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Abstract 8 

We propose a single-tone frequency estimator of a one-dimensional complex signal in complex white Gaussian noise. The estimator 9 
is based on the subspace approach and the unitary transformation. Due to its low space and time-complexity, we name the estimator 10 
as Low complexity Unitary Principal-singular-vector Utilization for Model Analysis (LUPUMA). Regardless of the observation 11 
length, LUPUMA provides a uniform estimation variance over the whole frequency range, while achieving the lowest time-12 
complexity among subspace methods. The proposed estimator asymptotically reaches the Cramér-Rao Lower Bound. For short 13 
observations, the signal-to-noise ratio threshold of LUPUMA corresponds to the threshold of the maximum likelihood estimator. 14 
The low space and time-complexity along with the stable and state-of-the-art estimation performance for short observations make 15 
LUPUMA an ideal candidate for applications with a limited number of signal samples, limited computational power, limited 16 
memory, and for applications that require rapid processing time (low latency). 17 

Keywords: Frequency Estimation, Complex Single-Tone, Subspace Method, Short Observation Interval 18 

1. Introduction 19 

Estimation of a single-tone frequency from a finite number of noisy discrete-time observations of a complex 20 

sinusoid signal is of great importance among others in telecommunications [1], microwave sensors [2], and power 21 

systems [3]. In some applications, the estimation must be based on a limited number of samples. The short observation 22 

length can naturally result from physical limitations of measurement systems (channel estimation in fifth-generation 23 

communications for high-speed train systems [1], abrupt changes of voltage in a three-phase power system [4], etc.) 24 

or it can be subject to hardware limitations (e.g. the low processing power of hardware in Internet-of-Things (IoT) 25 

applications, where the devices can only process a limited number of samples [3]). Thus, developing an unbiased 26 

frequency estimator over the whole frequency range which complies with the short observation time constraint is a 27 

highly relevant challenge.  28 

Let the 𝑘-th sample of a received one-dimensional (1D) continuous signal 𝑟(𝑡) is given as 29 

𝑟[𝑘] = 𝑏0𝑒
𝑗𝜔𝑘 + 𝑞[𝑘], 𝑘 = 0,1, … , 𝐾 − 1,  (1) 

where 𝑡 stands for time, 𝑏0 is a constant unknown amplitude, 𝜔 ∈ (−𝜋, 𝜋) is an unknown frequency, 𝑞[𝑘] is the k-th 30 

sample of the zero-mean complex white Gaussian noise 𝑞(𝑡) with an unknown variance 𝜎2, 𝑟[𝑘], 𝑞[𝑘] ∈ ℂ, and K is the 31 

total number of samples. By the single-tone frequency estimation, we are interested in real-time and unbiased 32 

estimation of the frequency 𝜔 over the whole frequency range regardless of the number of available samples (whether 33 

the observation is short (8 ≤ 𝐾 < 256) or long (𝐾 ≥ 256)). Noting that the variance of an unbiased estimator must be 34 

independent of the actual value of the frequency over the whole frequency range.  35 

The information modulated in the frequency of the transmitted signal 𝑟(𝑡) can be estimated using a maximum 36 

likelihood estimator. The frequency estimation problem is reformed into a non-linear nonconvex multidimensional 37 

optimization problem [5]. It has theoretically the optimal performance in terms of the Signal-to-Noise Ratio (SNR) 38 

threshold and the estimation accuracy (it attains the Cramér-Rao Lower Bound (CRLB) for a wide SNR range [6]). 39 



Page 2 of 26 

 

However, obtaining the exact solution demands numerical methods with high time-complexities. To reduce the time-40 

complexity of the maximum likelihood estimator, a two-stage approach of coarse search/fine search is employed. In 41 

the coarse search, a frequency bin associated with the highest magnitude of the Discrete Fourier Transform (DFT) of 42 

the signal is selected. Then, the residual fractional frequency is estimated using dichotomous search or interpolation 43 

refinement schemes.  44 

In recent years, interpolation schemes are preferred due to their lower time-complexity and easy implementation 45 

[7-11]. An interpolation scheme can be done using direct methods and iterative methods. Iterative DFT-based 46 

frequency estimators shift the peak of the DFT coefficient at each iteration until the algorithm converges. Within this 47 

class, the A&M algorithm [5] shifts the periodogram around half of the DFT bin resolution, providing the analytical 48 

performance of variance 𝜋4/96 ≈ 1.015 of CRLB [5]. By introducing smaller fractions than half, estimation 49 

performance can be improved [6]. Nevertheless, the iterative methods suffer from higher time-complexity compared 50 

to direct methods [7]. Moreover, each step of iterative methods must be done sequentially and cannot be implemented 51 

in a parallel fashion [7]. Furthermore, their refinement scheme is only accurate when there is a large number of samples 52 

available [8]. Thus, the iterative methods are not suitable for real-time applications with a limited number of samples.  53 

Direct methods reuse the calculated DFT coefficients in the coarse search to estimate the fine resolution frequency. 54 

Within this class of estimators, the Candan estimator [9] has the lowest time-complexity whereas Weighted Least 55 

Squares (WLS) estimator [7] has the best estimation performance. The CRLB of frequency estimation based on 56 

available DFT coefficients is a function of residual fractional frequency and of the number of reused coefficients [7]. 57 

This results in unbiased estimates over the whole frequency range even for a limited number of samples.  58 

Subspace-based estimators such as Principal-singular-vector Utilization for Modal Analysis (PUMA) [10] and 59 

Unitary-PUMA [11] use the linear prediction property of sinusoidal signals achieving better frequency resolution than 60 

the DFT-based estimators [12]. Even for short observations, PUMA shows uniform estimation performance over the 61 

whole frequency range with SNR thresholds comparable with thresholds of the DFT-based estimators [10].  62 

Both PUMA and Unitary-PUMA reduce the effect of the additive noise on the received signal by separating signal 63 

and noise subspaces. For this purpose, they reshape the 𝐾 samples of the received signal 𝑟(𝑡) into a received signal 64 

matrix  65 

𝐑 = [

𝑟[0] 𝑟[𝑀] … 𝑟[𝑀(𝑁 − 1)]

𝑟[1]
⋮

𝑟[𝑀 − 1]

𝑟[𝑀 + 1] ⋯ 𝑟[𝑀(𝑁 − 1) + 1]
⋮ ⋱ ⋮

𝑟[2𝑀 − 1] … 𝑟[𝑀𝑁 − 1]

], (2) 

where the factorization parameters 𝑀 and 𝑁 are arbitrary natural numbers satisfying the condition 𝐾 = 𝑀𝑁 [10], and 66 

𝐑 ∈ ℂ𝑀×𝑁.  67 

The first left and right-singular vectors of the rank-one matrix 𝐑 obtained using the Singular Values Decomposition 68 

(SVD) have a linear prediction property corresponding to the frequency 𝜔 [13]. By taking advantage of this property, 69 

the PUMA estimator uses WLS to estimate the unknown frequency 𝜔, where the optimal setting of the weights in a 70 

weighting matrix is the result of an iterative procedure. To reach the CRLB, PUMA estimates the frequency from the 71 

matrix 𝐑. PUMA indicates an unbiased estimation with a variance approximately equal to the CRLB for the whole 72 

frequency range; however, it suffers from a high time-complexity due to the SVD of the complex matrix 𝐑, and the 73 

iterative procedure of WLS (PUMA calculates the inverse of the weighting matrix in each iteration to obtain the best 74 

linear unbiased estimate [14]). 75 

The PUMA, unlike the DFT-based methods, allows sufficiently accurate estimation of the frequency for short 76 

observations (𝐾 < 256). However, the high time-complexities of the PUMA limit its utilization in applications with 77 

low processing power requirements (such as IoT devices) or in applications with real-time data processing 78 

requirements. To reach a time-complexity lower than PUMA, the Unitary-PUMA [11] maps the matrix 𝐑 and its 79 

Hermitian transpose 𝐑𝐻 onto their codomain real-valued matrices using the unitary transformation 𝜑(∙) and calculates 80 

the SVDs of the resulting real value matrices. This is due the fact that applying a proper unitary transformation 𝜑(∙) 81 

on the complex matrix 𝐑, one can reduce the time-complexity of SVD calculations [15], even though the size of the 82 

resultant matrix 𝜑(𝐑) ∈ ℝ𝑀×2𝑁 is doubled. Unitary-PUMA calculates two SVDs and two matrix inversion operations 83 

within each iteration. For sufficiently high SNR values, Unitary-PUMA converges with only one iteration, providing 84 

a lower time-complexity than PUMA (two real-valued SVDs and two- real-valued matrix inversions). However, the 85 

simulation results presented in this article show that the variance of Unitary-PUMA’s estimates is a function of the 86 

frequency. Meaning that the estimator experiences an abrupt increase in variance for specific frequencies which 87 
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remains even in high SNR values. Moreover, the Unitary-PUMA suffers from high space-complexity which is not 88 

preferred for applications with limited memory.  89 

Considering the above-stated facts, we conclude that there is not a general estimator for both short and long 90 

observations which can achieve accurate and unbiased frequency estimation over the whole frequency range, and yet 91 

suffice the time and space-complexity requirement. In this dilemma, the complexity and the estimation performance 92 

must be preferentially prioritized based on the application. Motivated by this, we develop a subspace method with 93 

lower space and time-complexity than other subspace methods, yet near-to-uniform estimation performance over the 94 

whole frequency range even for short observations.  95 

The key contributions of this article are as follows: 96 

• A new subspace-based frequency estimator is proposed. A substantial property of the estimator is the ability 97 

to provide uniform frequency estimation over the whole frequency range for short observation lengths (8 ≤ 𝐾 < 256). 98 

The SNR thresholds of the estimator are comparable with thresholds of state-of-the-art estimators. Its space-99 

complexity is the lowest among time-domain and DFT-based methods. Its time-complexity is linear, and it is 100 

comparable to DFT-based methods (even for short observations).  101 

• An analytical proof that the proposed estimator is unbiased and with a variance asymptotically equals to the 102 

CRLB is presented. 103 

• A dependence of variance of Unitary-PUMA’s estimates on the frequency is shown. 104 

2. Materials and Methods 105 

Notations 106 

Throughout the text, we use boldface lowercase and uppercase letters for vectors and matrices, respectively. [𝐀]𝑖,𝑗 107 

is the (𝑖, 𝑗)-th element of the matrix 𝐀, 𝐈𝑚×𝑚 is the 𝑚×𝑚 identity matrix, 𝚷𝑚×𝑚 is the 𝑚 ×𝑚 exchange matrix (matrix 108 

with ones on its antidiagonal and zeros elsewhere), and 𝟎𝑚×𝑛 and 𝟏𝑚×𝑛 are 𝑚× 𝑛 matrices of all zeros and ones, 109 

respectively. We denote diagonal matrices as diag(∙). Superscripts (∙)𝑇, (∙)𝐻 and (∙)† represent transpose, Hermitian 110 

transpose, and Moore–Penrose inverse, respectively. The symbols ⦁, ⊗, ⊙, ⊕ and vec(∙) stand for transposed Khatri-111 

Rao product [16], Kronecker product, Hadamard product, direct-sum, and matrix vectorization, respectively. We use 112 

(∙)̅̅ ̅, ∠., Re(∙) and Im(∙) for the complex conjugate, the phase, the real and the imaginary part of a complex number, 113 

respectively. The symbol ⌊∙⌋ denotes rounding to the nearest integer toward −∞. If 𝑥 is a random variable, then E(𝑥) 114 

and var(𝑥) represent expectation and variance, respectively, and �̂� denotes the estimate of 𝑥. 115 

2.1. Complex to real mapping 116 

Any complex 𝑝 × 𝑞 matrix 𝐆 ∈ ℂ𝑝×𝑞 can be transformed into its real-valued counterpart according to 117 

𝜑(𝐆) = 𝐓𝑝×𝑝
𝐻 [𝐆 𝚷𝑝×𝑝𝐆𝚷𝑞×𝑞]𝐓2𝑞×2𝑞, (3-a) 

where 𝜑(𝐆) ∈ ℝ𝑝×2𝑞, and 𝜑(∙) denotes the unitary transformation [11, 15]. The 𝑋 × 𝑋 unitary matrices 𝐓𝑋×𝑋 are given 118 

as 119 

𝐓𝑋×𝑋 =

{
 
 

 
 
1

√2
[
𝐈𝑥×𝑥 𝑗𝐈𝑥×𝑥
𝚷𝑥×𝑥 −𝑗𝚷𝑥×𝑥

],                  for 𝑋 = 2𝑥,

1

√2
[

𝐈𝑥×𝑥 𝟎𝑥×1 𝑗𝐈𝑥×𝑥

𝟎𝑥×1
𝑇 √2 𝟎𝑥×1

𝑇

𝚷𝑥×𝑥 𝟎𝑥×1 −𝑗𝚷𝑥×𝑥

] ,        for 𝑋 = 2𝑥 + 1.

 (3-b) 

Let 𝐆 be partitioned as 120 

𝐆 = [

𝐆1
𝐠𝑇

𝐆2

], (4) 

where the block matrices 𝐆1 and 𝐆2 have the same size. Then, the real value matrix 𝜑(𝐆) is given as [15] 121 
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𝜑(𝐆) =

[
 
 
 
 Re (𝐆1 +𝚷⌊𝑝2⌋×⌊

𝑝
2
⌋𝐆2) −Im(𝐆1 −𝚷⌊

𝑝
2
⌋×⌊

𝑝
2
⌋𝐆2)

√2Re(𝐠𝑇) −√2Im(𝐠𝑇)

Im (𝐆1 + 𝚷⌊
𝑝
2
⌋×⌊

𝑝
2
⌋𝐆2) Re (𝐆1 −𝚷⌊

𝑝
2
⌋×⌊

𝑝
2
⌋𝐆2) ]

 
 
 
 

. (5) 

Note that the central row is dropped for even 𝑝. 122 

2.2. The explicit form of real-valued noise-free signal 123 

We expect the 𝑘-th sample of the received signal to be the linear combination (1) of the 𝑘-th sample of a noise-free 124 

signal 𝑠[𝑘] = 𝑏0𝑒
𝑗𝜔𝑘, and of the 𝑘-th sample of the Gaussian noise 𝑞(𝑘). We reshape the samples of the noise-free 125 

signal for 𝑘 = 0,… , 𝐾 − 1 into a matrix [10] 126 

𝐒 = [

𝑠[0] 𝑠[𝑀] … 𝑠[𝑀(𝑁 − 1)]

𝑠[1]
⋮

𝑠[𝑀 − 1]

𝑠[𝑀 + 1] ⋯ 𝑠[𝑀(𝑁 − 1) + 1]
⋮ ⋱ ⋮

𝑠[2𝑀 − 1] … 𝑠[𝑀𝑁 − 1]

], (6) 

where 𝐒 ∈ ℂ𝑀×𝑁, 𝑀 +𝑁 + τ,= 𝐾, 𝑀,𝑁 ∈ ℕ+, and τ ∈ ℕ. Without loss of generality, let 𝑀 be an even number. According 127 

to (5), the real-valued mapping of this matrix is given as 128 

𝜑(𝐒) = [
𝚽11 𝚽12

𝚽21 𝚽22
], (7-a) 

where  129 

𝚽11 = Re (𝐒1 + 𝚷𝑀
2×

𝑀
2
�̅�2), 

𝚽12 = Im(𝚷𝑀
2×

𝑀
2
�̅�2 − 𝐒1), 

𝚽21 = Im(𝐒1 + 𝚷𝑀
2×

𝑀
2
�̅�2), 

𝚽22 = Re (𝐒1 − 𝚷𝑀
2×

𝑀
2
�̅�2), 

(7-b) 

and according to (5), 𝐒 = [𝐒1 𝐒2]
𝑇. 130 

As the (𝑚, 𝑛)-th element of the matrix 𝐒 is  131 

[𝐒]𝑚,𝑛 = 𝑏0e
𝑗𝜔(𝑚+𝑀𝑛) ,  

the compact forms of the matrices 𝐒1 and 𝚷𝑀
2×

𝑀
2
�̅�2 can be written as  132 

[𝐒1]𝑚,𝑛 = 𝑏0𝑒
𝑗𝜔(𝑚+𝑀𝑛), 

[𝚷𝑀

2
×
𝑀

2

�̅�2]
𝑚,𝑛

= 𝑏0𝑒
−𝑗𝜔(𝑀(𝑛+1)−(𝑚+1)), 

𝑚 = 0,… ,
𝑀

2
− 1, 

  𝑛 = 0,…𝑁 − 1. 
(8) 

With the help of the Euler’s formula for complex numbers, we substitute (8) into (7-b) as 133 

[𝚽11]𝑚,𝑛 = 2𝑏0 [cos (
𝜔

2
(𝑀(2𝑛 + 1) − 1)) cos (

𝜔

2
(𝑀 − 2𝑚 − 1))], 

[𝚽12]𝑚,𝑛 = −2𝑏0 [sin (
𝜔

2
(𝑀(2𝑛 + 1) − 1)) cos (

𝜔

2
(𝑀 − 2𝑚 − 1))], 

[𝚽21]𝑚,𝑛 = −2𝑏0 [cos (
𝜔

2
(𝑀(2𝑛 + 1) − 1)) sin (

𝜔

2
(𝑀 − 2𝑚 − 1))], 

[𝚽22]𝑚,𝑛 = 2𝑏0 [sin (
𝜔

2
(𝑀(2𝑛 + 1) − 1)) sin (

𝜔

2
(𝑀 − 2𝑚 − 1))]. 

 

We can express each submatrix (7-b) as a rank one matrix of the form  134 

𝚽11 = 2�̃�L�̃�L
𝑇, 

𝚽12 = 2�̃�L�̃�R
𝑇, 

𝚽21 = 2�̃�R�̃�L
𝑇 , 

𝚽22 = 2�̃�R�̃�R
𝑇 , 

(9-a) 

in which 135 
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[�̃�L]𝑘 = cos (
𝜔

2
(𝑀 − 2𝑘 − 1)) , for 𝑘 = 0,…

𝑀

2
− 1, 

[�̃�R]𝑘 = −sin (
𝜔

2
(𝑀 − 2𝑘 − 1)) , for 𝑘 = 0,…

𝑀

2
− 1, 

[�̃�L]𝑘 = cos (
𝜔

2
(𝑀(2𝑘 + 1) − 1)) , for 𝑘 = 0,…𝑁 − 1, 

[�̃�R]𝑘 = −sin (
𝜔

2
(𝑀(2𝑘 + 1) − 1)) , for 𝑘 = 0,…𝑁 − 1. 

(9-b) 

Let 136 

�̃� = [�̃�L �̃�R]
𝑇 , 

�̃� = [�̃�L �̃�R]
𝑇 , 

(10) 

then 𝜑(𝐒) can be written as  137 

𝜑(𝐒) = 𝑏0�̃��̃�
𝑇 . (11) 

2.3. Approximation of the factorized form of the real-valued noise-free signal 138 

The same way as (2) and (6), we can write the samples of the noise 𝑞[𝑘] in a noise matrix 𝐐 ∈ ℂ𝑀×𝑁. According to 139 

(1), it holds that 140 

𝐑 = 𝐒 + 𝐐. (12) 

Using the complex-to-real mapping (5), we obtain a real-valued matrix form of the received signal 141 

𝜑(𝐑) = 𝜑(𝐒) + 𝜑(𝐐).  

The real-valued noise-free signal (11) can be factorized using the SVD of 𝜑(𝐑) [11] which is given as 142 

𝜑(𝐑) = 𝐔𝚲𝐕𝑇 , (13) 

where 𝐔 = [𝐮𝟎 𝐮𝟏 … 𝐮𝑀−1] and 𝐕 = [𝐯𝟎 𝐯𝟏 … 𝐯2𝑁−1] are 𝑀 ×𝑀 and 2𝑁 × 2𝑁 real orthogonal matrices, 143 

respectively, the column vectors 𝐮𝑖 and 𝐯𝑖 are the 𝑖-th left and right-singular vectors of 𝜑(𝐑), respectively, and 𝚲 is an 144 

𝑀 × 2𝑁 rectangular diagonal matrix with non-negative real numbers 𝜆 (singular values) arranged descending on the 145 

diagonal. According to (11), the rank of 𝜑(𝐒) is one. Assuming 𝐑 ≈ 𝐒 (i.e., ||𝐐||
2

2
→  0), we can approximate 𝜑(𝐑) as 146 

a perturbed rank-one matrix, with the first-order approximation written as [17] 147 

𝜑(𝐑) =  𝜆0𝐮0𝐯0
𝑇 + 𝐔𝐐𝚲𝐐𝐕𝐐

𝑇 ≈ 𝜆0(𝐮0 + Δ𝐮)(𝐯0 + Δ𝐯)
𝑇 , (14-a) 

where 𝜆0 is the first singular value of 𝜑(𝐑), 𝐮0 and 𝐯0 are the first vectors of the matrices 𝐔 and 𝐕, respectively, and 148 

𝐔𝐐, 𝐕𝐐, and 𝚲𝐐 are matrixes obtained by removing the first columns of the matrixes 𝐔, 𝐕, and 𝚲, respectively. The 149 

estimation error vectors Δ𝐮 and Δ𝐯 are given as 150 

Δ𝐮 = −
1

𝜆0 
𝐔𝐐𝐔𝐐

𝑇𝜑(𝐐)𝐯, 

Δ𝐯 = −
1

𝜆0
𝐕𝐐
𝑇𝐕𝐐𝜑(𝐐)

𝑻𝐮. 
(14-b) 

We define approximations of the left and of the right vectors of the factorized real-valued noise-free signal �̃� and �̃�, 𝐮 151 

and 𝐯, respectively, such that  152 

𝐮 ≜ 𝑘𝐮𝐮0 , 𝐯 ≜ 𝑘𝐯𝐯0. (15) 

As 𝐮0
𝑇𝐮0 = 𝐯0

𝑇𝐯0 = 1, �̃�
𝑇�̃� = 𝑘𝐮

2 and �̃�𝑇�̃� = 𝑘𝐯
2 [13], the unknown coefficients 𝑘𝐮 and 𝑘𝐯 are given as 153 

𝑘𝐮 = √
𝑀

2
 , 𝑘𝐯 = √𝑁. 

 

 154 

2.4. Phasal transformation 155 

2.4.1. Definition  156 

Let us define selection matrices for a vector 𝐱 ∈ ℝ2𝑝×1, 𝑝 ∈ ℕ  such that  157 
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𝐉𝐱
𝑟 = 𝐉𝐱

0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿 + 𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅, 

𝐉𝐱
𝑖 = 𝐉𝐱

0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝑅 − 𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝐿, 

(16) 

where 158 

𝐉𝐱
𝐿 ≜ [𝐈𝑝×𝑝 𝟎𝑝×𝑝], 
𝐉𝐱
𝑅 ≜ [𝟎𝑝×𝑝 𝐈𝑝×𝑝], 

𝐉𝐱
0 ≜ [𝐈(𝑝−1)×(𝑝−1) 𝟎(𝑝−1)×1], 
𝐉𝐱
1 ≜ [𝟎(𝑝−1)×1 𝐈(𝑝−1)×(𝑝−1)]. 

(17) 

We define the phasal transformation as  159 

Φ(𝐱) =  (𝐉𝐱
𝑟 + 𝑗𝐉𝐱

𝑖 )(𝐱 ⊗ 𝐱), (18) 

where Φ(𝐱) ∈ ℂ(𝑝−1)×1. 160 

2.4.2. Low time-complexity version of the transformation 161 

The calculation of the phasal transformation according to (18) is due to the matrix multiplications inappropriate for 162 

practical application. The calculation can be simplified by utilization of the Khatri-Rao transposed product property: 163 

Lemma1: For any arbitrary matrix 𝐀 ∈ ℝ𝑝×𝑞 and 𝐁 ∈ ℝ𝑝×𝑞, and vectors 𝐜 ∈ ℝ𝑝×1 and 𝐝 ∈ ℝ𝑝×1, we have 164 

(𝐀⦁𝐁)(𝐜 ⊗ 𝐝) = (𝐀𝐜)⨀(𝐁𝐝). 
(19) 

Proof: By expanding 𝐀 and 𝐁 as 165 

𝐀 = [𝐚1 𝐚2 … 𝐚𝑞]𝑇, 

𝐁 = [𝐛1 𝐛2 … 𝐛𝑞]𝑇, 

 

in which 𝐚𝑖 , 𝐛𝑗 ∈ ℝ
𝑝×1, we can express the transposed Khatri-Rao product of the matrices 𝐀 and 𝐁 as  166 

𝐀⦁𝐁 = [𝐚1⊗𝐛1 𝐚2⊗𝐛2 … 𝐚𝑝⊗𝐛𝑝]𝑇.  

The 𝑖-the element of (19) left side can be then expressed as  167 

[(𝐀⦁𝐁)(𝐜 ⊗ 𝐝)]𝑖 = (𝐚𝑖
𝑇⊗𝐛𝑖

𝑇)(𝐜 ⊗ 𝐝)  = (𝐚𝑖
𝑇𝐜) ⊗ (𝐛𝑖

𝑇𝐝) = (𝐚𝑖
𝑇𝐜)(𝐛𝑖

𝑇𝐝).  

Thus, we can say that  168 

𝐀⦁𝐁 = (𝐀𝐜)⨀(𝐁𝐝).∎  

Considering lemma 1, we can write the real part of the phasal transformation (18) as  169 

Re(Φ(𝐱)) =  (𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿 + 𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐱 ⊗ 𝐱)  =  𝐉𝐱

0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿(𝐱 ⊗ 𝐱) + 𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅(𝐱 ⊗ 𝐱)  

                           = (𝐉𝐱
0𝐉𝐱
𝐿𝐱)⨀(𝐉𝐱

1𝐉𝐱
𝐿𝐱) + (𝐉𝐱

0𝐉𝐱
𝑅𝐱)⨀(𝐉𝐱

1𝐉𝐱
𝑅𝐱). 

 

In the same way, the imaginary part is given as 170 

Im(Φ(𝐱)) = (𝐉𝐱
0𝐉𝐱
𝐿𝐱)⨀(𝐉𝐱

1𝐉𝐱
𝑅𝐱) + (𝐉𝐱

0𝐉𝐱
𝑅𝐱)⨀(𝐉𝐱

1𝐉𝐱
𝐿𝐱).  

So, the 𝑖-the element of the vector Φ(𝐱) is  171 

[Φ(𝐱)]𝑖 = [𝐱]𝑖[𝐱]𝑖+1 + [𝐱]𝑝+𝑖[𝐱]𝑝+𝑖+1 

+ 𝑗[𝐱]𝑖[𝐱]𝑝+𝑖+1 −  𝑗[𝐱]𝑝+𝑖[𝐱]𝑖+1, 
(20) 

where 𝑖 ∈ {0, 1, … , 𝑝 − 2}. 172 

2.5. Proposed estimation of the frequency 173 

The vectors 𝐮 and 𝐯 carry information that allows estimation of the desired frequency 𝜔. We can formulate its 174 

estimation as [18] 175 

�̂� = 𝛽�̂�𝐮 + (1 − 𝛽)�̂�𝐯, (21) 

where �̂� is the final estimate of the desired frequency 𝜔, and �̂�𝐮 and �̂�𝐯 are estimates of 𝜔 based on the vectors 𝐮 and 176 

𝐯, respectively. The weighting coefficient 𝛽 is given as 177 

𝛽 =
var(�̂�𝐯)

var(�̂�𝐮) +  var(�̂�𝐯)
. (22) 

The variance of �̂� is given as [18] 178 
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var(�̂�) =  𝛽2var(�̂�𝐮) + (1 − 𝛽)
2var(�̂�𝐯). (23) 

The estimation of the frequency using the vector 𝐮 or using the vector 𝐯 can be handled as a search for the frequency 179 

resulting in the smallest sum of squares of residual errors. Let us consider the vector 𝐮 at first. A vector of residual 180 

errors for 𝐮 is given as 181 

𝐞𝐮 =𝑎𝐮𝟏(𝑀
2
−1)×1

− 𝐲𝐮,  

where 𝐲𝐮 =  Φ(𝐮), and 𝑎𝐮 ≜ 𝑒
𝑗𝜔. Note that the phasal transformation (18) of the noise-free signal results in a vector of 182 

constant values. As shown in Appendix A, Φ(�̃�) = 𝑒𝑗𝜔𝟏
(
𝑀

2
−1)×1

 hence 𝑎𝐮 ≜ 𝑒
𝑗𝜔. 183 

Considering the Gauss-Markov Theorem [14], we formulize the estimation of 𝑎𝐮 as a WLS problem to ensure that 184 

the residual errors are uncorrelated. The estimate of 𝑎𝐮 is given as 185 

�̂�𝐮  = argmin
𝑎𝐮

𝐞𝐮
𝐻𝐖𝐮𝐞𝐮, (24) 

where 𝐖𝐮 ≜ 𝐂𝐞
−1 is the weighting matrix, and 𝐂𝐞 = E(𝐞𝐮𝐞𝐮

𝐻) is the covariance matrix of the residual errors. Note that 186 

𝐂𝐞 is a positive semidefinite matrix, thus its Cholesky decomposition exists as 𝐂𝐞 = 𝐋𝐋
𝐻. By transforming the error 187 

vector 𝐞𝐮 with the matrix 𝐋−1, we can update the covariance matrix as   188 

E((𝐋−1𝐞𝐮)(𝐋
−1𝐞𝐮)

𝐻) = 𝐋−1E(𝐞𝐮𝐞𝐮
𝐻)(𝐋−1)𝐻 = 𝐋−1𝐋𝐋𝐻(𝐋−1)𝐻 = 𝐈

(
𝑀

2
−1)×(

𝑀

2
−1)

.  

Thus, 𝐖𝐮 is the whitening filter of the residual error. The variance of �̂�𝐮 is [19] 189 

var(�̂�𝐮) =
1

𝟏𝑇
(
𝑀
2−1)×1

𝐖𝐮𝟏(𝑀2−1)×1
. (25) 

The matrix 𝐖𝐮 is not a priori known. Considering this fact, we propose a second-order approximation of 𝐖𝐮. Based 190 

on the explicit forms of the real-valued noise-free signal (8-b) and (9), the approximation is (see Appendix B) 191 

�̂�𝐮 =
𝑏0
2𝑁

𝜎2
(𝐈

(
𝑀
2−1)×(

𝑀
2−1)

+ 𝟏
(
𝑀
2−1)×1

𝟏
(𝑀
2−1

)×1

𝑇 ). (26) 

Applying the approximation to the optimization problem (24), we get the analytical solution 192 

�̂�𝐮 =
 2

𝑀 − 2
𝟏
(
𝑀
2−1)×1

𝑇 𝐲𝐮. (27) 

Considering (25), the variance of the estimator (27) is  193 

var(�̂�𝐮) ≈
𝜎2

𝑏0
2

4

𝑁𝑀(𝑀 − 2)
. (28) 

Similarly, the vector of residual errors for the vector 𝐯 is given as 194 

𝐞𝐯 =𝑎𝐯𝟏(𝑁−1)×1 − 𝐲𝐯, (29) 

where 𝑎𝐯 ≜ 𝑒
𝑗𝑀𝜔, and 𝐲𝐯 = Φ(𝐯)̅̅ ̅̅ ̅̅ ̅. The estimate of 𝑎𝐯 is given as 195 

�̂�𝐯  = argmin
𝑎𝐯

𝐞𝐯
𝐻𝐖𝐯𝐞𝐯, (30) 

with the variance 196 

var(�̂�𝐯) =
1

𝟏(𝑁−1)×1
𝑇 𝐖𝐯𝟏(𝑁−1)×1

, (31) 

where 𝐖𝐯 ≜ E(𝐞𝐯𝐞𝐯
𝐻)−1. 197 

We propose a second-order approximation of the whitening filter 𝐖𝐯 198 

�̂�𝐯 =
𝑏0
2𝑀

2𝜎2
(𝐈(𝑁−1)×(𝑁−1) + 𝟏(𝑁−1)×1𝟏(𝑁−1)×1

𝑇 ), (32) 

which leads to the analytical solution of the optimization problem (30) 199 

�̂�𝐯 =
1

𝑁 − 1
𝟏(𝑁−1)×1
𝑇 𝐲𝐯. (33) 

Based on (31), the variance of the estimator (33) is  200 

var(�̂�𝐯) ≈
𝜎2

𝑏0
2

2

𝑀𝑁(𝑁 − 1)
. (34) 
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The estimates �̂�𝐮 and �̂�𝐯 allow us to calculate the estimates of the desired frequency. We first calculate the estimate 201 

of the desired frequency from the vector 𝐮 which is given as 202 

�̂�𝐮 = ∠�̂�𝐮.  

The estimate �̂�𝐯 corresponds to 2⌊𝑀
2
⌋ + 1 possible frequencies [10] 203 

�̌�𝐯 ∈ Ω̌𝐯 = {
∠�̂�𝐯  + 2𝜋𝑖

𝑀
|𝑖 =  − ⌊

𝑀
2
⌋ , − ⌊

𝑀
2
⌋ + 1,… , ⌊

𝑀
2
⌋}.  

We consider the frequency �̌�𝐯 with the lowest Euclidean distance to �̂�𝐮 to be the estimate of 𝜔 based on the vector 𝐯, 204 

i.e.  205 

�̂�𝐯 = argmin
�̌�𝐯𝜖Ω̌𝐯

‖�̂�𝐮 − �̌�𝐯‖2,  

where Ω̌𝐯 is the set of all possible frequencies �̌�𝐯. 206 

According to (21) and (22), the final estimate �̂� depends on the variance of each estimator. If 𝑀,𝑁 ≫ 1, variances 207 

of �̂�𝐮 and �̂�𝐯 can be approximated as functions of var(�̂�𝐮) and var(�̂�𝐯), respectively [10, 20]: 208 

var(�̂�𝐮) ≈
var(�̂�𝐮)

2 
≈
𝜎2

𝑏0
2

2

𝑁𝑀(𝑀 − 2)
, 

var(�̂�𝐯) ≈
var(�̂�𝐯)

2𝑀2 
≈
𝜎2

𝑏0
2

1

𝑀3𝑁(𝑁 − 1)
. 

(35-a) 

(35-b) 

Then we can approximate the calculation of the weighting coefficient 𝛽 (22) as 209 

𝛽 ≈
(𝑀 − 2)

2𝑀2(𝑁 − 1) + (𝑀 − 2) 
. 

 

Consequently, the approximation of the final estimate of the desired frequency (23) can be expressed as 210 

�̂� ≈
(𝑀 − 2)�̂�𝐮 +  2𝑀

2(𝑁 − 1)�̂�𝐯
2𝑀2(𝑁 − 1) + (𝑀 − 2) 

. (36) 

As shown in Appendix C, the estimator (36) is unbiased in small noise scenarios. It follows from (23) that the 211 

asymptotic variance of �̂� (for large values of 𝑀,𝑁 and 𝐾) is  212 

var(�̂�) ≈
𝜎2

𝑏0
2

2

𝑀𝑁(2𝑀2(𝑁 − 1) + (𝑀 − 2))
. (37) 

 213 

2.6. LUPUMA implementation  214 

The key components of the LUPUMA estimator are the complex to real mapping of the received signal  𝜑(𝐑), 215 

SVD of the resulting real-valued matrix, and the low time-complexity version of the phasal transformation (20). We 216 

implement the method as a function LUPUMA, and we summarize the implementation in Table I. Inputs of the function 217 

are factorization parameters 𝑀 and 𝑁, and a vector 𝐫 of 𝐾 samples of the received signal, where                                               218 

𝐫 = [𝑟[0] ⋯ 𝑟[𝐾 − 1]]. The function returns the final estimate of the desired frequency �̂�.  219 

2.7. The setting of the factorization parameters 220 

The choice of the factorization parameters 𝑀 and 𝑁 influences the variance of LUPUMA (37), where the CRLB of 221 

the variance is [21]  222 

var(�̂�) =
6𝜎2

𝐾𝑏0
2(𝐾2 − 1)

. (38) 

As mentioned in subsection 2.2, the parameters 𝑀 and 𝑁 must be positive natural numbers respecting the number 223 

of the received signal samples 𝐾. The phasal transformation (18) introduces an additional and more stringent 224 

restriction on the parameters. Specifically, 2 < 𝑀 < 𝐾 and 1 < 𝑁 < 𝐾. This restriction implies that LUPUMA requires 225 

at least 8 samples of the received signal for the frequency estimation. 226 

To express the dependence of the variance on the factorization of the received signal samples, we define an 227 

auxiliary factorization parameter 𝛼 ≜ 𝑀/𝐾. Then the variance (37) can be written as 228 

var(�̂�, 𝛼) ≈
𝜎2

𝑏0
2

6

𝐾(6(𝛼 − 𝛼2)𝐾2 + (3𝛼)𝐾 − 6)
. (39) 
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To reach CRLB at the lowest SNR value, we must find such 𝛼 that the estimator variance (39) will be equal to (38). 229 

We formulate the search for 𝛼 as an optimization problem  230 

�̂� = argmin
𝛼

(
6𝜎2

𝐾𝑏0
2 (

1

6(𝛼 − 𝛼2)𝐾2 + (3𝛼)𝐾 − 6
−

1

𝐾2 − 1
))

2

  

subject to 231 

𝛼 ∈ (0,1). 
 

The analytical solution to this problem is 232 

�̂� =
(6𝐾 + 3) ± √3(4𝐾2 + 12𝐾 − 53)

12𝐾
. (40) 

As the factorization parameters 𝑀 and 𝑁 must be positive natural numbers, we estimate their optimal values 233 

according to 234 

𝑀∗ = [�̂�𝐾],     𝑁∗ = ⌊
𝐾

𝑀∗⌋, 
 

where [∙] stands for rounding to the nearest integer. Note that we remove the last (𝐾 − 𝑀∗𝑁∗) samples for 𝑀∗𝑁∗ < 𝐾 235 

(see Table I, operation number 1). 236 

The optimization problem (39) has two feasible solutions. Concerning the robustness of SVD toward noise [22], �̂� 237 

resulting in smaller differences between 𝑀∗ and 𝑁∗ are preferred. For example, for 𝐾 → ∞, �̂� ∈ {0.21,0.79}. �̂� ≈ 0.21 238 

is preferred as the constructed shape with this adjustment is closer to the squared matrix. Note that the variance for 239 

�̂� ≈ 0.21 is  240 

var(�̂�) ≈
𝜎2

𝑏0
2

6

𝐾(𝐾 − 2.18)(𝐾 + 2.8)
, (41) 

i.e., the variance is asymptomatically equal to CRLB (38) for this factorization and 𝐾 → ∞.  241 

TABLE I 

PSEUDOCODE OF LUPUMA 
 function LUPUMA(𝐫 𝑀 𝑁) 

Require: vector 𝐫 of 𝐾 samples of the received signal 𝑟(𝑡), 
factorization parameters 𝑀 and 𝑁, where 𝑀,𝑁 ∈ ℕ+ and 𝑀𝑁 ≤ 𝐾 

Ensure: the final estimate of the desired frequency �̂� 

1: 

𝐑 ← [

[𝐫]0 ⋯ [𝐫]𝑀(𝑁−1)
⋮ ⋱ ⋮

[𝐫]𝑀−1 ⋯ [𝐫]𝑀𝑁−1

] 

2: 

𝜑(𝐑) ← [
Re (𝐑1 + 𝚷𝑚

2
×
𝑚
2
�̅�2) −Im(𝐑1 − 𝚷𝑚

2
×
𝑚
2
�̅�2)

Im (𝐑1 + 𝚷𝑚
2×

𝑚
2
�̅�2) Re (𝐑1 −𝚷𝑚

2×
𝑚
2
�̅�2)

], 

where 𝐑 ← [𝐑1 𝐑2]
𝑇 

3: 𝐮0, 𝐯0 ← SVD(𝜑(𝐑)) 

4: 
�̂�𝐮 ← ∠∑ [𝐲𝐮]𝑖

𝑀
2
−1

𝑖=0
, where 

[𝐲𝐮]𝑖 ← [𝐮]𝑖[𝐮]𝑖+1 + [𝐮]𝑀
2
+𝑖
[𝐮]𝑀

2
+𝑖+1

+  𝑗[𝐮]𝑖[𝐮]𝑀
2
+𝑖+1

−

 𝑗[𝐮]𝑀
2+𝑖
[𝐮]𝑖+1,  

and 𝐮 ← √𝑀

2
𝐮0     

5: Ω̌𝐯 ← {
∠∑ [𝐲𝐯]𝑖

𝑁−1
𝑖=0  +2𝜋𝑖

𝑀
|𝑖 =  − ⌊

𝑀

2
⌋ , − ⌊

𝑀

2
⌋+ 1,… , ⌊

𝑀

2
⌋}, 

where  

[𝐲𝐯]𝑖 ← [𝐯]𝑖[𝐯]𝑖+1 + [𝐯]𝑁+𝑖[𝐯]𝑁+𝑖+1 −  𝑗[𝐯]𝑖[𝐯]𝑁+𝑖+1 +
 𝑗[𝐯]𝑁+𝑖[𝐯]𝑖+1,    

and 𝐯 ← √𝑁𝐯0  

6: �̂�𝐯 ← argmin
�̌�𝐯𝜖Ω̌𝐯

‖�̂�𝐮 − �̌�𝐯‖2 

7: 
�̂� ←

(𝑀 − 2)�̂�𝐮 +  2𝑀
2(𝑁 − 1)�̂�𝐯

2𝑀2(𝑁 − 1) + (𝑀 − 2) 
 

 



Page 10 of 26 

 

2.8. LUPUMA time-complexity 242 

We use the number of floating-point operations (FLOPs) to express the time complexity of LUPUMA. We 243 

summarize time-complexities of the LUPUMA operations (given in Table I) in Table II.  244 

LUPUMA relies on one SVD and simple matrix operations. As the optimal setting of the factorization parameters 245 
(𝑀,𝑁) results in tall matrices, we use an SVD algorithm based on QR iteration [23]. The total operation counts of this 246 

algorithm depend on (𝑀,𝑁) (see Table III, operation 3). We show in Table III that for the optimal setting (𝑀 = 𝐾/5), 247 

the time-complexity of LUPUMA is linear.  248 

 249 

2.9. Simulation experiments 250 

We conduct simulation experiments aimed at the evaluation of LUPUMA and its comparison with PUMA [10], 251 

Unitary-PUMA [11], unbiased A&M estimator [5, 24], parabolic estimator [12, 25], and DFT-based weighted least 252 

squares (DFT-WLS) estimator [7]. In DFT-WLS, we use window lengths 𝐿 ∈ {3, 5} with their coefficients calculated 253 

and stored beforehand [7]. In A&M and PUMA, we employ up to five and three iterations, respectively, before the 254 

stopping criterion is met, while it is one iteration for Unitary-PUMA. In the parabolic estimator, we consider the 255 

distance of 1/10 between adjacent samples, identical to the value selected in [25]. For PUMA and Unitary-PUMA, we 256 

factorize the received signal by the factorization parameters set up 𝑀 ≈ 𝑁 (the optimal settings for PUMA and Unitary-257 

PUMA).  258 

We evaluate the estimation performances, time, and space-complexities of the estimators. For each experiment and 259 

for each estimator, we carry out 10000 and 100 simulations aimed at evaluations of the estimation performance and 260 

the time-complexity of the estimators, respectively. If not indicated otherwise, for each simulation run, we generate a 261 

new vector 𝐫 of 𝐾 signal samples with 𝛚 drawn from uniform distribution 𝑈(−𝜋, 𝜋). Unless stated otherwise, we 262 

consider the signal affected by the Additive White Gaussian Noise (AWGN) (1), with amplitude 𝑏0 = 𝑒5𝑗, and 263 

variance 𝜎2 = 𝑏0
210−0.1SNR, where SNR is in dB. 264 

To investigate the validity of the rank one approximation (14) and its influence on the estimation performance of 265 

LUPUMA, we carry out matrix error analysis for observation lengths 𝐾 ∈ {8, 32, 128, 512}, and                                        266 

SNR ∈ {2𝑥|𝑥 ∈ ℤ,−10 ≤ 𝑥 ≤ 30}. We calculate the normalized error  267 

Ψ(𝐀, �̆� ) =
||𝐀 − �̆� ||

2

||𝐀||
2

 (42) 

where 𝐀 and �̆� are a matrix and its approximation, respectively. Here we take 𝐀 = 𝜑(𝐑)  (13) and                                                268 

�̆� = 𝜆0(𝐮0 + Δ𝐮)(𝐯0 + Δ𝐯)
𝑇.  269 

Also, we observe the influence of rank one approximation on the estimation performance of LUPUMA by 270 

obtaining the Euclidean distance between estimates of the frequency based on observed singular vector 𝐮 and �̆�, �̂�𝐮 271 

and �̂��̆�, respectively, where 272 

�̆� ≜ �̃� − 𝚫𝐮, (43) 

is the approximated singular vector and �̃� is defined based on (11). Note that the error analysis of 𝐯 follows similar 273 

steps. Thus, for clarity purposes, we focus only on the analysis of 𝐮.  274 

TABLE II 

TIME-COMPLEXITY OF LUPUMA OPERATIONS 
Operatio

n No. 

Description of the 

operation 
FLOPs count 

1 reshaping 0 

2 
Complex-to-Real 

Transform 
2𝑀𝑁 

3 QR-SVD [22] 
12𝑀𝑁2 + 48𝑁3 for 𝑀 ≥ 2𝑁 

and 6𝑁𝑀2 + 6𝑀3 for 𝑀 < 2𝑁  

4 estimation of 𝜔𝐮 8 (⌊
𝑀

2
⌋ − 1) + 42 

5 and 6 estimation of 𝜔𝐯 5 × 2 ⌊
𝑀

2
⌋ + 8(𝑁 − 1) + 42 

7 estimation of 𝜔 4 
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To validate the legitimacy of ignoring the third-order variation in (B8), we calculate the normalized error (42) 275 

between the inverse of the covariance matrix (𝐖𝐮
−1 defined in (B5)) as 𝐀 in (42), and its second-order approximation 276 

(B8) as �̆� in (42) for 𝐾 = 512.  277 

To observe correlations of residual errors for various least squares-based estimators, we introduce an ordinary least 278 

squares (LS) frequency estimator [11] and a WLS frequency estimator [11]. We estimate the covariance matrices of 279 

the error 𝐞𝐮 (B1) for LS estimator, WLS estimator, and LUPUMA (24) with 𝐖𝐮 given by (26). In each case, we 280 

estimate the covariance matrix by taking an average over 2000 observations for observation length 𝐾 = 128 and 281 

frequency 𝜔 = 0.2𝜋. Moreover, we obtain the estimation accuracy of the frequency estimate associated with the 282 

vector 𝐮.  For LS estimator [11], we estimate the frequency without considering the correlation between residual errors 283 

according to 284 

�̂�𝐮,LS = 2arctan ((Re(𝚼)𝐮)†(Im(𝚼)𝐮)), (44) 

where 𝚼 = 𝐓𝑀−1
𝐻 𝐉𝑀−1

1 𝐓𝑀−1, and 𝐓 and 𝐉 given by (3-b) and (17), respectively. 285 

For the WLS estimator [11], we estimate the frequency using the covariance matrix approximation 286 

𝐖 ≈ (Re(𝚼) − tan (
𝜔

2
) Im(𝚼)) (Re(𝚼) − tan (

𝜔

2
) Im(𝚼))

𝑇

, 287 

according to  288 

�̂�𝐮,WLS = 2arctan((𝐮
𝑇Re(𝚼𝑇)𝐖−1Re(𝚼)𝐮)−1(𝐮𝑇Re(𝚼𝑇)𝐖−1Im(𝚼)𝐮)). (45) 

To verify the theoretical assumptions on the estimation performance of LUPUMA for different settings of the 289 

factorization parameters (𝑀,𝑁), we observe the dependence of the Mean Squared Error (MSE) on the SNR for               290 
SNR ∈ {2𝑥|𝑥 ∈ ℤ,−10 ≤ 𝑥 ≤ 20},  291 

(𝑀,𝑁) ∈ {([𝐾/5], 5), (√𝐾, √𝐾), (√2𝐾, √𝐾/2) , (4, [𝐾/4])}, (46) 

and 𝐾 = 256. MSE of Euclidean distances is known as one of the natural optimality criteria [26], extensively used in 292 

frequency estimation problems. Thus, selecting this criterion enables fair comparisons with the state-of-the-art 293 

methods proposed in the literature. We calculate the MSE as 294 

MSE = 10 log10 (
1

𝑇
∑([𝛚]𝑡 − [�̂�]𝑡)

2

𝑇−1

𝑡=0

)  

where 𝑇 = 10000. 295 

To evaluate the convergence of LUPUMA for different observation lengths 𝐾, we observe its MSE for SNR ∈296 
{2𝑥|𝑥 ∈ ℤ,−10 ≤ 𝑥 ≤ 30}, and 𝐾 ∈ {8, 16, 64, 256, 512}. To utilize the maximum number of available samples, we 297 

use 𝑀 ≈ 𝐾/2 for 𝐾 ∈ {8, 16, 64}, and 𝑀 ≈ 𝐾/5 for 𝐾 ∈ {256,512}. 298 

To allow a fair comparison of LUPUMA with the state-of-the-art estimators, we observe the MSEs of the 299 

estimators for SNR ∈ {2𝑥|𝑥 ∈ ℤ, −10 ≤ 𝑥 ≤ 15}, and 𝐾 ∈ {10, 32, 256}. We consider 𝑀 ≈ 𝐾/2 and 𝑀 ≈ 𝐾/5 (optimal 300 

shapes according to (40)), for 𝐾 = 32 and 𝐾 = {10, 256}, respectively. We also consider 𝑀 ≈ 𝑁 which allows a fair 301 

comparison with PUMA.  302 

Especially in high SNR values, the estimation variance of LUPUMA approaches very small values, which makes 303 

the comparison of the estimation performance of the evaluated estimators difficult. Hence, to obtain a more detailed 304 

comparison, we investigate for each estimator the dependency of simulated variances on CRLB for 305 
{2𝑥|𝑥 ∈ ℤ, 5 ≤ 𝑥 ≤ 30}, and 𝜔 = 0.2𝜋. We also calculate for each estimator an average ratio of variance to CRLB 306 

ratio =
1

𝑛
∑

var(�̂�, [𝝆]𝑖)

CRLB([𝝆]𝑖)

𝑛−1

𝑖=0

, (47) 

TABLE III 

TIME-COMPLEXITY OF LUPUMA FOR VARIOUS SETTINGS OF THE FACTORIZATION PARAMETERS 
Factorization FLOPs count 

𝑀 ≥ 2𝑁  12𝑀𝑁2 + 48𝑁3 ++2𝑀𝑁 + 8𝑁 + (18 ⌊
𝑀

2
⌋) + 72 

𝑀 = 𝐾/2 30.5𝐾 + 472 

𝑀 = 𝐾/5 63.8𝐾 + 6112 
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where 𝝆 is a vector of investigated SNR values (i.e. 𝝆 = [10, 12,… , 60]), 𝑛 is the number of the SNR values and 307 

CRLB([𝝆]𝑖) and  var(�̂�, [𝝆]𝑖) are CRLB (38) and the variance of the estimate �̂�, respectively, for the 𝑖-th SNR value. 308 

To study the robustness of selected estimators toward changes in the frequency 𝜔 in the AWGN scenario, we 309 

calculate the MSE of LUPUMA, Unitary-PUMA, DFT-WLS, A&M, and the parabolic estimator for  310 

𝜔 ∈ {
2𝜋 (−

𝑙
2
)

𝑙
,
2𝜋 (−

𝑙
2
+ 0.25)

𝑙
,
2𝜋 (−

𝑙
2
+ 0.5)

𝑙
, … ,

2𝜋 (
𝑙
2
)

𝑙
},   

𝑙 = 32, and SNR ∈ {−20,−14,… , 34, 40}. We consider 𝐾 ∈ {32, 256}, 𝑀 ≈ 𝐾/2 for 𝐾 = 32, and 𝑀 ≈ 𝐾/5 for 𝐾 =311 

256 (optimal setting of the factorization parameters according to (40)).  312 

LUPUMA is derived assuming the signal is disrupted by AWGN; however, this assumption might be violated in 313 

real-world applications. Considering this fact, we propose experiments to study the robustness of selected estimators 314 

toward changes in the frequency 𝜔 in a colored-noise scenario. We use the setting described for the AWGN scenario 315 

except for the observation length 𝐾 = 32. The colored noise is described by an auto-regressive moving average model  316 

𝑞[𝑘] =  ∑ [𝐚]𝑖𝑞[𝑘 − 𝑖] + 
3
𝑖=1 ∑ [𝐛]𝑖𝜖[𝑘 − 𝑖]

3
𝑖=1 + 𝜖[𝑘],  

where 𝐚 = [1, −0.683, 0.82], 𝐛 = [0.34,−0.11, 0.34], 𝜖[𝑘] is the 𝑘-th sample of a zero-mean excitation noise 𝜖(𝑡) with 317 

variance 𝜎𝜖
2 = 𝑏0

2/𝑆𝑞(𝜔)10
−0.1SNR

, and 𝑆𝑞(𝜔) is the power spectral density of the process. 318 

To compare the time and space-complexities of the estimators, we measure the total numbers of FLOPs and 319 

allocated memories for observation lengths 𝐾 ∈ {(2𝑥)2|𝑥 ∈ 2, 3, … , 11} , and SNR = 5 dB.  320 

We implement the experiments in Python and C languages. To obtain the variance of algorithms, we use Python 321 

with Linear Algebra PACKage (LAPACK) [27] library. Moreover, double-precision FLOPs and allocated memory 322 

results were computed using double-precision operations with BLAS (v3.9.0), LAPACK (v3.9.0), and FFTW 323 

(v3.3.10) libraries in C language. We run the simulations on a computer with a 1.9 GHz quad-core Intel i7 processor 324 

with 16 GB of RAM. 325 

3. Results 326 

We show the obtained one-dimensional results (vectors) as sets of graphs, and two-dimensional results (matrices) 327 

as heat maps. In all graphs, the simulation results are depicted as sets of markers connected by solid line segments. 328 

Dashed lines are theoretical variances obtained according to (38) and a dash-dotted line indicates CRLB.  329 

Figs. 1-7 show results obtained solely for LUPUMA. Within these figures, Figs. 1-5 illustrate the impact of 330 

introduced approximations on the estimation performance of LUPUMA. Fig. 1 indicates the dependence of the 331 

normalized error Ψ (42) of rank one approximation (14-a) on SNR values. Fig. 2 presents the d ependence of 332 

 

 

Fig1. Dependencies of normalized error Ψ of 

LUPUMA’s rank one approximation on signal-to-

noise ratio (SNR) for various observation lengths 𝐾. 

Marked data points are normalized errors at SNR ∈
{10, 20, 30} dB.  

Fig2. Dependencies of LUPUMA’s mean squared error 

(MSE) on signal-to-noise ratio (SNR) for various 

observation lengths 𝐾. The MSE is calculated between 

the estimated frequency based on �̃� and 𝐮 (marker 

(‘x’)) and between �̃� and �̆� (marker (‘o’)), respectively.  
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estimation MSE on SNR for frequency estimates �̂�𝐮 and 333 

�̂��̆�, obtained from 𝐮 (15) and �̆� (43), respectively. The 334 

data points with the marker (‘o’) and lines with the marker 335 

(‘x’) are associated with �̂�𝐮 and �̂��̆�, respectively. Fig. 3 336 

presents the dependency of normalized error Ψ (42) 337 

between (B5) and (B8) on SNR and for various 338 

observation lengths. Fig. 4 (a), (b), and (c) represent three 339 

heat maps to explore the diagonality of error covariance 340 

matrices derived from LS, WLS, and LUPUMA based on 341 

Table I, line 4, respectively. Fig. 5 shows for LS, WLS, 342 

and LUPUMA estimators the dependency of MSE of �̂�𝐮 343 

on SNR for 𝐾 =  128, 𝑀 = 2𝑁, and 𝑀 = 𝐾/2.  Fig. 6 344 

illustrates the dependence of MSE on SNR for 𝐾 = 256 in 345 

which each behavior is associated with one setting of the 346 

factorization parameters (𝑀,𝑁). For each setting (46), we 347 

use one unique color. Fig. 7 displays the dependence of 348 

MSE on SNR for different observation lengths 𝐾. For 349 

each setting, we use one unique color.  The graphs in Figs. 350 

8-11 allow comparison of subspace methods and DFT-351 

based frequency estimators with LUPUMA for two 352 

settings of the factorization parameters. For each estimator and setting, we use a unique color. Figs. 8 and 9 show the 353 

dependencies of MSE on SNR for subspace methods and DFT-based methods, respectively, for various observation 354 

lengths. Fig. 10 shows the dependency of the variance of the simulated estimates on CRLB for different SNR values. 355 

In this figure, for each estimator, ratios of variances to CRLB are marked with arrows. Fig. 11 displays average 356 

numbers of FLOPs for various observation lengths 𝐾. Fig. 12 presents the dependence of allocated memory on the 357 

observation length 𝐾. 358 

Figs. 13-15 illustrate the dependence of MSE on the normalized frequency 𝜔/𝜋 and SNR under AWGN (Fig. 13 359 

for 𝐾 = 32, and Fig. 14 for 𝐾 = 256) and colored-noise assumptions (Fig. 15), respectively. The subplots (a), (b), (c), 360 

(d), (e), and (f) in the figures show contour plots for  LUPUMA, Unitary-PUMA DFT-WLS (𝐿 =  3), DFT-WLS (𝐿 =361 

 5), the parabolic estimator and A&M, respectively. In each contour plot, lines with higher color contrast have lower 362 

MSE (dB), and the MSE values are written with the same color.   363 

4. Discussion 364 

Within the development of LUPUMA, we used rank one approximation (14-a), weighting matrix approximation 365 

(B8), and approximated values of variances (35-a) and (35-b) to combine individual estimates �̂�𝐮 and �̂�𝐯 in (36). The 366 

results shown in Figs. 1-3 validate the rank one and weighting matrix approximations. The matrix 𝜑(𝐑) (13) seems 367 

to be well-explained by the approximation (14-a) for SNR ≥ 20 dB (see Fig. 1). Nevertheless, regardless of the 368 

observation length, the impact of rank one approximation (14-a) is negligible for SNR ≥ 5 dB (see Fig. 2, the 369 

 

Fig3. Dependencies of normalized error Ψ of 

LUPUMA’s weighting matrix approximation on 

signal-to-noise ratio (SNR) for various observation 

lengths 𝐾. The marked data point is related to the 

observation length 𝐾 = 8. 

 

 
(a) (b) (c) 

Fig4. Covariance matrices of residual errors for (a) least squares, (b) weighted least squares, and (c) LUPUMA 

(24) with 𝐖𝐮 defined in (26). The x- and y-axis are associated with the column and row of the represented 

matrix, respectively. The values are presented using heat maps. The color bars map the values to grayscales. 
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convergence of data points associated with MSE of 𝐮 and �̆� for SNR ≥ 5 dB). In addition, in the worst-case scenario 370 

(𝐾 = 8), the normalized errors in weighting matrix approximation (B8) are insignificant (i.e., ≤ 10−2) for SNR ≥371 

15 dB (Fig. 3). The correlation of LUPUMA residual errors (Fig. 4 (c)) indicates low correlation property of the 372 

estimator [14], close to WLS (Fig. 4 (b)), and significantly lower than LS (Fig. 4 (a)). LUPUMA achieves lower MSE 373 

in the estimation of the frequency associated with the singular vector 𝐮, 𝜔𝐮, than both the WLS estimator (45) and LS 374 

estimator (44), regardless of the factorization of the matrix (Fig. 5). Remarking that the impact of correlation of 375 

residual errors is more severe in low-SNR regimes and tall matrix factorizations. Hence LS estimator exhibits lower 376 

performance in comparison with the WLS estimator when SNR ∈ (−10, 20] dB, and 𝑀 = 𝐾/2 (Fig. 5, marker ‘x’ and 377 

marker ‘*’).  378 

Figs. 6 and 7 evaluate the theoretical convergence of LUPUMA for a wide range of the observation lengths 379 

(𝐾 ∈ {8,16,… ,512}). For the optimal setting of the factorization parameters (𝑀,𝑁), MSE of LUPUMA reaches to 380 

CRLB. For short observation lengths (𝐾 < 256), SNR thresholds of LUPUMA, regardless of the setting (𝑀,𝑁), are 381 

similar to the thresholds of the state-of-the-art estimators (Fig. 8 (a-b) and Fig. 9 (a-b)). For long observations 382 

(𝐾 ≥ 256), the setting of the factorization parameters (𝑀,𝑁) becomes important for the performance of LUPUMA. 383 

For the optimal setting of the parameters (𝑀∗ ≈ 𝐾/5), the SNR threshold of LUPUMA is higher than the threshold of 384 

PUMA (Fig. 8 (c)), DFT-WLS, A&M, and the parabolic estimator (Fig. 9 (c)). Nevertheless, the estimation variance 385 

of LUPUMA for 𝑀 = 𝐾/5 is 1.29 times CRLB (Fig. 10), which is the best ratio achieved among the subspace methods 386 

and third-best among all the evaluated estimators (first and second are the parabolic estimator and A&M with the ratio 387 

 

 

Fig6. Dependencies of LUPUMA’s mean squared error 

(MSE) on signal-to-noise ratio (SNR) for various settings of 

the factorization parameters M and N, the observation length 

𝐾 =  256,  and AWGN constraint. Dashed lines and the black 

dash-and-dot line indicate LUPUMA’s theoretical variances 

and CRLB, respectively. 

Fig7. Dependencies of LUPUMA’s mean squared error 

(MSE) on signal-to-noise ratio (SNR) for different 

observation lengths 𝐾, the desired frequency   𝜔 = 0.2𝜋, and 

AWGN constraint. For 𝐾 ∈ {8, 16, 64} and 𝐾 ∈ {256, 512}, we 

use 𝑀 ≈ 𝐾/2 and 𝑀 ≈ 𝐾/5, respectively. Dash-dotted lines 

indicate CRLB for each observation length. 
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1.0052 and 1.012, respectively (see Fig. 10)). In fact, choosing the optimal setting of (𝑀,𝑁) according to (40) results 388 

in a tall matrix which degrades the performance of SVD in noise [22]. For 𝑀 ≈ 𝑁, LUPUMA yields SNR threshold 389 

 

Fig5. Dependency of mean squared error (MSE) of the 

𝜔𝐮 of various estimators on signal-to-noise ratio 

(SNR) for 𝐾 = 128 and various settings of parameters 

𝑀 and 𝑁. 

 

  

(a) (a) 

  
(b) (b) 

  
(c) (c) 

Fig8. Dependencies of mean squared error (MSE) on 

signal-to-noise ratio (SNR) of LUPUMA and subspace 

estimators for AWGN constraint and for observation 

lengths (a) 𝐾 =  10, (b) 𝐾 =  32, and (c) 𝐾 =  256, 
respectively. 

Fig9. Dependencies of mean squared error (MSE) on 

signal-to-noise ratio (SNR) of LUPUMA and DFT-

based estimators for AWGN constraint and observation 

lengths (a) 𝐾 =  10, (b) 𝐾 =  32, and (c) 𝐾 =  256, 
respectively.  
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similar to the thresholds of the state-of-the-art 390 

estimators (Fig. 8 (c) and Fig. 9 (c)), but its 391 

variance is 4.22 times CRLB (Fig. 10). The 392 

trade-off between the SNR-threshold and the 393 

divergence of MSE from the CRLB hinder the 394 

application of LUPUMA in cases where the 395 

frequency is estimated from long observations 396 

with low SNR-values. However, LUPUMA is 397 

fully competitive with the state-of-the-art 398 

estimators in terms of frequency estimation 399 

from short observations.  400 

We recognize LUPUMA to be robust with 401 

respect to the desired frequency (Fig. 13 and 402 

Fig. 14). The dependence of LUPUMA’s MSE 403 

on the frequency is negligible for SNR ≥ 10 dB 404 

(Fig. 13 (a)). For lower SNR values, LUPUMA 405 

shows near-to-uniform estimation performance 406 

over a wide range of frequencies. In the case of 407 

long observations (𝐾 = 256), LUPUMA shows 408 

near to uniform estimation performance over 409 

the whole frequency range and a wide range of 410 

frequencies for SNR ≥ −2.5 dB and SNR < −2.5 411 

dB, respectively (Fig. 14 (a)). In low SNR regimes (SNR < 5), the parabolic estimator experiences the highest 412 

fluctuations among DFT-based methods and LUPUMA (compare Fig. 13 (e) with Fig. (a) and (c-d, f)). MSE of DFT-413 

WLS varies for SNR ≥ −5 dB with the magnitude of about 3 dB (Fig. 13 (c)) and 1 dB (Fig. 13 (d)) for 𝐿 = 3 and 𝐿 = 5, 414 

respectively. A&M exhibits the best performance in between DFT-based methods (Fig. 13 (f)), yet for both the short 415 

and the long observations, LUPUMA performance is the least fluctuating among the evaluated estimators. 416 

Moreover, our results point out a previously unknown fact that the MSE of the Unitary-PUMA estimator heavily 417 

depends on the frequency. The variance of the Unitary-PUMA abruptly increases at certain frequencies (the blind 418 

spots of the estimator) (see Fig. 13 (b) and 14 (b)). In this context, we would like to point out the fact that in the 419 

 

Fig10. Dependencies of variance of the estimators var(𝜔) 
on the values of Cramer-Rao Lower Bound (CRLB) for 

various signal-to-noise ratios (SNRs). Indicated value of 

each arrow is the slope of line for mentioned estimator.  

 

  

  

Fig11. Dependencies of the average number of FLOPs in 

simulations on the observation length 𝐾 for various 

estimators, and signal-to-noise ratio SNR = 5 dB. 

Fig12. Dependencies of the allocated memory in 

simulations on the observation length 𝐾 for various 

estimators, and signal-to-noise ratio SNR = 5 dB. 
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original paper, the dependency of Unitary-PUMA on SNR is plotted for one specific frequency (see Fig.5 in [11]). 420 

We interpret the blind spots in the Unitary-PUMA as the violation of linear prediction property assumption in vectors 421 

𝐮 and 𝐯 in (15). We can observe in (9) and (10) that the sub-vectors of vectors �̃� (�̃�L and �̃�R) and �̃� (�̃�L and �̃�R) 422 

individually have linear prediction property, but the block vectors of �̃� and �̃� do not share the property. Thus, the 423 

resultant matrix  424 

first left and right-singular vectors of 𝜑(𝐒) are not linearly predictable.  425 

In the colored-noise scenario, LUPUMA achieves a smooth estimation variance following the power spectral 426 

density of the noise (compare Fig. 13 (a) and Fig. 15 (a)). The colored-noise influence the performance of Unitary-427 

PUMA and DFT-WLS in the same way. The fluctuations that occur in the AWGN scenario are complemented by 428 

fluctuations caused by the colored noise (compare Fig. 13 (b-f) and Fig. 15 (b-f)). LUPUMA thus shows lower overall 429 

fluctuations than Unitary-PUMA, DFT-WLS, the parabolic estimator, and A&M in the colored-noise scenario 430 

(compare Fig. 15 (a-f)).  431 

For the optimal setting of the factorization parameters (𝑀,𝑁), the theoretical time-complexity of LUPUMA is 432 

 

(a) (b) (c) 

 
(d) (e) (f) 

Fig13. Dependencies of mean squared error (MSE) on signal-to-noise ratio (SNR) and on the normalized 

frequency 𝜔/𝜋 of (a) LUPUMA, (b) Unitary-PUMA, (c) DFT-WLS, 𝐿 =  3, (d) DFT-WLS, 𝐿 =  5 (e) the 

parabolic estimator, (f) A&M for the observation length 𝐾 =  32, and AWGN constraint. 
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𝑂(𝐾) (see Table III, 𝑀 = 𝐾/2 and 𝑀 = 𝐾/5). The simulation results confirm this assumption for 𝑀 = 𝐾/2 (Fig. 11). 433 

Time-complexity of LUPUMA is lower than time-complexities of PUMA, Unitary-PUMA, and A&M for both short 434 

and long observations. When considering short observations, LUPUMA has comparable time-complexity with the 435 

parabolic estimator. However, the time-complexity of LUPUMA is significantly lower than the time-complexity of 436 

the parabolic estimator in long observations. This is due to the linear time-complexity of LUPUMA versus 𝑂(𝐾 log𝐾) 437 

of the parabolic estimator [25]. For long observations, LUPUMA’s time-complexity is comparable with DFT-WLS 438 

time-complexity which is 𝑂(𝐾 log𝐾) [7].  439 

The space-complexity of LUPUMA corresponds to the space-complexity of PUMA. For all observation lengths, 440 

LUPUMA requires significantly less allocated memory than DFT-WLS, the parabolic estimator, A&M, and Unitary-441 

PUMA (Fig. 12). 442 

Our goal was to develop a time-domain frequency estimator of low time and space-complexity with minimum 443 

variance and unbiased frequency estimates over the whole frequency range ω ∈ (−𝜋, 𝜋). Considering the SNR 444 

threshold, the estimation variance, the linear time-complexity, and the low space-complexity of LUPUMA, we 445 

conclude that LUPUMA fully meets the requirements on the accurate and yet time and space efficient estimator for 446 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig14. Dependencies of mean squared error (MSE) on signal-to-noise ratio (SNR) and on the normalized 

frequency 𝜔/𝜋 of (a) LUPUMA, (b) Unitary-PUMA, (c) DFT-WLS, 𝐿 =  3, (d) DFT-WLS, 𝐿 =  5 (e) parabolic 

estimator, (f) A&M for the observation length 𝐾 =  256, and AWGN constraint. 
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the short observations of the 1D complex signal in complex white Gaussian noise. The estimator also proved to be 447 

robust even if the white noise assumption is not met (as shown for a colored-noise case).  448 

For short observations, PUMA, LUPUMA, DFT-WLS estimators, A&M, and the parabolic estimator demonstrate 449 

favorable SNR thresholds (Fig. 8 (a-b) and Fig. 9 (a-b)). The estimation performance of DFT-WLS, however, depends 450 

on the frequency (Fig. 13 (c-d)) which lowers the application potential of the DFT-WLS estimator. Note that the 451 

theoretical lower bound of direct DFT-based methods is a function of the frequency [7]. PUMA and A&M are robust 452 

in this regard; nevertheless, they have high time and space-complexity (Figs. 11-12). This makes PUMA and A&M 453 

inappropriate for applications or devices with limited computational power and memory. The parabolic estimator has 454 

comparable time-complexity with LUPUMA (Fig. 11). Nevertheless, it suffers from high space-complexity (Fig. 12), 455 

and high dependency on the frequency in low SNR regimes (Fig. 13 (e)). LUPUMA has none of these shortcomings 456 

and is thus convenient for these applications. Due to the low time-complexity and feed-forward process, LUPUMA is 457 

also suitable for real-time applications where the frequency estimation must be performed on a limited number of 458 

samples.  459 

 460 

 

(a) (b) (c) 

 
(d) (e) (f) 

Fig15. Dependencies of mean squared error (MSE) on signal-to-noise ratio (SNR) and on the normalized 

frequency 𝜔/𝜋 of (a) LUPUMA, (b) Unitary-PUMA, and (c) DFT-WLS, 𝐿 =  3, (d) DFT-WLS, 𝐿 =  5 (e) the 

parabolic estimator, (f) A&M for the observation length 𝐾 =  32, and colored-noise constraint. 
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5. Conclusion  461 

LUPUMA is the first single-tone frequency estimator with linear time-complexity which can reach the CRLB with 462 

a close to uniform performance over the whole frequency range. For a limited number of samples, LUPUMA is 463 

capable of fast and yet accurate frequency estimation, which is suitable for real-time applications such as frequency 464 

estimation in fast-varying propagation channels. The low space-complexity of LUPUMA makes the estimator to be 465 

optimal for applications with devices having limited computational power and memory, such as in wireless sensor 466 

nodes and IoT devices. Although A&M and parabolic frequency estimators outperform LUPUMA in statistical 467 

performance, the low time- and space-complexity, predictable performance across frequencies and potential for 468 

extension to multitone scenarios make LUPUMA interesting for practical applications. 469 

6. Appendices 470 

6.1. Appendix A 471 

Let us consider the noiseless scenario in which 𝜑(𝐐) = 𝟎𝑚×𝑛. It holds that 𝐮 =  �̃� and consequently Φ(𝐮) = Φ(�̃�). 472 

According to (18), the transformation Φ(�̃�) is given as 473 

Φ(�̃�) =  (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(�̃� ⊗ �̃�), 474 

which can be expressed as 475 

𝐲�̃� = 𝐲�̃�
𝑟 + 𝑗𝐲�̃�

𝑖 ,   

where the real and the imaginary parts are given as 𝐲�̃�
𝑟 =  𝐉𝐮

𝑟(�̃�⊗ �̃�) and 𝐲�̃�
𝑟 =  𝐉𝐮

𝑖 (�̃�⊗ �̃�), respectively. The selection 476 

matrices 𝐉𝐮
𝑟 and 𝐉𝐮

𝑖  are given by (16).  477 

With respect to (17) and using Lemma 1, the 𝑘-th element of the vector real part is given as  478 

[𝐲�̃�
𝑟]𝑘 =  [(𝐉𝐮

0𝐉𝐮
𝐿⦁𝐉𝐮

1𝐉𝐮
𝐿 + 𝐉𝐮

0𝐉𝐮
𝑅⦁𝐉𝐮

1𝐉𝐮
𝑅)(�̃� ⊗ �̃�)]𝑘 = [𝐉𝐮

0𝐉𝐮
𝐿⦁𝐉𝐮

1𝐉𝐮
𝐿(�̃� ⊗ �̃�)]𝑘  + [𝐉𝐮

0𝐉𝐮
𝑅⦁𝐉𝐮

1𝐉𝐮
𝑅(�̃� ⊗ �̃�)]𝑘  

 =   [(𝐉𝐮
0𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝐿�̃�)]𝑘 + [(𝐉𝐮

0𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝑅�̃�)]𝑘 

= cos (
𝜔

2
(𝑀 − 2𝑘 − 1)) cos (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1)) 

+ sin (
𝜔

2
(𝑀 − 2𝑘 − 1)) sin (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1))   

= cos𝜔. 

 

Similarly, the 𝑘-th element of the vector imaginary part is given as  479 

[𝐲�̃�
𝑖 ]
𝑘
=  [(𝐉𝐮

0𝐉𝐮
𝐿⦁𝐉𝐮

1𝐉𝐮
𝑅 − 𝐉𝐮

0𝐉𝐮
𝑅⦁𝐉𝐮

1𝐉𝐮
𝐿)(�̃� ⊗ �̃�)]𝑘   =   [𝐉𝐮

0𝐉𝐮
𝐿⦁𝐉𝐮

1𝐉𝐮
𝑅(�̃� ⊗ �̃�)]𝑘 − [𝐉𝐮

0𝐉𝐮
𝑅⦁𝐉𝐮

1𝐉𝐮
𝐿(�̃� ⊗ �̃�)]𝑘   

 =   [(𝐉𝐮
0𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝑅�̃�)]𝑘 − [(𝐉𝐮

0𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝐿�̃�)]𝑘 = 

−cos (
𝜔

2
(𝑀 − 2𝑘 − 1)) sin (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1))  

+ sin (
𝜔

2
(𝑀 − 2𝑘 − 1)) cos (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1))   = sin𝜔 

 

Thus, the transformation (18) for �̃� is a column vector of (𝑀/2 − 1) complex numbers 480 

𝐲�̃� = [
cos𝜔
⋮

cos𝜔
] + 𝑗 [

sin𝜔
⋮

sin𝜔
] = 𝑒𝑗𝜔𝟏

(
𝑀
2
−1)×1

. (A1) 

6.2. Appendix B 481 

To obtain the second-order approximation (26) of the weighting matrix 𝐖𝐮, we expand 𝐖𝐮
−1 = E(𝐞𝐮𝐞𝐮

𝐻). For the 482 

vector 𝐮, the residual errors 𝐞𝐮 are defined as differences between expected values of the phasal transformation for a 483 

frequency 𝜔 and 𝐲𝐮 = Φ(𝐮). In the weighting matrix, we are interested in the difference between the phasal 484 

transformation of the noise free signal 𝐲�̃� (A1) and 𝐲𝐮 485 

𝐞𝐮 =𝑎�̃�𝟏(𝑀
2
−1)×1

− 𝐲𝐮, (B1) 

where 𝑎�̃� = 𝑒
𝑗𝜔. Thus, 𝐖𝐮

−1 can be expressed as 486 
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𝐖𝐮
−1  = E ((𝑎�̃�𝟏(𝑀

2
−1)×1

− 𝐲𝐮) (𝑎�̃�𝟏(𝑀
2
−1)×1

− 𝐲𝐮)
𝐻

) = |𝑎�̃�|
2𝟏

(
𝑀

2
−1)×1

𝟏
(
𝑀

2
−1)×1

𝑇 −

 𝑎�̃�𝟏(𝑀
2
−1)×1

Ε(𝐲𝐮
𝐻)  − �̅��̃�Ε(𝐲𝐮)𝟏(𝑀

2
−1)×1

𝑇 + Ε(𝐲𝐮𝐲𝐮
𝐻). 

(B2) 

Defining Δ𝐮 as the projection of the complex to real mapping (4) of the noise 𝐐 on the desired signal basis vector, 487 

the left vector of the factorized real-valued signal 𝐮 is given as 488 

𝐮 = �̃� + Δ𝐮, (B3) 

where �̃� is the left vector of the factorized real-valued noise-free signal. Accordingly, the phasal transformation        489 

𝐲𝐮 = Φ(𝐮) is 490 

𝐲𝐮 = 𝐲�̃� + Δ𝐲𝐮, (B4) 

where 𝐲�̃� = 𝑎�̃�𝟏(𝑀
2
−1)×1

. Thus, we can write (B2) as 491 

𝐖𝐮
−1   = |𝑎�̃�|

2𝟏
(
𝑀

2
−1)×1

𝟏
(
𝑀

2
−1)×1

𝑇 − 𝑎�̃�𝟏(𝑀
2
−1)×1

Ε((𝑎�̃�𝟏(𝑀
2
−1)×1

+ Δ𝐲𝐮)
𝐻

) −

 �̅��̃�Ε (𝑎�̃�𝟏(𝑀
2
−1)×1

+ Δ𝐲𝐮) 𝟏(𝑀
2
−1)×1

𝑇 +  Ε((𝑎�̃�𝟏(𝑀
2
−1)×1

+ Δ𝐲𝐮) (𝑎�̃�𝟏(𝑀
2
−1)×1

+ Δ𝐲𝐮)
𝐻

)= 

= |𝑎�̃�|
2𝟏

(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇 − |𝑎�̃�|
2𝟏

(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇 − 𝑎�̃�𝟏(𝑀
2
−1)×1

Ε(Δ𝐲𝐮
𝐻)

− |𝑎�̃�|
2𝟏

(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇 − �̅��̃�Ε(Δ𝐲𝐮)𝟏(𝑀
2
−1)×1

𝑇 + |𝑎�̃�|
2𝟏

(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇

+ 𝑎�̃�𝟏(𝑀
2
−1)×1

E(Δ𝐲𝐮
𝐻) + �̅��̃�E(Δ𝐲𝐮)𝟏(𝑀

2
−1)×1

𝑇 + Ε(Δ𝐲𝐮Δ𝐲𝐮
𝐻), 

 

which results in 492 

𝐖𝐮
−1 = Ε(Δ𝐲𝐮Δ𝐲𝐮

𝐻). (B5) 

The phasal transformation (18) of Δ𝐮 = 𝐮 − �̃� can be expressed as 493 

Δ𝐲𝐮 = ( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(𝐮 ⊗ 𝐮) − ( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(�̃� ⊗ �̃�),  

Considering (B3), it holds that  494 

Δ𝐲𝐮 = ( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(�̃� ⊗ Δ𝐮) + ( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(Δ𝐮 ⊗ �̃�) + (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(Δ𝐮 ⊗ Δ𝐮). (B6) 

This allows us to express the explicit form of 𝐖𝐮
−1 (B5) using Δ𝐮 as 495 

𝐖𝐮
−1 = ( 𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )E((�̃� ⊗ Δ𝐮)(�̃� ⊗ Δ𝐮)𝑇)( 𝐉𝐮

𝑟 − 𝑗𝐉𝐮
𝑖 )𝑇 

+( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 ) E((�̃� ⊗ Δ𝐮)(Δ𝐮⊗ �̃�)𝑇)( 𝐉𝐮
𝑟 − 𝑗𝐉𝐮

𝑖 )𝑇 

+( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )E((Δ𝐮⊗ �̃�)(�̃� ⊗ Δ𝐮)𝑇)( 𝐉𝐮
𝑟 − 𝑗𝐉𝐮

𝑖 )𝑇 

+( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )E((Δ𝐮⊗ �̃�)(Δ𝐮⊗ �̃�)𝑇)( 𝐉𝐮
𝑟 − 𝑗𝐉𝐮

𝑖 )𝑇 

+ 𝑜(Δ𝐮3). 

(B7) 

Neglecting the terms associated with 𝑜(Δ𝐮3), we get 𝐖𝐮
−1 second-order approximation 496 

𝐖𝐮
−1 ≈ ( 𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )(𝐈𝑀2×𝑀2 + 𝐏)E((�̃� ⊗ Δ𝐮)(�̃� ⊗ Δ𝐮)𝑇)(𝐈𝑀2×𝑀2 + 𝐏)

𝑇( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )𝑇 , (B8) 

where 𝐏 is the proper permutation 𝑀2 ×𝑀2 matrix defined as  497 

𝐏 =  ∑(𝐞𝑀×1(𝑖) ⊗ 𝐈𝑀×𝑀) ⊗ 𝐞𝑀×1
𝑇 (𝑖)

𝑀

𝑖=0

 
 

and 𝐞𝑀×1(𝑖) is the unit vector with one on the i-th element and zero elsewhere. It holds that  498 

E((�̃� ⊗ Δ𝐮)(�̃� ⊗ Δ𝐮)𝑇) = (�̃��̃�𝑇) ⊗ E(Δ𝐮Δ𝐮𝑇),  

which allows to write the approximation (B8) as 499 

𝐖𝐮
−1 ≈ ( 𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )(𝐈𝑀2×𝑀2 + 𝐏)(�̃��̃�

𝑇) ⊗ E(Δ𝐮Δ𝐮𝑻)(𝐈𝑀2×𝑀2 + 𝐏)
𝑇( 𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )𝑇 . (B9) 

Using the SVD of the real valued noise free signal 𝜑(𝐒) = �̃��̃��̃�𝑇 , we can approximate the projection Δ𝐮 as [13, 28] 500 

Δ𝐮 ≈ �̃�0
−1�̃�𝐐�̃�𝐐

𝑇𝜑(𝐐)�̃�0 = �̃�0
−1�̃�0

𝑇⨂�̃�𝐐�̃�𝐐
𝑇  vec(𝜑(𝐐)), (B10) 
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where �̃�0 is the first singular value of �̃� given as �̃�0 = 𝑏0√2𝑀𝑁, �̃�0 is the first right-singular vector of �̃�, �̃�𝐐 is the matrix 501 

of noise subspaces, and �̃� = [�̃�𝟎 �̃�𝐐]. 502 

Using the approximation of the projection Δ𝐮 (B10), we can express E(Δ𝐮Δ𝐮𝑇) in (B9) as 503 

E(Δ𝐮Δ𝐮𝑻) =  �̃�𝟎
−2�̃�0

𝑇⨂�̃�𝐐�̃�𝐐
𝑇  Ε (vec(𝜑(𝐐))vec(𝜑(𝐐))

𝑇
) �̃�0⨂�̃�𝐐�̃�𝐐

𝑇 . (B11) 

According to (3), 𝜑(𝐐) = 𝐓𝑀×𝑀
𝐻 [𝐐 𝐐𝐹]𝐓2𝑁×2𝑁, where 𝐐𝐹 is the flipped version of 𝐐 given as 𝐐𝐹 = 𝚷𝑀×𝑀�̅�𝚷𝑁×𝑁. We 504 

can write 505 

Ε (vec(𝜑(𝐐))vec(𝜑(𝐐))
𝑇
) = 𝐓2𝑁×2𝑁

𝑇 ⨂𝐓𝑀×𝑀
𝐻 Ε(vec([𝐐 𝐐𝐹])vec([𝐐 𝐐𝐹])

𝐻)�̅�2𝑁×2𝑁⨂𝐓𝑀×𝑀

= 𝐓2𝑁×2𝑁
𝑇 ⨂𝐓𝑀×𝑀

𝐻 𝜎2𝐈2𝑀𝑁×2𝑀𝑁�̅�2𝑁×2𝑁⨂𝐓𝑀×𝑀 = 𝜎
2(𝐓2𝑁×2𝑁

𝑇 ⨂𝐓𝑀×𝑀
𝐻 )( �̅�2𝑁×2𝑁⨂𝐓𝑀×𝑀)

=  𝜎2(𝐓2𝑁×2𝑁
𝑇 �̅�2𝑁×2𝑁)⨂( 𝐓𝑀×𝑀

𝐻 𝐓𝑀×𝑀) =  𝜎
2𝐈2𝑁×2𝑁⨂𝐈𝑀×𝑀 = 𝜎

2𝐈2𝑀𝑁×2𝑀𝑁 

 

This allows us to write (B11) as 506 

E(Δ𝐮Δ𝐮𝑻) =  �̃�0
−2𝜎2�̃�0

𝑇⨂�̃�𝐐�̃�𝐐
𝑇�̃�0⨂�̃�𝐐�̃�𝐐

𝑇 = �̃�0
−2𝜎2(�̃�0

𝑇�̃�0)⨂(�̃�𝐐�̃�𝐐
𝑇�̃�𝐐�̃�𝐐

𝑇) = 𝑀

2
�̃�0
−2𝜎2�̃�𝐐�̃�𝐐

𝑇 .  

Considering that �̃�𝐐�̃�𝐐
𝑇 = 𝐈𝑀×𝑀 − �̃�0�̃�0

𝑇 [10], we get 507 

E(Δ𝐮Δ𝐮𝑇) =  𝑀
2
�̃�0
−2𝜎2(𝐈𝑀×𝑀 − �̃�0�̃�0

𝑇). (B12) 

Considering (B12) and the fact that �̃� = √𝑀/2 �̃�0, we can write the approximation (B9) as 508 

𝐖𝐮
−1 ≈

𝑀

2
�̃�0
−2𝜎2( 𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )(𝐈𝑀2×𝑀2 + 𝐏)(�̃��̃�

𝑇) ⊗ (𝐈𝑀2×𝑀2 −
2

𝑀
�̃��̃�𝑇) (𝐈𝑀2×𝑀2 + 𝐏)

𝑇( 𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )𝑇 .  

Using the properties of Kronecker product, we can write  509 

𝐖𝐮
−1 ≈ −4𝜎2�̃�0

−2|𝑎𝐮|
2𝐈𝑀2×𝑀2  

+
𝑀

2
�̃�0
−2𝜎2(𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )(�̃� ⊗ 𝐈𝑀×𝑀  +  𝐈𝑀×𝑀⊗ �̃�) ((𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )(�̃� ⊗ 𝐈𝑀×𝑀  +  𝐈𝑀×𝑀⊗ �̃�))

𝐻

 
(B13) 

It is obvious that the first term of (B13) is the multiplication of a non-squared matrix to its Hermitian transform.  510 

Lemma2: For any arbitrary matrix 𝐀 ∈ ℝ𝑝1×𝑝2 , 𝐁 ∈ ℝ𝑝3×𝑝4, 𝐂 ∈ ℝ𝑝2×𝑝5 and 𝐃 ∈ ℝ𝑝4×𝑝5 , we have [29] 511 

(𝐀⦁𝐁)(𝐂 ⊗ 𝐃) =  (𝐀𝐂)⦁(𝐁𝐃) (B14) 

Lemma3: For the vector 𝐱 ∈ ℝ2𝑝×1, 𝑝 ∈ ℕ , and 𝐉𝐱
𝑟  and 𝐉𝐱

𝑖  defined in (16) and (17), the matrix                                                       512 

𝐗 ≜  (𝐉𝐱
𝑟 + 𝑗𝐉𝐱

𝑖 )(𝐱⊗ 𝐈2𝑝×2𝑝  +  𝐈2𝑝×2𝑝⊗𝐱) , can be written as the block matrix 𝐗 = [𝐗1 𝐗2]  of two direct sums of 513 

matrices 514 

𝐗1 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝐿𝐱 + 𝑗𝐉𝐱

1𝐉𝐱
𝑅𝐱]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿𝐱 − 𝑗𝐉𝐱

0𝐉𝐱
𝑅𝐱]

𝑖
], 

𝐗2 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝐿𝐱 − 𝑗𝐉𝐱

1𝐉𝐱
𝑅𝐱]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿𝐱 + 𝑗𝐉𝐱

0𝐉𝐱
𝑅𝐱]

𝑖
],  

(B15) 

where 𝐼 = {0, 1, … , 𝑝 − 1}.  515 

Proof: We expand matrix 𝐗 as a summation of 516 

𝐗 =  (𝐉𝐱
𝑟 + 𝑗𝐉𝐱

𝑖 )(𝐱 ⊕ 𝐱) =  (𝐉𝐱
𝑟 + 𝑗𝐉𝐱

𝑖 )(𝐱 ⊗ 𝐈2𝑝×2𝑝 ) + (𝐉𝐱
𝑟 + 𝑗𝐉𝐱

𝑖 )(𝐈2𝑝×2𝑝⊗𝐱 )  

= (𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐱 ⊗ 𝐈2𝑝×2𝑝) + (𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐱 ⊗ 𝐈2𝑝×2𝑝 ) +𝑗(𝐉𝐱

0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐱 ⊗ 𝐈2𝑝×2𝑝) +

𝑗 (𝐉𝐱
0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐱 ⊗ 𝐈2𝑝×2𝑝) + (𝐉𝐱

0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐈2𝑝×2𝑝⊗ 𝐱 ) + (𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐈2𝑝×2𝑝⊗𝐱  )  

+𝑗(𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐈2𝑝×2𝑝⊗𝐱 ) + 𝑗 (𝐉𝐱

0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐈2𝑝×2𝑝⊗ 𝐱 ).  

 

In here, each element is a matrix-product of transposed Khatri-Rao and Kronecker products. By using Lemma2, we 517 

have  518 

(𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐱 ⊗ 𝐈2𝑝×2𝑝) = (𝐉𝐱

0𝐉𝐱
𝐿𝐱)⦁(𝐉𝐱

1𝐉𝐱
𝐿) = [𝟎(𝑝−1)×1 diag(𝐉𝐱

0𝐉𝐱
𝐿𝐱) 𝟎(𝑝−1)×𝑝 ]. 

 

In the same way,  519 
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(𝐉𝐱
0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐱 ⊗ 𝐈2𝑝×2𝑝 ) = [𝟎(𝑝−1)×𝑝 𝟎(𝑝−1)×1 diag(𝐉𝐱

0𝐉𝐱
𝑅𝐱) ], 

(𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐱 ⊗ 𝐈2𝑝×2𝑝) = [𝟎(𝑝−1)×𝑝 𝟎(𝑝−1)×1 diag(𝐉𝐱

0𝐉𝐱
𝐿𝐱) ], 

(𝐉𝐱
0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐱 ⊗ 𝐈2𝑝×2𝑝) = [𝟎(𝑝−1)×1 diag(𝐉𝐱

0𝐉𝐱
𝑅𝐱) 𝟎(𝑝−1)×𝑝 ], 

(𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐈2𝑝×2𝑝⊗𝐱 ) = [diag(𝐉𝐱

1𝐉𝐱
𝐿𝐱) 𝟎(𝑝−1)×1 𝟎(𝑝−1)×𝑝 ], 

(𝐉𝐱
0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐈2𝑝×2𝑝⊗𝐱 ) = [𝟎(𝑝−1)×𝑝 diag(𝐉𝐱

1𝐉𝐱
𝑅𝐱) 𝟎(𝑝−1)×1 ], 

(𝐉𝐱
0𝐉𝐱
𝐿⦁𝐉𝐱

1𝐉𝐱
𝑅)(𝐈2𝑝×2𝑝⊗ 𝐱 ) = [diag(𝐉𝐱

1𝐉𝐱
𝑅𝐱) 𝟎(𝑝−1)×1 𝟎(𝑝−1)×𝑝 ], 

(𝐉𝐱
0𝐉𝐱
𝑅⦁𝐉𝐱

1𝐉𝐱
𝐿)(𝐈2𝑝×2𝑝⊗ 𝐱 ) = [𝟎(𝑝−1)×𝑝 diag(𝐉𝐱

1𝐉𝐱
𝐿𝐱) 𝟎(𝑝−1)×1 ]. 

 

Now, we write 𝐗 as a block matrix 520 

𝐗 = [𝐗1 𝐗2], 
where 

𝐗1 = [𝟎(𝑝−1)×1 diag(𝐉𝐱
0𝐉𝐱
𝐿𝐱 − 𝑗𝐉𝐱

0𝐉𝐱
𝑅𝐱)] +  [diag(𝐉𝐱

1𝐉𝐱
𝐿𝐱 + 𝑗𝐉𝐱

1𝐉𝐱
𝑅𝐱) 𝟎(𝑝−1)×1] , 

𝐗2 = [𝟎(𝑝−1)×1 diag(𝐉𝐱
0𝐉𝐱
𝑅𝐱 + 𝑗𝐉𝐱

0𝐉𝐱
𝐿𝐱)] +  [diag(𝐉𝐱

1𝐉𝐱
𝑅𝐱 − 𝑗𝐉𝐱

1𝐉𝐱
𝐿𝐱) 𝟎(𝑝−1)×1].  

 

Hence  521 

𝐗1 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝐿𝐱 + 𝑗𝐉𝐱

1𝐉𝐱
𝑅𝐱]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿𝐱 − 𝑗𝐉𝐱

0𝐉𝐱
𝑅𝐱]

𝑖
], 

𝐗2 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝐿𝐱 − 𝑗𝐉𝐱

1𝐉𝐱
𝑅𝐱]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿𝐱 + 𝑗𝐉𝐱

0𝐉𝐱
𝑅𝐱]

𝑖
], 

for 𝐼 = {0, 1, … , 𝑝 − 1}.∎ 

 

Let us define the matrix 𝐇 as  522 

𝐇 ≜ (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(�̃� ⊗ 𝐈𝑀×𝑀  +  𝐈𝑀×𝑀⊗ �̃�).  

So, we can express 𝐖𝐮
−1in (B13) as 523 

𝐖𝐮
−1 ≈ −4𝜎2�̃�0

−2|𝑎𝐮|
2𝐈𝑀2×𝑀2 +

𝑀

2
�̃�0
−2𝜎2 𝐇𝐇𝐻 . (B16) 

Considering Lemma 3, and with respect to (16), matrix 𝐇 can be written as the block matrix  524 

𝐇 ≜ [𝐇1 𝐇2],  

where 𝐇1 and 𝐇2 are 525 

𝐇1 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝐿�̃� + 𝑗𝐉𝐱

1𝐉𝐱
𝑅�̃�]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿�̃� − 𝑗𝐉𝐱

0𝐉𝐱
𝑅�̃�]

𝑖
], 

𝐇2 = ⊕
𝑖∈𝐼
[[𝐉𝐱

1𝐉𝐱
𝑅�̃� − 𝑗𝐉𝐱

1𝐉𝐱
𝐿�̃�]𝑖 [𝐉𝐱

0𝐉𝐱
𝑅�̃� + 𝑗𝐉𝐱

0𝐉𝐱
𝐿�̃�]

𝑖
], 

and 𝐼 = {0, 1, … , 𝑝 − 1 }. 

 

Also, the conjugate transpose form of 𝐇 can be expressed as  526 

𝐇𝐻 = [
𝐇3
𝐇4
], 

𝐇3 =⊕
𝑖∈𝐼
[
[𝐉𝐱
1𝐉𝐱
𝐿�̃� − 𝑗𝐉𝐱

1𝐉𝐱
𝑅�̃�]𝑖

[𝐉𝐱
0𝐉𝐱
𝐿�̃� + 𝑗𝐉𝐱

0𝐉𝐱
𝑅�̃�]𝑖

], 

𝐇4 =⊕
𝑖∈𝐼
[
[𝐉𝐱
1𝐉𝐱
𝑅�̃� + 𝑗𝐉𝐱

1𝐉𝐱
𝐿�̃�]𝑖

[𝐉𝐱
0𝐉𝐱
𝑅�̃� − 𝑗𝐉𝐱

0𝐉𝐱
𝐿�̃�]𝑖

]. 

 

 

Thus, the multiplication of these two block matrices can be written as a block matrix itself as 527 

H𝐇𝐻 = 𝐇1𝐇3 + 𝐇2𝐇4  

Now using the distribution property of direct sum over matrix multiplication, we can say  528 

𝐇𝐇𝐻 =⊕
𝑖∈𝐼
 [[𝐉𝐱

1𝐉𝐱
𝐿�̃� + 𝑗𝐉𝐱

1𝐉𝐱
𝑅�̃�]𝑖 [𝐉𝐱

0𝐉𝐱
𝐿�̃� − 𝑗𝐉𝐱

0𝐉𝐱
𝑅�̃�]𝑖] [

[𝐉𝐱
1𝐉𝐱
𝐿�̃� − 𝑗𝐉𝐱

1𝐉𝐱
𝑅�̃�]𝑖

[𝐉𝐱
0𝐉𝐱
𝐿�̃� + 𝑗𝐉𝐱

0𝐉𝐱
𝑅�̃�]𝑖

] 

                             +⊕
𝑖∈𝐼
 [[𝐉𝐱

1𝐉𝐱
𝑅�̃� − 𝑗𝐉𝐱

1𝐉𝐱
𝐿�̃�]𝑖 [𝐉𝐱

0𝐉𝐱
𝑅�̃� + 𝑗𝐉𝐱

0𝐉𝐱
𝐿�̃�]𝑖] [

[𝐉𝐱
1𝐉𝐱
𝑅�̃� + 𝑗𝐉𝐱

1𝐉𝐱
𝐿�̃�]𝑖

[𝐉𝐱
0𝐉𝐱
𝑅�̃� − 𝑗𝐉𝐱

0𝐉𝐱
𝐿�̃�]𝑖

] 

        = diag((𝐉𝐮
1𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝐿�̃�) + (𝐉𝐮

1𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝑅�̃�))  
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       + diag((𝐉𝐮
0𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

0𝐉𝐮
𝐿�̃�) + (𝐉𝐮

0𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

0𝐉𝐮
𝑅�̃�))  

       + diag((𝐉𝐮
1𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝑅�̃�) + (𝐉𝐮

1𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

1𝐉𝐮
𝐿�̃�))    

       + diag((𝐉𝐮
0𝐉𝐮
𝑅�̃�)⨀(𝐉𝐮

0𝐉𝐮
𝑅�̃�) + (𝐉𝐮

0𝐉𝐮
𝐿�̃�)⨀(𝐉𝐮

0𝐉𝐮
𝐿�̃�))    

which is a diagonal matrix. For 𝑘 = {0,… ,
𝑀

2
− 2}, the k-th diagonal element of 𝐇𝐇𝐻 is given as 529 

[diag(𝐇𝐇𝐻)]𝑘 = (cos
2 (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1)) + sin2 (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1))) +

(cos2 (
𝜔

2
(𝑀 − 2𝑘 − 1)) + sin2 (

𝜔

2
(𝑀 − 2𝑘 − 1))) + (sin2 (

𝜔

2
(𝑀 − 2(𝑘 + 1) − 1)) +

 cos2 (
𝜔

2
(𝑀 − 2(𝑘 + 1) − 1))) + (sin2 (

𝜔

2
(𝑀 − 2𝑘 − 1)) + cos2 (

𝜔

2
(𝑀 − 2𝑘 − 1))) = 4 .  

 

Thus,  530 

[𝐇𝐇𝐻]𝑚,𝑛 = {
4        𝑚 = 𝑛
0        𝑚 ≠ 𝑛

 (B17) 

Considering this, we can simplify the approximation (B16). It holds that  531 

𝐖𝐮
−1 ≈ 2�̃�0

−2𝜎2𝑀(𝐈
(
𝑀
2
−1)×(

𝑀
2
−1)

−
2

𝑀
𝟏
(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇  ). 
 

Now, considering that the determinant is non-zero 532 

𝟏
(
𝑀

2
−1)×(

𝑀

2
−1)

−
2

𝑀
𝟏
(
𝑀

2
−1)×(

𝑀

2
−1)

𝑇 𝐈
(
𝑀

2
−1)×(

𝑀

2
−1)
𝟏
(
𝑀

2
−1)×(

𝑀

2
−1)

= 2/𝑀 ≠ 0,  

the approximation is invertible and can be obtained using Sherman-Morrison Formula [30]  533 

𝐖𝐮 ≈
�̃�0
2

2𝜎2𝑀
(𝐈

(
𝑀
2−1)×(

𝑀
2−1)

+

2
𝑀
𝟏
(
𝑀
2
−1)×1

𝟏
(
𝑀
2
−1)×1

𝑇

1 − 2
𝑀
𝟏
(
𝑀
2
−1)×1

𝑇 𝟏
(
𝑀
2
−1)×1

). 

 

The equation indicates a perturbed diagonal matrix. In fact, the second term can be interpreted as the correlation of 534 

the estimation residual error. 535 

Considering that �̃�0 = 𝑏0√2𝑀𝑁, we get the final form of the approximation 536 

𝐖𝐮 ≈
𝑏0
2𝑁

𝜎2
(𝐈

(
𝑀
2−1)×(

𝑀
2−1)

+ 𝟏
(
𝑀
2−1)×(

𝑀
2−1)

) 537 

6.3. Appendix C 538 

To prove the convergence of LUPUMA, we utilize equations (27) and (B4) to find the expectation of estimated 𝑎𝐮 539 

as  540 

E(�̂�𝐮) =
 2

𝑀−2
𝟏𝑇E(𝐲𝐮) = 𝑎�̃� + 

 2

𝑀−2
𝟏𝑇E(Δ𝐲𝐮) . (C1) 

Based on (B6), we express E(Δ𝐲𝐮) as  541 

E(Δ𝐲𝐮) = E ((𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(�̃� ⊗ Δ𝐮)) + E ((𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(Δ𝐮⊗ �̃�)) +  E ((𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )(Δ𝐮 ⊗ Δ𝐮)) 

               = (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )vec(�̃� E(Δ𝐮)𝑇) +  (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )vec(E(Δ𝐮) �̃�𝑇) +  (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )vec(E(Δ𝐮Δ𝐮𝑇))  
(C2) 

According to (B10), E(Δ𝐮) is  542 

Ε(𝚫𝐮) = �̃�0
−1�̃�0

𝑇⨂�̃�𝐐�̃�𝐐
𝑇  E (vec(𝜑(𝐐)))   = �̃�0

−1�̃�0
𝑇⨂�̃�𝐐�̃�𝐐

𝑇  𝐓2𝑁×2𝑁
𝑇 ⨂𝐓𝑀×𝑀

𝐻 Ε(vec([𝐐 𝐐𝐹]) ) .  

For Ε(vec([𝐐 𝐐𝐹]) ) we have 543 

Ε(vec([𝐐 𝐐𝐹]) ) =  E(vec([𝐐 𝚷𝑀×𝑀�̅�𝚷𝑁×𝑁])) 

= [E(vec(𝐐)) 𝚷𝑁×𝑁
𝑇 ⊗𝚷𝑀×𝑀  E(vec(�̅�))] = [𝝁𝒒 𝚷𝑁×𝑁

𝑇 ⊗𝚷𝑀×𝑀   𝝁𝒒̅̅̅̅ ], 

 

where 𝝁𝒒 is the mean of received noise. Assuming 𝝁𝒒 =  𝝁𝒒̅̅̅̅ = 0, we can say  544 

Ε(𝚫𝒖) = �̃�0
−1�̃�0

𝑇⨂�̃�𝐐�̃�𝐐
𝑇  𝐓2𝑁×2𝑁

𝑇 ⨂𝐓𝑀×𝑀
𝐻 [𝝁𝒒 𝚷𝑁×𝑁

𝑇 ⊗𝚷𝑀×𝑀   𝝁𝒒̅̅̅̅ ],  (C3) 
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Ε(𝚫𝒖) = 0 

Now by substituting equations (C3) and (B16) into (C2), we simplify E(Δ𝐲𝐮) as  545 

E(Δ𝐲𝐮) =  (𝐉𝐮
𝑟 + 𝑗𝐉𝐮

𝑖 )vec(E(Δ𝐮Δ𝐮𝑇)) 

E(Δ𝐲𝐮) =  
𝑀

2
�̃�0
−2𝜎2(𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )vec((𝐈𝑀×𝑀 − �̃�0�̃�0

𝑇)) 

E(Δ𝐲𝐮) =  −
𝑀

2
�̃�0
−2𝜎2(𝐉𝐮

𝑟 + 𝑗𝐉𝐮
𝑖 )vec(�̃�0�̃�0

𝑇) 

 

So, we can write (C1) as  546 

E(�̂�𝐮) = (1 −
𝑀

𝑀−2
�̃�0
−2𝜎2) 𝑎�̃� .  

To find the relation between convergence of �̂�𝐮 and �̂�𝐮, we define the function 𝑔(. ) as  547 

𝑔(�̂�𝐮) =  �̂�𝐮,  

In this way, we can expand 𝑔(�̂�𝐮) using Taylor series as  548 

𝑔(�̂�𝐮) =  𝜔�̃� + 𝑔
′(𝑎�̃�) (

 2

𝑀−2
𝟏𝑇Δ𝐲𝐮 + (

𝑀

𝑀−2
�̃�0
−2𝜎2) 𝑎�̃�) + 𝑂(Δ𝐲𝐮

2) ,   

Expected value of this function is written as  549 

E(𝑔(�̂�𝐮)) =  𝜔�̃� + 𝑔
′(𝑎�̃�) (

 2

𝑀 − 2
𝟏𝑇E(Δ𝐲𝐮) + (

𝑀

𝑀 − 2
�̃�0
−2𝜎2)𝑎�̃�) + E(𝑂(Δ𝐲𝐮

2)) 

                            = �̂��̃� +  E(𝑂(Δ𝐲𝐮
2)),  

 

which can be approximated as  550 

E(𝑔(�̂�𝐮)) ≈  𝜔�̃�. (C4) 

This approximation is accurate for high SNR values. Similarly, for 𝐯, we can write  551 

E(𝑔(�̂�𝐯)) ≈  𝜔�̃�. (C5) 

Now, we substitute the equations of (C4) and (C5) into (36). we can say that for high SNR values, �̂� is unbiased as  552 

E(�̂�) =
(𝑀 − 2)

2𝑀2(𝑁 − 1) + (𝑀 − 2)
E(�̂�𝐮) + 

+ 2𝑀2(𝑁 − 1)

2𝑀2(𝑁 − 1) + (𝑀 − 2) 
E(�̂�𝐯) 

E(�̂�) ≈ 𝜔 
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