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Introduction  
There are several on-going initiatives aiming at strengthening the connection between mathematics 
and applications in engineering, both within study programmes and between study programmes and 
work life. The CDIO (Conceive, Design, Implement, Operate http://www.cdio.org) approach has 
formulated some general principles for engineering education, such as the principle of contextual 
learning: “Concepts … are presented in the context of their use”, and “[e]xamples include believable 
situations that students recognize as being important to their current or possible future lives” (Crawley 
et al., 2014, pp. 32-33). In the CDIO approach, a deep working knowledge and conceptual 
understanding are emphasised (Crawley et al., 2014, p. 13). This may be interpreted in the way that 
to use mathematics in engineering contexts requires understanding of mathematics at the level of 
studied reflection: “[t]o be able to use mathematics to solve problems” and “[t]o understand how 
mathematics applies to other situations” (Booth, 2004, p. 25).  In the literature, there is evidence that 
students often do not see the relevance of the mathematics they are expected to learn (Flegg et al., 
2012), that they find it challenging to apply mathematics they have learnt when they need it in 
engineering courses (Carvalho & Oliviera, 2018), that mathematics in engineering courses is often 
invisible (González-Martín, 2021; González-Martín & Hernandez-Gomes, 2017), and that 
connections between mathematics and engineering are often lacking (Faulkner et al., 2019).  

This paper is based on a collaborative project between mathematics and electrical engineering. The 
students are in their first year of the Master of Technology (MT) programme Electronic Systems 
Design and Innovation. I will present an example showing that engineering problems may require 
(rather advanced) mathematical knowledge to be solved. However, also deep knowledge from the 
engineering field is necessary to model the problem in mathematical terms. Following the 
Anthropological Theory of the Didactic (ATD), I see mathematics and engineering as two institutions, 
each with their own praxeology, ΠM (mathematics) and ΠE (engineering). The analysis shows that to 
answer the generating question, arising in ΠE, essential elements from both ΠM and ΠE are required. I 
will write Πi = [Pi/Li] = [Ti, 𝜏i, 𝜃i, 𝛩i], i = E or M, according to standard notation in ATD (Bosch & 
Gascón, 2014). The interplay between praxeologies in the same project is further elaborated in 
Rønning (2022). Other authors have also discussed interplay between praxeologies, e.g., Peters et al. 
(2017), in the extended praxeological ATD-model.  

To investigate whether the context-based teaching affects the students’ perceived relevance of 
mathematics, a survey was distributed in the spring of 2022 both to the students within the project 
and to all other first-year MT students. Some results from this survey are shown at the end. 

The example 
The fundamental example is the oscillator circuit shown in Figure 1, and the generating question Q 
is to determine the output voltage y. This circuit is an extension of the simpler circuit shown in Figure 
2 which contains an amplifier, described by the linear relation z = Gy, where G is a positive number 
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and y is the voltage. The circuit in Figure 1 was used as an example both in the mathematics course 
and in an electronics course running in parallel. In the electronics course, the students built the circuit 
from physical components (𝜏E), and they could observe and measure its behaviour (𝜏E). However, to 
compute the output, mathematical concepts and techniques (𝜏M) were necessary. Furthermore, to 
explain why the mathematical techniques worked, a mathematical technology (𝜃M) was required. This 
can be seen as an interplay between the praxeologies ΠM and ΠE where the mathematical 
understanding is lifted to the level of studied reflection (Booth, 2004). I will now discuss the two 
circuits more in detail to see how the praxeologies interact. The circuit in Figure 2 can be modelled 
with the differential equation (1) (Lundheim, 2021). 

(1) 𝑦′′ + (1 − 𝐺) 𝑅
𝐿

𝑦′ + 1
𝐿𝐶

𝑦 = 0. 

This differential equation can be solved using analytic methods, and the solution can be written 

𝑦(𝑡) = 𝑒−𝛿𝑡(𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡)),

where 𝛿 = (1 − 𝐺)𝑅/2𝐿 and 𝜔 = √1/𝐿𝐶 − 𝛿2. Modelling the circuit requires knowledge from ΠE, 
and solving the differential equation (1) requires knowledge from ΠM. It follows that when G = 1, 
harmonic oscillations are obtained. When G < 1 (𝛿 > 0), |𝑦(𝑡)| → 0, hence, the oscillations will die 
out. When G > 1 (𝛿 < 0), |𝑦(𝑡)| → ∞, the oscillations will blow up, and the system will be unstable. 

Figure 1. The oscillator Figure 2. A simple circuit 

From an engineering point of view, stable oscillations are desirable, so one would like to set the 
constant G in the amplifier equal to 1, which would be mathematically easy. However, the engineer 
knows (ΠE) that keeping the number G exactly equal to 1 is, for physical reasons, impossible in 
practice. Hence, it is necessary to modify the circuit, which is how the circuit in Figure 1 is created. 
Without going into details, I will only say that this modification results in a non-linear model. This 
modification requires knowledge both from the praxis block and the logos block of ΠE. 
Mathematically, the modification means that the linear function z = Gy is replaced with 𝑧 = 𝑔(𝑦), 
where 𝑔 is the function, whose inverse is given in (3). Using properties of the elements of the circuit 
(Lundheim, 2021), the equation for the circuit in Figure 1 becomes 

(2)   𝑦′′ + (1 − 𝑔′(𝑦))
𝑅
𝐿

𝑦′ +
1

𝐿𝐶
𝑦 = 0,

where the inverse of the function 𝑔 can be written as 

(3) 𝑔−1(𝑦) = 2𝑅1𝐼0 sinh (
y
𝑉0

) +
1

𝑅2
𝑦. 
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The constants in the expressions come from the specifications of the components in the circuit. To 
formulate the equation (2) and the expression for 𝑔−1 in (3) knowledge both from ΠE and ΠM is
necessary. As a result of the modification, the mathematical problem has changed to the non-linear 
differential equation (2) instead of the linear equation (1). This challenges both the praxis block and 
the logos block of ΠM: Does the equation have a solution (LM) and if so, how can it be solved (PM)? 
The equation (2) is a special case of Lienard’s equation, and Lienard’s theorem gives conditions, 
which are part of LM, for this equation to have a stable limit cycle (see e.g., Lins et al., 1977, pp. 335-
336). It can be solved (PM) using e.g., the symplectic Euler method (Hairer & Wanner, 2015).  

Discussion 
Traditionally, students in their first year will encounter only analytic methods for solving second 
order differential equations with constant coefficients, like equation (1). Numerical methods are 
usually at this stage restricted to simple methods (e.g., Euler’s method) for solving the first order 
initial value problem 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(0) = 𝑦0. Solving systems is also at this stage usually restricted
to linear systems. Seen from a mathematical point of view, these choices are natural since they give 
simple, elegant solutions and they show how various parts of mathematics are useful, such as complex 
numbers, or eigenvalues and eigenvectors of matrices. However, from an engineering point of view, 
these methods have limited value since they can only be applied to situations which are not so often 
found in real engineering applications, or in engineering courses, as the example with the oscillator 
in Figure 1 shows. The possible discrepancy between the classical methods (𝜏M) from ΠM and the 
relevant applications (TE) in ΠE raises the question of relevance of mathematics for engineering. The 
table below shows answers to two of the statements presented in the survey administered to the 
students. The percentages in boldface show the results from the students within the project (n = 45) 
and those in normal font in parenthesis show the results from the rest of the students (n = 494). These 
results indicate that working with mathematics in context may increase the perceived relevance of 
mathematics. 

Completely 
agree 

Partly agree Partly 
disagree 

Completely 
disagree 

In my work with other courses (i.e., not 
mathematics courses), I have seen the 
importance of learning mathematics. 

85 % 

(37 %) 

13 % 

(44 %) 
0 % (14 %) 0 % (5 %) 

I don’t think the mathematics I have learned is 
very relevant for my study programme. 2 % (5 %) 2 % (25 %) 

18 % 

(44 %) 

78 % 

(26 %) 
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