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The relationship between pesticide exposures and metabolomics biomarkers 
is not well understood. We  examined the changes in the serum metabolome 
(early biomarkers) and the metabolic pathways associated with various pesticide 
exposure scenarios (OPE: overall exposure, PEM: exposure in months, PEY: 
exposure in years, and PEU: reported specific pesticides use) using data from 
the Northern Finland Birth Cohort 1966 31-year cross-sectional examination. 
We  utilized questionnaire data on pesticide exposures and serum samples for 
nuclear magnetic resonance (NMR)-based metabolomics analyses. For exposures 
and metabolites associations, participants size varied between 2,361 and 5,035. 
To investigate associations between metabolomics biomarkers and exposure to 
pesticide scenarios compared to those who reported no exposures multivariable 
regression analyses stratified by sex and adjustment with covariates (season of 
pesticide use, socioeconomic position (SEP), alcohol consumption, BMI, and 
latitude of residence) were performed. Multiple testing by Benjamini–Hochberg 
false discovery rate (FDR) correction applied. Pesticide exposures differed by sex, 
season of pesticide use, alcohol, SEP, latitude of residence. Our results showed 
that all pesticide exposure scenarios were negatively associated with decreased 
HDL concentrations across all lipoprotein subclasses in women. OPE, PEY, and 
PEU were associated with decreased branched-chain amino acid concentrations 
in men and decreased albumin concentrations in women. OPE, PEY and PEU were 
also associated with changes in glycolysis metabolites and ketone bodies in both 
sexes. Specific pesticides exposure was negatively associated with sphingolipids 
and inflammatory biomarkers in men. In women, OPE, PEM, and PEU were 
associated with decreased apolipoprotein A1 and increased apolipoprotein B/
apolipoprotein A1 ratio. Our findings suggest that identification of early biomarkers 
of disease risk related to pesticide exposures can inform strategies to reduce 
exposure and investigate causal pathways. Women may be more susceptible to 
non-occupational pesticide exposures when compared to men, and future sex-
specific studies are warranted.
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Introduction

The use of pesticides has rapidly expanded on a global scale in 
recent years (1). Pesticides encompass a broad range of chemicals, 
such as fungicides, herbicides, insecticides, and rodenticides, among 
others (1). People can be  exposed to pesticides through various 
sources, including occupational and non-occupational routes such as 
consuming contaminated food and water, or through direct pesticide 
exposure (2). Despite their significant benefits to agriculture, long-
term exposure to pesticides has been linked to the development of 
chronic diseases including neurodegenerative diseases (3, 4), type 2 
diabetes (T2D), all-cause mortality (5–8) and other 
non-communicable diseases (NCDs). The mechanisms underlying 
how pesticides interact with biological pathways and contribute to the 
development of NCDs remain poorly understood.

Identification of biomarkers for exposure and early disease risk is 
crucial. Metabolomics is a valuable tool for discovering new 
biomarkers of pesticide exposure in epidemiological studies (9). This 
technique can directly observe metabolic changes in biological fluids, 
enabling the identification of early biomarkers of complex low-dose 
pesticide exposures in the general population (10, 11). Intermediate 
biomarkers can help explain the molecular and cellular mechanisms 
of pesticide toxicity (12). However, metabolomics only reveals changes 
in normal or altered metabolic functions and does not identify the 
underlying etiology of diseases. Some experimental studies on rats 
(13–16) and humans, such as epidemiological studies on the older 
adults (17, 18) and pregnant women (19–21), have reported metabolic 
perturbations associated with pesticide exposures. Nevertheless, over 
the past few years, a growing body of evidence suggests that even 
low-dose exposures to pesticides commonly found in the general 
population could produce a variety of biochemical changes and 
potentially lead to adverse health outcomes in humans. Moreover, 
men and women respond differently to the absorption rate, 
metabolism, and bioavailability of chemicals in relation to pesticide 
exposure (22–24). More research on sex-specific associations in 
relation to different pesticide exposure scenarios and low-dose 
exposures scenarios is needed to properly address exposures in 
women and related health outcomes (25). Non-targeted metabolomics 

can provide information about mechanisms, pathways, and 
biomarkers after pesticide exposures (26, 27). Additionally, 
metabolomics can also be employed to uncover the impact of low-dose 
exposure to pesticides on biochemical processes. Moreover, diagnostic 
biomarkers are not currently available for early detection of metabolic 
diseases, which makes metabolomics important in biomarker search.

In a previous study, clinical lipid parameters were measured in 
blood samples from the Northern Finland Birth cohort 1966 
(n = 5,037) and the results were examined in relation to pesticide 
exposure, allowing different associations by sex to be identified. Now, 
in the present study, we applied for the first time, Nuclear Magnetic 
Resonance (NMR)-based metabolomics profiling in a large general 
population based setting to analyze the relationship between different 
non-occupational pesticide exposure scenarios (OPE: overall pesticide 
exposure, length of exposures (PEM: pesticide exposure in months; 
PEY: pesticide exposure in years), PEU: specific pesticides use 
reported), and changes in human systemic metabolism measured by 
circulating metabolomics biomarkers which provides a very detailed 
description of the lipid composition involved in health alterations/
disturbances due to pesticide exposure. Metabolomics measurements 
provide a more comprehensive picture of an individual’s lipids and 
lipoprotein levels which cannot be determined by routine clinical lipid 
tests. Additionally, they can differentiate between different sizes of 
lipoproteins and other metabolites such as aminoacids. Results from 
the present study may advance our understanding of pesticide 
exposure perturbations at the metabolome-wide level and low-dose 
exposure scenarios. In addition, comparison with available diagnostic 
markers may provide information on their usefulness for early 
detection of metabolic diseases.

Methods

Study population

The current study is based on Northern Finland Birth Cohort 
1966 (NFBC1966) 31-years participants. The detailed cohort 
information has been published previously (28) and as well included 
in the Supplementary information (29). Participants who took part in 
the study provided their written consent to utilize their data. All 
activities were performed in compliance with the 1964 Declaration of 
Helsinki. The Northern Ostrobothnia Hospital District’s ethics 
committee gave the NFBC1966 study their approval. A flowchart 
outlining the study population is presented in Supplementary Figure S1.

Exposure assessment

The participants received a postal questionnaire which included 
questions regarding health in general, lifestyle, environment, and 
exposure to chemicals including pesticides.

Abbreviations: Apo, apolipoprotein; BMI, body mass index; C, total cholesterol; 

CE, cholesterol ester; CVD, cardiovascular disease; EDCs, endocrine-disrupting 

chemicals; FC, free cholesterol; HDL, high-density lipoprotein; IDL, intermediate-

density lipoprotein; L, large size of lipoproteins; LDL, low-density lipoprotein; L, 

total lipids component; M, medium size of lipoprotein; NFBC1966, Northern 

Finland Birth Cohort 1966; NMR, nuclear magnetic resonance; OPE, overall 

pesticide exposure; P, total lipoproteins; PEM, pesticide exposure in months; PEU, 

specific pesticides; PEY, pesticide exposure in years; PL, phospholipids; SEP, 

socioeconomic position; S, small; TG, triglycerides; T2D, type 2 diabetes; VLDL, 

very low-density lipoprotein; XS, very-small size of lipoprotein; XL, very-large size 

of lipoprotein; XXL, extremely large size of lipoprotein.
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The question enquired about “the duration of exposure to 
pesticides and plant protection products, asking respondents to 
indicate their length of exposure in both months (1–12 months) and 
years (one to multiple years).” In addition, “what type of pesticide and 
plant protection products (to specify the name of the pesticide used) 
were used” was asked simultaneously. The categorization of pesticide 
exposure scenarios was described previously in (23) and in the 
Supplementary information (Supplementary Tables S1, S2).

Blood sample measurements

Participants in the NFBC1966 study were asked for a clinical 
examination after completing a postal questionnaire at 31-years. 
The blood samples were collected after an overnight fasting interval 
of 8 to 11 h, centrifuged, and stored initially at −20°C and then at 
−80°C. The samples were handled at a testing laboratory (T113) 
accredited by the Finnish Accreditation Service (FINAS) (EN ISO 
15189), NordLab Oulu (former name Oulu University Hospital, 
Laboratory).

Outcome assessment (metabolomics 
biomarkers)

Serum metabolomics biomarkers were measured using Proton 
Nuclear Magnetic Resonance (Nightingale Health Ltd., 2016 
quantification version). Analytical methodology described in (30) and 
the metabolomics platform is based on three molecular windows for 
each sample: lipid, low-molecular-weight metabolite data, and 
lipoprotein. We assessed the lipid and lipoprotein traits that are related 
to low-density lipoprotein (LDL), high-density lipoprotein (HDL), very 
low-density lipoprotein (VLDL) and intermediate-density lipoprotein 
(IDL) and apolipoproteins, amino acids, ketone bodies, sphingolipids, 
metabolites related to glycolysis pathway, fatty acids, inflammation, and 
fluid balance. The subfraction traits are denoted using a three-part 
naming convention, separated by hyphens. The first component signifies 
the size classification (XS, S, M, L, XL, XXL), the second component 
represents the lipoprotein density fraction (VLDL, LDL, IDL, HDL), 
and the third component indicates the specific measurements, such as 
triglycerides (TG), free cholesterol (FC), phospholipids (PL), total lipids 
(L), cholesterol esters (CE), total cholesterol (C). For instance, the term 
S-HDL-P refers to the concentration measurement of small-sized high-
density lipoprotein particles. A detailed list of names and abbreviations 
of circulating metabolites is given in the online Supplementary material 
(Appendices 3, 4).

Covariates

Demographic characteristics such as sex, socioeconomic 
position (SEP), lifestyle variables, season of pesticide use, 
anthropometry (body mass index (BMI)) and latitude of residence 
were accounted for in the study as covariates as reported from 
previous literature. Regression analyses were conducted separately 
for men and women, with adjustments made for covariates such as 
season of pesticide use, BMI, alcohol consumption, socioeconomic 
position, and latitude of residence. More details can be found in 
the online Supplementary Appendix 1.

Statistical analyses

Descriptive statistics calculated for all explanatory, confounding, 
and outcome measures, with normally distributed variables presented 
as mean (95% CI), non-parametric variables as median (IQR), and 
categorical variables as n (%). To compare the differences between 
participants with and without exposure to OPE, PEM, PEY, and PEU, 
chi-square test for categorical variables, independent-sample Student’s 
t test for normally distributed data, and the Wilcoxon–Mann–
Whitney U test for non-parametric data were used. The distribution 
of metabolites was examined, and natural logarithm-transformation 
of all measured metabolite concentrations was performed to mitigate 
skewness. Standardization (z-scores) of transformed variables was 
performed so that the magnitude of effects is comparable across 
different pesticide exposure scenarios in the regression analyses.

To determine the associations between various pesticide exposure 
scenarios (OPE, PEM, PEY, and PEU) and metabolomics biomarkers, 
multivariable regression analysis was carried out. The models were 
stratified by sex and adjusted for BMI, socioeconomic position, season 
of pesticide use, alcohol consumption, and latitude of residence in 
subsequent steps. To account for multiple testing, the false discovery 
rate (FDR) was corrected using the Benjamini-Hochberg procedure. 
The resulting regression coefficients can be interpreted as the change 
in the category (yes/no) of OPE, PEM, PEY, and PEU per 1-SD change 
in the concentration of the metabolomic biomarkers. All statistical 
analyses were performed using SAS version 9.4 (SAS Institute Inc.) 
and R version 3.6.3 (R Project for Statistical Computing) with a 
significance threshold of p < 0.05 for 2-sided tests.

Results

Study population (NFBC1966) 
characteristics

Characteristics of pesticide exposure scenarios with 
anthropometric (BMI), lifestyle (alcohol, smoking), socioeconomic 
position, environmental and demographic covariates are shown in 
Supplementary Tables S3, S4. Pesticide exposure scenarios differed 
with socioeconomic position and sex. Alcohol consumption and 
season of pesticide use differed with years of pesticide exposure. 
Latitude-related differences existed between PEY and PEU.

The spearman’s correlation coefficients between pesticide 
exposure scenarios and circulating metabolites are shown in 
Supplementary Table S5. Correlations between pesticide exposures 
and lipoprotein subclasses were in the positive direction, except for 
HDL family components including very-large, large, medium, and 
small HDL (p > 0.05). In addition, all pesticide exposures were 
positively correlated with the apolipoprotein (apo) B/apo A1 ratio.

Pesticide exposure scenarios with 
lipoprotein contents in men – multivariable 
regression results

Regression results of pesticide exposure scenarios (OPE, PEM, 
PEY and PEU) with circulating metabolites after adjustment with 
multiple covariates and FDR multiple testing correction are presented 
in Tables 1–4. The detailed results of the unadjusted and adjusted 
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TABLE 1 Multiple linear regression analyses on the association between overall pesticide exposure (OPE) with standardized (z-score) metabolomics 
biomarkers.

Metabolomics clusters β (95% confidence intervals)1,2 p-value p-value correction (Separately 
for males and females) 1

Males

Cholesterol esters

XXL_VLDL_CE 0.166 (0.014, 0.319) 0.0325 0.032

Branched-chain amino acids

Valine [μmol/L] −0.170 (−0.315, −0.026) 0.0208 0.031

Ketone bodies

Acetate [μmol/L] 0.222 (0.053, 0.391) 0.0099 0.031

Glycolysis related metabolites

Lactate −0.189 (−0.352, −0.026) 0.0231 0.031

Females

Total lipoprotein

L_HDL_P −0.274 (−0.473, −0.075) 0.0069 0.014

M_HDL_P −0.331 (−0.566, −0.096) 0.0058 0.014

S_HDL_P −0.322 (−0.566, −0.078) 0.0096 0.015

Triglycerides

L_HDL_TG −0.278 (−0.509, −0.047) 0.0183 0.021

Phospholipids

L_HDL_PL −0.287 (−0.488, −0.086) 0.0052 0.014

M_HDL_PL −0.339 (−0.578, −0.100) 0.0054 0.014

S_HDL_PL −0.452 (−0.691, −0.213) 0.0002 0.002

Cholesterol esters

L_HDL_CE −0.230 (−0.413, −0.048) 0.0134 0.017

M_HDL_CE −0.306 (−0.534, −0.078) 0.0085 0.014

Free cholesterol

L_HDL_FC −0.179 (−0.354, −0.0042) 0.0448 0.045

M_HDL_FC −0.305 (−0.531, −0.079) 0.0080 0.014

S_HDL_FC −0.484 (−0.733, −0.234) 0.0001 0.002

Total lipids

L_HDL_L −0.267 (−0.465, −0.070) 0.0079 0.014

M_HDL_L −0.327 (−0.559, −0.096) 0.0057 0.014

S_HDL_L −0.332 (−0.579, −0.086) 0.0082 0.014

Total cholesterol

L_HDL_C −0.222 (−0.406, −0.039) 0.0174 0.021

M_HDL_C −0.309 (−0.535, −0.084) 0.0072 0.014

HDL_C −0.273 (−0.485, −0.061) 0.0116 0.017

Apolipoproteins

Apolipoprotein A1 [g/L] −0.303 (−0.539, −0.066) 0.0122 0.017

Apo B/Apo A1 ratio 0.281 (0.079, 0.483) 0.0065 0.014

Ketone bodies

Acetoacetate [μmol/L] −0.257 (−0.498, −0.015) 0.0373 0.041

Glycolysis related metabolites

Glycerol [mmol/L] 0.246 (0.010, 0.482) 0.0410 0.043

(Continued)
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models with BMI, socioeconomic position, season of pesticide use, 
alcohol consumption and latitude of residence separately for men and 
women are presented in Supplementary Tables S6–S9.

In Table 1, overall exposure was positively associated with XXL_
VLDL_CE (β = 0.166; 95% CI: 0.014, 0.319; FDR corrected value of 
p = 0.032) after adjustment with multiple covariates. However, there 
were no associations observed between pesticide exposure scenarios 
and any other lipoprotein subclasses in men.

Pesticide exposure scenarios with 
lipoproteins in women – multivariable 
regression results

Overall pesticide exposure was negatively associated with the 
HDL component in total lipoprotein (L_HDL_P, M_HDL_P, S_
HDL_P), triglycerides (L_HDL_TG), phospholipids (L_HDL_PL, 
M_HDL_PL, S_HDL_PL), cholesterol esters (L_HDL_CE, M_HDL_
CE), free cholesterol (L_HDL_FC, M_HDL_FC, S_HDL_FC), total 
lipids (L_HDL_L, M_HDL_L, S_HDL_L), and total cholesterol (L_
HDL_C, M_HDL_C, HDL_C; Table 1). Similarly, PEM was negatively 
associated with HDL components in all clusters, except for 
triglycerides (Table 2). However, years of pesticide exposures was only 
negatively associated with the HDL component in phospholipids (S_
HDL_PL) and free cholesterol (S_HDL_FC; Table 3). Similar to OPE, 
PEU was associated with decreased HDL concentrations in all 
lipoprotein profiles (Table 4). In addition, specific pesticide use was 
associated with increased VLDL concentrations in total lipoprotein 
(XXL_VLDL_P), triglycerides (XXL_VLDL_TG), cholesterol esters 
(XXL_VLDL_CE, XL_VLDL_CE, L_VLDL_CE, M_VLDL_CE), total 
lipids (XXL_VLDL_L) and total cholesterol (XXL_VLDL_C, L_
VLDL_C; Table 4).

Pesticide exposure scenarios with 
aminoacids, ketone bodies, 
glycolysis-related metabolites, 
sphingolipids in men – multivariable 
regression results

Overall exposure (Table  1) and pesticide exposure in years 
(Table 3) was negatively associated with branched-chain amino acid 
valine (OPE, β = −0.170; 95% CI: −0.315, −0.026; FDR value of 
p = 0.031; PEM, β = −0.259; 95% CI: −0.443, −0.074; FDR value of 
p = 0.018). Moreover, both OPE and PEY was positively associated 
with acetate (OPE, β = 0.222; 95% CI: 0.053, 0.391; FDR value of 
p = 0.031; PEY, β = 0.259; 95% CI: 0.043, 0.476; FDR value of p = 0.028). 
Specific pesticide use was negatively associated with branched-chain 

amino acid, isoleucine (β = −0.208; 95% CI: −0.400, −0.016; FDR 
value of p = 0.034), ketone body, acetoacetate (β = −0.246; 95% CI: 
−0.489, −0.0015; FDR value of p = 0.049) and sphingomyelin 
(β = −0.263; 95% CI: −0.515, −0.012; FDR value of p = 0.049). In 
addition, overall pesticide exposure was associated with decreased 
lactate concentrations (β = −0.189; 95% CI: −0.352, −0.026; FDR value 
of p = 0.031).

Pesticide exposure scenarios with 
apolipoproteins, ketone bodies and 
glycolysis-related metabolites in women 
– multivariable regression results

Overall pesticide exposure (OPE, β = −0.303; 95% CI: −0.539, 
−0.066; FDR value of p = 0.017; Table 1), pesticide exposure in months 
(PEM, β = −0.323; 95% CI: −0.614, −0.031; FDR value of p = 0.033; 
Table 2), and specific pesticides use (PEU, β = −0.393; 95% CI: −0.706, 
−0.080; FDR value of p = 0.023; Table 4) associated with decreased 
apolipoprotein A1. Similar pesticide exposure scenarios were 
associated with increased Apo B/Apo A1 ratio (OPE, β = 0.281; 95% 
CI: 0.079, 0.483; FDR value of p = 0.014; Table 1; PEM, β = 0.367; 95% 
CI: 0.118, 0.616; FDR value of p = 0.023; PEU, β = 0.428; 95% CI: 0.161, 
0.695; FDR value of p = 0.016; Table 4). OPE (β = −0.257; 95% CI: 
−0.498, −0.015; FDR value of p = 0.041; Table 1) and PEU (β = −0.362; 
95% CI: −0.678, −0.045; FDR value of p = 0.037; Table  4) was 
negatively associated with ketone body acetoacetate. Decreased 
concentrations of ketone bodies, acetoacetate (β = −0.425; 95% CI: 
−0.850, −0.00039; FDR value of p = 0.05) and beta-hydroxybutyrate 
(β = −0.452; 95% CI: −0.889, −0.015; FDR value of p = 0.05; Table 3) 
were associated with years of pesticide exposure. Different pesticide 
exposure scenarios were also associated with changes in glycolysis-
related metabolites, overall pesticide exposure and reported pesticides 
use with glycerol (OPE, β = 0.246; 95% CI: 0.010, 0.482; FDR value of 
p = 0.043; Table 1; PEU, β = 0.326; 95% CI: 0.019, 0.632; FDR value of 
p = 0.046; Table  4) and pesticide exposure in months with citrate 
(β = 0.298; 95% CI: 0.016, 0.579; FDR value of p = 0.038; Table 2).

Pesticide exposure scenarios with fluid 
balance, inflammation in men and women 
– multivariable regression results

Pesticide exposure scenarios (overall exposure, years of pesticide 
exposure, reported pesticides use) was associated with decreased fluid 
balance marker albumin (OPE, β = −0.355; 95% CI: −0.566, −0.144; 
FDR value of p = 0.008; Table 1; PEY, β = −0.453; 95% CI: −0.819, 
−0.087; FDR value of p = 0.05; Table  3; PEU, β = −0.374; 95%CI: 

TABLE 1 (Continued)

Metabolomics clusters β (95% confidence intervals)1,2 p-value p-value correction (Separately 
for males and females) 1

Fluid balance

Albumin −0.355 (−0.566, −0.144) 0.0010 0.008

1Model adjusted for BMI, socioeconomic position, season of pesticide use, alcohol consumption and latitude of residence. Multiple testing by Benjamin-Hochberg False discovery rate 
correction separately for men and women and each cluster.
2The z-score standardized regression coefficients (β coefficients, 95% CI) represent the change in biomarker concentrations per 1 standard deviation change in overall pesticide exposure (OPE) 
category.
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TABLE 2 Multiple linear regression analyses on the association between pesticide exposure in months (PEM) with standardized (z-score) metabolomics 
biomarkers.

Metabolomics clusters β (95% confidence intervals)1,2 p-value p-value correction (Separately for 
males and females)1

Females

Total lipoprotein

L_HDL_P −0.318 (−0.563, −0.074) 0.0108 0.023

M_HDL_P −0.372 (−0.661, −0.083) 0.0117 0.023

S_HDL_P −0.340 (−0.641, −0.040) 0.0262 0.031

Phospholipids

L_HDL_PL −0.339 (−0.586, −0.091) 0.0073 0.023

M_HDL_PL −0.388 (−0.682, −0.094) 0.0097 0.023

S_HDL_PL −0.532 (−0.826, −0.238) 0.0004 0.004

Cholesterol esters

L_HDL_CE −0.278 (−0.503, −0.053) 0.0153 0.024

M_HDL_CE −0.354 (−0.634, −0.073) 0.0135 0.023

Free cholesterol

L_HDL_FC −0.229 (−0.445, −0.0144) 0.0366 0.038

M_HDL_FC −0.349 (−0.627, −0.071) 0.0139 0.023

S_HDL_FC −0.576 (−0.883, −0.269) 0.0002 0.004

Total lipids

L_HDL_L −0.313 (−0.556, −0.070) 0.0115 0.023

M_HDL_L −0.370 (−0.656, −0.085) 0.0110 0.023

S_HDL_L −0.353 (−0.656, −0.050) 0.0224 0.028

Total cholesterol

L_HDL_C −0.270 (−0.496, −0.045) 0.0189 0.025

M_HDL_C −0.356 (−0.633, −0.078) 0.0120 0.023

HDL_C −0.315 (−0.576, −0.054) 0.0181 0.025

Apolipoproteins

Apolipoprotein A1 [g/L] −0.323 (−0.614, −0.031) 0.0301 0.033

Apo B/Apo A1 ratio 0.367 (0.118, 0.616) 0.0038 0.023

Glycolysis related metabolites

Citrate [μmol/L] 0.298 (0.016, 0.579) 0.0385 0.038

1Model adjusted for BMI, socioeconomic position, season of pesticide use, alcohol consumption and latitude of residence. Multiple testing by Benjamin-Hochberg False discovery rate 
correction separately for men and women and each cluster.
2The z-score standardized regression coefficients (β coefficients, 95% CI) represent the change in biomarker concentrations per 1 standard deviation change in pesticide exposures in months 
(PEM) category.

−0.653, −0.095; FDR value of p = 0.017; Table 4) in women. Specific 
pesticide use was also negatively associated with the inflammatory 
biomarker alpha-1-acid glycoprotein (β = −0.262; 95% CI: −0.511, 
−0.013; FDR value of p = 0.049; Table 4) in men. Figure 1 depicts the 
regression results of the associations of metabolomics biomarkers with 
different pesticide scenarios and across the pesticide exposure 
scenarios stratified by sex after multiple testing corrections.

Discussion

The study was conducted to examine the impact of various 
non-occupational pesticide exposure scenarios on metabolomics 

biomarkers in young adults from Finland. The study also 
stratified the analyses by sex and adjusted for several covariates, 
including BMI, socioeconomic position, season of pesticide use, 
alcohol consumption, and latitude of residence. Additionally, a 
correction for multiple testing was carried out in the 
study’s analyses.

Lipoprotein subclasses

In women, all pesticide exposure scenarios were associated with 
decreased high-density lipoprotein concentrations of different size in 
all lipoprotein subclasses (Figure 1).
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Concerning phospholipids (PL), women showed negative 
associations between overall exposure, pesticide exposure in months 
and reported specific pesticides use with high-density lipoproteins of 
different size, such as S_HDL_PL, M_HDL_PL and L_HDL_PL; 
except, years of pesticide exposure was only associated with decreased 
S_HDL_PL concentrations. Furthermore, in women negative 
associations with high-density lipoproteins of total lipoproteins (P), 
free cholesterol (FC), total lipids (L), triglycerides (TG) and total 
cholesterol (C), involving compounds of small (S), medium (M) or 
large size (L) and pesticide exposure scenarios (overall, months of 
exposure and specific pesticides reported) were observed. According 
to the findings of our study, all the pesticide exposure scenarios 
examined were found to have a negative association with several 
measures of HDL, including most sizes of HDL in total lipoproteins 
(P), as well as with phospholipids (PL), total cholesterol (C), free 
cholesterol (FC), cholesterol esters (CE), and total lipids (L; Figure 1).

Concerning cholesterol ester (CE), a positive association of the 
extremely large very low-density lipoprotein (XXL_VLDL_CE) and 
overall pesticide exposure was found in men. Similar positive 
associations were also observed in women who reported specific 
pesticides exposure and cholesterol esters in very low-density 
lipoproteins of different sizes, XXL_VLDL_CE, XL_VDL_CE, L_
VLDL_CE and M_VLDL_CE. In contrast, a negative association 
between pesticide scenarios (overall, months of exposure and specific 
pesticides use) and cholesterol esters in varying sizes of high-density 
lipoprotein (L_HDL_CE and M_HDL_CE) concentrations was 
observed in women. Our study observations align with previous 
research that has reported positive associations between total 
cholesterol and LDL cholesterol in women (23). However, our study 

offers a more comprehensive description of the specific types of lipids 
that are involved in these associations.

There have been only a limited number of experimental and 
epidemiological studies that have examined the potential link 
between exposure to pesticides and changes in blood lipid markers 
(23, 31–34). Common methods of assessing lipids in the 
bloodstream, such as measuring levels of LDL and HDL, do not 
differentiate between the size, density, concentration, and 
composition of lipoproteins. These factors may have varying levels 
of importance when it comes to determining the risk of 
cardiovascular disease (30). The current method of clinically 
measuring HDL levels involves only quantifying the total 
cholesterol content of the HDL particles, while disregarding 
important factors such as their composition (including TG and 
phospholipids), particle size, and subclass concentration. 
However, the present study has been able to provide information 
of changes in individual subclasses of lipoprotein particles and 
lipid-related characteristics resulting from exposure to pesticides. 
These findings can serve as early indicators of an individual’s 
susceptibility to cardiovascular diseases (35, 36). Prior studies 
have demonstrated that VLDL, LDL, and the associated lipids are 
predictive of both cardiovascular disease (CVD) and the 
development of T2D (37, 38). In addition, our study’s results 
confirm previous findings indicating that cholesterol esters 
comprise the majority of total cholesterol in lipoproteins (39). 
Study on older adults participants investigating associations 
between pesticide p, p’-DDE and circulating metabolites, has 
reported the interference of p,p’-DDE in alterations of lipoprotein 
metabolites (17).

TABLE 3 Multiple linear regression analyses on the association between pesticide exposure in years (PEY) with standardized (z-score) metabolomics 
biomarkers.

Metabolomics clusters β (95% confidence 
intervals)1,2

p-value p-value correction (Separately for 
males and females)1

Males

Branched-chain amino acids

Isoleucine [μmol/L] −0.208 (−0.400, −0.016) 0.0336 0.034

Valine [μmol/L] −0.259 (−0.443, −0.074) 0.0061 0.018

Ketone bodies

Acetate [μmol/L] 0.259 (0.043, 0.476) 0.0186 0.028

Females

Phospholipids

S_HDL_PL −0.488 (−0.903, −0.073) 0.0213 0.05

Free cholesterol

S_HDL_FC −0.442 (−0.876, −0.0087) 0.0456 0.05

Ketone bodies

Acetoacetate [μmol/L] −0.425 (−0.850, −0.00039) 0.0498 0.05

beta-hydroxybutyrate [μmol/L] −0.452 (−0.889, −0.015) 0.0425 0.05

Fluid balance

Albumin −0.453 (−0.819, −0.087) 0.0154 0.05

1Model adjusted for BMI, socioeconomic position, season of pesticide use, alcohol consumption and latitude of residence. Multiple testing by Benjamin-Hochberg False discovery rate 
correction separately for men and women and each cluster.
2The z-score standardized regression coefficients (β coefficients, 95% CI) represent the change in biomarker concentrations per 1 standard deviation change in pesticide exposures in years 
(PEY) category.
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TABLE 4 Multiple linear regression analyses on the association between specific pesticides use (PEU) with standardized (z-score) metabolomics 
biomarkers.

Metabolomics 
clusters

β (95% confidence intervals)1,2 p-value p-value correction (Separately for males 
and females)1

Males

Ketone bodies

Acetoacetate [μmol/L] −0.246 (−0.489, −0.0015) 0.0486 0.049

Sphingolipids

Sphingomyelin −0.263 (−0.515, −0.012) 0.0404 0.049

Inflammation

Alpha-1-acid glycoprotein −0.262 (−0.511, −0.013) 0.0391 0.049

Females

Total lipoprotein

XXL_VLDL_P 0.276 (0.0062, 0.546) 0.0450 0.047

L_HDL_P −0.365 (−0.628, −0.103) 0.0064 0.016

M_HDL_P −0.437 (−0.747, −0.127) 0.0058 0.016

S_HDL_P −0.432 (−0.754, −0.111) 0.0085 0.017

Triglycerides

XXL_VLDL_TG 0.279 (0.010, 0.548) 0.0418 0.047

L_HDL_TG −0.337 (−0.642, −0.032) 0.0304 0.041

Phospholipids

L_HDL_PL −0.387 (−0.653, −0.122) 0.0042 0.016

M_HDL_PL −0.453 (−0.768, −0.138) 0.0049 0.016

S_HDL_PL −0.643 (−0.959, −0.328) <0.0001 0.002

Cholesterol esters

XXL_VLDL_CE 0.372 (0.068, 0.676) 0.0166 0.025

XL_VLDL_CE 0.318 (0.0068, 0.629) 0.0452 0.047

L_VLDL_CE 0.385 (0.070, 0.699) 0.0166 0.025

M_VLDL_CE 0.311 (0.031, 0.592) 0.0295 0.041

L_HDL_CE −0.314 (−0.555, −0.074) 0.0106 0.020

M_HDL_CE −0.432 (−0.733, −0.131) 0.0050 0.016

Free cholesterol

L_HDL_FC −0.247 (−0.479, −0.016) 0.0360 0.046

M_HDL_FC −0.416 (−0.714, −0.118) 0.0062 0.016

S_HDL_FC −0.691 (-1.019, −0.362) <0.0001 0.002

Total lipids

XXL_VLDL_L 0.269 (0.00021, 0.538) 0.0498 0.050

L_HDL_L −0.358 (−0.619, −0.097) 0.0071 0.016

M_HDL_L −0.437 (−0.743, −0.131) 0.0052 0.016

S_HDL_L −0.447 (−0.772, −0.122) 0.0071 0.016

Total cholesterol

XXL_VLDL_C 0.295 (0.0074, 0.583) 0.0444 0.047

L_VLDL_C 0.313 (0.011, 0.615) 0.0425 0.047

L_HDL_C −0.304 (−0.546, −0.062) 0.0138 0.023

M_HDL_C −0.431 (−0.729, −0.133) 0.0045 0.016

HDL_C_ −0.387 (−0.667, −0.108) 0.0067 0.016

(Continued)
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In both women and men, increased concentrations of extremely 
large size VLDL lipoproteins in cholesterol esters with pesticide 
exposures were found. Moreover, this association was seen for several 
different sizes of the very-low-density lipoprotein in women, in 
particular. However, in women, pesticide exposure was related to 

decreased concentrations of HDL in cholesterol esters. These 
differences are consistent with higher disturbances of cholesterol 
metabolism in women than those in men upon exposure to pesticides. 
Other lipoprotein categories, such as total lipoproteins (P), free 
cholesterol (FC), total lipids (L), triglycerides (TG), and total 

TABLE 4 (Continued)

Metabolomics 
clusters

β (95% confidence intervals)1,2 p-value p-value correction (Separately for males 
and females)1

Apolipoproteins

Apolipoprotein A1 [g/L] −0.393 (−0.706, −0.080) 0.0138 0.023

Apo B/Apo A1 ratio 0.428 (0.161, 0.695) 0.0017 0.016

Ketone bodies

Acetoacetate [μmol/L] −0.362 (−0.678, −0.045) 0.0251 0.037

Glycolysis related metabolites

Glycerol [mmol/L] 0.326 (0.019, 0.632) 0.0373 0.046

Fluid balance

Albumin −0.374 (−0.653, −0.095) 0.0086 0.017

1Model adjusted for BMI, socioeconomic position, season of pesticide use, alcohol consumption and latitude of residence. Multiple testing by Benjamin-Hochberg False discovery rate 
correction separately for men and women and each cluster.
2The z-score standardized regression coefficients (β coefficients, 95% CI) represent the change in biomarker concentrations per 1 standard deviation change in reported specific pesticide use 
(PEU) category.

FIGURE 1

Circulating metabolomics biomarkers and its associations with different pesticide exposure scenarios in men and women (category change in pesticide 
exposure per 1-SD change in biomarker concentration, β coefficients and 95% CI). Final model adjusted for BMI, socioeconomic position, season of 
pesticide use, alcohol consumption and latitude of residence).
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cholesterol (C), also show this gender difference, with negative 
relationships between non-occupational pesticide exposure and HDL 
found in women but not in males. Our study results show low doses 
of pesticide exposures affect multiple subclasses of circulating 
metabolites, which could contribute to identification of early 
biomarkers of T2D and CVD, and that women are at higher risk than 
men. Furthermore, it is possible that pesticide exposures may 
contribute to the exacerbation of metabolic disorders through their 
positive association with specific lipoprotein groups and the related 
pathways, with these associations differing by sex.

Apolipoprotein

Our study found that various pesticide exposure scenarios, 
including overall exposure, months of exposure, and use of specific 
pesticides, were associated with decreased concentrations of 
apolipoprotein A1 and an increased apo B/apo A1 ratio in women 
(Figure  1). The apo B/apo A1 ratio reflects the balance between 
atherogenic and antiatherogenic particles and serves as a marker of 
CVD risk (40–42). An increase in the apo B/apo A1 ratio with 
exposure to pesticides could indicate a potential biomarker for future 
cardiometabolic risk and other clinical outcomes.

Glycolysis-related metabolites

In men, overall pesticide exposure was associated with 
decreased concentrations of lactate. Different pesticide exposure 
scenarios were associated with increased glycerol (overall pesticide 
exposure, specific pesticides use) and citrate concentrations (years 
of pesticide exposure) in women. Changes in multiple intermediary 
metabolites (lactate, citrate, glycerol) related to glycolysis-related 
metabolism in relation to different pesticide exposure scenarios 
were observed (Figure  1). The Krebs cycle, also known as the 
tricarboxylic acid (TCA) cycle, is a fundamental metabolic pathway 
that governs numerous cellular functions and influences cell fate 
in humans. The metabolites and intermediates generated during 
the Krebs cycle are critical building blocks for the production of 
macromolecules, including lipids, nucleotides, and proteins (43). 
The changes in citrate concentrations due to exposure to pesticides 
may indicate a disruption in the Krebs cycle and a potential impact 
on the consumption of citrate, a precursor for the synthesis of 
macromolecules such as lipids, nucleotides, and proteins. 
Furthermore, decrease in lactate concentrations also suggests that 
pesticides may alter the energy metabolism and interfere with 
glucose homeostasis, potentially contributing to the development 
of T2D (44, 45) and obesity (46). In addition, some pesticides are 
reported to inhibit the enzyme lactate dehydrogenase (47).

Ketone bodies

Overall pesticide exposure and years of pesticide exposure was 
associated with change in acetate concentrations in men. Different 
pesticide categories were associated with decreased concentrations of 
acetoacetate (overall, years of exposure and specific pesticides use) 
and beta-hydroxy butyrate (specific pesticides use; Figure  1). 

Experimental investigations show pesticide exposures to be associated 
with different adverse mechanisms (i) an increase in intermediary 
metabolites of TCA cycle, and (ii) elevated concentrations of ketone 
bodies, which indicate inhibition of acetyl-CoA, ultimately leading to 
disruptions in liver energy and fatty acid metabolism (48, 49). In 
addition, the observed alteration in beta-hydroxybutyrate 
concentrations, a product of liver fatty acid oxidation, may suggest 
impaired liver function (48, 50).

Branched chain amino acids

Overall pesticide exposure and years of pesticide exposure was 
negatively associated with valine and isoleucine in men (Figure 1). 
Dietary intake is a major determinant of circulating levels of 
branched-chain amino acids (BCAAs). BCAAs play a crucial role 
in providing nitrogen for the synthesis of glutamate, which is the 
primary excitatory neurotransmitter in the brain. Alterations in 
BCAA metabolism have been suggested to accompany the 
development of Alzheimer’s disease and incident dementia (51–
53). Furthermore, experimental studies in mice exposed to 
organophosphorus pesticides have shown links between long-term 
pesticide exposure and disrupted amino acid metabolism (54). The 
present study included participants who reported use of herbicides 
and pesticides including glyphosate, malathion, deltamethrin, 
permethrin, cypermethrin, triadimefon which are reported to 
inhibit the activity of enzymes in metabolic pathways and 
alterations in amino acid metabolism (55). A study on 22,632 
participants including eight prospective cohorts has reported that 
these metabolites may be utilized as early markers of mild cognitive 
impairment resulting in incident dementia and future risk of 
Alzheimer’s disease (53). Moreover, lifelong cumulative pesticide 
exposure is reported to be  associated with nervous system 
disorders and development of Alzheimer’s disease (4). In a 
systematic review conducted on studies published between 1963 
and 2010 that examined the effects of organophosphate and 
carbamate pesticides, it was found that these pesticides can affect 
enzymatic pathways involved in the metabolism of proteins, fats 
and carbohydrates within mitochondria, peroxisomes, and 
cytoplasm (56). Disturbances in amino acid metabolism may serve 
as a useful marker of low-level pesticide exposure in the general 
population, based on these findings.

Fluid balance and inflammation

Our study found that various pesticide exposure scenarios, 
including overall exposure, years of exposure, and use of specific 
pesticides, were associated with decreased albumin concentrations in 
women (Figure 1). A significant proportion of the circulating proteins 
in our body is composed of serum albumin. A decrease in its 
concentration has been reported to have an independent association 
with the risk of cardiovascular diseases (57, 58). Furthermore, the 
reported use of specific pesticides also included organophosphorus 
and other pesticides, and albumin levels could potentially serve as a 
biomarker for monitoring exposure to multiple pesticides at low levels 
(23, 59). In addition, a negative association was observed between 
specific pesticides exposure and alpha-1-acid glycoprotein, a novel 
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biomarker of systemic inflammation and cardiovascular disease risk, 
in men (60).

The associations observed between multiple metabolomics 
biomarkers and short-duration (in months, PEM, Table 2) pesticide 
exposure in women, as well as the associations with a few metabolites 
and long-duration (in years, PEY, Table 3) pesticide exposure in both 
men and women, highlight the complex relationship between 
low-dose pesticide exposures and health effects. Low-dose exposure 
to pesticides, even below regulatory safety thresholds, has been a 
subject of concern due to the potential for cumulative effects and the 
disruption of biological processes. Some studies suggest that chronic 
low-dose exposures to pesticides may contribute to adverse health 
outcomes, including developmental, reproductive, and 
neurocognitive effects, as well as an increased risk of certain chronic 
diseases (61–63).

Sex differences in low-dose pesticide exposure effects are an 
emerging area of research. Biological and physiological differences 
between men and women can lead to varying responses to pesticide 
exposure (63, 64). Hormonal fluctuations, genetic variations, and 
metabolic differences may contribute to the sex-specific effects of 
pesticides (64–66). Few studies suggest that women may be more 
vulnerable to the effects of certain pesticides due to hormonal 
interactions and potential disruption of the endocrine system (63–66). 
However, the research on sex differences in low-dose pesticide 
exposure effects is still evolving, and more studies are needed to better 
understand the mechanisms underlying these differences and their 
implications for health outcomes.

Strengths and limitations

The strengths of the study are, first, we investigated different 
non-occupational pesticide exposure scenarios and performed 
extensive characterization of lipoproteins, amino acids, and other 
circulating metabolites using the metabolomics approach. 
Secondly, we conducted a sex-stratified analysis as pesticides may 
affect men differently than women and some pesticides may not 
affect women at all (67). Thirdly, despite a relatively small sample 
size in our cohort for the pesticide exposure categories compared 
to the unexposed group, we observed independent associations 
between all pesticide exposure scenarios and multiple circulating 
metabolites. Fourth, we  performed adjustment for multiple 
potential confounders including environmental, anthropometric, 
lifestyle and socioeconomic position. Despite these considerations, 
our study does have some limitations. Although the specific 
pesticide that each participant was exposed to is known, the 
sample size did not allow for pesticide chemical and class-specific 
analyses. However, the pesticides commonly reported by the 
exposed participants were insecticides, herbicides, and 
pyrethroids, which were typically used in agricultural work at the 
time. Our reported use of specific pesticide exposure variable 
allowed us to distinguish the effects of exposure to a complex 
mixture of pesticides in our study. To identify early biomarkers of 
disease risk specific to different pesticide classes, future research 
on larger samples is needed. Additionally, our study may have 
limited generalizability since it only included individuals of 
Finnish ethnicity.

Conclusion

We observed that non-occupational pesticide exposure scenarios 
led to alterations and disturbances in the serum metabolomic 
biomarkers in the Finnish adult population. In women, all types of 
pesticide exposure were associated with decreased HDL 
concentrations in all lipoprotein subclasses, albumin, apo A1 and 
increased apo B/apoA1 ratio. In men, all categories of pesticide 
exposure were associated with decreases in branched-chain amino 
acid concentrations and specific pesticide exposure was negatively 
associated with sphingolipids and inflammatory biomarkers. Both 
sexes showed significant changes in glycolysis-related metabolites and 
ketone bodies in relation to pesticide exposures. The observed changes 
in the serum metabolome could potentially provide insight into the 
underlying biological mechanisms or pathways that contribute to the 
development of non-communicable diseases. According to these 
results, non-occupational exposure to pesticide implies a higher risk 
in women.
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