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Abstract 

Artificial intelligence has opened a new path of innovation in magnetic resonance (MR) image reconstruction 
of undersampled k-space acquisitions. This review offers readers an analysis of the current deep learning-based MR 
image reconstruction methods. The literature in this field shows exponential growth, both in volume and complex-
ity, as the capabilities of machine learning in solving inverse problems such as image reconstruction are explored. 
We review the latest developments, aiming to assist researchers and radiologists who are developing new methods 
or seeking to provide valuable feedback. We shed light on key concepts by exploring the technical intricacies of MR 
image reconstruction, highlighting the importance of raw datasets and the difficulty of evaluating diagnostic value 
using standard metrics.

Relevance statement Increasingly complex algorithms output reconstructed images that are difficult to assess 
for robustness and diagnostic quality, necessitating high-quality datasets and collaboration with radiologists.

Key points
• Deep learning-based image reconstruction algorithms are increasing both in complexity and performance.

• The evaluation of reconstructed images may mistake perceived image quality for diagnostic value.

• Collaboration with radiologists is crucial for advancing deep learning technology.

Keywords Algorithm, Artificial intelligence, Deep learning, Image processing (computer-assisted), Magnetic 
resonance imaging
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Background
Magnetic resonance (MR) is a popular modality in medi-
cal imaging for its versatility, nonionizing radiation, and 
good soft-tissue contrast. However, its relatively long 
acquisition times, incurring high costs and patient dis-
comfort, has led to a flurry of research to improve imag-
ing speed without compromising image quality.

MR data is acquired in the spatial frequency domain, 
referred to as k-space. Applying an inverse Fourier trans-
form gives a reconstructed spatial image. Sampling less 
of the k-space decreases scan time but may introduce 
aliasing. The Nyquist criterion specifies a minimum sam-
pling density required to avoid detrimental wrap-around 
artifacts during reconstruction, and sampling under this 
minimum is considered undersampling. The acceleration 
factor denotes the extent of undersampling; an accelera-
tion factor of 4 corresponds to sampling 25% of the lines 
in k-space [1–3].

Undersampled acquisitions are traditionally recon-
structed using parallel imaging methods with multiple 
receive coils, such as sensitivity encoding (SENSE) or the 
generalized autocalibrating partial parallel acquisition 
(GRAPPA) techniques [1, 2]. However, parallel imaging 
reconstructions suffer a signal-to-noise ratio (SNR) loss 
at least proportional to the square root of the reduction 

in scan time [2]. Compressed sensing is an alternative, 
an iterative optimization process that reconstructs using 
a priori information known as sparsity [3]. Compressed 
sensing-based reconstructions suffer from blurring and 
ringing artifacts, which are considered not as detrimental 
to diagnostic quality [4].

Advances in artificial intelligence techniques and devel-
opment in computational infrastructures have led to 
machine learning techniques becoming viable candidates 
to aid in medical image reconstruction. Deep learning 
(DL)-based image reconstruction methods use refer-
ence data as a priori information for learning features to 
exploit the similarities in patients’ anatomy, and pro-
posed methods have shown superior performance com-
pared to non-DL-based solutions [5–9]. Moreover, some 
DL methods integrate traditional iterative algorithms, 
such as compressed sensing, to further improve their 
performance [10–12]. Public datasets, such as the fast-
MRI dataset, support the effort by providing a consistent 
benchmark for new machine-learning approaches in MR 
image reconstruction [13].

Radiologists need to remain up to speed with the lat-
est advances in image reconstruction. A basic under-
standing of the research and development is crucial to 
providing researchers with valuable feedback for further 
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improvement. Furthermore, radiologists need to become 
acquainted with novel artifacts exclusive to machine-
assisted reconstructions, should these new methods 
make it into clinical use. This narrative review aims to 
introduce DL-based image reconstruction and provide 
insight into researchers’ current challenges. Following an 
introductory section on DL-based MRI reconstruction 
networks, we explore some technical topics specific to 
MR image reconstruction networks, which received sub-
stantial attention in the literature, followed by topics on 
the training and evaluation of these networks.

DL‑based MR image reconstruction methods
Deep learning potentially provides faster imaging com-
pared to current techniques by enabling higher accelera-
tion factors (Fig.  1). Traditional methods show limited 
improvements in speed if compared to the latest DL 
techniques, as shown in the overview of image recon-
struction methods. Such reconstruction methods achieve 
acceleration factors of 4 to 5 before image quality dete-
riorates too much [14]. Deep learning techniques dem-
onstrate a significant improvement, allowing acceleration 
factors of up to 12 or more, depending on the intended 
use of the output, but their clinical efficacy has yet to be 
established [15].

Reconstruction with DL involves transforming input 
data into an output image, which can be approached as 
an image-to-image task. Figure  2 illustrates a generic 
U-Net of a two-dimensional MR image reconstruction 
task, where a loss function is used to compare output to 
the ground truth. A U-Net in its basic form is limited to 
image-to-image reconstruction without any domain-
specific knowledge, such as k-space, included. However, 
dual-domain networks allow both image and k-space to 
be utilized, and scan-specific methods can restore miss-
ing k-space [9, 16, 17].

MR image reconstruction today exists in a tension of 
three measures: image quality, robustness and the accel-
eration factor. Image quality can be improved by apply-
ing a cascade of networks, each of them evaluating the 
reconstruction independently [6]. However, these net-
works are shown to be sensitive to the sampling pattern, 
acceleration factor and noise level and deviations in the 
anatomy of unseen data [18, 19]. These factors may raise 
concerns about its robustness, and including controls for 
data consistency may reduce these sensitivities. Finally, 
various strategies exist for simulating the undersampling 
of fully sampled data, which may optimize the learn-
ing curve of a network in undersampled image recon-
struction tasks. Many of these concepts have received 

Fig. 1 Comparison of image reconstruction processes. Common undersampling factors for each method group and a few example algorithms are 
noted. If no method is used, a simple Fourier transform results in an aliased image if the acquisition is undersampled. Parallel imaging reconstruction 
methods, such as the generalized autocalibrating partial parallel acquisition (GRAPPA) or sensitivity encoding (SENSE) algorithms, can produce 
acceptable results up to undersampling rates of 4. Compressed sensing can achieve similar results with increased levels of undersampling. Deep 
learning methods, such as KIKI, automated transform by manifold approximation (AUTOMAP), and GrappaNet, have shown the potential to achieve 
good results with significantly higher levels of undersampling
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considerable attention, and we will examine each of these 
in detail in the following subsections.

Loss functions
The loss function is the function to be optimized during 
network training and is critical in any DL method. Com-
monly used loss functions are the mean-squared error 
(MSE) and structural similarity index metric (SSIM), 
which intend to maximize the similarity between a 
reconstructed image and its reference image [20]. Most 
DL methods are supervised: the loss function takes refer-
ence data (such as a reconstructed image from fully sam-
pled k-space) as input to compute the loss. Yaman et al. 
[21] propose to take a fraction of their input k-space data 
as the input for their loss function as a form of self-super-
vision. They show that using sub-sampled k-space data as 
a reference does not significantly reduce the performance 
of the networks compared to using fully sampled images 
as a reference. This is useful when fully sampled refer-
ence data is unavailable and supervised methods cannot 
be trained. Zhou et al. [22] argue that fully sampled data 
is more expensive and more prone to motion and other 
accumulating errors. Instead, short undersampled acqui-
sitions can be obtained in more ideal imaging conditions.

A loss function can also be a combination of loss func-
tions. In addition to the MSE loss function, Yang et  al. 
[23] also employ perceptual and adversarial loss func-
tions. The perceptual loss is output by a pre-trained 
network that estimates human perceptual similarity 
(as opposed to a statistical similarity, such as SSIM).  
Adversarial loss is output by implementing a generative 
adversarial network (GAN), where two networks, a dis-
criminator network and a generator network, contest each 
other: the discriminator aims to distinguish between an 
original reference image and a reconstruction output by 
the generator. Both networks optimize for their discrimi-
native and generative ability, providing an adversarial loss.

Undersampling strategies
An undersampled image reconstruction network can be 
trained by utilizing datasets with fully sampled images 
and partially eliminating k-space data to achieve an 
intended level of undersampling. The resulting output is 
then compared to the original data using a loss function 
with as goal of achieving similar quality. An ideal sam-
pling strategy is one where the information of a ground 
truth image is best preserved given an amount of under-
sampling. Incoherence means information required for 

Fig. 2 Diagram of a U-Net architecture. a The number of parameters in a network mainly depends on the input data. However, it can be expanded 
with parallel imaging and complex values. In this example, the input image size is 512 pixels square, which may be expanded with 64 sensitivity 
maps, or doubled to 128 when the complex data is separated into real and imaginary components. b Illustration of a U-Net architecture, where data 
is propagated through all paths in the network. The downsampling analyses the input, and the upsampling synthesizes an output. c The output 
is compared with the ground truth to calculate a score using a provided loss function
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image reconstruction is distributed throughout k-space, 
and is a condition prescribed by compressed sensing. 
Deep learning networks are not well suited for aggregat-
ing spread-out information, and compressed sensing-
based methods may not be preferable.

One common sampling strategy is variable density 
sampling. Similar to GRAPPA, the center of k-space 
is sampled more densely. This strategy is derived from 
compressed sensing, where better coherence is achieved 
using this method [3]. Defazio [24] proposes an equidis-
tant sampling strategy, starting from the second k-line. 
This way, redundant sampling is avoided, while equi-
distant sampling allows for information to be localized 
within a small region, which is ideal for convolutional 
networks.

Adaptive sampling strategies and their underlying 
reconstruction algorithm are optimized in a data-driven 
manner. Bahadir et  al. [25] propose a method that esti-
mates a sampling density in k-space, describing which 
positions in k-space are most favorable given the under-
lying image reconstruction network. Aggarwal and Jacob 
[26] note that such an approach does not account for 
potential dependencies between sampling locations and, 
in their method, learns both the sampling pattern and the 
reconstruction problem jointly. Contrary to these argu-
ments, Bakker et al. [27] show that their adaptive models 
learn to be explicitly nonadaptive. They hypothesize that 
adaptivity may compromise the model’s ability to capture 
relevant patterns in the data.

Data consistency
Data consistency enforces that any reconstruction does 
not deviate from the underlying k-space data that was 
originally sampled. Schlemper et  al. [6] introduce inter-
mittently inserting data consistency layers in the archi-
tecture. This data consistency layer applies a penalty 
based on the difference between the sampled and output 
k-space value. This penalty is based on the assumption 
that the noise in k-space follows a normal distribution. 
In practice, k-space noise is more complex as noise accu-
mulates from various sources around the scanner. Cheng 
et  al. [28] propose to learn a more accurate representa-
tion of the noise distribution using their learned data 
consistency reconstruction method, giving more accu-
rate penalties to data inconsistencies. In general, Ham-
mernik et  al. [29] show that networks with some form 
of data consistency substantially outperform networks 
without, implying that including DC is almost mandatory 
for MR image reconstruction. However, they note that 
the influence of data consistency wanes when accelera-
tion factors are further increased, as there is less k-space 
to keep consistent.

Parallel imaging
Parallel imaging gives additional information on the spa-
tial location of the signal by using the sensitivity of each 
receive coil. The fastMRI public dataset included a chal-
lenge where participants submit their image reconstruc-
tion algorithms to compete in various competitions, and 
featured a competition where all coil information was 
combined into a single k-space volume [30]. In the fol-
lowing year, the next iteration of this challenge omitted 
this competition as the results were considered clini-
cally irrelevant [31], suggesting that separate coil signal 
acquisitions cannot be combined without losing valuable 
information.

Deep learning-based methods that include multiple 
coil data as input are becoming more common. Sriram 
et al. [32] propose a method where the traditional parallel 
imaging technique GRAPPA is integral to their method. 
GRAPPA is a multi-coil parallel imaging technique where 
missing k-space lines due to undersampling are estimated 
for each coil using information obtained by densely sam-
pling the center of k-space, known as calibration lines [1]. 
In their model, Sriram et al. use these calibration lines to 
estimate sensitivity maps, which are then applied to the 
multi-coil k-space input data. Wang et  al. [33] perform 
parallel image reconstruction without integrating paral-
lel imaging techniques but outperform these traditional 
methods using fewer calibration lines. Furthermore, they 
show relatively low sensitivity to the number of calibra-
tion lines. Leynes et al. [34] propose a method capable of 
calibrationless parallel image reconstruction by jointly 
solving the undersampled missing data of each coil and 
the reconstruction problem.

Exploiting interslice correlations
Image reconstruction is most commonly performed on 
two-dimensional image slices, but consecutive slices in 
a multislice MR acquisition generally have strong inter-
slice correlation. Various ways were suggested to lever-
age multislice correlations effectively. Pang and Zhang 
[35] propose a method which exploits this correlation 
using interpolated compressed sensing techniques [35]. 
Du et  al. [36] take adjacent k-space slices as additional 
input and effectively interpolate this input to output the 
reconstruction of a single interpolated k-space slice. Xiao 
et al. [37] propose a method that uses deformable convo-
lutions, jointly exploiting correlations among and within 
slices. They argue that deformable convolutions allow for 
efficient information extraction across neighboring slices, 
addressing complicated data redundancies more effec-
tively than traditional fixed two-dimensional grids.

Interslice correlation is most effective using three-
dimensional volumes; however, model training using 
such data size is very demanding in terms of model 
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complexity and memory requirements. Du et al. [36] pro-
pose a model which claims to alleviate these concerns. 
It iterates across each dimension of a three-dimensional 
sample. Each iteration takes the information from the 
previous iteration as prior knowledge, thus minimizing 
the complexity of the model.

Domains
Image space constrains the use of the previously dis-
cussed exploitable information, parallel imaging or inter-
slice correlations, which may operate in k-space. Image 
reconstruction for undersampled acquisitions can be 
performed using image space to image space, k-space 
to k-space, or a hybrid k-space to image space, as their 
respective inputs and outputs. Most proposed methods 
expect image space as input, presumably as most avail-
able data is in image space, but this disregards the poten-
tial of utilizing the feature representations using different 
domains.

Under the premise of a “best of both worlds”, KIKI-net 
is a method operating on k-space first (K), image space 
second (I), and repeat (KI) in a hybrid fashion [16]. The 
first K-net is trained, and then the next I-net is trained 
using the output of the previous K-net. This process con-
tinues until the entire KIKI-net is fully trained. Accord-
ing to the authors, the I-nets were especially strong in 
restoring detailed structures but failed to remove aliasing 
artifacts. Instead, they further embellished the artifacts. 
Meanwhile, the K-nets removed artifacts successfully but 
had weaker structure restoring capabilities. Ran et al. [38] 
propose to process both image and k-space domains in 
parallel. They argue that processing sequentially, such 
as in KIKI and other variants, ignores possible interplay 
between domains.

Further motivated by the idea that employing more 
representations of the same data results in better per-
formance, Wang et  al. [39] propose IKWI-net, which 
includes the wavelet (W) transform domain. The authors 
argue that the wavelet domain is particularly effective in 
suppressing artifacts in smooth areas but may also embel-
lish artifacts mistaken as real structures. Tong et al. [40] 
instead propose HIWDNet, which excludes the k-space 
domain, and uses entirely different network architectures 
for each domain.

Zhu et  al. [8] propose a more genuine hybrid solu-
tion: automated transform by manifold approxima-
tion (AUTOMAP), which learns to reconstruct a spatial 
image directly from k-space. AUTOMAP performs a 
reconstruction without prior knowledge of mathemati-
cal transformations. In MR image reconstruction con-
text, it implicitly learns a Fourier transform equivalent. 
AUTOMAP is criticized for its network complexity, and 

later variants reduce complexity by simply supplying the 
Fourier transform explicitly [41, 42].

Complex numbers
Methods, such as AUTOMAP, use convolutional opera-
tions with only the magnitude of the originally complex-
valued k-space data. The complex MR signal comprises 
a real and imaginary component. The imaginary com-
ponent is phase-shifted by  90◦ and has independent and 
uncorrelated noise but is otherwise identical to the real 
component. The derived values magnitude and phase 
carry nonredundant information that underlines the rela-
tionship between the components. Most reconstruction 
methods that use k-space as input assume that the com-
plex-valued signal components are independent, but this 
results in information loss due to their inherent interde-
pendency [33]. This loss is made apparent by experiments 
performed by Cole et  al. [43], which show two separate 
real- and imaginary-valued reconstructions as consist-
ently superior to magnitude-based reconstructions.

Dedmari et al. [44] are the first to explore learning with 
complex-valued data using complex-valued convolutions. 
This was expanded by Wang et al. [33], who include par-
allel imaging. They claim their convolutional network 
using complex values achieves at least comparable per-
formance with magnitude-valued convolutional net-
works while requiring half the network size. Feng et  al. 
[45] propose dual-octave convolutions, which divide 
the real and imaginary components into low and high-
frequency subcomponents. In k-space, low frequencies 
primarily contain image contrast information, and high 
frequencies hold the finer details. Processing these high 
and low frequencies separately is hypothesized to reduce 
spatial redundancy, making effective reconstructions eas-
ier. Finally, Terpstra et al. [46] identify that separating the 
loss function into two loss functions for magnitude and 
phase is noninferior in the absolute domain and superior 
in the complex domain.

Deep learning MR image reconstruction training 
and evaluation
Understanding the previous topics may lead to making 
wise architectural choices, but researchers are restricted 
to using only the data they have. The output of DL learn-
ing methods is based on the data it was trained on, so 
dataset quality is crucial for their performance. Data is 
invariably scarce, and methods need to use available data 
efficiently. Dataset quality is determined by the number 
of images, the quality of the annotation of the target anat-
omy or pathology, standard of reference used, and other 
readily available metadata. Datasets are limited by time, 
technology, and regulations, while available compute 
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and ingenuity primarily limit the methods that use them. 
These methods are typically modeled after blueprints of 
existing network architectures, heavily modified to make 
them suitable for MR image reconstruction. Evaluation 
of MR image reconstruction is nuanced, as reconstruc-
tions are expected to maintain general image quality and 
be robust in preserving any clinical pathologies. Results 
from the 2020 fastMRI challenge state that the top 3 
methods, according to qualitative radiologist evalua-
tion, still created hallucinatory features [31]. Meanwhile, 
statistical evaluation, such as the SSIM, shows results 
with up to 95% similarities to the ground truth. It is not 
implausible that relevant pathologies may still be hiding, 
or obscured by hallucinations, in the final dissimilar 5%. 
This implies a discordance between the image-derived 
statistical metrics for evaluating reconstructed images 
and the radiologist-defined diagnostic quality of an 
image. In other words, the diagnostic value of an image is 
unlikely defined by a single metric.

Diagnostic quality
In the literature, it is common to demonstrate the capa-
bilities of novel methods by comparing their output 
against established traditional and DL-based image 
reconstruction techniques. However, it is challenging 
to find metrics that directly correlate to the diagnostic 
quality of an image. Some image reconstruction meth-
ods position themselves as methods for artifact removal, 
implying that the undersampled acquisitions are images 
beset with artifacts [47]. Using such a definition, evalu-
ation metrics such as MSE or SSIM cannot realistically 
quantify the quality of artifact removal. Blind evalua-
tion performed by experienced radiologists is employed 
instead, where equalling or exceeding the diagnostic per-
formance of radiologists while reducing acquisition time 
is the end goal [47].

Quantitative metrics may fail to reflect deficiencies 
in reconstructing fine details correctly. Zhao et  al. [48] 
show insignificant differences between the SSIM values 
for images with and without lesions using various recon-
struction methods, implying a weak correlation between 
SSIM and lesion detection capability. Mason et  al. [49] 
compared a number of evaluation metrics and agreed 
with this observation, further noting similarly weak per-
formance for root MSE. Instead, the less commonly used 
metrics, visual information fidelity [50], feature similar-
ity index [51], and noise quality metric [52] demonstrate 
higher correlation with radiological assessment of image 
quality. However, these metrics have comparatively high 
computational costs.

These concerns of weak correlation do not align well 
with dataset projects such as the fastMRI project, which 
promotes statistical metrics for easier comparisons. 

Various editorials have created guidelines to improve the 
statistical reporting of studies that apply artificial intelli-
gence to radiology [53–55]. Solutions which better quan-
tify diagnostic image quality are critical for improving the 
feasibility of clinical integration of new methods.

Robustness
Robustness is the ability of a method to not deteriorate 
in performance due to perturbations or other struc-
tural changes. For example, deviations between test and 
training data of brain MR images, which is likely given 
the high level of anatomy detail, will reduce network 
generalizability [19]. The datasets selected by new pub-
lications are hardly given motivation. Most datasets are 
collected from a single vendor. Methods developed using 
the fastMRI dataset, sourced from Siemens scanners, 
and applied to scans sourced from GE or Philips scan-
ners show reduced performance [31]. This is highlighted 
by a study that applies stability tests on reconstruction 
methods to evaluate their performance after small data 
perturbations, such as simulating motion artifacts [56]. 
They show that a change of vendor should also be treated 
as a perturbation the learning algorithm is unprepared 
for. Knoll et  al. [18] show that a mismatch in SNR has 
the most substantial influence on performance. Antun 
et al. [56] propose robustness tests with their instability 
tests. An example test is shifting the undersampling ratio 
slightly, which may lead to severe error during recon-
struction. They conclude that a robust network would 
need to be retrained for different combinations of acqui-
sition size, undersampling ratio, and other such parame-
ters to decrease their sensitivity to various perturbations. 
Solutions to improve robustness with respect to specific 
artifacts are also proposed. Defazio et al. [57] introduce 
adversarial loss to combat banding artifacts, which are of 
particular note in low SNR regions. Their method is simi-
lar to a GAN, but the discriminator is focused on iden-
tifying banding, such that the generator is penalized for 
producing reconstructions with banding.

Due to the limited availability of raw k-space datasets, 
researchers often synthesize k-space data from image 
data using forward Fourier transforms. However, this 
approach has been labeled a “data crime”, a term coined 
by Shimron et  al. [58]. They caution against using syn-
thesized k-space data, which may lead to over-optimistic 
results. Deep learning networks benefit from data pro-
cessed using vendor-specific hidden pipelines and will 
often produce optimistic results when compared to ven-
dor-processed ground truth data. Undersampled image 
reconstruction networks are especially susceptible to 
these benefits, as the unprocessed undersampled acqui-
sitions differ significantly from the processed and simu-
lated k-space they are trained on.
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Data scarcity
Large datasets serve as the foundation for many DL mod-
els. Image reconstruction networks may benefit from 
more technically intricate datasets that offer complete 
k-space sampling. However, obtaining such datasets 
poses a formidable challenge. Public dataset releases are 
an important kickstart for new DL research. There are 
no public datasets including image-guided interventional 
MR data; unsurprisingly, we note a research gap in the 
application of undersampled image reconstruction net-
works developed for interventional radiology. Despite 
this, DL-based image reconstruction may be a more via-
ble option for this field, as the enhanced reconstruction 
speeds can be more effectively leveraged, and the poten-
tial decline in image quality may be less detrimental.

Transfer learning provides a potential alleviation to 
the data scarcity problem. It is where a network trained 
on a task with large available datasets is transferred to 
another, usually with scarce datasets, by using network 
finetuning. Han et  al. [47] demonstrate its potential by 
using networks pre-trained on radial computed tomog-
raphy data for radial MR, then finetuning using radial 
MR data. Transfer learning has also shown promise by 
reconstructing images using a network initially trained to 
reconstruct large collections of natural images and brain 
MR images [59]. Huang et al. [19] observe that network 
finetuning could even be skipped if a network is pre-
trained using a large collection of generic MR images, 
rather than natural everyday images. If transfer learn-
ing proves effective in MR image reconstruction, even 
uncommon procedures which produce little data can be 
accelerated.

Conclusions
Innovations in DL have given MR image reconstruction 
from undersampled acquisitions a boost. We explored 
the challenges posed by the complex nature of radiologi-
cal input data and the importance of utilizing k-space 
information in undersampled image reconstruction. Key 
factors to consider in method design are those that lev-
erage the potential of the available input data, such as 
inventive loss functions and versatile sampling strate-
gies. Performance can be further enhanced if the data is 
enriched with additional information such as the original 
raw k-space data, coil sensitivity maps, and incorporating 
adjacent scans if from a multislice acquisition.

We discussed the difficulty of assessing the recon-
structed image output for its diagnostic quality and 
robustness. We stress that while DL reconstruction out-
put may provide high-quality images upon initial inspec-
tion, the reconstructions may also include hallucinations 
or omit small structural elements, limiting its diagnostic 

value. Moreover, it is important to ensure the robustness 
of MR image reconstruction models, given the sensitive 
nature of radiological data. One way to enhance robust-
ness is by addressing the issue of data scarcity.

While notable steps have been taken in the right direc-
tion, it is crucial that new DL methods made for clinical 
use should be developed in collaboration with radiolo-
gists. These are to be supported with high-quality data-
sets, ideally open access and as multi-coil k-space data.
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