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A B S T R A C T

With the recent wave of digitalization, specifically in the context of safety–critical applications, there has
been a growing need for computationally efficient, accurate, generalizable, and trustworthy models. Physics-
based models have traditionally been used extensively for simulating and understanding complex phenomena.
However, these models though trustworthy and generalizable to a wide array of problems, are not ideal for
real-time. To address this issue, the physics-based models are simplified. Unfortunately, these simplifications,
like reducing the dimension of the problem (3D to 2D) or linearizing the highly non-linear characteristics of the
problem, can degrade model accuracy. Data-driven models, on the other hand, can exhibit better computational
efficiency and accuracy. However, they fail to generalize and operate as blackbox, limiting their acceptability
in safety–critical applications. In the current article, we demonstrate how we can use a data-driven approach
to correct for the two kinds of simplifications in a physics-based model. To demonstrate the methodology’s
effectiveness, we apply the method to model several elasticity problems. The results show that the hybrid
approach, which we call the corrective source term approach, can make erroneous physics-based models
more accurate and certain. The hybrid model also exhibits superior performance in terms of accuracy, model
uncertainty, and generalizability when compared to its end-to-end data-driven modeling counterpart.
1. Introduction

Predictive modeling and simulation has traditionally been dom-
inated by physics-based modeling (PBM). With the rise of machine
learning (ML) in recent times, data-driven modeling (DDM)1 has shown
its ability to outperform PBM in many situations [1–4]. However,
DDM comes with its own disadvantages, limiting these methods’ over-
all usefulness. In [5], the authors describe the ideal model in the
context of digital twins as generalizable, trustworthy, computationally
efficient, accurate and self-evolving. A model’s generalizability is its
ability to solve various problems without problem-specific fine-tuning.
Trustworthiness refers to the extent to which a model is explainable
or interpretable, while computational efficiency and accuracy refer to
the model’s ability to make real-time predictions that match ground
truth as closely as possible. Lastly, a model is self-evolving if it can
learn and evolve when new situations are encountered. PBMs, when
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1 Throughout the text, we will use the acronym DDM to refer to both data-driven modeling and data-driven models. Similarly, PBM may refer to physics-based

modeling or physics-based models.

based on the correct physics, can be accurate and generalizable but are
usually computationally demanding and do not adapt to new scenarios
automatically. DDMs, on the other hand, after training, are very effi-
cient, possibly very accurate and can be self-evolving. However, they
typically lack in trustworthiness and generalizability.

For both PBM and DDM, a model’s accuracy depends on the knowl-
edge used to build the model. To achieve high predictive accuracy,
PBMs require a proper understanding of all relevant physical phenom-
ena, as well as mathematical methods for solving the equations used
to represent these phenomena. If our physics knowledge is inaccurate
and/or we lack methods for efficient computation, PBMs’ accuracy
will be significantly reduced. Contrary to PBMs, DDMs do not rely
on physics knowledge in order to achieve high accuracy. Instead,
they rely on (possibly large amounts of) data that is representative
for the scenarios in which the model is to be used. With good data,
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Nomenclature

PBM Physics-Based Modeling
ML Machine Learning
DDM Data-Driven Modeling
HAM Hybrid Analysis and Modeling
NN Neural Network
RNN Recurrent Neural Network
ROM Reduced-Order Modeling
ODE Ordinary Differential Equation
DNN Deep Neural Network
PINN Physics-Informed Neural Network
PDE Partial Differential Equation
PGML Physics-Guided Machine Learning
CoSTA Corrective Source Term Approach
𝒖 Displacement
𝝈 Cauchy stress tensor
𝑛 Number of spatial dimensions
𝒇 Imposed structural load
𝑡 Time
𝝐 Strain
𝑪 Constitutive tensor relating stress and strain
𝐸 Young’s modulus
𝜈 Poisson ratio
𝐃 Strain operator
𝛾 Engineering shear strain
𝛺 Spatial domain
𝑇 Final time
IBVP Initial Boundary Value Problem
𝒙 Position
𝜕𝛺 Domain boundary
𝜕𝛺d Domain boundary segment with Dirichlet

boundary conditions
𝜕𝛺n Domain boundary segment with Neumann

boundary conditions
𝒏 Boundary normal vector
𝑔d Dirichlet boundary data
𝑔n Neumann boundary data
𝝁0 Initial condition for displacement
𝝆0 Initial condition for the time derivative of

displacement
VP Variational Problem
X 𝑛-dimensional Hilbert space on the spacial

domain (𝛺)
𝑋𝐷 Subset of 𝑋 satisfying boundary conditions
𝑋0 Subspace of 𝑋 vanishing at the boundary
𝑌 (⋅) Solution search space with spacial search

space ⋅
𝒖d Lifting function for non-homogeneous

boundary conditions
𝒖0 Unknown part of displacement with homo-

geneous boundary conditions
𝒗 Test function

DDMs can deliver highly accurate results at only a fraction of the
computational cost of PBMs with comparable accuracy, if such a PBM is
even available. However, given unrepresentative data, DDMs perform
poorly due to their lack of generalizability. Moreover, since DDMs rely
on data rather than explainable and verifiable physics knowledge, their
interpretability is lacking. This combination of poor generalizability
2

𝒘 Test function
𝑎(⋅, ⋅) Bilinear form from the variational problem

formulation
(⋅, ⋅) Bilinear form from the variational problem

formulation
𝑙(⋅) Linear form from the variational problem

formulation
⋅ℎ Discrete approximation of ⋅
𝑁dof Number of degree of freedom in finite

element approximation
𝑁el Number of elements in the domain triangu-

lation
𝜙𝑖 Nodal basis function
(𝑢ℎ,0)𝑗 (𝑡) Coefficient 𝑗 of the nodal basis representa-

tion of the trial function
𝑣𝑖 Coefficient 𝑖 of the nodal basis representa-

tion of the test function
𝑃1(⋅) The space of linear polynomials on ⋅
𝐴 Stiffness matrix
𝐹 Load vector
𝑀 Mass matrix
𝑈 Finite element approximation of displace-

ment
⋅(𝑖) Quantity ⋅ evaluated at time level 𝑖
𝑘 Time step
𝑁 Number of neural network layers
𝐷 Mapping defined by a neural network
𝑖 Affine transformation in layer 𝑖 of a neural

network
𝑠𝑖 Activation function in layer 𝑖 of a neural

network
𝑑𝑖 Number of nodes in layer 𝑖 of a neural

network
𝐿𝛺 General differential operator
𝐿𝜕𝛺 General differential operator
𝜔 Unknown of interest in general differential

equation
𝜃 General source term
𝜓 General boundary condition
⋅̃ Perturbed instance of ⋅ (perturbation caused

by e.g. some error or noise)
𝑟 Residual between perturbed and unper-

turbed differential equation
̃̃⋅ Corrected instance of perturbed quantity ⋅̃
𝛼 Parametrization of system state
train Set of 𝛼-values used for training
val Set of 𝛼-values used for validation
test Set of 𝛼-values used for testing
𝐾 Number of time steps
⋅̌ Vector form of exact solution
⋅̄ Prediction based on previous exact step
⋅̂ Prediction based on previous predicted step
𝑥 First spacial coordinate
𝑦 Second spacial coordinate
𝑧 Third spacial coordinate
RRMSE Relative Root Mean Square Error

and interpretability results in poor trustworthiness and has prevented
widespread utilization of DDM in high-stakes applications where even
a single poor prediction can be detrimental.
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The steadily increasing industrial adoption of digital twins [6]
entails that models possessing all the characteristics identified by [5]
are as relevant as ever. However, as we have seen, neither PBM nor
DDM possess all four of these characteristics. As such, their respective
deficiencies imply that neither paradigm is suitable for reaping the
full benefits of the real-time monitoring and control enabled by digital
twins.

To counter these deficiencies, hybrid analysis and modeling (HAM)
is emerging as a new eclectic paradigm that combines techniques from
both PBM and DDM. The HAM approach unites the advantages of PBM,
such as generalizability, interpretability, solid foundation, and compre-
hension, with the accuracy, computational efficiency, and automatic
pattern-recognition abilities of DDM. In their recent reviews, [7] and
[5] offer a comprehensive look at techniques for combining DDM with
PBM. A lot of the hybridization techniques can be classified into the fol-
lowing categories: (i) Embedding PBMs inside neural networks (NNs),
(ii) Model order reduction, (iii) Physics-based regularization terms, (iv)
Data-driven equation discovery, (v) Error correction approaches, (vi)
Sanity check mechanisms using PBMs.

In the following sections, we present related work and discuss the
advantages and disadvantages of the approaches.

1.1. Methods for embedding PBMs directly into NNs

This approach to hybridization is the most straightforward. More
advanced techniques usually create a differentiable PBM that can be
used as a layer in a neural network. For instance, OptNet [8] is a
differentiable convex optimization solver that can be used as a layer
in a network. In [9] the authors proposed the differentiable physics
engine, a rigid body simulator that can be embedded in a NN. They
showed that it is possible to learn a mapping from visual data to the
positions and velocities of objects, which are then updated using the
simulator. Authors in [10] simulated a structural dynamics problem
by designing a hybrid recurrent NN (RNN) that contains an implicit
numerical integrator. These approaches are usually quite data-efficient,
but they can make both inference and training more expensive.

1.2. Model order reduction methods

The reduced-order modeling (ROM) approach has been widely used
to project complex partial differential equations onto a reduced di-
mensional space based on the singular value decomposition of the
offline high fidelity simulation data, resulting in a set of ordinary
differential equations (ODEs) which are much faster to solve [11,12].
This has enabled high-fidelity numerical solvers to be accelerated by
several orders of magnitude. However, ROMs can become unstable
in the presence of unknown/unresolved complex physics. To address
this issue, recent research has demonstrated how unknown and hidden
physics within a ROM framework can be accounted for using deep
neural networks (DNNs) [13,14]. Nevertheless, ROMs require the exact
form of the original equation before they can be applied.

1.3. Physics-based regularization terms

By incorporating a physics-based model (PBM) into the objective
function, deep learning models (DDMs) can be guided to adhere to
known physical laws during training. An example of this is the physics-
informed neural network (PINN) proposed by [15], which uses a NN to
represent the solution to a partial differential equation (PDE) and adds
an additional loss term to penalize any deviations from the equation
at a sample of points. [16] applied the PINN approach to solve heat
transfer problems in manufacturing processes, while [17] extended it
to enable control in a state-space setting. [18] created a model to
classify the health of the bearings by training a NN on physics-based
features and regularizing the model using the output from a physics-
3

based threshold model. More applications of PINN can be found in
heat transfer modeling [19], multicomponent reactor modeling [20]
or in predicting the lifetime under multiaxial loading [21]. However,
these approaches require precise knowledge of the loss term and can be
difficult to train due to the increased complexity of the cost function,
particularly if the regularization term necessitates the evaluation of a
complex model.

1.4. Data-driven equation discovery

Sparse regression, which is based on 𝑙1 regularization, and symbolic
regression, which is based on gene expression programming, have been
demonstrated to be highly successful in uncovering hidden or partially
known physical laws from data. Examples of this type of approach can
be found in [22] and [23]. On a more applied side, the authors in [24]
discovered the equation describing the relationship between features
and material characteristics while Meyer et al. [25] utilized thermody-
namically consistent neural network to model plasticity and discover
the associated evolution laws. However, there are some drawbacks
to this class of methods. For instance, with sparse regression, extra
features must be manually created, while with symbolic regression, the
resulting models can be unstable and prone to overfitting.

1.5. Physics guided machine learning

On many occasions part of the physics governing a process is known,
but the actual form describing is not known. To exploit such partial
knowledge, Pawar et al. [26] proposed a physics-guided machine learn-
ing (PGML) approach. The basic idea behind the PGML approach is
to inject partial knowledge into one of the layers within a DNN to
guide the training process. Partially knowledge can, for example, come
from a simplistic model as has been shown in [26,27]. More recently,
the Theseus library [28] provides a framework for conducting guided
training of neural networks. However, this approach does not take
advantage of the partially known form of the equation.

1.6. Proposal

From the previous discussion, it is clear that almost all HAM ap-
proaches have pros and cons. One limitation of all the methods is that
they are more tilted towards the data-driven modeling approach. To
this end, Corrective Source Term Approach (CoSTA) has been proposed
recently. CoSTA is a method proposed by [29] that explicitly addresses
the problem of unknown physics. This is done by augmenting the
governing equations of a PBM describing partial physics with a DNN-
generated corrective source term that takes into account the remaining
unknown/ignored physics. One added benefit of the CoSTA approach
is that the physical laws can be used to keep a sanity check on the
predictions of the DNN used, i.e. checking conservation laws. A similar
approach has also been used to model unresolved physics in turbulent
flows [30,31]. The method has also been shown to work well for
modeling complex aluminium extraction process [32]. In this regard,
the main contributions distinguishing the present work from previous
publications on CoSTA [29,32–34], are summarized below.

• We investigate whether CoSTA can be used to correct model-
ing errors incurred due to dimensionality reduction in PBMs.
Reducing the dimensionality of a model is commonly seen in engi-
neering applications in order to reduce computational complexity,
thereby achieving real-time performance. However, this comes at
the cost of reduced predictive accuracy. CoSTA has not previously
been used to correct for this kind of modeling error.

• We investigate whether CoSTA can be used to correct model-
ing errors incurred due to linearization of non-linear governing
equations. Linearization is another technique that is commonly
used to speed up models, and which also reduces predictive
accuracy. The use of CoSTA for correcting linearization error has
been touched upon briefly in [33], but is considered in much
greater detail in the present work.
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• We study the effect of randomness in DNN initialization and train-
ing procedures on CoSTA’s performance, relative to stand-alone
PBM and DDM.

• We demonstrate how to combine CoSTA with PBMs based on the
finite element method. Previously, CoSTA has only been used in
conjunction with finite volume methods.

• We apply CoSTA to a new class of problems: elasticity modeling.
Previously, CoSTA has only been used to model heat diffusion,
which is a fundamentally different phenomenon.

The article is structured as follows: Section 2 presents the relevant
heory for the work. Section 3 presents the method applied in the paper
nd a description of the cases considered. The results are presented and
iscussed in Section 4. Finally, in Section 5, conclusions are given, and
otential future work is presented.

. Theory

In this section, we discuss the theory underlying the models used
n our numerical experiments. We begin with general considerations
egarding PBM in Section 2.1, while Sections 2.2 and 2.3 are devoted
o the physics-based elasticity models used in the present work. The
atter sections are largely based on the textbooks by [35] and [36].
DM (Section 2.4), CoSTA for elasticity problems (Section 2.5) and

he method of manufactured solutions (Section 2.6) are the remaining
opics covered in this section.

.1. Physics based modeling

PBM involves careful observation of a physical phenomenon of
nterest (elasticity in the current work), development of its partial
nderstanding, expression of the understanding in the form of math-
matical equations and ultimately solution of these equations. Due to
he partial understanding and numerous assumptions along the steps
rom observation to solution of the equations, a large portion of the
mportant governing physics gets ignored. Due to high computational
osts, high fidelity simulators with minimal assumptions have so far
een limited to the offline design phase only. Despite this major draw-
ack, what makes these models attractive are sound foundations from
irst principles, interpretability, generalizability and existence of robust
heories for the analysis of stability and uncertainty. The PBMs used in
his paper are based on partial differential equations (PDEs) describing
inear elasticity in solid materials (cf. Section 2.2). These PDEs are
iscretized using the finite element method2 along the spatial dimen-
ion, and the backward Euler method along the temporal dimension.
he numerical methods will, in the vast majority of interesting scenar-

os, introduce some discretization error into these models. Moreover,
odeling error may be present as well due to the governing equations

eing simplified, incomplete or even incorrect. Sometimes, modeling
rror may be purposefully introduced to simplify the model, thereby
ncreasing its computational efficiency. Other times, modeling error
ould stem from a lack of knowledge about the system to be modeled.
n this work, we explore the impact of modeling error through PDE
inearization, dimensionality reduction and unknown load terms, as
escribed in Section 3.

.2. Linear elasticity modeling

The purpose of elastic modeling is to predict the response of a
olid material to external, typically mechanical loads. This response
s quantified in terms of the displacement 𝒖 and stresses 𝝈. For an 𝑛-
imensional system, 𝒖 is a 𝑛-dimensional vector field whose elements
escribe a point’s actual position in relation to where that point would

2 See e.g. [37] or [38] for excellent introductions to finite element method.
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have been if no forces were applied to the system. Moreover, 𝝈, known
as the Cauchy stress tensor, is a second order tensor with dimension 𝑛×
, describing the system’s internal forces. The displacement and stresses
re related through Newton’s 2nd law written for elastic continua. For
sotropic systems with unit mass density, this form of Newton’s 2nd law
eads

⋅ 𝝈 − �̈� = −𝒇 . (1)

ere, 𝒇 denotes the forces (loads) acting on the system and �̈� = 𝜕2𝒖∕𝜕𝑡2
is the acceleration field where 𝑡 is time. Since we have two unknown
fields (𝝈 and 𝒖), but only one equation, we need another constraint to
have a well-defined problem. To achieve this we introduce a kinematic
relationship between the strain field 𝜺 (that describes the relative
stretching (deformation) of an infinitesimal element of the system) and
the displacement 𝒖, see Eq. (2), and then a constitutive relation between
the stresses 𝝈 and 𝜺, see Eq. (3), where the 𝑪 is the fourth order
constitutive tensor.

𝜀 = 1
2
(∇𝒖 + (∇𝒖)𝑇 ) (2)

𝝈 = 𝑪𝜀 (3)

In computational mechanics, it is common to introduce the Voigt
notation to represent the symmetric stress and strain tensors as vectors,
σ and ε respectively, and the fourth order constitutive tensor 𝑪 as a
two-dimensional matrix 𝐂.

For a system with constant Young’s modulus, 𝐸, and constant
Poisson ratio, 𝜈, the Eqs. (1)–(2) can be written more conveniently as

ε = 𝐃𝒖 (4)

σ = 𝐂ε (5)

𝐃tσ − �̈� = −𝒇 , (6)

where the precise definitions of 𝐂, σ, ε, and the strain giving differen-
tial operator 𝐃 depend on the number of space dimensions 𝑛. We will
refer to Eqs. (4)–(6) as the linear elasticity equations.

In 2D, we have

𝐃 =

⎡

⎢

⎢

⎢

⎣

𝜕
𝜕𝑥 0
0 𝜕

𝜕𝑦
𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎤

⎥

⎥

⎥

⎦

, ε =
⎡

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

⎤

⎥

⎥

⎦

, σ =
⎡

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤

⎥

⎥

⎦

, (7)

nd

= 𝐸
1 − 𝜈2

⎡

⎢

⎢

⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤

⎥

⎥

⎦

, (8)

while the 3D definitions read

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑥 0 0
0 𝜕

𝜕𝑦 0
0 0 𝜕

𝜕𝑧
0 𝜕

𝜕𝑧
𝜕
𝜕𝑦

𝜕
𝜕𝑧 0 𝜕

𝜕𝑥
𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ε =

⎡
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𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑦𝑧
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⎥

⎦

, σ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

nd

= 𝐸
(1 + 𝜈)(1 − 2𝜈)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1−2𝜈

2 0 0
0 0 0 0 1−2𝜈

2 0
0 0 0 0 0 1−2𝜈

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(10)

Notice that, 𝛾𝑦𝑧 = 2𝜀𝑦𝑧, 𝛾𝑧𝑥 = 2𝜀𝑧𝑥, and 𝛾𝑥𝑦 = 2𝜀𝑥𝑦, are the
engineering shear strains.
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2.2.1. Initial boundary value problem
We will consider Eqs. (4) and (5) on a bounded spatial domain 𝛺,

for a time interval [0, 𝑇 ]. For these equations to have a unique solution,
initial and boundary conditions must be prescribed. The resulting initial
boundary value problem (IBVP) reads

σ = 𝐂ε(𝒖) ∀𝒙 ∈ 𝛺 (11)

𝐃tσ − �̈� = −𝒇 ∀𝒙 ∈ 𝛺 (12)

𝒖(𝑡,𝒙) = 𝒈d(𝑡,𝒙) ∀𝒙 ∈ 𝜕𝛺d (13)

σ(𝑡,𝒙) ⋅ 𝒏 = 𝒈n(𝑡,𝒙) ∀𝒙 ∈ 𝜕𝛺n (14)

𝒖(0,𝒙) = 𝝁0(𝒙) ∀𝒙 ∈ 𝛺 (15)

�̇�(0,𝒙) = 𝝆0(𝒙) ∀𝒙 ∈ 𝛺, (16)

where 𝜕𝛺d and 𝜕𝛺n are the parts of the boundary with respectively
Dirichlet boundary condition 𝒈d and Neumann boundary condition 𝒈n,
𝒏 is the unit vector normal to the boundary, and 𝝁0 and 𝝆0 are the
initial value conditions. In the present work, we use Dirichlet boundary
conditions on all of the boundaries, i.e., 𝜕𝛺d = 𝜕𝛺.

2.2.2. Variational formulation
Using the Galerkin approach we can transform the IBVP above

to a Variational Problem (VP). To facilitate this transformation we
introduce the following function spaces:

𝑋 = 𝑯1(𝛺) = [𝐻1(𝛺)]𝑛 (17)

𝑋d = {𝒗 ∈ 𝑋 ∶ 𝒗 = 𝒈d on 𝜕𝛺d} (18)

𝑋0 = {𝒗 ∈ 𝑋 ∶ 𝒗 = 0 on 𝜕𝛺d} (19)

𝑌 (𝑋) = {𝒗 ∶ ∀𝑡 ∈ [0, 𝑇 ], 𝒗(𝒙, 𝑡) ∈ 𝑋, ∫

𝑇

0
‖𝒗‖2

𝑯2(𝛺)
𝑑𝑡 <∞} (20)

Here, 𝑯1(𝛺) = [𝐻1(𝛺)]𝑛 and 𝑯2(𝛺) = [𝐻2(𝛺)]𝑛 are the Hilbert spaces
for functions with first and second order weak derivatives, respectively,
for problems with 𝛺 ∈ R𝑛, and we define the spaces 𝑌 (𝑋d) and 𝑌 (𝑋0)
by substituting 𝑋 with 𝑋d and 𝑋0 in Eq. (20). Furthermore, we split the
unknown displacement into two parts: 𝒖 = 𝒖0 + 𝒖d, where 𝒖, 𝒖d ∈ 𝑋d
and 𝒖0 ∈ 𝑋0. The so-called lifting function 𝒖d is introduced in order to
handle non-homogeneous Dirichlet conditions, see e.g., [37] for details.
The variational formulations then read

Find 𝒖0 ∈ 𝑌 (𝑋0) ∶ 𝑎(𝒖0, 𝒗) +
𝑑2

𝑑𝑡2
(𝒖0, 𝒗) = 𝑙(𝒗) ∀𝒗 ∈ 𝑋0, (21)

where the bilinear forms are defined as

𝑎(𝒘, 𝒗) = ∫𝛺
ε(𝒗)t𝐂ε(𝒘) 𝑑𝛺 ∀𝒘, 𝒗 ∈ 𝑋, (22)

(𝒘, 𝒗) = ∫𝛺
𝒗t𝒘 𝑑𝛺 ∀𝒘, 𝒗 ∈ 𝑋, (23)

nd the linear form reads

(𝒗) = ∫𝛺
𝒇𝒗 𝑑𝛺 + ∫𝜕𝛺n

𝒈n𝒗 𝑑𝜕𝛺 − 𝑎(𝒖d, 𝒗) −
𝑑2

𝑑𝑡2
(𝒖d, 𝒗) ∀𝒗 ∈ 𝑋0, (24)

2.2.3. Semi-discretization with finite elements
By discretizing in space we obtain the semi-discrete formulation:

Find 𝒖0 ∈ 𝑌 (𝑋ℎ,0) ∶ 𝑎(𝒖ℎ,0, 𝒗) +
𝑑2

𝑑𝑡2
(𝒖ℎ,0, 𝒗) = 𝑙(𝒗) ∀𝒗 ∈ 𝑋ℎ,0, (25)

Here, 𝑋ℎ,0 ⊂ 𝑋0, and dim(𝑋ℎ,0) = 𝑁dof < ∞. For linear finite elements
e can express 𝑋ℎ,0 as

ℎ,0 =
{

𝑣 ∈ 𝑋0 | 𝑣|𝛺𝑒 ∈ 𝑃1(𝛺𝑒), 𝑒 = 1,… , 𝑁el

}

(26)

= span{𝜙1, 𝜙2,… , 𝜙𝑁dof
} (27)

where the domain 𝛺 are properly triangulated into simplex elements
(lines in 1D, triangles in 2D, and tetrahedrons in 3D) with domain 𝛺𝑒,
and 𝑁dof and 𝑁el are the number of degrees of freedom and number of
inite elements, respectively. Using the nodal basis functions {𝜙 }, 𝑖 =
5

𝑖 d
,… , 𝑁dof we can represent any test function in 𝑋ℎ,0 and trial function
n 𝑌 (𝑋ℎ,0) as follows:

∀𝒗 ∈ 𝑋ℎ,0 𝒗(𝒙) =
𝑁dof
∑

𝑖=1
𝑣𝑖 𝜙𝑖(𝒙) (28)

𝒖ℎ,0(𝒙) ∈ 𝑌 (𝑋ℎ,0) 𝒖ℎ,0 =
𝑁dof
∑

𝑗=1
(𝑢ℎ,0)𝑗 (𝑡)𝜙𝑖(𝒙) (29)

otice that, the coefficients for the trial functions, (𝑢ℎ,0)𝑗 (𝑡), are time-
ependent, whereas that is not the case for the coefficients for the test
unctions, 𝑣𝑖.

By insertion of the nodal basis into Eq. (25) we get the following
ystem of ordinary differential equations (ODEs):

𝑼 (𝑡) +𝑴�̈� (𝑡) = 𝑭 (𝑡) (30)

here an element of the system stiffness matrix 𝑨 is defined by 𝐴𝑖𝑗 =
(𝜙𝑖, 𝜙𝑗 ), an element of the system mass matrix 𝑴 is defined by 𝑀𝑖𝑗 =
𝜙𝑖, 𝜙𝑗 ), an element of the system load vector , 𝑭 is defined by 𝐹𝑖 = 𝑙(𝜙𝑖),
nd an element of the unknown finite element solution 𝑼 is 𝑈𝑖(𝑡) =
𝑢ℎ,0)𝑖(𝑡), where the range of the indexes are: 𝑖, 𝑗 = 1,… , 𝑁dof .

.2.4. System of discrete equations
To obtain a fully discrete system of equations we need to discretize

q. (30) in time. We will here use a second order accurate implicit Euler
inite-difference approximations:

𝑼 (𝑖+1) +𝑴 1
𝑘2

[

𝑼 (𝑖−1) − 2𝑼 (𝑖) + 𝑼 (𝑖+1)] = 𝑭 (𝑖+1) (31)

Here, 𝑼 (𝑖) denotes the approximate solution 𝑼 (𝑡) at the time 𝑡𝑖 =
𝑘, where 𝑘 is the time step. After rearranging the term we get the
ollowing system of algebraic equations:

𝑨 + 1
𝑘2

𝑴
)

𝑼 (𝑖+1) = 𝑭 (𝑖+1) + 1
𝑘2

𝑴
[

2𝑼 (𝑖) − 𝑼 (𝑖−1)] (32)

his system can be solved by any appropriate solver, preferably a sparse
olver for 2D and small 3D problems. For large problems (e.g., in 3D)
terative solvers as Conjugate Gradient Method will typically be a better
hoice. Starting from 𝑈0, the known initial condition 𝝁0 projected
nto 𝑋ℎ, repeatedly solving Eq. (32) allows us to march forward in
ime, eventually obtaining approximations of 𝒖(𝒙, 𝑡) up to the specified

final time 𝑇 . For the spatial discretization, we use piecewise linear
Lagrange simplex elements [39] on an equidistant grid. As can be seen
in Section 4.1, the relative error of the resulting model’s predictions
is roughly 1% or smaller in the scenarios where no modeling error is
synthesized. This is a reasonable result for what must be considered
as a fairly simple PBM, and serves as a good benchmark for DDM and
CoSTA to beat.

2.3. Nonlinear elasticity modeling

As previously mentioned, the linear elasticity model introduced
in the previous section is well-suited for modeling small strains and
stresses.3 More flexible elasticity modeling can be achieved by relaxing
the assumptions that material properties like Young’s modulus 𝐸 and
the Poisson ratio 𝜈 be constants. For the nonlinear elasticity cases
considered herein, we consider 𝐸 as a function of strain, i.e. 𝐸 = 𝐸(ε).

o accommodate for this, a slight alteration to the system (4)–(5) is
equired, such that we obtain

σ = 𝐂(ε)ε (33)
tσ − �̈� = −𝒇 . (34)

ere, we highlight that Eq. (33) is nonlinear in 𝒖 via the Young’s
odulus 𝐸, and hence the constitutive matrix 𝐂, dependence on the

train vector 𝜺.

3 The precise meaning of ‘‘small’’ strains and stresses is highly material-
ependent.
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Table 1
Description of experiments and modeling errors (in addition to discretization error).

Exp. # Modeled physics PBM modeling error

1 2D Linear elasticity with load term None
2 2D Linear elasticity with load term Load term replaced with zero
3 3D Linear elasticity with reduced dimensionality A dimension is ignored
4 2D Nonlinear elasticity PDE is linearized
w
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2.4. Data driven modeling using neural networks

We use deep neural networks (DNN) to create the purely data-driven
models considered in herein. This is motivated by the observation that
DNNs are universal approximators [40–42] and hence have the ability
to model highly complex nonlinear phenomena. A DNN with 𝑁 layers
is a function 𝐷 ∶ R𝑑0 → R𝑑𝑁 defined by

𝐷(𝑥) = 𝑁 ◦ 𝑠𝑁−1 ◦ 𝑁−1 ◦ 𝑠𝑁−2 ⋯ ◦ 𝑠1 ◦ 1(𝑥) (35)

where 𝑖 ∶ R𝑑𝑖−1 → R𝑑𝑖 are affine transformations and 𝑠𝑖 ∶ R𝑑𝑖 → R𝑑𝑖 are
some preferably nonlinear activation functions.4 Each transformation
𝑖 is determined by a weight matrix and a bias vector, a total of
𝑑𝑖−1 × 𝑑𝑖 + 𝑑𝑖 values. These values are tuned to minimize the DNN’s
predictive error on the training data. DNNs are widely used, due to
their simplicity and yet astonishing performance in many situations.
They can be applied to a large variety of problems, and have delivered
impressive achievements across numerous fields of research and appli-
cations. Meanwhile, they also have some inherent weaknesses. They are
prone to overfitting on the training data. While there are many ways of
preventing the network from being too specialized [43], they will not
be good at extrapolation cases where the prediction task is somehow
qualitatively different from the training tasks. In addition, they are not
easily explainable or predictable, meaning it is hard to explain what
kind of patterns the network will look for, and unexpected predictions
can occur. Compared to PBMs, DDMs usually make predictions much
faster, but may need long training times for optimal performance.

2.5. Corrective source term approach

In this section we present a brief justification of the use of CoSTA.
It is based on the more elaborate argument that can be found in [29].

Consider the differential equations

𝐿𝛺𝜔 = 𝜃, ∀𝒙 ∈ 𝛺

𝐿𝜕𝛺𝜔 = 𝜓, ∀𝒙 ∈ 𝜕𝛺, (36)

where 𝐿𝛺 , 𝐿𝜕𝛺 are differential operators, 𝜃 is a source term, 𝜓 a
function specifying the boundary condition, and 𝜔 is the unknown of
interest. For notational simplicity we assume 𝜔 to be a scalar. Now let
�̃� be the solution to the perturbed problem

�̃�𝛺�̃� = 𝜃, ∀𝒙 ∈ 𝛺

�̃�𝜕𝛺�̃� = �̃� , ∀𝒙 ∈ 𝜕𝛺, (37)

where the perturbations ⋅̃ are due to imperfections such as unknown
physics, modeling errors, discretization error, or noise. For example, we
will later in this paper simplify a nonlinear operator 𝐿𝛺 with a linear
(and discretized) �̃�𝛺. Assume we can calculate the residuals defined as

𝑟𝛺 = �̃�𝛺(𝜔 − �̃�)

𝑟𝜕𝛺 = �̃�𝜕𝛺(𝜔 − �̃�), (38)

and let ̃̃𝜔 be the solution of the corrected, perturbed problem

�̃�𝛺 ̃̃𝜔 = 𝜃 + 𝑟𝛺 , ∀𝒙 ∈ 𝛺

4 With linear activation functions the method reduces to multivariate
inear regression. For the universal approximation property it should also be
onpolynomial.
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�̃�𝜕𝛺 ̃̃𝜔 = �̃� + 𝑟𝜕𝛺 ∀𝒙 ∈ 𝜕𝛺. (39)

Using the definition of the residuals, as well as the perturbed Eq. (37),
we see that

�̃�𝛺 ̃̃𝜔 = 𝜃 + �̃�𝛺(𝜔 − �̃�) = �̃�𝛺𝜔, ∀𝒙 ∈ 𝛺

�̃�𝜕𝛺 ̃̃𝜔 = �̃� + �̃�𝜕𝛺(𝜔 − �̃�) = �̃�𝜕𝛺𝜔 ∀𝒙 ∈ 𝜕𝛺,

which reduces to ̃̃𝜔 = 𝜔 if the corrected, perturbed problem (39) yields
a unique solution. From this argument, we see that the source term
corrections are able to compensate for perturbations in the differential
operators as well as the source terms.

In real scenarios, we obviously cannot calculate the residual exactly,
as that would require the solution we are trying to estimate. The idea
of the CoSTA method is to use a DDM to estimate the residual. For the
input of the DDM we use the uncorrected solution �̃�. This means the
PBM is used twice per time level, first to solve Eq. (37) for �̃�, then
Eq. (39) for ̃̃𝜔. As mentioned in [29], other DDM input choices are
possible. For example, one could use the corrected prediction ̃̃𝜔 from
the previous time level, such that the PBM is only used once per time
level. Investigating different DDM input choices is outside the scope of
the present work, so we stick with the DDM input used in [29].

In the case of linear elasticity, the variational formulation of Eq. (37)
corresponds to Eq. (21). The corrected form of Eq. (32), corresponding
to the general corrected perturbed Eq. (39), reads
(

𝑨 + 1
𝑘2

𝑴
)

𝑼 (𝑖+1) = 𝑭 (𝑖+1) + 1
𝑘2

𝑴
[

2𝑼 (𝑖) − 𝑼 (𝑖−1)] + 𝒓 (40)

here 𝒓 is the residual vector corresponding to Eq. (32) with an
ppropriate projection of the true solution inserted in the place of 𝑈 .
n the present work, we use a DNN to approximate the residual vector
. As the boundary values are known (as we here assume 𝜕𝛺d = 𝜕𝛺),
e do not need any correction for these elements. Therefore the DNN
nly needs to output values for the interior nodes.

.6. Method of manufactured solutions

We seek to evaluate the performance of the models described above
n a selection of different elasticity modeling problems. To this end, we
se the method of manufactured solutions [44] to create exact reference
ata. For a governing equation written on the general form (36), the
ethod involves choosing a solution 𝜔, and calculating the source 𝜃

hat admits the chosen 𝜔 as a solution to the governing equation.
n order to evaluate the accuracy of a model, the model is used to
pproximate the chosen solution 𝜔 given the calculated 𝜃 as well as
he correct boundary data 𝜔|𝑡=0 and 𝜔|𝛺.

The alternative to using the method of manufactured solutions is to
hoose the conditions 𝜃, 𝜔|𝑡=0 and 𝜔|𝛺 to use for approximating the

solution �̃�. But then the correct solution is unknown, so the error 𝜔− �̃�
must be approximated by using a more precise method.5 Usually, this
is very computationally demanding, and it only yields an approximate
error. In comparison, the method of manufactured solutions is compu-
tationally inexpensive and introduces no uncertainty in the assessment
of model accuracy.

5 Usually high fidelity numerical solutions of the equation, with a fine grid.
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Table 2
Values of the parameter 𝛼 used for training, validation and testing.

Set usage Notation Values

Testing test {−0.5, 0.7, 1.5, 2.5}
Validation val {0.8, 1.1}
Training train {0.1, 0.2,…2.0} ⧵ (test ∪val)

Fig. 1. Values of 𝛼 used for training, validation, interpolation testing and
extrapolation testing.

3. Methodology

In the present work, we consider four different numerical experi-
ments, simply enumerated as Experiment 1–4. The goal of these exper-
iments is to test the predictive accuracy and generalizability of CoSTA,
in comparison to its constituent PBM and DDM components. This
section is dedicated to describing the methodology of the experiments.
Elements of the methodology that are common among all experiments
are described in Section 3.1. What is unique for each experiments is
then described in Sections 3.2–3.4. This is summarized in Table 1. All
four experiments concern elasticity modeling using the PBM, DDM and
CoSTA models introduced earlier.

3.1. General setup

3.1.1. Data generation
To conduct our numerical experiments, we need data for two pur-

poses. First of all, we need reference data to which we can compare
the predictions of our models. Moreover, we need training data for the
purely data-driven model and the data-driven component of CoSTA.
To obtain this data, we use the method of manufactured solutions (cf.
Section 2.6).6 For a lack of established benchmark solutions used to
evaluate the accuracy of linear elasticity equation solvers, we have cre-
ated our own manufactured solutions. In order to cover a broad class of
solutions, the manufactured solutions include a variety of polynomial,
exponential and harmonic functions. These functions are described in
the sections covering experiment-specific information. What they all
have in common is that they are parametrized by some variable 𝛼.

onsequently, it is useful to view each manufactured solution as a
amily of functions, one for each value of 𝛼, corresponding to different
ystem states. In the present work, we consider a total of 22 𝛼-values,
s listed in Table 2 and visualized in Fig. 1. 16 of these values are used
or training the DNNs used in the DDM and CoSTA models,7 while two
ore are used for DNN validation. The remaining four values are used

or testing the accuracy of the models. Two of these lie within the range
sed to generate training data, while the other values are outside this
ange. We refer to the former as interpolation scenarios and the latter
s extrapolation scenarios.

As mentioned in Section 2.2, we have two quantities of main
nterest in elasticity modeling: σ and 𝒖.8 These are related through the
onstitutive relation (4), which depends on the material properties 𝐸
nd 𝜈. Unless otherwise stated, we always use 𝐸 = 1 and 𝜈 = 0.25.
sing the constitutive relation, if we know 𝒖, we can compute σ, and
ice versa. For our manufactured solutions, we elect to fix 𝒖, 𝐸 and 𝜈.
is then computed using Eq. (4), before 𝒇 is computed using Eq. (5).

6 In a real-world use-case, one might instead use sensor measurements or
imulation data from a high-fidelity offline model.

7 We highlight that PBM does not require any training.
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Recall that 𝝈 and σ are equivalent representations of the same variables. s
Table 3
Overview of spatial and temporal resolution.

Exp. # No. Elements No. Time Steps, 𝐾

1 15 × 15 1000
2 15 × 15 1000
3 15 × 15 1000
4 10 × 10 500

3.1.2. Model summary
In our numerical experiments, we use the PBM, DDM and CoSTA

models for elasticity problems that were introduced in Section 2. These
are briefly summarized below.

PBM: Eq. (32) is solved using a linear finite element model with
first order (i.e. piecewise linear) simplex Lagrange elements [39] on
an equidistant grid. Unless otherwise specified, the spatial domain
considered is the unit square [0, 1] × [0, 1], and the time domain is
the unit interval [0, 1]. The time interval is divided into time steps
of constant length 𝑘 = 𝐾−1, where 𝐾 is the number of time steps.
The spatial and temporal resolution used varies across experiments, as
shown in Table 3.

DDM: For the DDM, we use a DNN with four dense hidden layers of
80 nodes each. The length of the input and output layers depend on the
PDE and discretization. The input vector contains every basis function,
while the output does not contain the functions on the boundary. Recall
that the two-dimensional (2D) elasticity equation has a vector field
solution with two basis functions per element. For the experiments with
15 elements in each dimension, this gives (2 × 16)2 input nodes and
(2 × 14)2 output nodes, as shown in Fig. 2.

The neural networks are implemented using TensorFlow [45]. As
activation function we use leaky ReLU [46], with coefficient 0.01
for negative inputs. Training parameters are presented in Table 4.
A patience of 20 means the training stops when the score on the
validation set has not improved for the last 20 optimizer steps. All the
data is normalized before it is inputted in the DNN, and the output is
unnormalized, based on the statistical properties of the training data.

CoSTA: Eq. (40) is solved using the exact same finite element
method discretization used in the PBM with exactly the same spatial
and temporal resolution. Moreover, the residual 𝑟 is approximated by
a DNN with exactly the same architecture and hyperparameter values
as the DNN used for pure DDM.

3.1.3. Experimental procedure
The experimental procedure used is presented in Algorithm 1. 𝐾

denotes the total number of time steps. Note the difference between �̌� ,
�̄� and �̂� : we denote by �̌� the vector form of the exact solution.9 The
predictions �̄� , used for training, are based on the previous exact step,

hile �̂� , used for testing, are based on the previous predicted step (the
irst predicted step is based on the exact initial values). As in Section 2,
e use the superscript to denote the time step, e.g. �̂� (𝑖) is at time 𝑡𝑖 = 𝑖𝑘.

The PBM, DDM and CoSTA models map their predictions �̂� (𝑖−1) to
̂ (𝑖). This map is used iteratively to calculate �̂� (𝐾) at the final time step,
rom the initial (exact) input �̌� (0). We should therefore expect that any
rror in one step propagates into the next. It is not feasible to train
DM or CoSTA to counteract this by fixing the global error, because (1)
he models would depend on the arbitrary starting time, and (2) the
equired amount of data and training time would increase drastically
ince the number of training examples per time series would decrease
rom 𝐾 to 1. Therefore, the exact solution �̌� is used as both the input
nd output training data for every time step.

For testing scenarios, the exact solution at time 𝑡 = 0 is used as the
nput for the first step, and then each model predict each step based

9 That is, the piecewise linear function characterized by �̌� equals the exact
olution on the grid points.
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Fig. 2. Visualization of the DNN architecture for the experiments with 15 × 15 elements. The nodes represent input, output and intermediate values, while the arrows going
between them represent dependencies. Generally there is one input node for each basis function, and one output node for each basis function not on the edge.
Algorithm 1: Pseudocode showing how the experiments were
performed.
Pick a solution 𝒖exact (𝑡, 𝑥, 𝑦, 𝑧, 𝛼);
Use governing equations (the PDE, before any simplification) to
calculate 𝒇 from 𝒖exact ;
for 𝛼 ∈ train and 𝛼 ∈ val do

for 𝑖 = 0, 1, 2...𝐾 − 1 do
Use (simplified) PBM to calculate �̄� (𝑖+1)

PBM = PBM(�̌� (𝑖));
Calculate the residual 𝒓(𝑖+1) = �̂�(�̌� (𝑖+1) − �̄� (𝑖+1)

PBM );

Train DDM to map �̌� (𝑖) to �̌� (𝑖+1), i.e. minimize
∑

𝛼∈train

∑𝐾−1
𝑖=0

|

|

|

�̌� (𝑖+1) − DDM(�̌� (𝑖))||
|

2
;

Train CoSTA network to map �̄� (𝑖+1)
PBM to 𝒓(𝑖+1), i.e. minimize

∑

𝛼∈train

∑𝐾−1
𝑖=0

|

|

|

𝒓(𝑖+1) − DDMCoSTA(PBM(�̌� (𝑖)))||
|

2
;

�̂� (0)
DDM = �̌� (0);

�̂� (0)
PBM = �̌� (0);

�̂� (0)
CoSTA = �̌� (0);

for 𝛼 ∈ test do
for 𝑖 = 0, 1, 2...𝐾 − 1 do

calculate �̂� (𝑖+1)
DDM = DDM(�̂� (𝑖)

DDM);
calculate �̂� (𝑖+1)

PBM = PBM(�̂� (𝑖)
PBM);

calculate �̂� (𝑖+1)
CoSTA = PBM(�̂� (𝑖)

CoSTA,DDMCoSTA(PBM(�̂� (𝑖)
CoSTA)));

Evaluate by comparing to exact solution 𝒖exact

on the previous. Boundary conditions are also used as input for each
step, along with the source function values for the PBM. The error is
measured at each step, and presented in the result sections.

For actual usage of this method for prediction, the first two lines and
the last line of Algorithm 1 is skipped. Instead, 𝒇 must be known (or
approximated), along with 𝒖exact in training scenarios, and the initial
conditions and boundary conditions in the testing scenarios.

3.1.4. Evaluation and visualization
To evaluate the performance of the different methods, relative root
8

mean square error (RRMSE) is measured at each time step. This value e
Table 4
Parameters used for the training procedures for all of
the neural networks.
Loss function MSE

Optimizer Adam [47]
Learning rate 1𝑒 − 5
Patience 20

is defined

RRMSE(𝑼 (𝑖), �̌� (𝑖)) =
‖𝑼 (𝑖) − �̌� (𝑖)

‖2

‖�̌� (𝑖)
‖2

(41)

for a prediction 𝑼 and correct solution �̌� . For models with stochastic
results (i.e. DDM and CoSTA, that includes a DNN with random initial-
ization), 10 models are trained and used. In a real world application,
the objective would determine if we are interested in the least amount
of error at all time steps, or only at the last one. In this work we are
interested in both. In the result plots presented in Section 4, the mean
of the RRMSE of the 10 models is plotted as a line on a logarithmic
scale, as a function of time steps. The uncertainty is also quantified and
visualized in the plots by shading the area between the mean RRMSE,
and the mean RRMSE plus one standard deviation.10 Mean RRMSE
minus one standard deviation is not plotted since it might be negative,
which does not work well on logarithmic scales.

3.2. Modeling linear elasticity with known and unknown load term

In Experiments 1 and 2, we consider a system governed by the 2D
transient linear elasticity Eqs. (4) and (5) with a non-zero load term
𝒇 . In Experiment 1, 𝒇 is known to the PBM and CoSTA models. Conse-
quently, discretization error will be the only source of error in the PBM,
and the task of the DNN used in the CoSTA model will be to reduce
this error. In Experiment 2, 𝒇 is assumed unknown, so we set 𝒇 = 𝟎
in both the PBM and CoSTA models, thereby synthesizing modeling
error.11 Since the DDM does not have explicit knowledge about 𝒇 , there

10 The standard deviation is calculated using one reduced degree of freedom
due to the estimation of the mean.

11 In real-world use-cases, one should use the best available a priori
stimation of 𝒇 .
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Table 5
Manufactured solutions for the elastic problems.
Label 𝒖(𝑡, 𝑥, 𝑦, 𝛼)

e1
[

sin(𝜋(𝑥 + 𝛼𝑦)) cos(𝛼𝑡)
cos(𝜋(𝑥 + 𝛼𝑦)) sin(𝛼𝑡)

]

e2
⎡

⎢

⎢

⎣

exp( (−𝑡𝑥
2+𝑦2 )

(1+𝛼+𝑡2 )
)

exp( (+𝑡𝑥
2−𝑦2 )

(1+𝛼+𝑡2 )
)

⎤

⎥

⎥

⎦

e3
[

𝑥3 + 𝑦2(𝑡 + 0.5)1.5 + 𝑥𝑦𝛼
𝑥2 + 𝑦3(𝑡 + 0.5)1.1 + 𝑥𝑦𝛼

]

Table 6
Manufactured solutions for the dimensionally reduced elasticity problems.

Label 𝑢(𝑡, 𝑥, 𝑦, 𝛼)

ed1

⎡

⎢

⎢

⎢

⎢

⎣

sin(𝜋(𝑥 + 𝛼𝑦 + 1+𝛼
2
𝑧)) cos(𝛼𝑡)

cos(𝜋(𝑥 + 𝛼𝑦 + 1+𝛼
2
𝑧)) sin(𝛼𝑡)

− cos(𝜋(𝑥 + 𝛼𝑦 + 1+𝛼
2
𝑧)) sin(𝛼𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

ed2

⎡

⎢

⎢

⎢

⎢

⎣

exp( (−𝑡𝑥
2+𝑦2+𝑧2 )

(1+𝛼+𝑡2 )
)

exp( (+𝑡𝑥
2−𝑦2+𝑧2 )

(1+𝛼+𝑡2 )
)

exp( (+𝑡𝑥
2+𝑦2−𝑧2 )

(1+𝛼+𝑡2 )
)

⎤

⎥

⎥

⎥

⎥

⎦

ed3

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥3 + 𝑦2(𝑡 + 1
2
)1.5 + 𝑥𝑦𝛼 +

√

𝑡 + 1
2
𝑧2 + 𝑧(𝑥 + 𝑦)𝛼

𝑥2 + 𝑦3(𝑡 + 1
2
)1.1 − 𝑥𝑦𝛼 +

√

𝑡 + 1
2
𝑧2 + 𝑧(𝑥 − 𝑦)𝛼

𝑥2 + 𝑦2(𝑡 + 1
2
)1.1 + 𝑥𝑦𝛼 +

√

𝑡 + 1
2
𝑧3 + 𝑧(𝑦 − 𝑥)𝛼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is no difference between Experiments 1 and 2 from the perspective of
the DDM. The manufactured solutions used in Experiments 1 and 2
are listed in Table 5. These are all solutions of the 2D linear elasticity
equations.

3.3. Modeling linear elasticity with reduced dimensionality

In general, a model’s computational complexity and expense in-
crease greatly with the number of dimensions being modeled. Con-
versely, if the situations allow it, reducing the dimensionality of a
model can greatly reduce the model’s computational cost. However,
the model’s accuracy will generally also be reduced. Experiment 3 is
designed to investigate whether CoSTA can be used to correct errors
introduced by dimensionality reduction. To this end, we use our 2D lin-
ear elasticity PBM, DDM and CoSTA models to model the displacement
of a 2D plane in a 3D object, as illustrated in Fig. 3. The manufactured
solutions, which are solutions of the 3D linear elasticity equations, are
listed in Table 6. Note that, since the displacement 𝒖 is a vector field
with as many components as there are dimensions, our 2D models
cannot predict the 𝑧-component of 𝒖.12 Therefore, we consider only the
𝑥- and 𝑦-components of 𝒖 when evaluating the predictive accuracy of
our models. This approach is most relevant when displacement in the
reduced direction is either small and/or of little interest compared to
displacement in the other directions.

12 An alternative approach to dimensional reduction for the linear elasticity
quation (and other vector field PDEs), is to base the PBM on the three-
imensional model, but replace the derivatives in the ignored 𝑧-direction with
ero (or some other appropriate value). The resulting PBM would produce
redictions for all components of 𝒖. Although the PBM prediction of the third
omponent likely would be quite inaccurate, the CoSTA term could help. Due
o the inter-dependencies of the components, this could potentially give a
seful prediction of the third component of the displacement, that in turn
ould make the other components more accurate. This idea is not pursued
9

urther in this paper. f
Fig. 3. Example of an object to model using the dimensional reduction method. While
the full model is a three-dimensional cube, we only predict the shaded plane. Boundary
conditions needed are those at the thick red edges at 𝑧 = 0.

Table 7
Manufactured solutions for nonlinear elastic problems.

Label 𝒖(𝑡, 𝑥, 𝑦, 𝛼) 𝐸

n1
[

sin(𝜋(𝑥 + 𝛼𝑦)) cos(𝛼𝑡)
cos(𝜋(𝑥 + 𝛼𝑦)) sin(𝛼𝑡)

]

5
√

20+‖ε‖f

n2
⎡

⎢

⎢

⎣

exp( (−𝑡𝑥
2+𝑦2 )

(1+𝛼+𝑡2 )
)

exp( (+𝑡𝑥
2−𝑦2 )

(1+𝛼+𝑡2 )
)

⎤

⎥

⎥

⎦

5
√

20+‖ε‖f

n3
[

𝑥3 + 𝑦2(𝑡 + 0.5)1.5 + 𝑥𝑦𝛼
𝑥2 + 𝑦3(𝑡 + 0.5)1.1 + 𝑥𝑦𝛼

]

5
√

20+‖ε‖f

3.4. Modeling nonlinear elasticity

In Experiment 4, we consider a system with non-constant Young’s
modulus 𝐸 = 𝐸(ε). The stiffness of a material usually decreases with
applied strain, so we choose a decreasing function

𝐸(ε) = 5
√

20 + ‖ε‖f
, (42)

where ‖ ⋅ ‖f is the Frobenius norm. With this choice, the assumption of
= 1 in the PBM is obviously not true, but still ‘‘in the ball park’’ for

he manufactured solutions we consider here. These manufactured so-
utions, which have the same displacement 𝒖 as the solutions discussed

in Section 3.2, are presented in Table 7.13

The non-linearity greatly increases the cost of generating reference
ata. Therefore. only 500 time steps, 10 × 10 elements and 5 initial-

izations of DDM and CoSTA were used in this experiment. The DNN
learning rate was also increased to 8 × 10−5.

4. Results and discussion

For the exact implementation used for the experiments and figures
in this work, see the first author’s GitHub repository [48].

4.1. Experiments 1 & 2 – known and unknown load term

The temporal development of the models RRMSE is presented in
Fig. 4 for interpolation scenarios and Fig. 5 for extrapolation scenarios.
Results for the same manufactured solution with known and unknown

13 Of course, since we use the same 𝒖 but a different 𝐸, 𝝈 and 𝒇 are different
ere than for Experiments 1 and 2. For the sake of brevity, we have not written
ut 𝝈 or 𝒇 for any of out manufactured solutions here. However, they can be
ound in [48].
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Fig. 4. Temporal development of relative 𝑙2 error for solutions with correct source term (left) and zero source term (right) in interpolation scenarios. CoSTA is the most accurate
method in all the cases. ( PBM, DDM, CoSTA).
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load term are shown next to each other for easy comparison. We
observe that CoSTA is more accurate than both PBM and DDM in all
interpolation cases, and also in a significant majority of extrapolation
cases. The only two cases where CoSTA is clearly not the most accurate
model is 𝛼 = −0.5 for Solution e1 with known source term and
for Solution e2 with unknown source term. In accordance with the
discussion in Section 1, PBM performs at its best in the cases with no
unknown physics, and DDM performs at its best in the interpolation
scenarios.

The observation that CoSTA is generally more accurate than the
PBM in Experiment 1 (with known load term) shows that CoSTA can
be used to correct discretization error. This is in line with the findings
in [29], and suggests that CoSTA can be used to speed up expensive
PBMs by permitting coarse discretizations without loss of accuracy. As
for Experiment 2 (with unknown load term), since CoSTA outperforms
DDM in most cases, it is evident that even a PBM severely affected by
modeling error can be valuable in combination with a DNN.

From the top row of Fig. 5, it is clear that the purely data-driven
model struggles in both extrapolation scenarios for Solution e1. Indeed,
the DDM predictions have relative errors of roughly 100%. Conse-
10

quently, it is perhaps not so surprising that the data-driven component
of CoSTA also struggles. Although the observed increase in error caused
by CoSTA’s DDM-generated correction term is undesirable, it is promis-
ing that CoSTA did not fail completely in a way similar to the DDM.
This suggests that CoSTA is more robust than DDM.

For Solution e2, we observe that DDM performs quite well in all
ases. This can perhaps be attributed to the simplicity of the solution,
oth in terms of spatial variability and its dependence on 𝛼.14 Our
esults suggest that, in such simple cases, if the PBM is insufficiently
ccurate, it does not ease the learning task of the DDM, so pure DDM
s more accurate. This is what we observe for Solution e2 with 𝛼 = −0.5
nd unknown load term.

Finally, we note that the error of CoSTA often fluctuates less and
as a smaller standard deviation15 than the DDM errors. This increased

14 Solution e2 at 𝑡 = 0 is largely dependent on 𝛼, while its value at 𝑡 = 1 is
much less so. Apart from the average slope, the general shape of the solution
is also largely independent of 𝛼.

15 Beware that, due to the logarithmic scaling of the 𝑦-axes, a larger shaded
area does not necessarily imply a larger standard deviation (cf. e.g. the middle

row, left half of Fig. 4).
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Fig. 5. Temporal development of relative 𝑙2 error for solutions with correct source term (left) and zero source term (right) in extrapolation scenarios. CoSTA is the best method,
r among the best methods, in most cases, only being beaten once by each of the other methods. ( PBM, DDM, CoSTA).
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consistency contributes positively to the trustworthiness of CoSTA, as
compared to DDM.

4.2. Experiment 3 – dimensionality reduction

The models’ RRMSE for Experiment 3 are presented in Fig. 6. For
interpolation cases, CoSTA is consistently more accurate than the other
two methods. DDM is in turn much better than PBM in these cases.
For extrapolation, the DDM and PBM are alternately more accurate
than each other, while CoSTA is clearly the most accurate model for
Solutions ed1 and ed3. For Solution ed2 DDM is most accurate in the
last time steps for 𝛼 = −0.5, while DDM and CoSTA are roughly equally
ccurate for 𝛼 = 2.5. Overall, the results indicate that CoSTA is well-

suited for correcting modeling error stemming from dimensionality
reduction in PBMs.

4.3. Experiment 4 – linearization of nonlinear elasticity

The models’ RRMSE for Experiment 4 are presented in Fig. 7. CoSTA
is clearly more accurate than PBM and DDM in all the interpolation
cases. DDM is more accurate than PBM for all interpolation cases except
11

r

Solution n1, where PBM is more accurate. In the extrapolation scenar-
ios, CoSTA is significantly more accurate than PBM for Solution n2 with
𝛼 = 2.5 and Solution n3, while in the other cases the two model’s
re roughly equally accurate. DDM fails completely (100% RRMSE)
or Solution n1, and is also the least accurate model for Solution n3.
owever, for Solution n2, DDM is more accurate than PBM in both
ases and also more accurate than CoSTA for 𝛼 = −0.5. The latter case
s the only one in this experiment where CoSTA is not the most accurate
odel.

.4. Result comparison and further discussion

In this section, we summarize and provide further comments on the
esults of our numerical experiments. We have discussed four experi-
ents (concerning discretization error, unknown load term, dimension-

lity reduction and linearization) with 3 parametrized manufactured
olutions and 4 𝛼-values combining to a total of 48 test scenarios.
n most scenarios, and in all interpolation scenarios, CoSTA has been
he most accurate model. Still, there has been some variability in the
elative performance of the three models.
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Fig. 6. Temporal development of relative 𝑙2 error for dimensional reduced linear elasticity in interpolation scenarios (left) and extrapolation scenarios (right). Observe that CoSTA
is more accurate than PBM in all cases, and better than DDM in all except 𝛼 = −0.5 for solution ed2. ( PBM, DDM, CoSTA).
Tables 8, 9 and 10 show the number of times each model was the
ost accurate (i.e. had the lowest (mean) RRMSE at the final time

tep), categorized by 𝛼-value, experiment and manufactured solution,
espectively. Moreover, Fig. 8 shows the number of times a model
as more accurate than the other models by at least a factor 𝛿, as a

unction of significance threshold 𝛿. Similarly, Fig. 9 shows the number
f times each model was the least accurate, again as a function of the
ignificance threshold. These tables and figures will form the basis for
urther discussion below.

First of all, Tables 8, 9 and 10 and Figs. 8 and 9 all support the
tatement that CoSTA is generally more accurate than PBM and DDM
n our experiments.

In Table 8, we observe that 𝛼 = −0.5 is the only 𝛼-value for which
oSTA has not been the consistent winner. Given the discussion in
ection 1, where PBM was labeled as more generalizable than DDM,
t may seem strange that, in the extrapolation scenarios, the DDM is
he most accurate model more frequently than the PBM. However,
e believe that this can be explained by considering three factors, as
12

xplained in the following.
The first factor is that, out of the four scenarios with 𝛼 = −0.5 where
the DDM is the most accurate model, three concerns the exponential
manufactured solution. As touched upon briefly in Section 4.1, this
solution has a qualitatively simple dependence on 𝛼 which may be well
suited for approximation by DNNs, although the underlying mechanism
for this is unknown. The fourth case with 𝛼 = −0.5 where DDM ‘‘wins’’,
is for Solution e1 in Experiment 2. Here, although DDM is the most
accurate, its RRMSE at the final time step is still close to 100%, and its
predictions consequently worthless from a practical standpoint.

Secondly, across all 48 scenarios, the accuracy of DDM is more
often than not higher than that of PBM (cf. Figs. 8 and 9). That is,
on average, our DDM is more accurate than our PBM for the modeling
problems considered in our experiments. Thus, DDM can afford to lose
some accuracy due to poor generalizability and still be more accurate
than PBM. Thirdly, the accuracy of DDM is worse in all extrapolation
scenarios than in the corresponding interpolation scenarios. PBM does
not exhibit a similar trend. Considering these factors, we believe that
our results do not contradict the statement that PBM generalizes better

than DDM, but rather support it.
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Fig. 7. Temporal development of relative 𝑙2 error for nonlinear elasticity in interpolation scenarios (left) and extrapolation scenarios (right). While CoSTA is most accurate in all
nterpolation cases, the extrapolation results vary more. ( PBM, DDM, CoSTA).
Table 8
Overview of number times each method was the most accurate at final time step, for
each value of 𝛼 and in total.
𝛼 PBM DDM CoSTA Total

−0.5 1 4 7 12
0.7 0 0 12 12
1.5 0 0 12 12
2.5 0 1 11 12

Total 1 5 42 48

Table 9
Overview of number times each method was the most accurate at final time step, for
each type of extra modeling error.

Modeling error PBM DDM CoSTA Total

None 1 0 11 12
Zero source term 0 3 9 12
Dimensionality reduction 0 1 11 12
Linearization 0 1 11 12
13
Table 10
Overview of number times each method was the most accurate at final time step, for
each manufactured solution.

Solution PBM DDM CoSTA Total

e1/ed1/n1 (sinusoidal) 1 2 13 16
e2/ed2/n2 (exponential) 0 3 13 16
e3/ed3/n3 (polynomial) 0 0 16 16

Both DDM and CoSTA have, at times, exhibited noticeable vari-
ability in their predictions. (DDM more so than CoSTA.) Consistency
is important for trustworthiness, and to avoid having to run several
instances of the same model, and should therefore be taken into account
when comparing the methods. One way of penalizing the variance
when summarizing the results is to compare final mean error plus a
standard deviation. The dotted lines in Figs. 8 and 9 show the results
of such a penalization. We see that CoSTA and DDM both perform a bit
worse, and PBM a bit better, with this method of evaluation. But the
difference between the dotted and solid lines is quite insignificant. In
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Fig. 8. Overview of number of times each method was the most accurate at the final
time step, at various degrees of significance. For a value 𝑥1 on the 𝑥-axis, the height
of a curve is the number of times the method was better (had lower error) than both
the other methods by a factor of at least 𝑥1. E.g. by observing the blue line at 101, we
see that in about 10 of the 48 tests, CoSTA won by a factor of at least 101 (meaning
both PBM and DDM had an error of more than 10 times that of CoSTA). The solid line
is the results of evaluating the means (of the CoSTA and DDM initializations), while
the dotted line is from evaluating the mean + one standard deviation, as a way of
penalizing inconsistency.

other words, the difference in accuracy between the methods, are gen-
erally much larger than the difference in accuracy between differently
initialized instances of the same model.16

The above discussion on the scenarios where DDM is the most
accurate model can shed light on the question of when to use CoSTA.
It seems that, if the variable to predict is in some sense mathematically
well-behaved in space and time, predicting a corrective source term is
not necessarily simpler than predicting the solution directly. This ap-
pears to be especially true if (1) the qualitative behavior of the system
is similar across the relevant scenarios, (2) pure PBM offers inaccurate
(or worse, qualitatively incorrect) predictions. In such scenarios, and
for simpler solutions, DDM might outperform CoSTA.

On the opposite end of the spectrum, if a PBM of sufficient accuracy
and acceptable computational cost is available, there is no need to use
CoSTA. If the relevant scenarios are very different from those used to
train CoSTA’s DDM-component, CoSTA might even perform worse than
pure PBM, as seen for Solution e1 with 𝛼 = −0.5 in Experiment 1 (cf.
Fig. 5).

We highlight that the possible limitations described above are rather
weak. Indeed, in the vast majority of cases we have considered, the
CoSTA model is significantly more accurate than the PBM and DDM
models — sometimes by more than one order of magnitude. More-
over, CoSTA’s superior accuracy persists across a selection of different,
commonly encountered error sources: discretization error, unknown
physics, dimensionality reduction and linearization. Overall, we con-
clude that CoSTA is the superior model in our numerical experiments.

5. Conclusion and future work

In our research endeavors focused on elasticity modeling, we em-
barked on a series of numerical experiments aimed at showcasing the
effectiveness of CoSTA in amalgamating physics-based modeling (PBM)

16 This is easy to see in the error plots — while the blue shaded area
howing the standard deviation of CoSTA error at times is relatively thick,
he distance to the other lines is usually considerably larger. Remember also
hat the thickness of the shaded area is also logarithmically scaled, so when the
ean prediction is very accurate, a thick line does not indicate a big variance.

or example, in Fig. 7(e), despite the variance, CoSTA is consistently much
14

ore accurate than the other methods.
Fig. 9. Overview of number of times each method was the least accurate at the final
time step, at various degrees of significance. For a value 𝑥1 on the 𝑥-axis, the height
f a curve is the number of times a method was worse than both the other methods
y a factor of at least 𝑥1. The solid line is the results of evaluating the means (of the
oSTA and DDM initializations), while the dotted line is from evaluating the mean
one standard deviation, as a way of penalizing inconsistency. We see that CoSTA

as never the most inaccurate method, and barely the worst once when adding the
tandard deviation.

nd data-driven modeling (DDM) techniques into a comprehensive uni-
ied model. The results of these experiments, as detailed in this study,
ave revealed the considerable potential of CoSTA in bridging the gap
etween traditional PBM and DDM methodologies. More precisely:

• When it comes to evaluating the accuracy of our CoSTA model,
our findings present a compelling case. Across a total of 48
distinct experimental scenarios, our CoSTA model consistently
outperformed its individual PBM and DDM counterparts in 42 of
these cases. In particular, in numerous instances, the superiority
of CoSTA was not marginal but rather substantial, surpassing
its constituent models by more than one order of magnitude.
This outstanding performance underscores the robustness and
adaptability of CoSTA to address a wide range of engineering
applications and error sources.

• The experiments carried out in this study encompassed a di-
verse set of error sources frequently encountered in engineering
contexts. These included the discretization error, the error stem-
ming from unknown physics, the dimensionality reduction error,
and the linearization error. Our investigations reaffirmed earlier
observations from related research [29,34], demonstrating that
CoSTA excels at mitigating modeling errors attributed to dis-
cretization and errors related to the incorporation of unknown
physics. Importantly, our work stands out as the first comprehen-
sive demonstration of CoSTA’s capabilities in correcting modeling
errors arising from dimensionality reduction and linearization
within PBMs.

• Crucially, our findings also highlight the robustness of CoSTA.
Even when accounting for randomness introduced by deep neu-
ral network (DNN) initialization and the optimization process
through stochastic gradient descent, CoSTA’s superiority remained
evident and persistent.

• Furthermore, it is worth noting a significant milestone achieved
in this study. This work marks the first successful application of
CoSTA in the context of PBMs based on the finite element method,
showcasing the versatility of CoSTA across diverse modeling tech-
niques. Furthermore, to foster transparency and promote fur-
ther research in this area, we have made the implementation of
our CoSTA model open source [48], thus allowing the broader

scientific community to benefit from and build on our findings.
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In summary, our research underscores the compelling potential of
CoSTA as a unifying framework to combine PBM and DDM techniques,
demonstrating its exceptional accuracy, adaptability, and robustness
across a variety of engineering applications and error sources. However,
we still foresee improvements to the CoSTA method in the following
directions:

• Addressing the black-box nature through the use of symbolic
regression: While CoSTA has shown promising results, addressing
its black-box nature is essential for a deeper understanding and
broader applicability. Symbolic regression techniques, such as
genetic programming or neural-symbolic methods, can be ex-
plored to extract interpretable mathematical expressions from the
DDM model. This would help uncover the underlying physics and
relationships captured by CoSTA.

• Exploiting the correlation in time: To enhance CoSTA’s ability
to model transient systems and temporal dependencies, recurrent
neural networks (RNNs) like Long Short-Term Memory (LSTM) or
transformer-based architectures can be incorporated. These mod-
els excel at capturing sequential patterns and could be especially
useful for systems with complex temporal dynamics.

• Dealing with noise: To make CoSTA more robust in practical sce-
narios, incorporating a denoising step into the pipeline is crucial.
This step could involve training CoSTA on data with synthetic
noise to improve its resilience to real-world noise. Additionally,
exploring advanced denoising techniques, such as autoencoders
can help enhance the model’s performance in noisy environments.

• Using real-time measurements: To bridge the gap between lab-
oratory experiments and real-world applications, it is essential
to consider the use of real-time measurements. Building a latent
space Reduced Order Model (ROM) that incorporates CoSTA as a
component can facilitate real-time predictions and control. This
would involve integrating CoSTA with online sensor data and
dynamic system simulations to make it practical for real-world
applications.

By addressing these four points, CoSTA’s capabilities, interpretabil-
ty, robustness, and real-world applicability can be further enhanced,
ltimately advancing the field of computational modeling and simula-
ion for various physical phenomena.
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