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Abstract—The European Energy Transition envisions a high
deployment of variable renewable energy sources (VRES) by
2050. Some estimates expect that 60-to-70% of power generation
will be entirely covered by VRES technologies (i.e., solar and
wind). This creates challenges for balancing VRES with conven-
tional, flexible generation (e.g., gas and storage). Consequently,
VRES are transforming how electricity markets will operate
and how balancing needs between day-ahead (DA) and intraday
(ID) electricity markets are coordinated. The importance of the
ID market increases due to the uncertain short-term nature of
VRES. However, there is limited research on how forecasting
errors in between market stages affect investment decisions in
capacity expansion problems. In this paper, we investigate how an
increased amount of uncertainty from forecasting errors between
a DA and an ID market affects investment decisions in the
power system. We have developed a multi-horizon stochastic
capacity expansion model containing both DA and ID markets
under uncertainty. The model emulates the European power
system developments under given emission targets of EU policies
towards 2050. In the comparison of the standard single market
approach to the market sequencing, the results indicate: 1.)
Forecasting errors significantly impact investment decisions, re-
sulting in 10% lower VRES investments and 40% higher flexible
capacity investments, 2.) Cross-border transmission is a crucial
contributor to flexibility and volume increases by 10-20% when
accounting for forecasting errors, 3.) investment needs for storage
capacity decrease significantly compared to an over-valuation in
the standard method of capacity expansion models.

Index Terms—power generation planning, energy system
model, capacity expansion, forecasting uncertainty

I. INTRODUCTION

As the share of variable renewable energy sources (VRES)
in an energy mix grows, the uncertainty with electricity
production increases [1]. Weather conditions are susceptible to
forecasting errors, and thus, the forecasts for the production of
wind and solar might differ from actual production conditions.

The day-ahead (DA) market matches supply and demand
based on the best available information one day before deliv-
ery. The intraday (ID) market can handle deviations from the
forecasts by facilitating trade of positions until one hour before
real-time. Multiple factors can contribute to the volume traded
in the ID market, such as weather forecasting errors, demand
change and generator outages. Any deviations remaining at
the scheduled delivery time are typically handled by a trans-
mission system operator (TSO) in the balancing or capacity
market.

In the last five years, the installed capacity of solar and
onshore and offshore wind has increased by 41%, resulting
in significantly increased uncertainty and more volume traded
in the ID markets [2]. With this in mind, the volume in
the ID market likely continues to increase with the expected
expansion of VRES.

In line with the development of the energy mix in recent
years and the projected increase in VRES capacity, the scope
of this paper is to address the following research questions:

1) How do forecasting errors from VRES production affect
investment decisions in the power system?

2) How are power system operations affected by including
forecasting errors from market sequencing?

II. LITERATURE REVIEW

To balance supply and demand with high shares of VRES,
flexible electricity producers or consumers are required [3].
Several papers highlight the importance of flexibility in a
power system with large shares of VRES and the role that
storage, transmission, flexible electricity producers such as
hydropower and gas, and demand-side flexibility will have
on the reliability and security of supply of such a power
system [4]–[6]. While the need for additional flexibility is well
explained, the technology used to meet the flexibility demand
is still largely discussed.

An NREL study [7] and De Jonghe et al. [8] indicated that
energy storage would be a key component to provide flexibility
in a power system with large shares of VRES. Denholm and
Hand [9] also highlight the need for energy storage in the
future and estimate storage capacity to be one day in demand
to avoid high curtailment. Child et al. [10] analysed the
flexibility requirements and advantages for a high penetration
on VRES. Their results indicated that, while energy storage
and flexible generators would be key contributors to flexibility,
transmission provided the most value-for-money flexibility.

Developing mathematical optimisation models is a common
approach to analysing investments and operational decisions
in a power system. Power system optimisation models are typ-
ically divided into capacity expansion and operational models.
Capacity expansion models typically focus on investments and
energy mix, while operational models focus on market aspects.
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Large multi-market modelling usually uses linear opera-
tional models. Zipf and Möst [11] analysed the direct and in-
direct costs of variable VRES in the German power system by
utilising a two-stage operational optimisation model with DA
and ID scheduling. Their results indicated that an increased
amount of variable VRES in a power system leads to both
increased direct and indirect costs due to the forecasting errors
related to VRES. On the contrary, different studies on multi-
stage operational optimisation models without an investment
stage show that an increased share of variable VRES leads to
a lower total cost than the current energy mix [12], [13].

Kulakov and Ziel [14] investigated how forecasting errors
caused by VRES influenced electricity prices in the market
stages. They found a non-linear correlation between ID and
DA prices. Abrel and Kuntz [15] explored the impact of
uncertainty from VRES on unit commitment power dispatch.
They found that increased uncertainty triggers more unit com-
mitment from inflexible energy sources. With the increased
uncertainty, a more diverse energy portfolio was emphasised
to balance the VRES forecasting errors between the market
stages. Barth et al. [16] also investigated the impact of
wind uncertainty on a power system by creating a five-stage
stochastic market model. The objective was to establish the
reserves’ role in such a power system and the cost associated
with the reserves. The results indicated that the importance of
reserves increased in such a system, and regulated hydropower
was the main contributor to the reserve market. Morales et al.
[17] developed a model analysing the issues with conventional
market design due to VRES’s stochastic nature. They identified
a lack of a cost-recovery guarantee for flexible producers.
They proposed a solution where the DA market is cleared
while factoring in the anticipated balancing cost resulting from
forecasting errors. Borggrefe and Neuhoff [18] highlighted the
need for a market design that facilitates potentially improved
conditions in the ID market compared to the DA market.

In addition to multi-market modelling, capacity expansion
models are also of great interest to issues addressed in this
paper. Seljom and Tomasgaard [19] developed a model to
analyse investment decisions in the Danish power system. A
deterministic and a stochastic approach were utilised, with sig-
nificant differences in the results. The stochastic approach was
more realistic and resulted in significantly lower investments
in VRES. This is supported by Nagl et al. [20] and Backe et
al. [21], who concluded that VRES are typically significantly
overvalued and flexible providers undervalued.

Ehremann and Smeers [22] developed a capacity expansion
model addressing the issues with investment risks in a power
system. They approached the issue by including stochastic
properties in the discount rate to incorporate the risk of
investing in VRES compared to dispatchable energy sources.
The results indicated that by adding financial risk, the system
costs increased. Sun et al. [23] analysed the US power system
with a capacity expansion model focusing on transmission flow
between different regions.

They found that transmission might be an underestimated
technology in capacity expansion models. In 2012, Giraldo et

al. [24] investigated the impact of adding emission constraints
to a capacity expansion model. Both an emission tax and an
emission cap were included. They showed that adding such
constraints increased the total costs somewhat but that the
investments and, thus, the solution applied to a real-world
scenario. Villavicencio [25] developed a capacity expansion
model aiming to encapsulate some of the operational issues of
VRES. It was concluded that proper modelling of the system-
and operational requirements increase with a large penetration
of VRES.

In addition to models focusing on capacity expansion and
market modelling, there is some research on models combin-
ing capacity expansion and market sequencing. Pineda and
Morales [26] developed a model with both an investment stage
and market sequencing. Their results indicated that forecast
errors caused a significant decrease in investment in VRES
capacity in a power system when considering forecasting
errors between market stages. However, Pineda and Morales
[26] used a small model covering the Danish power system,
documenting no change in transmission or energy storage.

Much research has been conducted on the capacity ex-
pansion model, but a better understanding of how short-
term forecasting errors affect long-term investment decisions
is insufficient. Therefore, we analyse the consequences of
forecasting uncertainty between the DA and ID markets on
investment decisions. We introduce market sequencing and
extend an existing investment planning and DA operation
model with short-term deviations from DA clearing based on
historic ID trading activities. By comparing our model under
appropriate cases, we can assess how short-term forecasting
errors influence the investment decisions in long-term plan-
ning.

III. METHODOLOGY

In the following, we present a novel extension of a two-stage
capacity expansion model to simulate forecast errors. The first
stage represents investments, and we assume the second stage
represents the DA market clearing. We then extend by a third
ID marketstage, where the uncertainty of the DA forecast is
revealed. This method is then compared with the two-stage
stochastic program.

A. The EMPIRE model

The model in this paper is based on the open source model
EMPIRE [27]. EMPIRE is a capacity expansion model with
one investment stage and one operational stage. EMPIRE
has been used in several different publications [28]–[31] and
in European and national research projects [27]. The model
represents the EU-27 plus Switzerland, Norway, the UK,
Bosnia and Herzegovina, Serbia, and North Macedonia.

The investment stage in EMPIRE represents investments
in technologies such as generators, cross-border transmission
capacity, and energy storage. The operational stage represents
different stochastic scenarios where investments are used to
satisfy hourly demand without exceeding an emission cap,
similar to the approach used in [15]. Export and import of
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electricity are possible between neighbouring countries and
zones in the operational stage. We use a discrete formulation
for the multi-stage stochastic programming model, where all
scenarios are given with equal probability.

Electricity demand, technology costs, technology options,
and operational characteristics are inputs to EMPIRE. The
outputs includes technological investments and operational
decisions within all stochastic scenarios. EMPIRE is a linear
capacity expansion model spanning eight investment periods
representing five years each. Each stochastic scenario within
each investment period comprises four regular seasons with
168 representative hours for winter, spring, summer and au-
tumn. Additionally, we add two peak seasons with 24 hours
with extreme conditions. Each stochastic scenario and season
contains perfect information of load, VRES and hydropower
availability, Uncertainty in the third stage is represented by
one scenario from historic realisations.

Fig. 1. Illustration of scenario-tree in the model.

B. Intraday Volume

We assume each second-stage scenario is based on forecasts
one day before real-time. However, it is possible that the
forecast is not precise and realisations deviate. This has to
be accounted for in the third stage. So far, capacity expansion
models assume perfect information and optimal dimension ca-
pacities that are non-optimal for actual realisations. The third-
stage scenario represents a relative change in the ID market
compared to the previously cleared DA market, where actual
load and generation are revealed with perfect information. As
only some generators can change their output on short notice
and partake in the third stage, all generators are categorised
into flexible and inflexible units.

C. Model formulation

In this subsection, we show the essential parts of the model.
The whole formulation is in the Appendix A.

Our model follows characteristics of EMPIRE and contains
capacity expansion costs for generation, transmission and stor-
age. Additionally, scaled operating costs for the representative
periods and costs for loss of load are added. Handling of the
DA and ID market stages is done in the constraints, and only
costs for the last stage of the ID markets are considered in
the objective function. Since multiple years are investigated,
investments and operations are discounted by an annuity factor.
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Fig. 2. Intraday and Day-Ahead volumes for selected European electricity
markets, retrieved from [32]–[34].
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The System balance has to hold in both DA and ID electricity
markets. The anticipated load with the expected generator
availability and storage and transmission operation are bal-
anced in the DA. In the ID, an additional clearing takes
place with adjustments in generation according to the changed
forecast. The inflexible generation has the same variable in
both stages.
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= 0

∀ m ∈ M, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (2)

At the core of our analysis are the variations in the ID
market. Constraints (6) ensure operation of the ID within
the ramping constraints of generators. (7) state the maximum
allowed difference between the day-ahead and ID market in
terms of generation output and transmission for every hour in
every period, for all scenarios, and in all nodes. The parameter,
vg , is identical to the ramping parameter.
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(1− vg) ∗ y
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n,g,h,i,ω ≤ y

gen,FlexID
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gen,FlexDA
n,g,h,i,ωg ∈ GFlex

∀ n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (3)

D. Assumptions and Simplifications

For this work, we assume that all mentioned electricity
markets are perfectly competitive and there is no strategic
behaviour between players. Also, we assume an interest exists
to update forecasts and balance out arising forecast derivations
in the ID market. In order to interpolate future behaviour from
historical data, we assume that no structural changes in regu-
lation and remuneration schemes occur. On the technical side,
we assume a linearisation of integer generation constraints for
fully flexible storage systems.

E. Data

ID deviation quantities come from historical time series
from ENTSO-E between 2015 and 2020. After the DA market
clears at 6 pm, TSOs must upload a forecast for the generator
and load for each market zone for the following day. Differ-
ences between the cleared market and real-time are caused
by the uncertainty associated with forecasting and have to be
traded on the ID market. Unfortunately, the provided data from
ENTSO-E is incomplete and misses segments we interpolated
in some periods.

Four second-stage scenarios per investment period are gen-
erated for all seasons using random sampling from historical
time series from ENTSO-E between 2015 and 2020 based
on the method presented in [19]. Further, we generate only
one third-stage scenario to keep our problem computationally
tractable. With one third-stage scenario, we do not consider
uncertainty between the second and the third stage. However,
we get an indication of how forecasting errors impact invest-
ment decisions, even though the forecasting errors are known
with perfect foresight within each second-stage scenario.

IV. CASE STUDY

We implemented two different cases of the European elec-
tricity market under the same setup as in previous publications
of EMPIRE [28], [29], with investment periods from 2025
until 2060. The demand profiles increase over time and are
based on a EU reference scenario [35].

Case 0: Benchmark Case: The Benchmark Case uses EM-
PIRE without any market sequencing. The model is identical
to the one developed by Skar et al. in [36], thus containing an
investment and an operational stage. Forecasting errors in the
operation are omitted. The size of the optimisation problem
spans over 37 million constraints and 24 million variables.

Case 1: Additional ID derivations: Case 1 represents the
European power system with market sequencing. It builds
upon Case 0 and adds forecasting errors with perfect foresight
within each stochastic scenario. In the ID stage, the operations
are readjusted so that supply matches actual demand. Case 1
consists of 158 million constraints and 94 million variables.

V. RESULTS AND DISCUSSION

Costs for investment and dispatch between the two cases
differ significantly, with an increase in costs caused by the
market sequencing compared to the benchmark. This is ex-
pected describes how costs follow the gradient of uncertainty
throughout the setup. The solution with higher uncertainty
consequently costs more than the one with less uncertainty.
Since forecasting errors induce uncertainty costs follow and
are thus higher compared to perfect information. Our results
are consistent with increased costs under uncertainty found
in the literature [37]. Besides, the literature suggests that
intermittent generation influences the balancing requirements
in an ID market [38]. Borggrefe and Neuhoff [18] highlight the
need for a market design that facilitates a possible integration
of intermittent generation between market stages.

A. Composition of generation types

Looking into the investments reveals structural changes in
the composition of the generation types in anticipation of
uncertainty. Figure 4 shows that the investments into non-
flexible generation stay relatively constant over all periods.
However, flexible generation increases at the cost of in-
termittent generation following the gradient of uncertainty.
Intermittent generation capacity is down −6% for case 1
compared to the benchmark case. However, the total invested
capacity in intermittent generation stays below the benchmark
case.

Investments into flexible generation increase by 41% when
introducing market sequencing, caused by additional bio- and
gas generators. The sum of the invested capacity for all types is
decreasing (with −4% in case 1 compared to the benchmark),
caused by the lower load factors of intermittent wind and solar
generators.

2030 2040 2050 2060
2.5M

3M

3.5M

4M

4.5M

Benchmark Case 0 Market Sequencing Case 1

In
ve

st
ed

 c
ap

ac
it
y 

[M
W

h]

Fig. 3. Installed storage capacity over time

The substitution of intermittent with flexible generation sig-
nificantly affected the investment into storage. The benchmark
case shows 42% higher investments into power from storage,
with an 16% increase in storage capacity compared to the case
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with market sequencing. As seen in Figure 3, the deviation
in power and capacity occurs mainly after 2040. Ignoring
forecasting errors by the absence of market sequencing conse-
quently leads to an overvaluation of storage. The literature
on investments in energy storage indicates that the future
will likely see significant increases in capacity [7], [9], [39],
which we can support from our findings. However, energy
storage’s role is less significant when including forecasting
errors and market sequencing. This can partly be explained by
the changed ratio between flexible and intermittent generation,
as in the previous paragraph. Another reason can be the mod-
elling choice of not having a curtailment penalty. Including this
could boost storage usage to cover the excess supply in times
of high renewable infeed. Concerning operational decision,
case 1 utilizes storage significantly less than case 0, which
aligns with the investments.

Investments in transmission are very similar across the
cases. The installed transmission capacity increases over time.
This seems reasonable and caused by the increased intermittent
capacity in the later periods, which causes more stress on
the transmission system [4], [10]. However, operations of the
transmission system differ significantly between the cases.
Case 1 sees an 10-20% increase in transmission volume
compared to case 0. The high volumes indicate that the
transmission system substantially contributes to the system’s
flexibility when including forecasting errors and mitigates the
reduction of storage power. Our findings are supported by
similar findings in the literature [6], [10], [23], [40].

We show the development of installed capacities grouped
by type in Figure 5 at the example of case 1. No significant
differences between the benchmark and deterministic cases
time are apparent.
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Fig. 4. Invested capacity for each generator type over all periods for the three
cases

VI. CONCLUSION

In conclusion, we find a lower VRES capacity in the
sequenced case with uncertainty of ID operation than in
the non-sequential market, which highlights the importance

of close to real-time forecasting uncertainty for investment
planning. Operations of cross-border transmission are crucial
for flexibility and increase when accounting for forecasting
errors. A reduction of needed storage capacity is possible
when accounting for forecasting errors and can be attributed to
changes in the composition of the generation types. Therefore
the inclusion of forecasting errors between the electricity
markets are significant for correct capacity allocation in a
capacity expansion problem.
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[38] J. Chaves-Ávila and C. Fernandes, “The spanish intraday market design:
A successful solution to balance renewable generation?” Renewable
Energy, vol. 74, p. 422–432, 2015.

[39] H. Teichgraeber and A. Brandt, “Identifying and evaluating new market
opportunities with capacity expansion models,” Stanford Clean Energy
Finance Forum, 2017.

[40] Kyoichi Uehara, Claus Kern, Joseph L. Koepfinger, Mark Waldron,
Guangfan Li, and Jong-Woong Choe, “Future vision of transmission
and distribution 2030,” in 23rd International Conference on Electricity
Distribution, ser. 0991, Lyon, 2015.

Author Accepted Manuscript version of the paper by Magnus A. Wendelborg et al.  
in 2023 19th International Conference on the European Energy Market - EEM (2023) DOI: http://dx.doi.org/10.1109/EEM58374.2023.10161966 

Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 

https://www.nordpoolgroup.com/message-center-container/Annual-report/
https://www.nordpoolgroup.com/message-center-container/Annual-report/
https://www.eex-group.com/en/about/annual-reports/
https://www.eex-group.com/en/about/annual-reports/
https://www.omie.es/en/publications/annual-report
https://www.omie.es/en/publications/annual-report


APPENDIX

A. Full Model Description
Objective function:

min z =
∑
i∈I

(1 + r)−5(i−1)×[ ∑
n∈N

∑
g∈Gn

c
gen
g,ix

gen
n,g,i +

∑
l∈L

ctran
l,i x

tran
l,i

+
∑
n∈N

∑
b∈Bn

(
cstorPW
b,i xstorPW

n,b,i + cstorEN
b,i xstorEN

n,b,i

)
+ ϑ

∑
ω∈Ω

πω

∑
s∈S

αs

∑
h∈Hs

∑
n∈N

( ∑
g∈Gn

q
gen
g,i(y

gen,inflex
n,g,h,i,ω

+ y
gen,flexID
n,g,h,i,ω + y

gen,InterID
n,g,h,i,ω) + qll

n,iy
ll,ID
n,h,i,ω

)]
(4)

The system balance for both electricity markets of DA and
ID:

∑
g∈Gn

(y
gen,inflex
n,g,h,i,ω + y

gen,Flex,m
n,g,h,i,ω + y

gen,inter,m
n,g,h,i,ω)

+
∑
b∈Bn

η
dischrg
b y

dischrg,m
n,b,h,i,ω +

∑
a∈Ain

n

ηtran
a ytran,m

a,h,i,ω

− ξload,m
n,h,i,ω −

∑
b∈Bn

y
chrg,m
n,b,h,i,ω −

∑
a∈Aout

n

ytran,m
a,h,i,ω

= 0

∀ m ∈ M, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (5)

Ramping constraints for the maximum allowed difference
between the DA and ID market in terms of generation output
and transmission for every hour in every period, for all
scenarios, and in all nodes. The parameter, vg is identical to
the ramping parameter:

(1− vg) ∗ y
gen,FlexDA
n,g,h,i,ω ≤ y

gen,FlexID
n,b,h,i,ω ≤ (1 + vg) ∗ y

gen,FlexDA
n,g,h,i,ωg ∈ GFlex

∀ n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (6)

Constraints for transmission lines increase between DA and
ID markets:

ytran,DA
a,h,i,ω ≤ ytran,ID

a,h,i,ω

∀a ∈ A, h ∈ H, i ∈ I, ω ∈ Ω. (7)

Production from all types of generators are limited by the
available installed capacity in all market:

y
gen,t,m
n,g,h,i,ω ≤ ξ

gen,m
n,g,h,i,ωv

gen
n,g,i

∀m ∈ M, t ∈ T , g ∈ Gt, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (8)

For thermal generators, ramping limits apply:

y
gen,inflex
n,g,h,i,ω − y

gen,inflex
n,g,h−1,i,ω ≤ γgen

g v
gen
n,g,i

∀ g ∈ GRamp ∩ Gn, n ∈ N , s ∈ S, h ∈ H−
s , i ∈ I, ω ∈ Ω. (9)

Storage starts and ends at installed capacity and can cycle
in between representative periods and years:

κbv
storEN
n,b,i + η

chrg
b y

chrg,DA
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s,i,ω
− y

discrg,DA
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b ∈ Bn, n ∈ N , s ∈ S, i ∈ I, ω ∈ Ω. (10)

κbv
storEN
n,b,i = wstor,DA

n,b,|Hs|,i,ω

∀ b ∈ Bn, n ∈ N , s ∈ S, i ∈ I, ω ∈ Ω (11)

The balance of storage is ensured between operational time
steps:

wstor,DA
b,n,h−1,i,ω+η
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b y

chrg,DA
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b,n,h,i,ω = ηbleed

b wstor,DA
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b ∈ Bn, n ∈ N , s ∈ S, h ∈ H−
s , i ∈ I, ω ∈ Ω. (12)

Storage level is limited by the capacity in each time step
and market:

wstor,m
n,b,h,i,ω ≤ vstorEN

n,b,i

∀ m ∈ M, b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (13)

Constraints (14)-(15) limit the charge- and discharge power
to the respective limits:

y
chrg,m
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n,b,i ,

∀ m ∈ M, b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω (14)

y
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∀ m ∈ M, b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω (15)

For hydroelectric generators, the energy generation is re-
stricted by seasonal historical realisations:

∑
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y
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∀ m ∈ M, n ∈ N , i ∈ I. (17)

Transmission is limited by net transfer capacity:

ytran,m
a,h,i,ω ≤ vtran

l,i

∀ m ∈ M, l ∈ L, a ∈ Al, h ∈ H, i ∈ I, ω ∈ Ω. (18)

All annual emissions are limited by an emission cap:

∑
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i

∀ m ∈ M, i ∈ I, ω ∈ Ω. (19)

Constraints (20)-(23) ensures that both existing capacities,
as well as invested capacity, is counted for total capacity.
There are restrictions on investments and available capacity
by technology in each node:
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Constraints (24)-(31) limit the maximum allowed capacity
of a technology in each node:

∑
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x
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n,g,i ≤ X̄

gen
t,n,i, t ∈ T , n ∈ N , i ∈ I, (24)
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Some storage technologies b ∈ B† ⊆ B have dependencies
between power and energy capacity:

vstorPW
n,b,i = βbv

storEN
n,b,i , b ∈ B† ∩ Bn, n ∈ N , i ∈ I. (32)

B. Results

Fig. 5. Installed capacity over time for case 1 by type
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