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ABSTRACT This paper presents a digital twin-driven fault diagnosis approach based on a graphical
model and an adaptive extended Kalman filter algorithm for autonomous surface vehicles. In contrast
with the traditional adaptive Kalman filter algorithm, where the fault parameters are treated as extended
state variables, the newly proposed adaptive extended Kalman filter algorithm estimates the magnitude
of the faults by calculating the parameter estimation gains directly from the sensor systems. To this end,
the algorithm utilizes data from a global navigation satellite system receiver assuming the persistence of
excitation conditions on the control inputs. The algorithm is tested in the Otter, an autonomous surface
vehicle developed by Maritime Robotics, in which one of its propellers is faulty. Technically, the digital
twin receives real-time data from the sensor system, estimates the magnitude of the actuator faults, and
visualizes the results in a web-based application using JavaScript with Three.js library and Mapbox for real-
world 3D map generation. Information regarding the magnitude of the faults is important for fault-tolerant
control. Simulation and experimental results show the proposed approach is able to detect and estimate the
actuator faults accurately.

INDEX TERMS Digital twin, fault diagnosis, autonomous systems.

I. INTRODUCTION
The use of models, both physical and digital, has been central
in various fields of science, engineering, and technology [1].
Ever since computers came into existence, system modeling
has also been digitized and the applications have grownmulti-
fold. For example, computer-aided design (CAD) programs
make it easier to create and animate visual geometric mod-
els and computer-aided engineering (CAE) software runs
complex simulations based on numerical models [2]. These
digital tools enable their users to fully harness the power of
modeling and simulation in the design and analysis of a wide
range of physical systems and processes. For example, finite-
element modeling and simulation help in the design of safer
bridges and buildings [3], while computational fluid dynamic
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simulations are vital in the aerodynamic and hydrodynamic
analysis of fuel-efficient aircraft and ships [4], respectively.

Though it is needless to stress the importance of mod-
eling and simulation in the design stage, their usage does
not progress into the operational stage. This is due to the
inherent simplifications made in the model which can no
longer be valid due to changing system parameters and
complex interactions with the environment. Therefore, more
advanced digital tools are needed to represent the system
through its entire life cycle. Digital twinning is a recent
technological trend in engineering that can bridge the gap
and provide a platform for continuous interface with a sys-
tem throughout its life cycle. Together with other emerging
technologies such as CloudComputing, the Internet of Things
(IoT), Artificial Intelligence (AI), and Machine Learning
(ML), digital twins are expected to play a huge role in
Industry 4.0 [5]. Unlike traditional models, which are of
limited use during service, digital twins incorporate dynamic
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FIGURE 1. The Otter ASV used in the experiment is fitted with two fixed
propellers.

system models which are effective, especially during system
operation.

A. MOTIVATION
This paper is motivated by an actuator fault diagnosis prob-
lem encountered in autonomous surface vehicles (ASV).
An ASV is a special class of autonomous mobile systems that
perform a wide variety of tasks in challenging environments
without any human intervention [6]. Owing to their advanced
instrumentation and autonomy, these vehicles have various
research and military applications such as seabed mapping,
harbor security, ocean environmental monitoring, search and
rescue, and reconnaissance. In this paper, we consider an
ASV shown in Figure 1. The vehicle is called the Otter and is
developed by Maritime Robotics.

The Otter ASV has two fixed propellers mounted at the
rear end of the vehicle. The vehicle is under-actuated since
it has fewer actuators than its degrees of freedom. To move
the ASV forward, each of these propellers needs to produce
the same thrust. Otherwise, different thrusts can be applied to
maneuver the ASV either to the left or right. The actuator
system of the ASV is prone to faults. Common problems
include a broken propeller due to an impact with the seabed
and a fishing line getting caught in the propeller. This causes
a decrease in the performance of the actuator system. Thus,
there is an incentive to diagnose the faults as soon as possible
before the ASV becomes uncontrollable. In this case, the
digital twin is used for actuator fault diagnosis, i.e., to detect
and estimate the magnitude of the actuator fault of the Otter
ASV in real time.

B. LITERATURE REVIEW
Digital twins in the maritime sector are not new. For example,
in 2021 Major et al. [7] created a real-time digital twin of the
research vehicle RV Gunnerus and used the twin for condi-
tion monitoring of the ship and onboard crane system. Fur-
thermore, Alexander Danielsen-Haces [8] has documented
the development of a digital twin platform for different
autonomous shipmodels. In his work, a fault detection feature
for ship thruster faults is implemented usingmachine learning
along with the necessary digital twin infrastructure. Up until

now, most of the literature on digital twins are focused on
predictive maintenance and condition monitoring applica-
tions. Predictive maintenance is more relevant in high-value
assets with continuous operation, where downtime leads to
significant costs. In the context of ASV, given the complex
nature of the environment in which they operate with mini-
mum human supervision, condition monitoring is deemed to
be more useful.

Fault diagnosis can be found in many pieces of literature
and has been implemented for many applications, e.g., sub-
sea blowout preventer [9], and hydraulic control system [10].
In 2018, Zhang [11] proposed an adaptive Kalman filter
(AKF) algorithm to monitor the actuator fault of Linear
Time Variant/Linear Parameter Varying (LTV/LPV) systems.
Extending this work for non-linear systems, Skriver et al. [12]
developed an adaptive extended Kalman filter (AEKF) algo-
rithm for actuator fault diagnosis and tested the method in
simulations. In another work, Alessandri et al. [13] applied
a fault diagnostic system based on a bank of EKF fault
estimators for an unmanned underwater vehicle (UUV) in
simulations. Furthermore, Ko et al. [14] used a two-stage
EKF filter to estimate sensor and actuator faults in which
real experimental data is used for IMU sensor faults, while
simulated data is used for thruster faults due to difficulties
in introducing thruster faults in experiments. They achieve
satisfactory results for sensor fault estimation; however, they
notice a time delay in thruster fault estimation. Subsequently,
Zhou et al. [15] used a fault and state observer in the case
of unmanned surface vehicles (USV) in network environ-
ments. They also implemented a fault-tolerant control system
based on the observer estimates in a simulated environment.
Moreover, Abed et al. [16] implemented a Neural Network
for fault diagnosis of USV trolling motors trained on the
data from the stator current and motor vibrations. Another
interesting application of digital twins for USV is the system
identification of hydrodynamic parameters using machine
learning [17] and model-based methods [18]. In recent work,
Kapteyn et al. [19] proposed a mathematical framework for
developing digital twins at scale. The framework is based
on probabilistic graphical models, which inherently support
representation and inference making them best suitable for
digital twin applications. It is one of the few works, which
attempts to define a mathematical model for digital twins.

Based on the above review, it is noted that the digital twin
development for autonomous vehicles still lacks standard-
ization. Thus, there is an incentive to create a standardized
framework that can be used for different applications. In this
case, our approach is to use a graphical model combined with
an AEKF algorithm. Furthermore, most model-based algo-
rithms developed in the previous studies have been tested only
in computer simulations. Implementation in a real platform
may not be trivial and produce slightly different results and
thus need to be studied and experimentally tested.

C. CONTRIBUTION OF THIS PAPER
The contributions of this paper are two-fold:
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• A novel framework for digital twin-driven fault diagno-
sis based on the graphical model and AEKF algorithm
that can be used for condition monitoring of ASV actua-
tor systems. The framework can be extended to develop
other digital twin features, such as predictive mainte-
nance, remote monitoring, and system optimization for
autonomous systems.

• Development and validation of an AEKF algorithm for
actuator fault diagnosis of an ASV in real experiments.
While the method has been previously proven to be
robust in simulated and fictive problems, this is the
first time it has been successfully applied to an actual
autonomous platform. This achievement is significant,
as it demonstrates the effectiveness and practicality of
digital twin-driven fault diagnosis in real-world scenar-
ios. The successful application provides evidence of its
reliability and accuracy in detecting actuator faults.

II. THEORETICAL BACKGROUND
Hybrid modeling techniques which combine physics-based
and data-driven methods while utilizing the data from the
real system are better suitable for a wide range of digi-
tal twin applications. Probabilistic graphical models, par-
ticularly dynamic Bayesian networks, are one such class
of hybrid modeling methods that are found to adequately
address the needs of digital twin models at scale [19].
It is reasonable to state that systems that warrant digital
twin representations usually also contain inherent complexity
and uncertainty. If the system is simple and deterministic,
a dynamic model of the system will be able to represent it
at all times. However, that is not the case with most real-
world systems. At least, the ones that are the subject of
this work. Complexity in systems arises from multiple fac-
tors. In engineering systems, they can arise from structural
complexity due to a large number of interacting subsys-
tems, parts, and components and their relationships. Com-
plexity can also arise from system dynamics due to the
time-varying nature of system states and parameters. This
is called dynamic complexity. Uncertainty, like complexity,
is inherent in most real-world systems models both because
of abstractions and assumptions made while modeling the
system and also because of the noisy observations that are
used to update these models [20]. Owing to the dual chal-
lenge posed by complexity and uncertainty, a robust hybrid
modeling framework is required to incorporate physics-based
and/or data-driven methods along with the knowledge trans-
ferred from the real system via data while handling the sys-
tem uncertainty and complexity. The graphical model uses
a graph-based representation to encode a complex relation
of variables over a high-dimensional space. They combine
graph theory with estimation theory and are shown to facil-
itate representation, inference, and learning, which are the
cornerstones of complex system modeling. Representation is
the encoding of knowledge about the system in a machine-
readable format, inference is the ability to use the existing
representation to perform meaningful analysis of the system

FIGURE 2. A digital twin framework for actuator fault diagnosis based on
a graphical model and AEKF.

and learning is the ability to use past experience and data to
update the existing representation [21].

Inspired by the recent work on the probabilistic graphical
models presented in [19], in this paper, we propose a novel
approach for fault diagnosis of ASVs by utilizing a graphi-
cal model combined with an AEKF algorithm, as illustrated
in Figure 2. The proposed approach leverages information
from the physical system to extract hidden information in
the digital space. The digital space refers to the virtual rep-
resentation of a physical system that allows us to test and
validate various scenarios and changes to the physical system.
By leveraging the digital space in digital twin technology,
we can improve operational efficiency, reduce maintenance
costs, and increase the asset lifespan of the ASVs. The digital
model in the digital space simulates the behavior and char-
acteristics of the physical entity in real-time or near real-
time. This digital space can include various types of data
such as design specifications, sensor readings, operational
data, maintenance records, and other relevant information.
To map the physical system into the digital space, we define
state variables such as xi, yi, Ui, and ψi, which represent the
position in the x-axis, position in the y-axis, forward velocity,
and course angle of the ASV at time step i, respectively. These
state variables can be measured from various sensor systems,
such as the global navigation satellite system (GNSS), Inertial
Measurement Unit (IMU), or Simultaneous Localisation and
Mapping (SLAM). In Section IV, we propose and implement
an AEKF algorithm to estimate the fault parameters θα and θr
associated with faults in the actuator systems, which affected
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the acceleration and course angle. We denote x̂i, ŷi, Ûi, ψ̂i,
θ̂α , and θ̂r as the variables and parameters in the digital
space. These estimated variables and parameters are needed
to calculate the propeller thrust T̂R and T̂L , which are used to
estimate the propeller faults θ̂TR , and θ̂TL . The update equation
in the AEKF is derived from a simple nonlinear dynamic
model of an ASV presented in Section III. It is worth noting
that, in contrast with the traditional AEKF algorithm, where
the fault parameters θα and θr are considered as additional
state variables, the AEKF algorithm developed in this paper
estimates the parameters directly from sensor measurements.
This method allows for more efficient and accurate fault
diagnosis in ASVs.

III. SYSTEM MODELING
A. DYNAMIC MODEL OF THE ASV
The generic continuous-time dynamic model of the Otter
ASV can be written as:

ẋ(t) = U (t) cos(ψ(t)) (1)

ẏ(t) = U (t) sin(ψ(t)) (2)

U̇ (t) = a(t) (3)

ψ̇(t) = r(t) (4)

where x and y are the positions in the North-East coordinate,
U is the forward speed, and ψ is the course angle. In this
model, the linear acceleration a and the course rate r are
considered as control inputs and can be estimated using dif-
ferent sensor systems such as an inertial measurement unit
(IMU), an encoder, or a GNSS receiver. If the latter is used,
the estimates need to be filtered to avoid rapid changes as
follows:

ȧ(t) =
1
τa
(sat(ac(t)) − a(t)) (5)

ṙ(t) =
1
τr
(sat(rc(t)) − r(t)) (6)

where ac and rc are determined from a backward finite dif-
ference approximation:

ac,m =
(1 − α)UGNSS

m + αUGNSS
m−1 − UGNSS

m−2

(1 − α)11 +12
(7)

rc,m =
(1 − α)ψGNSS

m + αψGNSS
m−1 − ψGNSS

m−2

(1 − α)11 +12
(8)

where α =
(11+12)2

12
1

. The symbol ‘‘sat’’ refers to the

saturation function. Here, τa and τr are the user-defined time
constants, while 11 and 12 are the time steps. Let x =(
x y U ψ

)⊺ denotes the state variable of the ASV. Applying
the Euler’s method to (1)-(4), we have:

xk+1 = f (xk ) + Buk (9)

where

f (xk ) =


xk +1tUk cos(ψk )
yk +1tUk sin(ψk )

Uk
ψk

 (10)

B =


0 0
0 0
1t 0
0 1t

 , uk =

(
ak
rk

)
(11)

The nonlinear state-spacemodel (9) is only valid if theOtter is
in perfect condition and is sailing in ideal weather. In practice,
this is not always the case. Thus, we need to model the
external disturbance, such as wind, and the internal aspect
such as actuator faults. To this end, we add two terms into
(9), such that we have:

xk+1 = f (xk ) + Buk + 8kθ + wk (12)

Here, the fault parameter θ =
(
θa θr

)⊺ represents the mag-
nitude of the fault caused by a malfunction in the actuator
system and is unknown. The function 8k is known and is
given by 8k = −Bdiag(uk ). The actuator terms in (12)
becomes Buk − Bdiag(uk )θ = B(I − diag(θ))uk . In this
case, we can see that the fault θ enters the system (12) as
the actuator loss of effectiveness. The vector wk describes the
wind-induced disturbances. The uncertainty is also appeared
in the sensor system, such that the measured data becomes:

yk = Cxk + vk (13)

where the uncertainty vk is assumed to be white Gaussian
noise. Since all state variables can be measured, then C =

I4. Remark that the model (1)-(4) is a generic model for a
mobile system; thus, the method presented in this paper can
be implemented for other mobile robots.

B. DESCRIPTIVE MODEL OF THE ASV
The Otter, as shown in Figure 3, runs on electric propulsion
with a total installed power of 1830Wh from two Torqeedo™
batteries and is driven by two Torqeedo Ultralight 403 AC
trolling motors which provide a static thrust of 15Kg each.
Additionally, it is equipped with a GNSS sensor for navi-
gation and a camera for capturing video feeds. Furthermore,
the Otter is powered by a Raspberry Pi as its main computer,
also referred to as OBS (On-board System), and an additional
Intel-based payload computer running Windows 10 OS for
integrating optional payload sensors. There are four channels
of communication with the Otter, namely VHF Radio, 4G,
WiFi, and Ethernet. This gives a wide range of choices for the
users to select a preferred communication channel based on
application requirements and range limitations. In total, the
Otter weighs 55Kg and has an overall size of 2m x 1m x 0.8m
in length, breadth, and height dimensions, respectively. This
system description is important to understand the capabilities
and limitations of the vehicle before we proceed to develop a
specific application for the digital twin.
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FIGURE 3. 3D CAD model of the Otter ASV.

FIGURE 4. Fault diagnosis based on a hybrid approach, which combines
physics-based and data-driven.

IV. FAULT DIAGNOSIS ALGORITHM
In this work, we mainly focus on actuator faults. Actua-
tor faults can cause the vehicles to be partially or com-
pletely uncontrollable. In this case, if the actuator faults
have been diagnosed, the operator can decide whether the
mission should be continued or stopped. The key point when
diagnosing the fault is prompt detection of process malfunc-
tions in the system [22]. Given the sophisticated nature of
today’s systems,manual supervision of faults in all the system
components is not a feasible solution. Hence, there is an
increasing move towards automatic supervision of system
abnormalities.

In this paper, we approach the fault diagnosis problem
using a hybrid-based method, as presented in Figure 4. Here,
measurement data obtained from the GNSS/AIS sensor are
combined with the vehicle model in the AEKF algorithm to
estimate the fault parameters θ̂a and θ̂r . Extending the work
in [11] for linear systems, we linearize the nonlinear system
(12) at x̂k . Thus, we have:

xk+1 = Fk (x̂k )xk + Ek (x̂k ) + Buk + 8kθ + wk (14)

where Fk (x̂k ) =
∂f (xk ,yk )
∂xk

∣∣∣
x̂k
, Ek (x̂k ) = f (x̂k , yk ) −

∂f (xk ,yk )
∂xk

∣∣∣
x̂k
x̂k . For simplicity, we define Fk = Fk (x̂k ) and

Ek = Ek (x̂k ). The Kalman gain Kk+1 and the error covari-
ance matrix P+

k+1 are computed using the following standard
recursion:

P−

k+1 = FkP+

k F
⊺
k + QFk (15)

6k+1 = CP−

k+1C
⊺

+ RFk (16)

Kk+1 = P−

k+1C
⊺6−1

k+1 (17)

P+

k+1 = [In − Kk+1C]P−

k+1 (18)

while the gains 5k+1 and ξ k+1 are calculated from:

ξ k+1 = (In − Kk+1C)Fkξ k (19)

+ (In − Kk+1C)8k (20)

ζ k+1 = CFkξ k + C8k (21)

Λk+1 =
[
λ6k+1 + ζ k+1Skζ

⊺
k+1

]−1 (22)

5k+1 = Skζ
⊺
k+1Λk+1 (23)

Sk+1 =
1
λ
Sk −

1
λ
Skζ

⊺
k+1Λk+1ζ k+1Sk (24)

Finally, the fault and the state are estimated using the follow-
ing formula:

θ̂k+1 = θ̂k + 5k+1ỹk (25)

x̂k+1 = Ax̂k + f (xk , yk ) + Buk + 8k θ̂k

+ Kk+1ỹk + ξ k+1[θ̂k+1 − θ̂k ] (26)

where ỹk = yk − Cx̂k . The forgetting factor λ dictates the
convergence rate. Bigger λ causes slower transient behavior,
and vice versa. The main advantage of using the AEKF algo-
rithm is that the method is applicable for general nonlinearity,
once the Jacobian matrix can be computed. Furthermore, the
method can handle process andmeasurement noise. However,
due to linearization, the estimates may not converge to the
actual values. This limitation can be addressed by adding a
nonlinear observer (NLO) to guarantee stability.

V. NUMERICAL SIMULATION AND EXPERIMENTAL
RESULTS
A. NUMERICAL SIMULATION
As a simple demonstration of the digital twin-driven fault
diagnosis approach, a dynamic model of an autonomous
surface vehicle with known actuator faults is used in simu-
lation to generate the state variable data. The generated data
is then used by the AEKF algorithm to estimate the state
variables and fault parameters. The results of the simulation
and estimation are shown in Figure 5. The simulation is run
for 20 seconds with a sampling time of 0.0001s. The non-zero
control inputs given to exciting the system are the linear
acceleration a and course rate r . In this example, the faults
are represented by the actuator’s loss of effectiveness which
affects the control inputs. Both actuator faults occur at t =

5s. The first control input losses 50% of the effectiveness,
while the second control input losses 30% of the effective-
ness. It can be observed that the AEKF estimates the faults
accurately in less than 1s. We can further observe that the
estimation algorithm is able to follow the changes in the
actuator fault accurately. This is a simple demonstration of
the fault parameter estimation algorithm in an ideal case
with step inputs and step faults. An important parameter
that affects the convergence of estimation is the forgetting
factor λ. This acts as a tuning parameter with higher values
suppressing the noise and resulting in smoother estimates but
also slowing down the convergence. A comprehensive paper
regarding the comparative performance of the AEKF with
other methods has been presented by the last author in the
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FIGURE 5. State variable (left) and fault parameter (right) estimation based on the vehicle model (1)–(4)
with known faults.

FIGURE 6. One of the Otter propellers is broken to simulate faulty
condition.

following paper [23]. The main advantage of the AEKF is
the method can be applied to many nonlinear systems as long
as the Jacobian can be calculated.

B. EXPERIMENTAL RESULTS
To demonstrate the digital twin-driven fault diagnosis
approach in the actual autonomous surface vehicle platform,
real data from the Otter with faulty actuators is needed.
The faults can then be estimated using the proposed AEKF
algorithm. For this purpose, the Otter is taken to sea trials
with two propeller settings. The first setting is to use perfectly
working propellers, while the second setting is when one of
the propellers is broken. The sea trials were carried out at
Sunnmøre Museum dock in Ålesund, Norway. The Otter is
operated to track two paths in way-point mode using a vehicle
control station (VCS) provided by Maritime Robotics. Path 1
is a straight-line maneuver and Path 2 is an S-manoeuvre.
The reason for choosing these different paths is to test the

performance of the fault detection algorithm in different
scenarios.

A 3D model of the original propeller is created using
CAESES®, a propeller design software from Friendship
Systems™ and further modified in OnShape™, a cloud-based
CAD software. The 3D model is made with the help of
visual reference from the original propeller. Therefore, it is
not precisely similar to the original propeller. However, this
difference will either not matter due to the robust closed-loop
control system of the Otter or it will be picked up as a fault
by the fault diagnosis algorithm. The 3D model is further
modified by creating a broken blade to simulate a faulty
propeller. Both the 3D models, intact and broken, are then
3D printed on Prusa MK3S ® 3D printers.

For implementing the actuator fault diagnosis algorithm on
the above system, it should satisfy the completely observ-
able and completely controllable condition. For this purpose,
we need state observations

(
x y U ψ

)⊺ from the Otter. The
Otter is equipped with a GNSS sensor which logs the loca-
tion, orientation, and speed as latitude, longitude, speed-over-
ground (SOG), and course-over-ground (COG) in the world
frame which can be converted into

(
x y U ψ

)⊺ in North-East
frame. TheWorld Geodetic System (WGS-84) is used to map
the latitude and longitude into the Cartesian coordinate. For
this purpose, let us define 1l = l − l0 and 1µ = µ − µ0,
where l0 and µ0 are the longitude and latitude of the flat
Earth coordinate origin. The North and East position (x, y)
are computed as:

x =
1µ

atan2(1,RM )
(27)

y =
1l

atan2(1,RN cos(µ0))
(28)

where RN =
DE√

1−e2e sin
2(µ0)

and RM =
DE (1−e2e )

1−e2e sin
2(µ0)

. Here,

DE is the Earth’s equatorial radius and ee is the Earth’s
eccentricity.
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FIGURE 7. Straight-line maneuver (left) and fault estimation with perfectly working propellers (right).

FIGURE 8. S-manoeuvre (left) and fault estimation with perfectly working propellers (right).

1) FAULT-FREE SCENARIO
Figure 7 and Figure 8 show the position and fault param-
eter estimates for both the maneuvers without faults. From
the plots, we can make an observation regarding the faults.
The fault estimation is different for both cases though the
propeller conditions are the same. Particularly, the estimated
value for the S-manoeuvre is higher compared to the straight-
line maneuver. However, in both cases, the maximum fault
is about 4%. This can be attributed to unknown faulty con-
ditions of the Otter actuator system and the noise in the
sensor measurement. At first, these results may seem a bit
strange. However, we know that the AEKF algorithm per-
forms fault estimation only with non-zero input. In the case
of a straight-line maneuver in Figure 7, the inputs i.e., the
acceleration and course rate are close to zero as the Otter
is operating in a way-point mode, where it tracks the input
trajectory with constant speed. This is the reason for a close-
to-zero fault estimation seen in Figure 7. Coming to the sec-
ond observation of the non-zero faults in inputs in Figure 8,

it should be noted that this indicates the faults in input accel-
eration and course rate but not the actual actuator faults.

The actuator fault magnitudes are small with maximum
values of 0.045 and 0.04, respectively. However, one inter-
esting result is the appearance of the peaks which coincide
with the curvature of the trajectory. In other words, the fault
in the starboard side propeller has a maximum value when
the vehicle is turning left. Similarly, the port side propeller
has a maximum value when the vehicle is turning right. This
logically follows from the above discussion that the fault
parameter magnitude depends on the input magnitude. Since
a right-turning propeller will have higher input to its port
side propeller, this fault magnitude is also higher during that
maneuver.

2) FAULTY SCENARIO
A fault was introduced in the actuators by breaking the port
propeller. The expected outcome was that the actuator fault
value for the port propeller alone would show a peak in the
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FIGURE 9. Straight-line maneuver (left) and fault estimation with faulty propellers (right).

FIGURE 10. S-manoeuvre (left) and fault estimation with faulty propellers (right).

fault curve, while the starboard propeller’s fault value would
be similar to the earlier tests. As predicted, the fault curve
for the port propeller showed a peak with a magnitude of
0.12 (Figure 9), which corresponds to a fault percentage
of 12%. This value is significantly higher than the previous
cases, where a fault was detected at 4%, and thus validates the
AEKF-based fault detection algorithm and the overall fault
diagnosis technique. However, it is essential to note that the
input fault estimates alone, which are produced by the AEKF,
are not sufficient to diagnose a fault. The estimated values are
similar for all the test cases. It is through the actuator fault
values generated by the dynamic model that we can conclude
the presence of the fault, its location, and its magnitude.
Figure 10 illustrates the results of the S-shape maneuver,
showing that the estimated faults in both the experiment
with a broken propeller and the experiment without a broken
propeller are identical. This observation can be attributed
to the fact that the S-shape maneuver is designed in a way
that conceals the presence of faults in the system. Hence,

it becomes difficult to detect any faults during the execu-
tion of the maneuver. Therefore, the similarity in estimated
faults between the two experiments is not an indicator of the
absence of a fault, but rather a consequence of the limitations
of the maneuver. It is important to note that this does not
necessarily mean that there are no faults in the system, and
further investigation using other maneuvers or techniques
may be necessary to confirm the presence or absence of any
faults.

VI. CONCLUSION AND FUTURE WORKS
We have demonstrated a digital twin-driven fault diagnosis
approach for an ASV in real-world settings. The demon-
stration shows the potential benefits of the digital twin
technology to increase the safety and reliability of an ASV
by monitoring the unknown parameters associated with the
health status of the system. The method is based on a graph-
ical method combined with an AEKF algorithm for state
and parameter estimation developed previously by the last
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author. We note that the algorithm may not be working if the
nonlinearity of the system is severe. Further works include
developing a more robust algorithm for state and parameter
estimation. A possible approach is to add a nonlinear observer
(NLO) into the estimation method.
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