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Collective intelligence has emerged as a powerful mechanism to boost decision accuracy
across many domains, such as geopolitical forecasting, investment, and medical
diagnostics. However, collective intelligence has been mostly applied to relatively simple
decision tasks (e.g., binary classifications). Applications in more open-ended tasks with
a much larger problem space, such as emergency management or general medical
diagnostics, are largely lacking, due to the challenge of integrating unstandardized
inputs from different crowd members. Here, we present a fully automated approach
for harnessing collective intelligence in the domain of general medical diagnostics. Our
approach leverages semantic knowledge graphs, natural language processing, and the
SNOMED CT medical ontology to overcome a major hurdle to collective intelligence
in open-ended medical diagnostics, namely to identify the intended diagnosis from
unstructured text. We tested our method on 1,333 medical cases diagnosed on
a medical crowdsourcing platform: The Human Diagnosis Project. Each case was
independently rated by ten diagnosticians. Comparing the diagnostic accuracy of single
diagnosticians with the collective diagnosis of differently sized groups, we find that
our method substantially increases diagnostic accuracy: While single diagnosticians
achieved 46% accuracy, pooling the decisions of ten diagnosticians increased this
to 76%. Improvements occurred across medical specialties, chief complaints, and
diagnosticians’ tenure levels. Our results show the life-saving potential of tapping
into the collective intelligence of the global medical community to reduce diagnostic
errors and increase patient safety.

collective intelligence | general medical diagnostics | ontology | natural language processing

Collective intelligence (CI) has been shown to boost the accuracy of decisions across a
wide range of domains, from geopolitical forecasting, to investment decisions and medical
diagnostics (1–8) . However, CI has been mostly applied to relatively simple decision-
making tasks, with well-defined answer sets, such as binary or multiclass classification
or continuous estimation tasks (9–12). Unlocking the potential of crowds for more
complex tasks with a much larger answer set, such as emergency management or general
medical diagnostics, has been much harder. The open-ended nature of question and
answer formats presents a hard problem, as it is difficult to identify, label, and aggregate
the incommensurable judgments from different experts (13).

Relying solely on algorithmic processes to solve such complex decision-making tasks is
also challenging for at least two reasons. First, human decision-makers may be especially
reluctant to trust purely algorithmic solutions in complex, open-ended decision tasks
(14). Second, the computational complexity and the scale of the problem space may be
too vast to be exhaustively explored by domain-agnostic algorithms—thus the need to
incorporate human domain knowledge (15). In such high-dimensional problem spaces,
human experts are often needed to guide the search process and to narrow down the set
of possible solutions. To aid humans—and AI alike—in navigating the problem space,
knowledge engineering approaches provide models to structure the various solutions
(e.g., medical diagnoses) in a hierarchical manner, e.g., using ontologies for exploiting
interrelationships between relevant concepts; (16, 17). Here, we show how one can
leverage such knowledge representation models to harness CI in a complex decision-
making task, overcoming some of the key challenges hampering CI in open-ended tasks.
We illustrate this general approach in the domain of general medical diagnostics, that is,
the problem of identifying the correct diagnosis for a patient out of a very large set of
potential diagnoses.

Diagnostic errors are a leading cause of death in the United States (18–22). Apart from
loss of life, diagnostic errors contribute to incorrect treatments, patient morbidity, oppor-
tunity costs in the efficient use of scarce resources, and erosion of trust in the healthcare
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system. CI is currently actively explored as a way to reduce
diagnostic errors, by relying on the intelligence of multiple
diagnosticians, rather than single diagnosticians—as is often
medical practice. CI can arise via different mechanisms, such as
aggregating the independent decisions of decision-makers, a.k.a.,
wisdom of crowd approaches (11, 23–25), group discussions
(4, 26), or market mechanisms (1). Here, we focus on the wisdom
of the crowd approach, which is a promising approach in medical
diagnostics as it allows to gather judgments from diagnosticians
worldwide without the need to coordinate efforts in time or space.

Previous research on CI in medical diagnostics has shown that
pooling independent decisions of diagnosticians can substantially
boost diagnostic accuracy. This has, however, predominantly
been shown in well-defined, binary or multiclass classification
tasks, such as mammography (27, 28), dermatology (29), low
back pain diagnostics (30), and emergency medicine (31).
There is little research on how to aggregate diagnoses in
general medical diagnostics, where the diagnoses need to be
selected from a very large number of possible diagnoses. In
one notable exception, Barnett et al. (32) used data from a
large medical crowdsourcing platform, the Human Diagnosis
Project [Human Dx, https://www.humandx.org/, (33)] to study
the aggregation of independent decisions in general medical
diagnostics. Their results suggest that pooling independent
diagnoses from multiple medical experts is a powerful mechanism
to boost diagnostic accuracy in general medical diagnostics. Their
approach has, however, four drawbacks which restricts its validity
and usefulness. First, human experts were used to evaluate the
accuracy of the provided diagnoses. These experts determined
whether a diagnosis provided by a diagnostician matched the
correct diagnosis of the medical case in question. This is a
time-consuming procedure as each medical case requires several
manual comparisons among the provided diagnoses. Moreover,
this human intervention step introduces both the potential of
disagreement among experts on how to best standardize terms
and a range of unwanted coding biases because of the nonblinded
coding (34). Second, this matching step was only done with
respect to the correct diagnosis of a medical case. That is,
synonyms of the correct diagnosis of a case were aggregated,
whereas synonyms of reported diagnoses which were incorrect
were not aggregated, providing an unfair aggregation advantage
to the correct diagnosis. Third, this approach cannot harvest the
vast domain knowledge that has been amassed in medical science,
in particular, the interrelationships between different diagnoses
as encoded in medical ontologies. Finally, this approach may be
practical for training cases, where the correct diagnosis is known
ahead of time, but not for actual clinical practice, where the
correct diagnosis is not yet known.

Here, we develop and test a fully automated (i.e., not
requiring human intervention), scalable procedure for employing
CI in open-ended general medical diagnostics that exploits
knowledge engineering techniques to take advantage of the struc-
tured domain knowledge available in medicine and healthcare.
Addressing the above-mentioned drawbacks, we will show that
our automated approach is able to harness CI across a range
of group sizes, medical domains, and levels of expertise. Next,
we will show how exploiting interrelationships among medical
concepts unlocks a suite of possibilities for harnessing CI.

Experimental Setup and Methods

Background and Source Dataset. Our approach uses a large
dataset on general medical diagnostics collected by the Human
Diagnosis Project (Human Dx). Human Dx is an online collab-

orative effort created to provide a global teaching environment
for clinicians and to tap into the wisdom of the global medical
community. It comprises an online platform to which medical
experts can submit and solve patient cases. Patient cases consist of
general patient information (e.g., age, gender, general symptoms)
and a series of clinical findings, such as the outcomes of
physical and diagnostic tests (e.g., laboratory and imaging studies;
Fig. 1A). The medical experts creating the case know the correct
diagnosis from further follow-up research. An expert panel
reviews each case and decides whether the case is of sufficient
quality and representative of the given domain. If so, the case is
published and becomes accessible to the users of the platform.
Cases may be removed from the platform if many users indicate
that a case is problematic in terms of clarity or quality. Human
Dx tags cases with a label indicating the prime specialty of a case,
with cases stemming from a wide range of medical specialties
(e.g., cardiology, dermatology, endocrinology, neurology, etc.).

Users from all over the world are invited to register at the
platform and diagnose the uploaded medical cases. A case starts
with showing general patient information and the first clinical
findings (Fig. 1A). A user can proceed to the next finding of a
case by button click. After observing all findings, they are asked
to submit their diagnosis. The user can provide a single diagnosis
or a ranked list of multiple diagnoses. Moreover, they can enter
each diagnosis as free text or select an option from a catalog of
medical terms (suggested as they type). After submitting their
diagnosis, the user receives the correct solution of the case.

We analyzed all cases created between May 7, 2014, through
October 5, 2016, for which at least 10 users provided a diagnosis
(1,572 cases). For each case, 10 diagnosticians were randomly
sampled from all diagnosticians who completed at least one other
case before. In this way, we select only diagnosticians with some
experience in using the platform. The sample included 2,069
unique users from 47 different countries, though predominantly
from the United States (91%). We used self-reported tenure to
determine the seniority of users (medical student, intern, resident,
fellow, attending physician).

An Automatic, Reproducible, and Scalable Method to Identify
Exact Medical Concepts from Free-Text Diagnoses. Arguably,
the biggest challenge for the aggregation of independent diag-
noses in open-ended medical diagnostics is to identify which
diagnoses point to the same medical concept. This includes
mundane challenges (e.g., British versus American spelling,
capitalized letters or not, punctuation, typos, etc.) but also the
thorny problem of determining whether or not two reported
diagnoses are equivalent. To address these issues, we developed
an automatic, reproducible, and scalable method to identify exact
medical concepts from free-text diagnoses, which relies on a
combination of semantic knowledge graphs and natural language
processing (NLP) and integrates a publicly available medical on-
tology, i.e., the SNOMED Clinical Terms ontology (SNOMED
CT). SNOMED CT is a systematically organized computer-
processable collection of medical terms and considered the most
comprehensive, multilingual clinical healthcare terminology in
the world (35, 36) containing over 78,000 unique diseases
(37). Specifically, our method leverages a semantic knowledge
graph that we constructed by applying knowledge engineering
techniques in order to reuse design best practices, e.g., ontology
design patterns; (38) and linking information about medical cases
and users’ diagnoses to SNOMED CT, which we exploit by
gathering definitions for and taxonomic relations among clinical
terms (Material and Methods and SI Appendix).
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B CA

Fig. 1. Illustration of the automated pipeline harnessing collective intelligence in open-ended medical diagnostics with the help of the medical ontology
SNOMED Clinical Terms (A) Example of the first page of a medical case as shown to users accessing the Human Dx platform via a mobile device. The page
contains general patient information, clinical findings, and the possibility to enter an initial differential diagnosis; for our analysis, we did not consider any
of the initial differential diagnoses, but only the final diagnosis given by a user. Users can move to the next screen by clicking the “next finding” button. (B)
Illustration of the mapping of different diagnoses to SNOMED CT identifiers (SCTIDs). The Left part shows the normalized diagnoses (i.e., the text strings after
NLP normalization; see main text for details) of three users. Users 1, 2, and 3 provided four, one, and two diagnoses, respectively. The correct diagnosis of the
case is shown in red for illustration, but is not used—or needed—for the aggregation process. All users’ diagnoses—and the correct diagnosis—were assigned
to a SCTID using only exact word matches (i.e., a Jaccard similarity of 1 after NLP normalization; see main text for details). In this case, one diagnosis (“circadian
rhythm sleep disorder”) could not be matched. The blue text boxes show three SCTIDs present in this example. The first box shows the correct SCTID 78275009
with its “Fully Specified Name” (FSN) “Obstructive sleep apnea syndrome.” Crucially, each SCTID contains a list of synonyms which all refer to the same SCTID
(SI Appendix, Fig. S1), which includes the terms “obstructive sleep apnea” (used by user 1) and “OSA—obstructive sleep apnea” (used by user 2). Both terms
are thus assigned to the same SCTID 78275009. The second and third box contain two incorrect SCTIDs, covering other diagnoses provided by users. (C) The
collective ranking after aggregation. The collective support for each unique SCTID was determined using a 1/r scoring rule, where r is the rank of a diagnosis
given by a user. The first diagnosis of a user received a score of 1/1, the second diagnosis 1/2, etc. (panel B). The scores for each unique SCTID were then
summed, and the SCTIDs were sorted from the highest to lowest score. In this case, the SCTID 78275009 received a score of 1/2 + 1/1 = 1.5, which was the
highest score; hence, it appeared at the top of the collective ranking.

Fig. 1B illustrates our knowledge engineering approach. The
knowledge graph is constructed with data from the Human Dx
dataset, using knowledge-engineering techniques to extract the
knowledge available from the dataset in terms of relations among
concepts and subject–predicate–object triples (SI Appendix),
matching the concepts related to clinical terms against the
SNOMED CT ontology, which is therefore aligned within our
knowledge graph. This is a two-step process. The first step is
string normalization, whereby we use routine NLP tools to
standardize all diagnoses (both the ones given by the users
and the correct ones provided by a case’s author). This step
consists of a series of text normalization procedures, including
removing stop words, converting British English to US English,
converting plural to singular, and identification of acronyms (see
Material andMethods and SI Appendix for a complete description
of the procedure). In the second step (concept mapping), we
mapped each of these normalized diagnoses to an existing medical
concept within SNOMED CT (July 2020 International Edition
Release). For each diagnosis, we identified which SNOMED CT
identifier(s) (SCTID) exactly matched a normalized diagnosis.
To illustrate, the character strings “obstructive sleep apnea,”
“osa,” “OSA,” and “OSA—obstructive sleep apnea” are all
considered synonyms pointing to the same SCTID 78275009
(SI Appendix, Fig. S1). The character string “sleep apnea,”
however, points to a different SCTID (73430006; see also
Fig. 1B). We considered only exact word matches (i.e., a Jaccard
similarity of 1, see Materials and Methods; in SI Appendix,
we show additional analyses relaxing this matching criterion).
Occasionally, a character string showed an exact match with more

than one SCTID (4.4% for correct diagnoses and 5.0% for users’
diagnoses). For example, the character string “Kaposi’s sarcoma”
returned two SCTIDs named “Kaposi’s sarcoma (disorder)” and
“Kaposi’s sarcoma, morphology (morphologic abnormality),”
respectively. In such cases, we relied on the semantic tags of
the SCTID to identify the most likely correct match. Semantic
tags indicate where a concept fits into the medical hierarchy (i.e.,
disorder, finding, morphological abnormality, body structure,
person, organism, or specimen). Since our primary goal is to
identify diagnoses, we selected the SCTID in the following order:
disorder, finding, morphological abnormality, and organism.
This approach is corroborated by the observation that for all
situations in which the matching of a case’s correct diagnosis
returned only one SCTID (which happened in 95.6% of
cases), these SCTIDs where overwhelmingly disorders (96.8%),
followed by findings (2.0%), morphological abnormality (1.0%),
and organism (0.2%).

We first applied this pipeline to the correct diagnoses of all
the 1,572 cases. After normalizing the correct diagnoses, our
approach could exactly match 1,333 (84.8%) correct diagnoses
to an SCTID (SI Appendix, Fig. S2A). For these cases, we
thus can be certain that we have identified the correct solution
according to SNOMED CT. In the remainder, we focus on
this set of 1,333 cases. The conservative approach of using
perfect matching assures that we do not introduce errors when
assigning a (correct) diagnosis to a SCTID. Next, we applied our
approach to the diagnoses provided by the users who solved these
1,333 cases: 41,242 (out of 47,772; 86,9%; SI Appendix, Fig.
S2B) could be exactly matched to a SCTID. The remaining
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13.1% remained unidentified and were discarded from the
analyses.

Results

Aggregating Independent Diagnoses in General Medical Diag-
nostics. Having mapped the correct diagnoses and the users’
diagnoses into an integrated knowledge graph allows us to
automatically aggregate users’ diagnoses and test how collective
diagnoses compare to individual ones in terms of diagnostic
accuracy. For each of the 1,333 cases, we implemented the
following procedure. We considered groups of varying sizes (1 to
10). For each group size, we created all possible unique groups.
For each of these groups, we determined the collective support for
each of the unique SCTIDs provided by the group members using
three aggregation rules (where r is the rank of a diagnosis): 1/r,
1/r2, and equal-weighting rule. The 1/r rule (Fig. 1C ) weighs a
diagnosis by the inverse of r: The first diagnosis provided by a
user (r = 1) receives a score of 1, the second one (r = 2) a score
of 1/2, etc. The 1/r2 rule down-weighs diagnoses lower in the
rank order more heavily (e.g., second-ranked diagnosis receives
a score of 1/4). The equal-weighting rule weighs all diagnoses
equally (i.e., independent of order).

Within each group–and for each scoring rule—we summed
the score for each of the unique SCTIDs provided by the group
members and ranked the SCTIDs from the highest to lowest
score. In case of tied scores, we ordered SCTIDs according to
their semantic tags (in the same order as used in the concept
mapping step, i.e., disorder, finding, morphological abnormality,
and organism). If SCTIDs were still tied, we randomized the
order within the respective tied SCTIDs. Finally, we determined
whether the correct SCTID was present in the top 1, 2, or 3
diagnoses in the collective ranking.

Fig. 2 presents the results of this automated aggregation
procedure, showing the average performance at each group
size across all cases. Increasing the number of group members
increases the diagnostic accuracy, that is, the likelihood that the
correct diagnosis is present among the top 1, top 2, or top 3 of the
collective ranking. For example, the likelihood that the correct
diagnosis is present in the top 3 of the collective ranking increases
from 46% for singletons to 76% for groups of 10 diagnosticians
under the 1/r rule (Fig. 2, Left). The other two aggregation rules

also lead to an increase in diagnostic accuracy with increasing
group size (Fig. 2, Center and Right). There is, however, a
difference in how much the diagnostic accuracy is increased.
The equal-weighing rule (Fig. 2, Right) generally performed
worse than both other rules, suggesting that the rank order of
a diagnosis in a user’s diagnosis positively predicts diagnostic
accuracy. SI Appendix, Fig. S3 shows that this indeed was the
case: The diagnosis ranked first by a user was much more likely
to be correct than lower-ranked diagnoses. These results indicate
that it is important to give more weight to first-ranked diagnoses
(as compared to equal weighing) but that the exact strength of
this upweighing is less important. In the following, we will focus
on the 1/r rule.

Next, we investigated whether improvements in diagnostic
accuracy are robustly present across different medical specialties
of cases (only considering medical specialties with more than
10 cases). Fig. 3 shows the diagnostic accuracy for different
group sizes per medical specialty, showing that the improvement
in diagnostic accuracy with group size is robustly found across
medical specialties. SI Appendix, Fig. S4 shows that the same holds
across different chief complaints of cases. Next, we compared
different tenure levels. Of the 13,330 unique diagnoses, 3,054
were given by medical students (23%), 1,352 by interns (10%),
5,340 by residents (40%), 179 by fellows (1%), and 3,405
by attending physicians (26%). We compared the performance
of small groups across the three most prevalent tenure levels.
We considered only cases which were completed by at least
three medical students, three residents, and three attending
physicians (n = 62 cases). Note that such a strict within-cases
comparison is required as a between-cases comparison may be
confounded with self-selection of users into cases. We used the
same simulation procedure as described earlier. Fig. 4 shows
that small groups outperformed single diagnosticians across all
tenure levels. Attending physicians performed slightly better than
medical students and residents when considering whether the
correct diagnosis was ranked first, but not when considering the
top 2 or top 3 diagnoses. SI Appendix, Fig. S5 shows the results
when including all cases which were completed by at least two
medical students, two residents, and two attending physicians
(n = 450 cases) showing largely similar results. To summarize,
combining the independent diagnoses of multiple diagnosticians
robustly increases diagnostic accuracy across medical case spe-
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Fig. 2. Diagnostic accuracy of the fully automated aggregation procedure for different group sizes for three different aggregation rules. Increasing the number
of group members increases the likelihood that the correct diagnosis is present in the top 1, top 2, or top 3 of the collective diagnosis when using a 1/r, 1/r2,
or equal-weighting rule, respectively.
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Fig. 3. Diagnostic accuracy of the aggregation procedure for different group sizes for different medical specialties of the cases using the 1/r rule. Across
medical specialties, increasing the number of group members increases the likelihood that the correct diagnosis is present in the top 1, top 2, or top 3 of the
collective diagnosis. Numbers at the Bottom Right indicate the number of cases within that specialty. Medical specialties are ordered from the highest to lowest
number of cases.

cialties, cases’ chief complaints, and diagnosticians’ tenure
level.

Exploiting the Interrelations of Concepts at the Collective
Level. Besides linking the correct diagnoses and the users’
diagnoses to existing concepts in SNOMED CT for the
automatic aggregation of identical concepts, our knowledge
engineering approach also allows extracting and capitalizing on
the interrelationships between concepts in the knowledge graph.
SNOMED CT concepts are organized in a polyhierarchy, a graph
structure whereby concepts (a.k.a., nodes) are connected to (one
or multiple) supertype “parent” and/or subtype “child” concepts
(Fig. 5A). Our knowledge graph incorporates these semantic
relations, so that a diagnosis without an identical match to the
correct diagnosis can be associated with a parent or child concept
of the correct diagnosis. Such a diagnosis is, typically, more
relevant than a diagnosis that is neither a parent or child because
the former is closer to the correct solution—in terms of network
path distance—and has a higher likelihood of implying similar
(or even identical) treatment recommendations (35). Therefore,
we next explored diagnostic accuracy when exploiting these
interrelationships. Fig. 5 B–D shows how diagnostic accuracy
scales with group size when we consider a diagnosis correct
when it is either a i) direct match with the correct SCTID (as
reported above), ii) child concept of the correct SCTID, or iii)
parent concept of the correct SCTID. This approach substantially
boosts diagnostic accuracy across all group sizes, as compared to
only considering identical matches. This indicates that users’
frequently reported parent and/or child concepts of the correct
diagnoses. SI Appendix, Fig. S6 shows how often users reported
parent and child concepts of the correct diagnosis, showing that

both parent and child concepts appeared regularly in single users,
and increasingly so in higher-ranked positions, explaining the in-
creased performance when considering these as correct responses.

Discussion

This work presents a fully automated pipeline—spanning from
the aggregation of diagnoses to the evaluation of the results
obtained via CI—that can harness the power of independent
medical experts in the medical domain at large. This thus vastly
extends the application of CI in medical diagnostics beyond
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Fig. 4. Diagnostic accuracy of the aggregation procedure for different
group sizes for different tenure levels of users using the 1/r rule. Across
different tenure levels, increasing the number of group members increases
the likelihood that the correct diagnosis is present in the top 1, top 2, or top
3 of the collective diagnosis.
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Fig. 5. Diagnostic accuracy considering parent and child nodes using the 1/r rule. (A) SNOMED CT is organized as a polyhierarchy in which child nodes may
have more than one parent nodes. (B–D) Diagnostic accuracy when only considering the correct node as correct solution (solid line), when also considering the
parent node(s) of the correct note as correct solution (dotted line), or when also considering the child node(s) of the correct node as correct solution (dashed
lines). Panels B–D show the results for considering whether the correct or connected diagnoses are in the top 1, top 2, or top 3 of the collective diagnosis,
respectively (see inline titles).

simple binary or multiclass classification or numeric estimation
tasks. By integrating the correct diagnoses of cases and the users’
diagnoses into a semantic knowledge graph linked to a publicly
available medical ontology (i.e., SNOMED CT), we were able
to automatically aggregate the diagnoses of multiple users and
compare how different group sizes and different aggregation rules
fared against single users. Our results show that aggregation of
independent responses from multiple users leads to substantial
improvements in diagnostic accuracy across aggregation rules,
medical specialties, chief complaints, and tenure levels of users.

A key contribution of our work is that our aggregation
and evaluation procedures are fully automated, that is, do not
require any manual, human intervention, [e.g., no need for
manual mapping of free-text inputs to the correct solution by
expert raters, as done in ref. 32] and can automatically identify
synonyms unlike in ref. 39. This removes the human from the
loop, avoiding the drawbacks and the possible biases of previous
approaches, and allowing to scale up in a more time- and cost-
efficient manner. Importantly, because the aggregation pipeline
is fully automated and neither needs manual intervention or
knowledge about the ground truth at the time of aggregation,
it can operate in an actual, real-time clinical setting, where the
ground truth is unknown at the time of judgments.

An important limitation of our study is the issue of representa-
tive design. Our results were obtained on a relatively large number
of cases, but these cases were selected by an expert panel of Human
Dx. Likewise, users can flag suspicious cases which may lead to
their removal from the platform. As such, our results need to
be understood within the current case selection procedure which
may have, for example, selected against very difficult or rare cases.
Future work should consider more ecologically valid ways of
testing cases (40). Moreover, future work could study whether our
method, next to arriving more often at the exact correct solution,
also alters the likelihood of arriving at potentially beneficial
(or harmful) diagnoses in terms of implied treatment. Finally,
all our results are based on textual data in English. Possible
next steps could be to generalize to other languages and even
integrate diagnoses written in different languages, something that
is made possible by the use of multilanguage ontologies such as
SNOMED CT.

Future work—and (medical) crowdsourcing platforms—
could explore the possibility of integrating other medical ontolo-
gies next to SNOMED CT (41). Combining different ontologies
may further help in identifying the diagnoses provided by users
and reduce the number of unidentified diagnoses. Integrating
different ontologies may, however, be challenging, especially

when they do not use a common terminology (42). For designing
future medical crowdsourcing platforms (or other areas in which
comprehensive ontologies have been developed), it may thus
be advisable to rely on a single comprehensive ontology when
eliciting users’ responses (e.g., when offering autocompletions).
Starting from the onset with one comprehensive ontology and
allowing users to only select from the realm of possibilities pro-
vided by an existing ontology will greatly simplify the subsequent
collective aggregation of users’ responses. This, however, is only
feasible when comprehensive ontologies exist, but given the key
importance of ontologies in a diverse range of disciplines (16, 17),
this design principle seems broadly applicable. However, the
computational benefits of limiting users’ response options need
to be traded off against a possible reduction in users’ engagement
on a platform. To improve this trade-off, advanced methods of
user interactions with complex ontologies could be implemented.
When current ontologies in a domain are not fully developed,
users could be allowed to add additional elements to existing
ontologies, if they believe their idea is not captured by the extant
knowledge structure. Other users could, in turn, be asked to verify
these additions, and this would allow an iterative process between
the platform and its users, and, in an ideal case, increase users’
motivation to contribute to the system, while simultaneously
allowing the system to self-organize, adapt, and evolve (8, 43).

Future work could further explore the interrelations between
concepts. More sophisticated approaches from network science
could be employed to identify which diagnoses are closely related
and capitalize on these insights e.g., bipartite graphs: ref. 44.
As next steps, it could also be investigated whether collective
performance can be further boosted by weighing users’ diagnoses
according to their accuracy (45), expertise (46), similarity (47), or
cognitive style (48). Furthermore, future work should incorporate
insights and methods from information retrieval research and
cognitive science on how to aggregate and evaluate lists of retrieval
results (49–51).

Finally, other forms of collective intelligence which go
beyond the wisdom of crowd approaches, such as consensus
decision-making or combined decision-making (52, 53), could
be investigated. Here, one could investigate leveraging individual
heterogeneity and accuracy, how this interacts with case difficulty,
and more broadly the process of social influence in open-ended
domains.

Data, Materials, and Software Availability. The code for running the
aggregation simulations is uploaded on OSF: https://osf.io/h9qep/ (54). One
Human Dx case is included to illustrate our approach. The full dataset with
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the collection of Human Dx cases we used in this experiment cannot be
shared publicly because of privacy and data protection regulations but can
be obtained by reaching out to Human Dx. The ontology (https://github.
com/anuzzolese/crome/blob/main/crome-ontology.owl) (55), theRMLmapping
(https://github.com/anuzzolese/crome/blob/main/matching_map.ttl) (56), and
the code we used for generating the knowledge graph for normalizing text
(https://github.com/anuzzolese/crome/blob/main/convert.py) (57) are publicly
available on GitHub.
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