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A B S T R A C T

Mapping the spatial distribution of crystal phases with nm-scale spatial resolution is an important character-
isation task in studies of multi-phase materials. One popular approach is to use scanning precession electron
diffraction which enables semi-automatic phase mapping at the nanoscale by collecting a single precession
electron diffraction pattern at every probe position over regions spanning up to a few micrometers. For a
successful phase mapping each diffraction pattern must be correctly identified. In this work four different
approaches for phase mapping of embedded precipitates in an Al-Cu-Li alloy are compared on a sample
containing three distinct crystal phases. These approaches are based on: non-negative matrix factorisation,
vector matching, template matching and artificial neural networks. To evaluate the success of each approach a
ground truth phase map was manually created from virtual images based on characteristic phase morphologies
and compared with the deduced phase maps. The percentage accuracy of all methods when compared to the
ground truth was satisfactory, with all approaches obtaining scores above 98%. The optimal method depends
on the specific task at hand. Non-negative matrix factorisation is suitable with limited prior data knowledge
but performs best with few unique diffraction patterns and requires substantial post-processing. It has the
advantage of reducing the dimensionality of the dataset and handles weak diffracted intensities well given
that they occur repeatedly. The current vector matching implementation is fast, simple, based only on the
Bragg spot geometry and requires few parameters. It does however demand that each Bragg spot is accurately
detected in each pattern and the current implementation is limited to zone axis patterns. Template matching
handles a large range of orientations, including off-axis patterns. However, achieving successful and reliable
results often require thorough data pre-processing and do require adequate diffraction simulations. For artificial
neural networks a substantial setup effort is demanded but once trained it excels for routine tasks, offering
fast predictions. The implemented codes and the data used are available open-source. These resources and
the detailed assessment of the methods will allow others to make informed decisions when selecting a data
analysis approach for 4D-STEM phase mapping tasks on other material systems.
1. Introduction

Materials science abounds with examples of multi-phase materials
whose properties are affected by the presence and distribution of
various crystal phases. Fast and reliable crystal phase mapping wherein
each pixel in a real-space image is assigned to its respective phase is an
invaluable tool in understanding and improving such materials. Often,
phase mapping with nanometre-scale spatial resolution is required, for
example when working with alloys containing embedded nanoscale
precipitates [1], interfacial layers at dissimilar metal joints [2] or

∗ Corresponding author at: Materials and Nanotechnology, SINTEF Industry, N-7465, Trondheim, Norway.
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additively manufactured components [3]. This paper will focus on heat-
treatable aluminium (Al) alloys which typically exhibit a distribution
of nanoscale precipitates embedded in the Al face-centred cubic (fcc)
matrix [1]. Here the precipitate distribution depends strongly on the
Al alloy composition and thermomechanical treatment, and quantifi-
cation in terms of phase and volume fraction is crucial for improved
understanding and alloy design.

(Scanning) transmission electron microscopy ((S)TEM) is a power-
ful characterisation tool for studying nanoscale structures exhibiting
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a suitable spatial resolution alongside an ability to record a range
of signals simultaneously. One sub-approach within the field is four-
dimensional (4D)-STEM, in which a two-dimensional (2D) diffraction
pattern is recorded for each probe position within a 2D real space
raster [4,5]. 4D-STEM can be performed at a range of convergence
angles, with the low convergence semi-angle (∼1 mrad) regime typ-
ically being referred to as either scanning nanobeam diffraction or
scanning electron diffraction [6]. To improve the data quality from a
4D-STEM experiment it can be advantageous to include precession [7].
This defines an experimental scheme known as scanning precession
electron diffraction (SPED) [7–9]. Precession electron diffraction (PED)
involves tilting the incident beam at an angle from the optical axis
(the precession angle) before ‘rocking’ through a range of azimuthal
tilts (most commonly the full hollow cone) [7,8]. After these beams
have passed through the sample they are ‘de-rocked’ by an opposite
beam precession. This creates a pattern that can be qualitatively similar
to those predicted by kinematical diffraction. A key benefit of using
SPED in a phase mapping setting is that the integration (in reciprocal
space) leads to more spots and an increased uniformity within Bragg
disks by reducing the significance of dynamical diffraction effects. This
approach has gained recognition as a robust technique for both phase
and orientation mapping [10].

4D-scanning transmission electron microscopy (STEM)-based phase
and orientation mapping continues to gain popularity, supported by the
introduction of the new direct electron detectors and an ever increasing
computational power. Several studies have reported significant im-
provement in the reliability of phase mapping results when using direct
electron detectors as opposed to the conventional approach of using an
external digital camera filming the fluorescent screen [11,12]. However
the improved detector technology leads to a substantial increase in data
size, meaning that data analysis methods need to be further developed.

The default route for orientation and/or phase mapping has been
the template matching approach introduced by Rauch et al. [10,13],
which involves creating a library of simulated kinematic diffraction
patterns for all candidate phases and orientations. The experimental
patterns are then compared to the library via a normalised cross-
correlation to find the best match. This well-established method has
seen extensive usage since its inception with excellent studies produced
for both phase [14–17] and orientation mapping [9,12,14,16,18]. The
approach is not without limitations though. Results can depend strongly
on the correct candidate phase, correct simulation parameters and the
pre-processing regime chosen.

Another option when candidate phases (and orientations) are known
is to first detect the Bragg peaks in each recorded pattern before then
evaluating their geometry. This approach shares many features with
the strategies used in the structure solution community. A number
of variation exist within the literature; many approaches compare
the experimental vectors to reference vectors calculated from crystal
structures that are known using electron diffraction [19–21] or X-
rays [22], some determine a 2D lattice [23] and others have gone so
far as to determining the lattice parameters ‘on the fly’ [24]. Although
they show promise, such approaches have not gained momentum in the
S(P)ED community compared to the template matching approach [25].
In the current work, the implemented vector-based approach will be
referred to as ‘vector matching’.

Due to the vastness of the data produced by S(P)ED experiments
it is also reasonable to consider modern ‘big data’ approaches for
some tasks [26,27], as opposed to ‘rule-based’ approaches such as
vector matching and template matching. The use of machine learning
approaches to analyse electron microscopy data is increasing, examples
include determining the thickness and tilt of the sample [28], high
throughput electron backscatter diffraction [29] and other examples as
seen in the recent review article by Botifoll et al. [27]. In this work, one
approach from each of the two primary branches of modern machine
learning, i.e. supervised and unsupervised learning [30], are presented.
2

Table 1
The nominal composition of the studied Al-Cu-Li alloy.

Cu Li Mn Fe

wt.% 3.00 1.50 0.55 0.20

NMF is an unsupervised machine learning technique similar to
the prevalent principal component analysis (PCA) approach. Unlike
PCA, NMF requires the user to specify how many components to
retain [31]. The components and weights are also constrained to be
non-negative, and may be linearly combined to recreate the major-
ity of the dataset. For SPED data, the component patterns resemble
diffraction patterns while the weights resemble diffraction contrast
images. NMF has proven to be useful in SPED data analysis as it allows
dimensionality reduction and can handle overlap of crystals along the
viewing direction [9,32–36]. Furthermore, NMF has proved valuable
in phase mapping of precipitates in Al-Mg-Si(-Cu) alloys [37–41]. It is
worth noting that NMF itself does not produce phase maps directly.
Instead the components must be labelled and post-processed, which is
typically a manual process. This fact, coupled with the crucial need to
determine a suitable number of components and initialisation means
that NMF is not a ‘simple and straight-forward‘ solution for a general
phase mapping task.

In contrast to unsupervised learning, supervised learning requires
labelled training data, and the success (or failure) of many attempts
hinges on the quality of the training data provided. In 4D-STEM,
the training data can be simulated data [28]. Kinematical simulations
are easier to set up and slightly more resilient to incorrect sample
parameters. However this comes at the cost of discarding possibly im-
portant physical effects caused by dynamical diffraction, e.g. thickness
and small orientation variation affecting intensity distributions. In this
work, an ANN is used as the supervised approach. This was chosen since
ANNs have been used previously to study 4D-STEM data [28,42] and
are well suited for image classification tasks.

In this work, these four approaches for assigning phases to pixels
from a SPED scan taken of a standard field-emission gun TEM are com-
pared in terms of both accuracy and user dependency of the resulting
phase map. This study used a demonstration dataset acquired from a
sample of an Al-Cu-Li alloy that contains two precipitate phases that
exhibit known orientation relationships with the Al matrix [43]. This
is an ideal model case since the phases can be identified based on
morphology, hence and independent verification of the deduced phase
maps is possible. The goal of this work is to provide insight into and
guidance on how to conducting phase mapping with SPED.

2. Material and data collection

2.1. Material

The model system chosen for this work was an Al-Cu-Li alloy
supplied by American Elements with a nominal composition shown in
Table 1. The alloy was homogenised for 4 h at 400 ◦C, extruded as a
bar with a diameter of 20 mm, and cut into 13 mm long sections. The
sections were solution heat treated for 1 h at 400 ◦C, water quenched,
naturally aged for 10 min at room temperature, and finally artificially
aged for 24 h at 250 ◦C.

The thermomechanical processing produced two distinct, co-existing
precipitate phases, namely the hexagonal T1-Al2CuLi and the tetragonal
θ′-Al2Cu phase. The space group, lattice parameters and atomic posi-
tions for the phases Al [44], T1 [45] and θ′ [46] are shown in Table 2.
T1 precipitates form as plates on {111}Al planes and have the following
orientation relationship with the Al fcc lattice [47]:
(001)T1
∕∕ (111)Al, ⟨110⟩T1

∕∕ ⟨112⟩Al. (1)
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Table 2
Space groups, lattice parameters and atomic positions for the phases Al [44], T1 [45]
and θ′ [46]. The atomic positions are given as fractional coordinates. Note that the
unit cell for T1 was compressed as compared to Ref. [45] to match with 𝑎𝐴𝑙 = 4.04 Å.

Phase Space group Lattice parameters [Å] Atomic positions Atom
x y z

Al Fm3̄m (No. 225) 𝑎 = 4.04

0.00 0.00 0.00 Al
0.00 0.50 0.50 Al
0.50 0.00 0.50 Al
0.50 0.50 0.00 Al

T1 P6/mmm (No.191) 𝑎 = 4.95, 𝑏 = 14.15

1/3 0.00 0.00 Al
0.00 0.50 0.406 Al
2/3 1/3 0.161 Cu
1/2 0.00 0.324 Cu
0.00 0.00 0.199 Li
1/3 2/3 0.500 Li

θ′ I4̄m2 (No. 119) 𝑎 = 4.04, 𝑐 = 5.80
0.00 0.00 0.00 Al
0.00 0.00 0.50 Al
0.00 0.50 0.25 Cu

θ′ precipitates form as plates on {001}Al planes and exhibit the follow-
ing orientation relationship [43]:

(001)θ′ ∕∕ (001)Al, ⟨100⟩θ′ ∕∕ ⟨100⟩Al. (2)

The T1 and θ′ precipitates show different morphologies when viewed
in projection along the ⟨001⟩Al zone axis and can therefore be distin-
guished based on their shapes in BF or dark-field (DF) images [45,46].
In this work, all transmission electron microscopy (TEM) data was
collected with the incident beam at the ⟨001⟩Al zone axis. Following
the orientation relationship in Eq. (1), T1 precipitates were viewed
along zone axis ⟨04̄1⟩T1

, with two possible orientations along the ⟨001⟩Al
axis. The θ′ precipitates with the orientation relationship in Eq. (2),
were viewed along the ⟨001⟩θ′ and ⟨100⟩θ′ zone axes, denoted θ′[001]
(viewed face on) and θ′

⟨100⟩ (viewed edge on), respectively. There is only
one unique in-plane rotation angle for θ′[001], while two perpendicular
in-plane rotation angles are possible for θ′

⟨100⟩. In total, six unique
diffraction patterns were expected to appear in the SPED data: one from
Al, one from θ′[001], two from θ′

⟨100⟩ and two from T1.
TEM specimens were prepared by mechanical grinding of sections

down to ∼100 μm thickness and punching them into 3 mm disks. The
disks were subsequently electropolished using an electrolyte mixture
of 1/3 HNO3 and 2/3 CH3OH with a Struers TenuPol-5 machine. The
electrolyte was kept at 25 ± 5 °C and the applied voltage was 20 V.

2.2. Scanning precession electron diffraction

TEM was performed on a JEOL JEM-2100F operated at 200 kV.
For SPED, the microscope was operated in nanobeam diffraction (NBD)
mode, and the precession of the probe was aligned according to the
approach described in Ref. [48] using the NanoMEGAS P1000 scan
generator and DigiSTAR control software. The convergence semi-angle
was 1.13±0.09 mrad, the precession angle 1.04±0.05 ° (18.1±0.9 mrad)
and the precession frequency 100 Hz. The SPED datasets were recorded
on a Medipix3 MerlinEM direct electron detector from Quantum De-
tectors [49] with 256 × 256 pixels. The PED patterns were recorded
in 2 × 12-bit mode with an exposure time per pattern of 10 ms. The
nominal probe size was set to 1.3 nm. The scan step size was chosen
to be 4.6 nm. A dataset, termed ’Dataset A’ containing 512 × 512
scan pixels was used for the analysis, corresponding to an area of
approximately 2.4 μm2. The second dataset, ‘Dataset B’, was acquired
to verify the robustness of the approaches on other datasets from the
same material system. The parameters were the same as above, except
that the scan step size was set to 2.3 nm. Results from Dataset A is
presented in the main text, while the results from Dataset B are shown
3

in Section S1 in the supplementary material. θ
3. Algorithms and implementations

3.1. Pre-processing

The raw data was pre-processed using the open-source python li-
brary pyxem [50]. The patterns were first centred with respect to the
direct beam to correct for tilt-shift purity. The direct beam position in
each pattern was found by calculating using a centre of mass (COM)
approach. After centering, reciprocal lengths were calibrated using
the Al {400} reflections of the dataset mean diffraction pattern. The
patterns were binned to 128 × 128 pixels before being normalised with
respect to the maximum intensity in each pattern. The pre-processing
is schematically shown in Fig. 1.

For both the template matching and the ANN approach patterns
were subjected to a log10 transform given as:

𝐼[𝑘𝑥𝑖 , 𝑘𝑦𝑖 ] = log(𝐼0[𝑥𝑖, 𝑦𝑖] + 𝑎) − log(𝑎), (3)

here 𝐼0[𝑥𝑖, 𝑦𝑖] is the intensity in pixel (𝑥𝑖, 𝑦𝑖) and 𝑎 is a small constant
hift which is added to account for pixels with zero intensity. The
alue of 𝑎 was chosen to optimise the phase maps by calculating the
ccuracies for a range of 𝑎 values in both cases.

.2. Ground truth phase map creation

A ground truth phase map was created based on manual assignment
f VDF images by a cohort of the authors. The construction of the
round truth is presented in Section S2 in the supplementary material.
s phases in different orientations have different diffraction patterns,

he two distinct orientation of the θ′ precipitates (θ′[001] and θ′
⟨100⟩)

ere assigned to different categories. Thus the ‘phase maps’ include
he categories Al, T1, θ′[001] and θ′

⟨100⟩ as well as a fifth category for
nlabelled pixels termed ‘not indexed’. In some regions of the sample
recipitates overlapped along the beam path. In such cases, the pixel
as assigned to a single phase with the following priorities: (1): θ′

⟨100⟩,
2): T1 and (3): θ′[001]. This prioritisation scheme was chosen since θ′

⟨100⟩
ended to give the most intense Bragg spots and θ′[001] the weakest.
he accuracy of the final phase maps were determined by taking the
ixel-by-pixel difference between the ground truth phase map and the
alculated phase map and finding the percentage of non-zero pixels.
his is equivalent to a simple binary scoring process.

.3. Electron diffraction simulations

The vector matching, template matching and ANN methods all
equire diffraction simulations of some form to be provided as inputs.
he simulations were produced by the open-source python library
iffsims [51]. These simulations are based on kinematical diffraction
heory [52]. For precessed data, it is important to consider the param-
ter referred to as ‘maximum excitation error’, max{𝑠}. If the excitation
rror of a reciprocal lattice vector exceeded max{𝑠} the intensity of its
orresponding Bragg spot was set to zero. max{𝑠} has a large influence
n the number of Bragg spots included in the simulations and the
elative intensities.

The calibrations obtained from the experimental data were used
n all simulations and the simulated patterns were 128 × 128 pixels.
o simulate zone axis patterns for each of the phases the orientation
elationships given in Eqs. (1) and (2) were used. The azimuthal angle,
𝐴, was defined as the in-plane rotation angle. The following Euler
ngles in the ‘zxz’ Bunge convention were used: (𝜙𝐴, 0.0, 0.0) for Al,
𝜙𝐴, 54.7, 45.0) and (𝜙𝐴±45.0, 54.7, 60.0) for T1, (𝜙𝐴, 90.0, 0.0) and
𝜙𝐴+90.0, 90.0, 0.) for θ′

⟨100⟩, and (𝜙𝐴, 0., 0.) for θ′[001]. The crystal
tructures and corresponding simulated zone axis patterns are shown
n Fig. 2. The shown simulated patterns were prepared using max{𝑠}
qual to 0.030 Å−1, 0.050 Å−1, 0.030 Å−1 and 0.022 Å−1 for Al, θ′[001],
′

⟨100⟩ and T1, respectively.
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Fig. 1. Schematic illustration of the SPED data acquisition and pre-processing routines. The pre-processing steps that were common for all phase mapping approaches are: centering
of the direct beam, binning and normalisation. Certain approaches relied on further pre-processing steps, as explained in the following sections.
Fig. 2. Illustrations of the crystal structures and corresponding kinematical diffraction simulations for Al viewed along zone axis ⟨001⟩Al, θ′ along ⟨001⟩θ′ and ⟨100⟩θ′ and T1 along
⟨04̄1⟩T1

. The crystal structures were visualised using the crystallographic software VESTA [53]. In the simulated patterns, Bragg spots displayed with larger radii are more intense.
3.4. Non-negative matrix factorisation

The first step in the approach based on NMF was to exclude certain
regions in reciprocal space that were not phase discriminative. Since
the precipitate Bragg reflections are the most important for phase
mapping, the direct beam, high scattering angles, and the matrix Bragg
reflections were masked out. This was done by applying an inner
(0.1595 Å−1) and an outer (0.7001 Å−1) cut-off radius and then creating
circular masks centred on the Bragg reflections from the Al matrix
as identified by Laplacian of Gaussian peak finding in the average
diffraction pattern.

Subsequently, NMF was performed using the scikit-learn implemen-
tation [54] included in hyperspy [55]. NMF was initialised using the
non-negative double singular value decomposition (NNDSVD) initiali-
sation [56]. In order to obtain meaningful results from NMF (i.e. results
where the output factors resemble physical diffraction patterns and
the loadings resemble diffraction contrast images) it is important that
a suitable value is chosen for the number of components, 𝑛 [32,34,
57,58]. To make this choice, singular value decomposition (SVD) was
performed to get an indication of a reasonable starting point for 𝑛 [32].
However, the actual decision on the best value of 𝑛 must be made by
manual inspection in each case. In this approach, we use trial-and-error
to find the lowest value of 𝑛 that produced a one-to-one component-
phase result. The NMF components were manually classified based on
4

their similarity to simulated precipitate PED patterns, and the load-
ing maps were then assigned to one precipitate phase category and
thresholded to form binary phase maps.

Not all of the phases could be properly decomposed by a single NMF
decomposition, and new NMF decompositions were performed in which
the previously identified particles were masked out (this also involved
finding new suitable values of 𝑛). This process was repeated until all
phases were identified. This iterative NMF approach allows for NMF
to first identify the phases with the highest scattering intensity and
subsequently identifying more weakly scattering phases. Results from
SVD and the iterative NMF are shown in Section S3 in the supplemen-
tary material. Lastly, the binary maps were combined using the same
prioritisation scheme used in the ground truth phase map creation to
produce the final phase map. The workflow used for NMF-based phase
mapping is shown in Fig. 3.

3.5. Vector matching

The implementation used for vector matching was written specifi-
cally for this work and is based on existing code in pyxem and diffsims.
A relatively simple vector matching approach was suitable in this
study since the dataset only contains six unique zone-axis patterns,
as explained in Section 2.1. For the five unique precipitate patterns,
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𝑢

Fig. 3. Schematic illustration of the NMF phase mapping workflow. Al reflections and the direct beam are masked out to enhance the algorithms sensitivity to precipitate reflections
and a {220}Al cutoff is applied to enhance the importance of low scattering angles. NMF is then performed and resulting components are classified. Loading maps identified as
given phases are thresholded and combined into phase maps. These phase maps are used as masks in subsequent NMF decompositions to detect additional phases not detected in
the previous decompositions.
reference vectors (𝑘𝑥, 𝑘𝑦) were calculated for their Bragg spots. For
this, the reciprocal lattice of each phase was calculated and rotated
to zone axis as explained in Section 3.3. The lattices were rotated in-
plane according to the average in-plane rotation of the Al matrix in the
pre-processed dataset. Reciprocal lattice points lying within a thin slab
centred on the plane 𝑧 = 0 were then taken as the reference vectors.
The slab thicknesses, △𝑧, were set to 0.030 Å−1 and 0.300 Å−1 for T1
and θ′, respectively.

Laplacian of Gaussian blob finding was used to detect the Bragg
peaks in the pre-processed dataset. The peak positions, given as vectors
(𝑘𝑥, 𝑘𝑦), were subsequently refined using a COM approach. One pattern
was selected that only contained Bragg spots from Al, and that was
used as reference Al vectors. All vectors located close to the reference
Al vectors were removed from each pattern, so that only precipitate
Bragg spots not overlapping with Al remained. Patterns with less
than two vectors were categorised as Al. For all other patterns, phase
identification was performed by comparing the experimental vectors to
the precipitate reference vectors. Since many of the precipitates were
thin and showed as few as two Bragg spots, it was important to avoid
penalising patterns with a low number of vectors. Therefore, a reference
vector subset was explicitly made for each experimental pattern. This
was done by iterating through the experimental vectors and adding to
the subset only the reference vector that it was located closest to.

Subsequently, a comparison was done between each experimental
vector set and its corresponding reference vector subset, by calculating
a matching score given by: 𝛴𝑖(|𝑢𝑖 − 𝑣𝑖|)∕𝑁𝑣, where the sum runs over
the 𝑖 vectors. |𝑢𝑖 − 𝑣𝑖| is the distance between the experimental vector
�⃗� and its corresponding reference vector 𝑣𝑖, while 𝑁𝑣 is the number of

unique reference vectors. The number of unique reference vectors was
taken into account to penalise cases where more than one experimental
vector matched the same reference vector. Overall, the reference subset
that best matched the experimental vector set was the one giving the
lowest score. For cases where the lowest score was above a threshold
value of 0.07, the phase was set to ‘not indexed’. Such regions typically
contained phases that were overlapping along the viewing direction.
Fig. 4 illustrates the vector matching workflow used.

3.6. Template matching

Prior to template matching, the pre-processed dataset was addition-
ally subjected to background subtraction based on the difference of
Gaussians method in pyxem. A mask was also applied to remove the
Al lattice and the direct beam (See Section S4.1 in the supplementary
material). Both the experimental and the simulated patterns were then
subjected to the logarithmic transform as given in Eq. (3) (𝑎 = 0.001),
before a constant value of 0.05 was subtracted from each pattern. These
processing steps are further explained and illustrated in Section S4.1 in
the supplementary material.

For template matching, the implementation in pyxem, developed by
Cautaerts et al. [18], was used. First, a template library was created
5

that contained simulated patterns calculated for θ′ and T1 using diffsims,
as explained in Section 3.3. The maximum excitation error, max{𝑠},
was set to 0.030 Å−1, 0.050 Å−1 and 0.022 Å−1 for θ′

⟨100⟩, θ′[001] and
T1, respectively, and the choice of these values is discussed in Section
S4.2 in the supplementary material. An initial list of beam directions
to simulate patterns for, corresponding to Euler angles (0, 𝛷, 𝜙2), was
made by evenly sampling orientations, (𝛷,𝜙2), across the fundamental
zones of the two crystal systems with an angular resolution of 0.5°
following the route suggested in Ref. [18]. Then, the list was reduced
to only include beam tilts, 𝜙𝑇 , within 3° from the expected zone axes.
This reduced the number of orientations from around 28,500 to 202.

During template matching, each processed experimental pattern
is compared to all the simulated patterns after conversion to po-
lar coordinates, (𝑟, 𝜙). The comparison is done via the normalised
cross-correlation, given by [18,59]:

𝑄(𝑖, 𝜙) =
∑

𝑖
∑

𝑗 𝑃 (𝑥𝑖, 𝑦𝑗 )𝑇 (𝑥𝑖, 𝑦𝑗 , 𝜙)
√

∑

𝑖
∑

𝑗 𝑃 (𝑥𝑖, 𝑦𝑗 )2
∑

𝑖
∑

𝑗 𝑇 (𝑥𝑖, 𝑦𝑗 , 𝜙)2
, (4)

where the sums go over every peak in the simulated patterns. 𝑃 (𝑥𝑖, 𝑦𝑗 )
is the intensity of pixel (𝑖, 𝑗) in the experimental pattern, and 𝑇 (𝑥𝑖, 𝑦𝑗 , 𝜙)
is the intensity of pixel (𝑖, 𝑗) in the template rotated to an in-plane angle
of 𝜙 ∈ (1◦, 360◦). The correlation score, 𝑄, was calculated between each
template and each experimental pattern with respect to the azimuth, 𝜙,
by sliding the template across the experimental pattern. The maximum
𝑄 defined the final in-plane angle, 𝜙1, of the template. The 𝜙 step
size, i.e. resolution, was set to 1°. This procedure was repeated for
every template, and the template that best matched the experimental
pattern, i.e. that with highest 𝑄, determined the phase and orientation
assigned to the experimental pattern. Since the Al Bragg spots were
masked out in the experimental patterns and the template bank did
not include simulations of Al, the Al regions in the initial phase map
were assigned to precipitates with low correlation scores. A final phase
map that included Al was made by superimposing a mask onto the
initial phase map corresponding to the Al region, which was made by
thresholding the correlation score map.

The template matching processing workflow is schematically de-
picted in Fig. 5.

3.7. Artificial neural network

3.7.1. Simulating training data for artificial neural networks
For the ANN approach, 10.000 simulated patterns were created per

phase. The simulation parameters were varied randomly following a
uniform distribution between min/max to ensure sufficient variation in
the data. Both the azimuth angle 𝜙𝐴 and the tilt angle 𝜙𝑇 , defined as
the rotation away from zone axis, were varied along with the maximum
excitation error max{𝑠𝑔}. To account for strain, the lattice parameter of
Al was chosen randomly from a normal distribution according to:

𝑓 (𝑥) = 1
√

𝑒−
1
2

(

𝑥−𝜇
𝜎

)2

, (5)

𝜎 2𝜋
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Fig. 4. Illustration of the vector matching workflow. Peak finding is applied to the pre-processed data to find all Bragg peaks, i.e. vectors. The Al vectors are removed from the
set of experimental vectors to give only the precipitate vectors. Reference vectors are calculated for the precipitates, and the in-plane rotation found from Al vectors is applied to
these reference vectors. Subsets of reference vectors are created for each pattern based on its corresponding experimental vectors before the reference subsets are compared to the
experimental precipitate vectors.
Fig. 5. Schematic workflow for template matching. A Difference of Gaussians background subtraction was performed, before Al reflections were masked and a logarithmic transform
(Eq. (3)) was applied. Next, simulations of diffraction patterns were made for each precipitate phase within a beam tilt range of 3°. The red dots in the inverse pole figures
indicate the orientations of the precipitates. The simulations were compared to the experimental data via the normalised cross-correlation to find the best matches and get the
initial phase map. An Al mask was made from the correlation score map and applied to the template matching results to get the final phase map.
where 𝜇 = 4.040 Å is the expectation value and 𝜎 = 0.007 Å is the
standard deviation.

The diffraction patterns from Al and the precipitate phases were
simulated independently with the same 𝜙𝐴 and 𝜙𝑇 . All of the precip-
itates were embedded in Al, hence all diffraction patterns stemming
from precipitate regions also include the Al reflections in addition
to the unique precipitate reflections. To account for this, the Al and
precipitate pattern were added together with a weighting parameter,
𝑤, according to: (DPAl + 𝑤 ⋅ DPprecipitate), where DPAl and DPprecipitate
are the Al and the precipitate diffraction pattern, respectively. To pro-
vide variation in the diffracted intensities, various data augmentation
techniques were applied to the simulated diffraction patterns. The data
augmentation is summarised as follows in chronological order:
6

1. Size of the reflections: Each Bragg spot was represented by a
Gaussian with varying standard deviation.

2. Weighting between Al- and precipitate diffracted intensities
were varied to mimic the effect of varying precipitate sizes.

3. Poisson noise: To mimic detector shot noise, Poisson noise was
added to the patterns.

4. Gaussian noise: To mimic inelastic and diffuse scattering and
detector noise, Gaussian noise was added.

5. Radial gradient: To mimic inelastic and diffuse scattering around
the central beam, a radially decaying background was added
to the patterns. Both the maximum intensity and spread of the
radial gradient were varied.
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Fig. 6. Workflow for the ANN approach. Training data is created by simulating diffraction patterns and augmenting the simulations. The experimental data was subjected to a
log transform, the direct beam was masked out, and the data stack was rotated to 𝜙𝐴 ≈ 0.
6. Log transform: To vary the intensities in the simulated diffrac-
tion patterns, a log transform was executed according to Eq. (3)
with 𝑎 varying randomly.

Prior to training, each simulated pattern was normalised so that all
pixel intensities lay between 0 and 1, and the simulated database was
split into training-, validation and test datasets [60]. 80% of the data
was reserved for the training set, while the last 20% was equally shared
between the validation and test sets.

3.7.2. Training the artificial neural network
The ANN was implemented using the python library TensorFlow [61]

and consisted of three layers: input layer, hidden layer and output layer.
The 128x128 pixels simulated diffraction patterns were passed to the
input layer. The output layer predicts the crystal phase for each input
image. The learning curve obtained from the ANN is shown in Fig. S14
in the supplementary material.

In addition to the pre-processing steps presented in Section 3.1, the
experimental data underwent the log transform in Eq. (3) with 𝑎 =
0.024. The central beam was masked out both in the training data and
in the experimental data. The experimental data stack was rotated so
that the azimuth angle 𝜙𝐴 was approximately zero by rotating 𝜙𝐴 =
−29.65° counter clock-wise, as obtained from the vector matching.
This was done to avoid rotating the simulated patterns to increase the
generality of the trained ANN. The workflow is schematically shown in
Fig. 6.

4. Results

4.1. Overview of dataset A

An overview of Dataset A is shown in Fig. 7. The BF image in
(a) shows the presence of precipitates with different morphologies.
In (b), a VDF image from the same region as in Fig. 7(a) is shown.
The placement of the virtual aperture is indicated by the red circle
in (d). The yellow circle in the VDF indicates a region where two
precipitates overlap. The ground truth phase map is shown in (c).
The coloured rectangles in (b) indicate pixels where the diffraction
patterns in Fig. 7(d)–(g) originate from. The PED patterns in Fig. 7(d)–
(g) correspond to Al, θ′ , θ′ and T , respectively and are taken
7

⟨100⟩ [001] 1
from regions indicated by the beige, orange, blue and green rectan-
gle in Fig. 7(b). Another orientation (not shown) exists for T1 and
θ′
⟨100⟩ which can be obtained by rotating the precipitate reflections

90°. Simulated diffraction patterns corresponding to the experimental
patterns in Fig. 7(c)–(f) are shown in Figure S15 in the supplementary
material. A similar overview of Dataset B is given in Section S1 in the
supplementary material.

It is evident from the VDF image (Fig. 7(b)) that the different
precipitate categories can be separated based on the combination of
their morphology and orientation within the Al matrix. Both T1 and θ′

are plate-like, but their projected width along ⟨001⟩Al and orientation
differ, making it trivial to separate them in this projection. T1 has
the projected major axis along [110]Al and [11̄0]Al, while the projected
major axis of θ′

⟨100⟩ is along [100]Al and [010]Al. The projected width of
T1 is also larger than that of θ′

⟨100⟩. θ
′
[001] grows along the beam direction

[001]Al and is roughly circular in shape.

4.2. Phase mapping

Phase maps and difference maps for all the four approaches are
shown in Fig. 8. The difference maps were created by taking the
difference between the ground truth in Fig. 7(c) and the constructed
phase map obtained from each approach. The phase maps for NMF,
vector matching, template matching and ANN are shown in Fig. 8(a)–
(d), while the difference maps are shown in Fig. 8(e)–(h), respec-
tively. The white pixels in the difference maps indicate mislabelled
pixels. Enlarged regions of each phase maps are shown in Fig. 8(i)–(l)
corresponding to the region marked by the rectangle in Fig. 8(a).

5. Discussion

A large number of decisions go into producing a phase map, specific
for each approach. To aid clarity of the present work, the discussion is
split into two sections. In Section 5.1, the phase mapping approaches
are discussed in terms of their ease of use and general performance. In
Section 5.2, the variations between the approaches will be discussed in
terms of the case study done in this work.

All four approaches considered in this manuscript yielded satisfac-
tory accuracies (i.e. > 98%) for Dataset A. It should be noted that
in the current work, precession was applied. Experiments conducted
without precession may see different trends between the methods.
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Fig. 7. Overview of Dataset A. (a): BF image of the scanned region. (b): VDF image of the dataset. The placement of the virtual aperture is indicated by the red circle in (d).
The yellow circle indicates a region with overlap between two different phases as discussed in the main text. (c): The ground truth phase map. The coloured rectangles in (b)
indicate regions where the experimental patterns in (d)-(g) were collected from, and correspond to Al, θ′

⟨100⟩, θ
′
[001] and T1, respectively. Diffraction patterns are presented on a log

scale for visual clarity.
Precession has previously been found to be advantageous for lowering
the number of components needed for NMF [32]. It also provides
better peak finding due to improved uniformity of the disk intensities.
Similarly, the template matching and ANN approaches relied on kine-
matical diffraction simulations benefit from precession [9]. Despite this
consideration, it is reasonable to assume that the conclusions are still
broadly applicable to 4D-STEM experiments without precession.

5.1. Strengths and weaknesses of the four approaches

5.1.1. Non-negative matrix factorisation
In line with previous studies [32,37,38,40,41,62], the NMF based

approach provided a solid route to construct phase maps for cases with
a small number of distinct phase patterns. In this work results from a
sequential approach for using NMF that relied on iteratively excluding
probe positions that had been accurately decomposed in the previous
step was introduced. This allowed patterns with weak reflections to
be better represented in the resulting phase maps. Without iteratively
excluding the probe positions labelled in the previous step, a high
number (> 20 in the present case) of components are typically required
to successfully decompose the weaker signals.

The sensitivity of NMF to weak reflections depends on the oc-
currence of similar patterns through the dataset. A weak scattering
signal, such as the one for θ′[001] precipitates, can be balanced by a
high number of datapoints exhibiting the same weak signal. This is
one of the advantages of NMF, by combining information from several
scan positions, the resulting NMF components typically exhibit a higher
signal-to-noise ratio when compared to the raw data. This is in contrast
to the other approaches used in this study that analyse the diffraction
patterns one-by-one without taking advantage of the fact that there
are only a few unique patterns in the data. If however there are large
variations in the diffracted intensities within one group - e.g. due
to strain or multiple grains - NMF will require a large number of
components to decompose the data and the post-processing will become
complicated. In the present case, this is seen as mislabelling some
θ′
⟨100⟩ precipitates as θ′[001] along their edges. While some of this misla-

belling can be accounted for by optimising and applying more advanced
8

thresholding and segmentation algorithms when creating phase maps
from the loading maps, it remains a source of error and uncertainty
in the method. The main drawback of the NMF based approach is
therefore the complexity arising from the combination of the black-box
nature of NMF with the large number of manual, user-dependent steps
(pre-processing steps involving masking, determining 𝑛, initialisation,
labelling of components and thresholding).

It is worth noting that in the current implementations, NMF is the
only one proven to handle overlapping phases along the viewing direc-
tion [33,36], making it favourable when overlap is a major concern. In
addition, being an unsupervised learning method, it is the only method
that can handle phase mapping tasks with limited prior knowledge
of candidate phases/orientations, since the other approaches rely on
diffraction simulations.

5.1.2. Vector matching
Variations on vector matching approaches have been published a

number of times [19–22]. In this work, the vector matching was imple-
mented from scratch, taking advantage of the well-defined orientation
relationships between the Al host lattice and the precipitates. Vector
based approaches require accurate pattern calibration and centring of
the direct beam. Perhaps most challenging, decent results rely on an
accurate peak-finding method is implemented, ideally one that can
detect weak Bragg peaks while simultaneously avoiding mislabelling
background noise. The peak finding step is also the most computa-
tionally intensive step of the vector matching process. The algorithm
was sensitive enough to find weak diffracted intensities, and the vector
matching also works well when only as few as two diffracted reflections
stemmed from precipitates.

The current implementation of the vector matching approach lacks
the complexity to handle overlapping phases, and did not use the phase
prioritisation scheme explained in Section 3.2. Because of this, the
approach struggled with patterns from overlap and interface areas,
as can be seen in Fig. 8(b) and (f). This was especially prominent
for the interfaces of θ′

⟨100⟩ precipitates, where mislabelling happened
despite the method successfully labelling patterns with as few as two T1
precipitate vectors. Hence, the main challenge was not the low number
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Fig. 8. Phase maps and difference maps from the four phase mapping approaches. (a)–(d): Phase maps for NMF, vector matching, template matching and ANN, respectively.
(e)–(h): Difference maps for NMF, vector matching, template matching and ANN, respectively. White pixels indicate mislabelled pixels. (i)–(l): Enlarged regions corresponding to
the rectangle in (a) of the phase maps in (a)–(d).
of detected vectors in interface patterns, but rather shifts in the Bragg
peak positions due to strain. Such features are difficult to treat in this
approach due to the scoring strategy. The overlapping patterns could in
principle be taken into account by keeping track of the different phases
exhibiting a score below a certain threshold, but this was beyond the
scope in the current work. Figure S13 of the supplementary material
shows a score map, highlighting regions where the method rendered
a low score, and it also shows and discusses example patterns from
overlap and interface areas.
9

5.1.3. Template matching
Template matching is routinely used for orientation mapping based

on 4D-STEM data [12,13,18]. In this work, prior knowledge was made
us of, such as orientation relationships between host lattice and pre-
cipitates. These strongly limits the number of entries in the simulation
libraries.

In the current work, performing basic pre-processing including cen-
tring of the central beam, logarithmic intensity transformation and
normalisation of the intensities, culminated in an accuracy of 86.24%.
By including background subtraction, the accuracy was significantly
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Fig. 9. Phase map from a cropped out region of the full dataset, obtained after using various max{𝑠} values in the simulations. (a) Phase map with max{𝑠} = 0.01 Å
−1

for all
phases. (b) Phase map with max{𝑠} values optimised on a phase-by-phase case: 0.03 Å

−1
, 0.05 Å

−1
and 0.022 Å

−1
for respectively θ′

⟨100⟩, θ
′
[001] and T1. (c) Ground truth map of the

same area.
improved to 98.24%. A comparison between the results obtained with
basic pre-processing and more complex pre-processing is shown in
Section S4 in the supplementary material. This user involvement re-
duces the ease of use of working with template matching and also the
objectiveness.

A challenge when doing phase mapping of embedded phases is that
the reflections of the embedded phases might be weak compared to
the reflections from the host material. As seen in this work, template
matching struggled with patterns exhibiting such characteristics. Differ-
entiating between T1 and Al regions with low correlation scores, was
challenging. This was overcome by optimising the max{𝑠} parameter
for each phase individually, as illustrated in Fig. 9. This enabled the
generation of a phase map that matches the ground truth phase map
in Fig. 9c. Background subtraction and the optimisation of the max{𝑠}
parameter are often performed iteratively, by comparing the produced
phase map with the VDF image, or if applicable, a ground truth phase
map. A more detailed description of the selection of max{𝑠} values is
presented in Section S4.2 in the supplementary material.

5.1.4. Artificial neural networks
Neural networks has gained enormous momentum in analysing TEM

experiments in recent years [4,26,27,42] due to the increase in data
sizes and also an increased availability of computing resources. An
important consideration when implementing an ANN is the design of
the training set [63]. Great care must be taken during the creation of
simulated training data. In this study, variable simulation parameters
were used to create suitable training data.

In addition to varying the simulation parameters, the resulting
simulated diffraction patterns underwent several image transformations
to augment the data. Adding noise is considered to be the most critical
data augmentation step. If noise is not added, the ANN labelled almost
all the PED patterns as T1, since the T1 training data had the lowest
minimum weighting parameter. This is expected, since the ANN in this
scenario learns that only precipitates have intensity between the Bragg
spots stemming from Al.

A major advantage of using ANN is that once the network is trained,
the classification is fast and accurate. It also performs well on weak
diffracted intensities, which can be taken into account by adjusting the
weighting between the Al reflections and the precipitate reflections.
When properly trained, the same ANN can be applied on datasets from
the same material system acquired at different TEM sessions as well, as
discussed in Section 5.1.5.

In this work, simulated patterns were used as training data. Labelled
experimental patterns could in principle be used as input for the
training instead of simulated patterns. For some samples, this could be
performed following the same approach as used in the current work for
the creation of the ground truth image. In general however, this is not
always possible with satisfactory accuracy and one would have to rely
on other approaches to label the experimental data, e.g. NMF, vector
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matching or template matching. One would also have to obtain data
from several regions of the sample or even obtain data from several
samples to account for e.g. sample tilt, different thicknesses, alignment
of the microscope and so on.

5.1.5. Applicability of the approaches on similar datasets
Dataset B, presented in Section S1 in the supplementary material,

was collected to investigate the applicability of the approaches on
other datasets from the same sample. When it comes to the NMF
approach, the same number of iterations was required as for Dataset
A, to successfully separate the signals from the different precipitates.
Moreover, the thresholding of the components was modified. Hence,
the parameters of the NMF based approach needed to be tailored to
fit with the new experimental conditions. Once the parameters were
determined, the resulting phase map was the most convincing one when
qualitatively comparing it to the VDF image. The vector matching and
ANN approaches also perform adequately on Dataset B and are good
approaches to choose if the phase mapping is done routinely. In that
regard, the ANN is the fastest, since for vector matching one would
need to perform peak finding. For the template matching however,
the phase map exhibits speckled noise in the Al matrix to a more
severe extent than in the phase map of Dataset A. To increase the
quality of the phase map from Dataset B, it is assumed that optimising
the max{𝑠} would be advantageous, showcasing that using the same
template library on two different datasets might not always be optimal.

In the current use case, only six unique diffraction patterns were
present in the data. Few unique patterns are often expected in materials
where semi-coherent secondary phases are embedded in a host mate-
rial, since such phases often exhibit a fixed orientation relationship with
the matrix. However, for polycrystalline materials a higher number of
unique patterns must be considered. Both NMF, template matching and
ANNs have demonstrated robustness, even in more complex applica-
tions, as exemplified in Refs. [34,36] for grain mapping using NMF,
Refs. [12,13,18] for template matching based orientation mapping
and [42] for orientation mapping using ANN. It is important to note
that the vector matching algorithm discussed in the current work was
designed to handle zone-axis patterns.

5.2. Trends appearing in the case study

All four approaches detailed in this work yielded accuracies of
98.5% ± 0.5% (see Table 3) when compared against the ground truth
phase map. It is noted that the ground truth phase map was created
manually, so that the small differences in accuracies are not significant.
While some decisions made during this study (e.g. distortion correc-
tions were not applied) will have variable effects dependent on the
chosen method, it has been demonstrated that all four methods can
produce highly accurate phase maps. In this section, the risk of failure
for each of the approaches will be elucidated.
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Table 3
Comparison of the four phase mapping approaches employed in this work in terms of
accuracy, defined as the deviation from the ground truth phase map.

NMF Vector
matching

Template
matching

ANN

Accuracy (%) 98.50 98.46 98.25 99.04

The majority of mislabelled pixels for all methods occurred at the
dges of precipitates. This can be seen visually by inspecting the middle
olumn of Fig. 8. Such errors are relatively harmless when evaluating
hase maps, but is more severe if particle sizing or volume fractions
re sought. However, given the overlapping nature of the patterns,
orrectly discerning an edge (either automatically or manually) is
lways likely to be contentious. It should also be noted that the ground
ruth phase map is also created manually and there is no guarantee that
his phase map more accurately captures the precipitate interfaces as
ompared to the phase maps from the other methods.

More interesting are the subtle differences in errors the routines
ake. The template matching routine, for example, exhibits speckle
oise (i.e. single mislabelled pixels within the matrix) not seen in the
ther approaches. Like the errors at the interfaces, this is harmless
hen inspecting the phase maps, since a sensible user will understand

hat it is an error and not a finely distributed arrays of nanometer
ized precipitates. For phase fractionation however, this is more se-
ere. Because such mislabelling is unlikely to be random, it may form
lusters in other representations (eg. orientation maps such as those in
ef. [64]) which will be misleading. The speckle noise can in principle
e removed by post processing by e.g. removing all single pixels or
ernel smoothing.

Both rule-based approaches (template matching and vector match-
ng), and to some extent ANN struggle in the region with overlapping
′
[001] and T1 highlighted by the right most column of Fig. 8. This
roblem can also be seen at the boundaries of the θ′[001] (blue in images)

precipitate in the upper left hand corner. One possible explanation
for this is that the prioritisation scheme was easily applied in the
NMF based approach, which is the approach that tackles these over-
lap regions best. The rule-based approaches on the other hand are
deterministic, since these approaches were not implemented to tackle
overlap.

Although these difference are interesting, and may be a reasonable
motivation for selecting one method over another, in general oth-
ers would be better served by selecting an approached based on the
comments in Section 5.1.

6. Conclusion

In this work four data analysis approaches for phase mapping
of precipitates with fixed orientation relationships in Al alloys were
employed and compared using a dataset acquired from an Al-Cu-
Li alloy containing two different precipitate phases embedded in Al.
Diffraction patterns from probe positions containing precipitates show
strong reflections from the matrix which creates an added challenge
to the phase identification regimes. In this case, the precipitates have
different morphologies making them separable in virtual images. This
allowed for the creation of a ground truth phase map which was used
to estimate the accuracy of the automated phase mapping results. The
approaches evaluated were NMF, vector matching, template matching
and ANN. All four approaches performed well on both weak and strong
diffracted intensities and achieved satisfactory accuracy with less than
2% of the pixels mislabelled. Most mislabelled pixels stem from regions
at the interface between precipitate and Al.
11

The main results are summarised as follows:
• NMF is the easiest method to get started with, and the component
maps produced can aid in initial investigations of a dataset.
However, the post-processing required to produce phase maps
can be highly involved and user dependent. Alongside this, the
method offers some parameters that can easily be erroneously
passed to the algorithm, e.g. choosing an incorrect number of
components. Such errors can propagate to produce phase maps
that might look visually correct, but are physically wrong.

• Once the ANN is trained, the approach is fast, accurate and has a
high throughput. Using an ANN has a large set up cost as careful
consideration needs to be given to the training dataset.

• The main advantage of vector matching is that it requires little
pre- and post-processing of the experimental data. It does how-
ever depend on a precise determination of the position of the
Bragg spots. The method is relatively new and thus does not have
much supporting implementation or literature.

• Template matching requires more upfront pre-processing as com-
pared to vector matching that can have significant effects on the
final results. It also had some concerning ‘speckle noise’ in the
study, which may or may not be important to users. These risks
may be offset for many less technically inclined users by the well
developed ecosystem of support the method has.
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