 77.0 53.0

6 CKNN 36.8 69.3 48.0 30.7 75.9 821.0

7 NNN 58.8 59.4 59.0 40.6 81.3 191.5

8 WNN 65.4 70.9 68.0 29.1 84.6 40.6

9 BNN 54.3 56.95 55.5 43.05 80.6 406.9

10 TNN 50.8 52.6 51.6 47.4 79.2 393.3

Bold denotes the max values.

Figure 6. Confusion matrix of Quadratic SVM after employing the proposed feature selection
technique on ISIC2018 dataset. * Actinic keratosis (AK), Melanoma (MEL), Melanocytic nevus (NV),
Basal cell carcinoma (BCC), Benign keratosis (BKL), Dermatofibroma (DF), and Vascular (VASC),
respectively.

4.2. ISIC2019 Dataset Results

The results of this ISIC2019 dataset are discussed in this subsection. Results are
computed in several steps, such as fine-tuned DarkNet-19 model features, DenseNet-201
features, fusion, and selection of best features.

In the first step, fine-tuned DarkNet-53 deep model features are extracted and per-
formed classification. The classification results are given in Table 6. This table shows
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that 98.1% of Cubic SVM is the highest noted accuracy. The recall rate of this classifier is
98.0%, the precision rate is 98.2%, the F1-score is 98.0, and the FNR is 1.8%, respectively.
Furthermore, the computed time of the Cubic SVM classifier during the testing process is
267.8 s (sec). The rest of the classifiers obtained accuracy in the range of 56.2–98%.

Table 6. Classification results of DarkNet-53 deep features using the ISIC2019 dataset.

Sr. Classifier Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 96.96 97.1 97.0 2.9 97.0 267.3

2 CSVM 98 98.2 98.0 1.8 98.1 267.8

3 FT 56.1 59.1 57.5 40.9 56.2 24.1

4 GNB 59.7 62.7 61.1 37.3 58.2 58.2

5 WKNN 97.7 98.1 97.8 1.9 98.0 112.63

6 CKNN 91.3 92.3 91.7 7.7 91.9 2471.6

7 NNN 95.7 95.8 95.7 4.2 95.9 636

8 WNN 95.7 96 95.8 4 95.9 648.4

9 BNN 97 97.2 97.0 2.8 97.2 571.1

10 TNN 95 95.4 95.1 4.6 95.4 667.9

Bold denotes the maximum value.

Table 7 presents the results of DensNet-201 deep features using the ISIC2019 dataset.
On this dataset, the obtained highest accuracy of 98.9% by Cubic SVM. The recall rate of
this classifier is 98.9%, the sensitivity rate is 98.9%, the F1-score is 98.9%, and FNR is 1.1%,
respectively. Furthermore, the computational time of the Cubic SVM is 1177.6.6 s (sec),
which is too high. The rest of the classifiers’ accuracy range is between 61.5 and 98.7%.
Compared to the accuracy and other performance measures of both tables (Tables 6 and 7),
it is observed that the accuracy of the DenseNet201 model is improved than the DarkNet-53
model. However, the DenseNet-201 model execution time is too high, which is challenging
for this method.

Table 7. Results of DensNet-201 deep features using ISIC2019 dataset.

Sr. Classifier Recall
(%)

Precision
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 98.3 98.4 98.3 1.6 98.3 1055.2

2 CSVM 98.9 98.9 98.9 1.1 98.9 1177.6

3 FT 62.3 65.4 63.8 34.6 62.1 48.3

4 GNB 63.1 65.3 64.1 34.7 61.5 102.8

5 WKNN 98.5 98.8 98.6 1.2 98.7 306.1

6 CKNN 94.3 93.2 93.7 6.8 94.0 7719.7

7 NNN 96.7 96.9 96.79 3.1 96.9 1054.5

8 WNN 98.8 96.9 97.8 3.1 96.9 1092.7

9 BNN 98 98.1 98.0 1.9 98.1 1167

10 TNN 96.3 96.4 96.3 3.6 96.9 1092.6

Bold denotes the maximum value.

After that, the fusion technique is applied, and the results are presented in Table 8.
Table 8 shows the proposed fusion results on the ISIC2019 dataset. In this table, quadratic
SVM obtained the highest accuracy of 99.1%, while other computed metrics, such as recall
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rate, precision rate, F1-Score, and FNR, are 99.02%, 99.1%, 99.0, and 0.9, respectively. The
computational time of the fusion process is 1329.7 (sec), which is significantly increased
than the previous two steps. Compared to the fusion results with Tables 2 and 3, an almost
1% improvement in the accuracy is observed for Cubic SVM. For the quadratic SVM, the
improvement is also above 1%.

Table 8. Results of the proposed fusion technique using the ISIC2019 dataset.

Sr. Classifier Recall
(%)

Sensitive
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 98.3 98.3 98.3 1.7 98.4 1053.5

2 CSVM 99.02 99.1 99.0 0.9 99.1 1329.7

3 FT 62.5 65.4 63.9 34.6 62.5 128.2

4 GNB 70.5 73 71.7 27 69.1 176.3

5 WKNN 97.6 86.06 91.4 13.94 98.0 513.1

6 CKNN 91.1 93.2 92.1 6.8 92.7 1253.3

7 NNN 95.9 95.9 95.9 4.1 96.0 266.5

8 WNN 97.8 97.9 97.8 2.1 98.0 181.26

9 BNN 95.6 95.7 95.6 4.3 95.7 414.8

10 TNN 95.3 95.3 95.3 4.7 95.3 610.83

Bold denotes the maximum value.

The classification results of the proposed feature selection method are given in Table 9.
The Cubic SVM obtained the maximum accuracy of 98.9%, while other computed measures
include a recall rate of 98.8%, F1 score of 98.8%, and FNR of 1.1%, respectively. Furthermore,
the computational time of the Cubic SVM classifier during the testing phase is 655.1 s (sec).
Compared with the fusion results, the feature selection technique results are consistent,
and time is significantly reduced. Figure 6 shows the confusion matrix of Cubic SVM for
the feature selection results. The confusion matrix can be utilized for the verification of
proposed results.

Table 9. Results of proposed feature selection on the ISIC2019 dataset.

Sr. Classifier
(%)

Recall
(%)

Sensitive
(%)

F1 Score
(%)

FNR
(%)

Accuracy
(%)

Time
(Sec)

1 QSVM 98.1 98.2 98.1 1.8 98.2 488.8

2 CSVM 98.8 98.9 98.8 1.1 98.9 655.1

3 FT 60.6 63.2 61.8 36.8 60.4 39.9

4 GNB 70.3 72.5 71.3 27.5 68.9 87.39

5 WKNN 97.7 98 97.8 2 97.9 180.1

6 CKNN 91.8 91.8 91.8 8.2 92.1 3829.5

7 NNN 95.1 95.1 95.1 4.9 95.1 105.9

8 WNN 97.3 94.7 95.9 5.3 97.5 129.4

9 BNN 94.7 97.4 96.0 2.6 94.6 342.28

10 TNN 94.5 94.5 94.5 5.5 94.5 128.6

Bold denotes the maximum value.

4.3. Discussion and Analysis

A detailed discussion of the proposed framework has been conducted in this section.
In addition, a detailed ablation study is performed to show the importance of each step.
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Figure 1 shows the proposed model that includes several middle steps. The contrast of
both datasets has been enhanced using the proposed technique, discussed in Section 3.1.2.
After that, two pre-trained models were trained and obtained the classification results.
Later on, fusion is performed and obtains improved accuracy. However, it is also observed
that the time was increased during the fusion process. Therefore, a new feature selection
technique is developed for better accuracy with less computational time. All the numerical
results are discussed in Tables 2–9. In addition, the confusion matrix of both datasets has
been illustrated in Figures 6 and 7. These confusion matrixes show how much the correct
prediction has been conducted for each class.

Figure 7. Confusion matrix of Cubic SVM after employing feature selection technique on ISIC2019
dataset.

Moreover, time is computed for each classifier for all experiments. Based on the
noted time in the tables, it is observed that the computational time of the fusion process is
significantly increased, which was later reduced by the feature selection technique. Figure 8
shows the accuracy-based comparison of ISIC2019 dataset results after employing the
proposed feature selection technique. This figure shows that the accuracy is plotted for four
different ratios such as 50:50, 60:40, 70:30, and 80:20, respectively. The average accuracy of
all classifiers for the 50:50 approach is 89.81%, whereas for the rest of the combination, the
obtained accuracies are 88.68, 89.29, and 89.75%, respectively.
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Figure 8. Comparison of ISIC2019 dataset accuracy after employing proposed feature selection using
different training/testing ratios.

A GradCAM-based visualization is performed for the DenseNet-201 fine-tuned model.
This process aims to analyze the newly trained model’s performance. A few sample results
are shown in Figure 9. In this figure, it is illustrated that the brown highlighted regions are
marked on the cancer region. Figure 10 shows a few sample-labeled images of the entire
proposed framework. These images are generated using the proposed method (Cubic SVM
classifier). In the end, a brief comparison of the proposed method with several existing
techniques has been conducted. Table 10 presents several techniques for comparison with
existing methods. In [49], the authors used the ISIC2018 dataset for the experimental
process and obtained an accuracy of 83%. The proposed method shows an improved
accuracy of 85.4%. Authors in [50,51] used the ISIC2019 dataset and obtained an accuracy
of 97.1% and 97.84%, respectively. The proposed method obtained an accuracy of 98.9%,
which is improved than the existing techniques on the ISIC2019 dataset.

Figure 9. GradCAM based visualization of fine-tuned DenseNet-201model for cancer localization.
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Figure 10. Proposed method prediction in terms of Labeled images.

Table 10. Comparison with existing methods for the proposed technique.

Reference Dataset Accuracy

[49] ISIC 2018 83%

[50] ISIC 2019 97.1%

[51] ISIC 2019 97.84%

Proposed ISIC 2018
ISIC 2019

85.4%
98.9%

Bold denotes the significant outcome.

5. Conclusions

Skin lesion classification is vital in computer-aided melanoma detection (CAD) sys-
tems, whose accuracy depends on the middle steps, such as contrast enhancement of skin
lesions, feature extraction, feature fusion, and selection. This work proposes a non-invasive
computerized dermoscopy technique for the improved classification accuracy of multiclass
skin lesions. Data augmentation was performed in the initial phase that followed the
learning of fine-tuned deep learning models. Features are extracted from the global average
pooling layer of both trained models. Later on, the fusion technique is employed, and
fused features of both CNN models. Finally, the fused feature vector is optimized using
an improved selection algorithm that is classified using machine learning classifiers. Two
datasets have been employed for the experimental process, such as ISIC2018 (seven classes)
and ISIC2019 (eight classes). On these datasets, the proposed method obtained an improved
accuracy of 85.4% and 98.9%, respectively. Overall, we conclude the following:

• The proposed framework can be useful in the clinics for the second opinion of malig-
nant and benign lesions.

• The proposed framework can help dermatologists with early classification of lesion
type and is also useful for lesion location localization (GradCAM).

• The contrast enhancement step improves the visibility of cancer and healthy regions,
later helpful in better learning of fine-tuned deep models.

• Adding a new block for each network increased the learning performance and training
accuracy.

• The fusion process improved the accuracy of the proposed method compared to the
fine-tuned models.

• The selection of best features removed the redundant and irrelevant information and
reduced the computational time.
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This work’s limitation is the increased computational time after employing the fusion
step. In the future, an attention mechanism-based network-level fused architecture will
be designed and trained on the ISIC2018 and ISIC2019 datasets. In addition, a feature
optimization technique will be proposed based on the location adjustment.

Author Contributions: Each contributor made an equal contribution. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King
Khalid University for funding this work through large group Research Project under grant number
RGP2/249/44.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this work are publically available (https://
challenge.isic-archive.com/data/#2019, accessed on 11 August 2023).

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research
at King Khalid University for funding this work through large group Research Project under grant
number RGP2/249/44.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hasan, M.K.; Ahamad, M.A.; Yap, C.H.; Yang, G. A survey, review, and future trends of skin lesion segmentation and classification.

Comput. Biol. Med. 2023, 155, 106624. [CrossRef] [PubMed]
2. Yang, J.; Luly, K.M.; Green, J.J. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer

applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1853. [CrossRef]
3. Huang, S.; Yang, J.; Shen, N.; Xu, Q.; Zhao, Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application

and future perspective. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2023.
4. Nasser, M.; Yusof, U.K. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction.

Diagnostics 2023, 13, 161. [CrossRef] [PubMed]
5. Zedan, M.J.; Zulkifley, M.A.; Ibrahim, A.A.; Moubark, A.M.; Kamari, N.A.M.; Abdani, S.R. Automated Glaucoma Screening and

Diagnosis Based on Retinal Fundus Images Using Deep Learning Approaches: A Comprehensive Review. Diagnostics 2023, 13,
2180. [CrossRef]

6. Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.-Y.; Maqsood, M. Region-of-interest
based transfer learning assisted framework for skin cancer detection. IEEE Access 2020, 8, 147858–147871. [CrossRef]

7. Zheng, Y.; Liang, H.; Li, Z.; Tang, M.; Song, L. Skin microbiome in sensitive skin: The decrease of Staphylococcus epidermidis
seems to be related to female lactic acid sting test sensitive skin. J. Dermatol. Sci. 2020, 97, 225–228. [CrossRef] [PubMed]

8. Namozov, A.; Im Cho, Y. Convolutional neural network algorithm with parameterized activation function for melanoma
classification. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence
(ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 417–419.

9. In, T. Facts & figures 2019: US cancer death rate has dropped 27% in 25 years. Am. Cancer 2019, 4, 1–17.
10. Chaturvedi, S.S.; Gupta, K.; Prasad, P.S. Skin lesion analyser: An efficient seven-way multi-class skin cancer classification using

MobileNet. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications,
Jaipur, India, 13–15 February 2020; pp. 165–176.

11. Tahir, M.; Naeem, A.; Malik, H.; Tanveer, J.; Naqvi, R.A.; Lee, S.-W. DSCC_Net: Multi-Classification Deep Learning Models for
Diagnosing of Skin Cancer Using Dermoscopic Images. Cancers 2023, 15, 2179. [CrossRef]

12. Mazhar, T.; Haq, I.; Ditta, A.; Mohsan, S.A.H.; Rehman, F.; Zafar, I.; Gansau, J.A.; Goh, L.P.W. The role of machine learning and
deep learning approaches for the detection of skin cancer. Healthcare 2023, 11, 415. [CrossRef]

13. Khan, M.Q.; Hussain, A.; Rehman, S.U.; Khan, U.; Maqsood, M.; Mehmood, K.; Khan, M.A. Classification of melanoma and
nevus in digital images for diagnosis of skin cancer. IEEE Access 2019, 7, 90132–90144. [CrossRef]

14. Khan, A.R.; Khan, S.; Harouni, M.; Abbasi, R.; Iqbal, S.; Mehmood, Z. Brain tumor segmentation using K-means clustering and
deep learning with synthetic data augmentation for classification. Microsc. Res. Tech. 2021, 84, 1389–1399. [CrossRef] [PubMed]

15. Tembhurne, J.V.; Hebbar, N.; Patil, H.Y.; Diwan, T. Skin cancer detection using ensemble of machine learning and deep learning
techniques. Multimed. Tools Appl. 2023, 82, 27501–27524. [CrossRef]

16. Fargnoli, M.C.; Kostaki, D.; Piccioni, A.; Micantonio, T.; Peris, K. Dermoscopy in the diagnosis and management of non-melanoma
skin cancers. Eur. J. Dermatol. 2012, 22, 456–463. [CrossRef] [PubMed]

https://challenge.isic-archive.com/data/#2019
https://challenge.isic-archive.com/data/#2019
https://doi.org/10.1016/j.compbiomed.2023.106624
https://www.ncbi.nlm.nih.gov/pubmed/36774890
https://doi.org/10.1002/wnan.1853
https://doi.org/10.3390/diagnostics13010161
https://www.ncbi.nlm.nih.gov/pubmed/36611453
https://doi.org/10.3390/diagnostics13132180
https://doi.org/10.1109/ACCESS.2020.3014701
https://doi.org/10.1016/j.jdermsci.2019.12.004
https://www.ncbi.nlm.nih.gov/pubmed/32156526
https://doi.org/10.3390/cancers15072179
https://doi.org/10.3390/healthcare11030415
https://doi.org/10.1109/ACCESS.2019.2926837
https://doi.org/10.1002/jemt.23694
https://www.ncbi.nlm.nih.gov/pubmed/33524220
https://doi.org/10.1007/s11042-023-14697-3
https://doi.org/10.1684/ejd.2012.1727
https://www.ncbi.nlm.nih.gov/pubmed/22534287


Diagnostics 2023, 13, 3063 21 of 22

17. Nachbar, F.; Stolz, W.; Merkle, T.; Cognetta, A.B.; Vogt, T.; Landthaler, M.; Bilek, P.; Braun-Falco, O.; Plewig, G. The ABCD rule of
dermatoscopy: High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 1994, 30,
551–559. [CrossRef] [PubMed]

18. Kawahara, J.; Daneshvar, S.; Argenziano, G.; Hamarneh, G. Seven-point checklist and skin lesion classification using multitask
multimodal neural nets. IEEE J. Biomed. Health Inform. 2018, 23, 538–546. [CrossRef]

19. Argenziano, G.; Soyer, H.P.; Chimenti, S.; Talamini, R.; Corona, R.; Sera, F.; Binder, M.; Cerroni, L.; De Rosa, G.; Ferrara, G.
Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet. J. Am. Acad. Dermatol. 2003, 48, 679–693.
[CrossRef]

20. Henning, J.S.; Dusza, S.W.; Wang, S.Q.; Marghoob, A.A.; Rabinovitz, H.S.; Polsky, D.; Kopf, A.W. The CASH (color, architecture,
symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 2007, 56, 45–52. [CrossRef]

21. Keerthana, D.; Venugopal, V.; Nath, M.K.; Mishra, M. Hybrid convolutional neural networks with SVM classifier for classification
of skin cancer. Biomed. Eng. Adv. 2023, 5, 100069. [CrossRef]

22. Qasim Gilani, S.; Syed, T.; Umair, M.; Marques, O. Skin Cancer Classification Using Deep Spiking Neural Network. J. Digit.
Imaging 2023, 36, 1137–1147. [CrossRef]

23. SM, J.; P, M.; Aravindan, C.; Appavu, R. Classification of skin cancer from dermoscopic images using deep neural network
architectures. Multimed. Tools Appl. 2023, 82, 15763–15778.

24. Sukanya, S.; Jerine, S. Skin lesion analysis towards melanoma detection using optimized deep learning network. Multimed. Tools
Appl. 2023, 82, 27795–27817. [CrossRef]

25. Naqvi, M.; Gilani, S.Q.; Syed, T.; Marques, O.; Kim, H.-C. Skin Cancer Detection Using Deep Learning—A Review. Diagnostics
2023, 13, 1911. [CrossRef] [PubMed]

26. Gururaj, H.; Manju, N.; Nagarjun, A.; Aradhya, V.N.M.; Flammini, F. DeepSkin: A Deep Learning Approach for Skin Cancer
Classification. IEEE Access 2023, 11, 50205–50214. [CrossRef]

27. Mridha, K.; Uddin, M.M.; Shin, J.; Khadka, S.; Mridha, M. An Interpretable Skin Cancer Classification Using Optimized
Convolutional Neural Network for a Smart Healthcare System. IEEE Access 2023, 11, 41003–41018. [CrossRef]

28. Abbas, Q.; Emre Celebi, M.; Garcia, I.F.; Ahmad, W. Melanoma recognition framework based on expert definition of ABCD for
dermoscopic images. Ski. Res. Technol. 2013, 19, e93–e102. [CrossRef] [PubMed]

29. Barata, C.; Ruela, M.; Francisco, M.; Mendonça, T.; Marques, J.S. Two systems for the detection of melanomas in dermoscopy
images using texture and color features. IEEE Syst. J. 2013, 8, 965–979. [CrossRef]

30. Zortea, M.; Schopf, T.R.; Thon, K.; Geilhufe, M.; Hindberg, K.; Kirchesch, H.; Møllersen, K.; Schulz, J.; Skrøvseth, S.O.; Godtliebsen,
F. Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual
evaluation by experienced dermatologists. Artif. Intell. Med. 2014, 60, 13–26. [CrossRef]

31. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

32. Codella, N.C.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep learning ensembles for
melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [CrossRef]

33. Thomas, S.M.; Lefevre, J.G.; Baxter, G.; Hamilton, N.A. Interpretable deep learning systems for multi-class segmentation and
classification of non-melanoma skin cancer. Med. Image Anal. 2021, 68, 101915. [CrossRef]

34. Amin, J.; Sharif, A.; Gul, N.; Anjum, M.A.; Nisar, M.W.; Azam, F.; Bukhari, S.A.C. Integrated design of deep features fusion for
localization and classification of skin cancer. Pattern Recognit. Lett. 2020, 131, 63–70. [CrossRef]

35. Al-Masni, M.A.; Kim, D.-H.; Kim, T.-S. Multiple skin lesions diagnostics via integrated deep convolutional networks for
segmentation and classification. Comput. Methods Programs Biomed. 2020, 190, 105351. [CrossRef] [PubMed]

36. Pacheco, A.G.; Ali, A.-R.; Trappenberg, T. Skin cancer detection based on deep learning and entropy to detect outlier samples.
arXiv 2019, arXiv:1909.04525.

37. Farooq, M.A.; Khatoon, A.; Varkarakis, V.; Corcoran, P. Advanced deep learning methodologies for skin cancer classification in
prodromal stages. arXiv 2020, arXiv:2003.06356.

38. Liu, L.; Mou, L.; Zhu, X.X.; Mandal, M. Automatic skin lesion classification based on mid-level feature learning. Comput. Med.
Imaging Graph. 2020, 84, 101765. [CrossRef]

39. Pereira, P.M.; Fonseca-Pinto, R.; Paiva, R.P.; Assuncao, P.A.; Tavora, L.M.; Thomaz, L.A.; Faria, S.M. Skin lesion classification
enhancement using border-line features–The melanoma vs nevus problem. Biomed. Signal Process. Control. 2020, 57, 101765.
[CrossRef]

40. Milton, M.A.A. Automated skin lesion classification using ensemble of deep neural networks in isic 2018: Skin lesion analysis
towards melanoma detection challenge. arXiv 2019, arXiv:1901.10802.

41. El-Khatib, H.; Popescu, D.; Ichim, L. Deep learning–based methods for automatic diagnosis of skin lesions. Sensors 2020, 20, 1753.
[CrossRef]

42. Almaraz-Damian, J.-A.; Ponomaryov, V.; Sadovnychiy, S.; Castillejos-Fernandez, H. Melanoma and nevus skin lesion classification
using handcraft and deep learning feature fusion via mutual information measures. Entropy 2020, 22, 484. [CrossRef]

43. Pacheco, A.G.; Krohling, R.A. The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med.
2020, 116, 103545. [CrossRef]

https://doi.org/10.1016/S0190-9622(94)70061-3
https://www.ncbi.nlm.nih.gov/pubmed/8157780
https://doi.org/10.1109/JBHI.2018.2824327
https://doi.org/10.1067/mjd.2003.281
https://doi.org/10.1016/j.jaad.2006.09.003
https://doi.org/10.1016/j.bea.2022.100069
https://doi.org/10.1007/s10278-023-00776-2
https://doi.org/10.1007/s11042-023-14454-6
https://doi.org/10.3390/diagnostics13111911
https://www.ncbi.nlm.nih.gov/pubmed/37296763
https://doi.org/10.1109/ACCESS.2023.3274848
https://doi.org/10.1109/ACCESS.2023.3269694
https://doi.org/10.1111/j.1600-0846.2012.00614.x
https://www.ncbi.nlm.nih.gov/pubmed/22672769
https://doi.org/10.1109/JSYST.2013.2271540
https://doi.org/10.1016/j.artmed.2013.11.006
https://doi.org/10.1147/JRD.2017.2708299
https://doi.org/10.1016/j.media.2020.101915
https://doi.org/10.1016/j.patrec.2019.11.042
https://doi.org/10.1016/j.cmpb.2020.105351
https://www.ncbi.nlm.nih.gov/pubmed/32028084
https://doi.org/10.1016/j.compmedimag.2020.101765
https://doi.org/10.1016/j.bspc.2019.101765
https://doi.org/10.3390/s20061753
https://doi.org/10.3390/e22040484
https://doi.org/10.1016/j.compbiomed.2019.103545


Diagnostics 2023, 13, 3063 22 of 22

44. Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin lesions classification into eight classes for ISIC 2019 using deep convolutional
neural network and transfer learning. IEEE Access 2020, 8, 114822–114832. [CrossRef]

45. Terai, Y.; Goto, T.; Hirano, S.; Sakurai, M. Color image contrast enhancement by Retinex model. In Proceedings of the Consumer
Electronics, ISCE’09, 2009 IEEE 13th International Symposium on Consumer Electronics, Kyoto, Japan, 25–28 May 2009; pp.
392–393.

46. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
47. Wang, S.-H.; Zhang, Y.-D. DenseNet-201-based deep neural network with composite learning factor and precomputation for

multiple sclerosis classification. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–19. [CrossRef]
48. Abdel-Basset, M.; Mohamed, R.; Mirjalili, S.; Chakrabortty, R.K.; Ryan, M. An efficient marine predators algorithm for solving

multi-objective optimization problems: Analysis and validations. IEEE Access 2021, 9, 42817–42844. [CrossRef]
49. Budhiman, A.; Suyanto, S.; Arifianto, A. Melanoma cancer classification using resnet with data augmentation. In Proceedings of

the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia,
5–6 December 2019; pp. 17–20.

50. Alizadeh, S.M.; Mahloojifar, A. Automatic skin cancer detection in dermoscopy images by combining convolutional neural
networks and texture features. Int. J. Imaging Syst. Technol. 2021, 31, 695–707. [CrossRef]

51. Elansary, I.; Ismail, A.; Awad, W. Efficient classification model for melanoma based on convolutional neural networks. In Medical
Informatics and Bioimaging Using Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2022; pp. 15–27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3003890
https://doi.org/10.1145/3341095
https://doi.org/10.1109/ACCESS.2021.3066323
https://doi.org/10.1002/ima.22490

	Introduction 
	Motivation 
	Problem Statement 
	Major Contributions 

	Related Work 
	Proposed Work 
	Proposed Contrast Enhancement 
	Datasets Description 
	Contrast Enhancement 
	Transfer Learning 

	Deep Models Fine-Tuning and Feature Extraction 
	Feature Fusion 
	Feature Selection 

	Experiments and Results 
	ISIC 2018 Dataset Results 
	ISIC2019 Dataset Results 
	Discussion and Analysis 

	Conclusions 
	References

