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a b s t r a c t 

This work proposes a Markov Decision Process (MDP) model for identifying windows of opportunities to perform 

preventive maintenance for multi-unit parallel systems subject to a varying demand. The main contribution lies 

in proposing: (i) a reward function that does not depend on maintenance costs, which are typically difficult to 

assess and classify; and (ii) a new metric for prevention. 

By optimizing the capacity utilization rate and the decision flexibility, which is denoted in terms of standby units, 

for a set of typical operational scenarios, the optimal opportunities for preventive interventions are identified 

within the respective prevention ranges, in relation to an offshore power plant (case study). The sequential 

decision problem is solved using the Value Iteration algorithm to obtain the optimal long-term policies. 

As a result, a backlog management decision-support solution is developed, using a low-cost computational model, 

which provides scenario-dependent preventive policies and promotes the integration of operations with mainte- 

nance, being easy to implement, maintain and communicate with stakeholders. 
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. Introduction 

A key problem in the operation of complex engineering systems, such

s aircrafts, ships, and offshore platforms, is the coordination of long-

erm production and preventive maintenance. This is particularly prob-

ematic in adverse operational environments such as oilfield operations,

here logistical aspects have a major impact on total repair times and

perational costs. Moreover, in these environments it is often difficult

o assess and classify maintenance costs, either resulting from preven-

ive or corrective actions. Equipment damage and downtime often incur

ubstantial economic losses in the offshore environment, not only due

o setup and repair costs, but also resulting from production disruptions.

ffshore production systems typically consist of parallel machinery sys-

ems with some degree of redundancy and, as such, they may be op-

rated under different policies whose control actions normally include:

i) maintain the current activity level until the next decision epoch ( i.e. ,

ait); (ii) activate a standby component and increase activity; (iii) de-

ctivate a component and place it on standby; and (iv) release a standby

omponent for preventive maintenance. 
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Faced with the problem of influencing the behavior of a probabilistic

ystem, the operator must be able to make decisions under uncertainty,

.e. , find a sequence of actions that drive the system to perform opti-

ally with respect to some predetermined performance criteria. The

robabilistic nature of these systems arises from variations driven by:

i) the supply-demand relationship ( i.e. , operation stress); (ii) the sys-

em/component characteristics ( e.g. , reliability); and (iii) the failure and

egradation mechanisms. Making decisions in such an environment can

enefit from the use of decision-support tools that systematically adjust

he prevention levels, aiming to reduce the risk of failures and produc-

ion losses. 

In the design of maintenance decision-support tools,

ekker (1996) regards the modeling of system degradation and

he occurrence of failure events as essential components of these

pproaches to understand how they are influenced by the maintenance

egime, e.g. , a given Operations and Maintenance (O&M) policy. An

ptimal O&M policy should optimize production while mitigating

ystem degradation. Thus, in that context, preventive maintenance ac-

ions ( e.g. , inspections, testing, adjustments, cleaning, and lubrication)
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ecome an important part of the maintenance work that can extend the

ystem’s useful life. 

In this work we propose a new preventive policy generation model

or multi-unit parallel systems under a varying demand. Our model uses

he capacity utilization rate to compose a measure of system’s perfor-

ance. This allows one to coordinate production and maintenance with-

ut an overly sensitive dependence to uncertain cost estimates. 

One objective of this work is the development of a simple model, easy

o implement, use and communicate, and capable of promoting O&M

ntegration in the offshore operational environment. In other words, a

odel that can provide optimal long-term preventive policies to the op-

rator/maintainer by answering the question: Under what operating con-

itions of a parallel production-system is a preventive action optimal in the

ong run? 

The proposed approach uses the Markov Decision Process (MDP) as a

athematical framework for modeling sequential decision-making with

artially random outcomes. Our model is developed based on a case

tudy, which refers to the main power generation system of a floating,

roduction, storage and offloading unit (FPSO) and the state-space def-

nition is based on the observable operating conditions of the parallel

achinery system ( i.e. , 𝑘 -out-of- 𝑛 configurations). Since the system per-

ormance is to be measured in average terms, the expected average re-

ard is chosen as the optimization criterion, and the optimal policies

re obtained by a dynamic programming formulation using the Value

teration algorithm. 

This paper contributes to the engineering practice by combining ex-

sting models and methodologies to generate optimal preventive policies

or a smooth long-term operation of parallel machinery systems. Con-

retely, the contributions of the work are: 

• A new MDP-based methodology for identifying windows of oppor-

tunity to perform preventive maintenance that, unlike other works,

yields appropriate ranges of prevention to be considered by the op-

erator, and which avoids complicated cost estimation by optimizing

the capacity utilization rate. 
• The improved interpretability intrinsic to the proposed MDP model

that facilitates the communication of the resulting decision policy to

the stakeholders. 
• The low dimensionality of the model that promotes easy model de-

sign and maintenance, and relatively low computational cost to cal-

culate optimal decision policies. 
• A demonstration of the good features of the proposed methodology,

by means of an application to the synthesis of decision policies for a

real-world offshore power plant. 

More specifically, the paper investigates the relationship between

ailure/repair rate combinations ( i.e. , scenario severity) with preven-

ion levels. The approach suggests an alternative value-function, which

ptimizes the capacity utilization rate combined with decision flexibil-

ty, instead of cost minimization. The work makes its case in a main-

enance backlog management problem, based on data from an actual

ystem and the interpretations thereof. The same offshore power plant

f the case study was also considered by Machado et al. (2014) and

erera et al. (2015) . The expected benefits of the approach are: (i) an

ndirect optimization of the total operating costs; (ii) a regularization of

he capacity utilization rate of similar systems ( e.g. , fleet management);

nd (iii) a reduction of energy consumption and the respective climate

missions of these engines. 

The article is organized as follows. In Section 2 we discuss some

elated solution approaches and position our model in relation to

he literature. In Section 3 we present the problem statement, the

olution approach and the proposed MDP model for the synthesis

f optimal O&M policies. In Section 3.1 , we present a case study

ased on real-world offshore power plant and discuss the obtained

esults. Finally, in Section 5 we present the conclusions and final

onsiderations. 
2 
. Related works 

In the literature on MDP, several Markov decision models are ap-

lied to condition-based maintenance (CBM), where a system’s condi-

ion/state scale is considered with respect to a set of related available

ctions. 

Stengos and Thomas (1980) , for example, consider identical blast

urnaces and, by using MDP, they find the cost-related optimal policy for

he case of two units. One of the results is that a specific cycle should be

ollowed to reduce the probability of both units failing simultaneously. 

Chan and Asgarpoor (2006) present a method to find an optimal

aintenance policy using an 8-state Markov model with two actions: “do

othing ” and “do maintenance ” with respect to the optimal preventive

nterval. 

Amari et al. (2006) provide a generic procedure to obtain optimal in-

pection schedules and decisions for 𝑘 -out-of- 𝑛 load-sharing systems in a

ost-effective condition-based approach, using a 6-state condition scale

ith 4 actions: “no action, ” “minor maintenance, ” “preventive mainte-

ance, ” and “corrective maintenance. ”

Ossai et al. (2016) develop a 6-state Markov model for components

f wind turbines with a survival function, using the Weibull distribu-

ion to establish the impacts of component maintenance on down time

nd failure risks. Grillo et al. (2016) present a method based on MDP

o optimally schedule energy storage devices using a 14-state Markov

odel minimizing the costs and publishing decision-support tables.

ghezzaf et al. (2007) , for example, aim to find an integrated preventive

trategy that meets the demand, while minimizing the expected sum of

roduction and maintenance costs. 

Chen and Trivedi (2005) present a semi-Markov decision pro-

ess (SMDP) approach to optimize preventive intervals, considering

hree types of decisions: (0) no action is taken; (1) minimal mainte-

ance is performed; and (2) major maintenance is performed. Wu and

hao (2010) also applied SMDP to optimize preventive intervals related

o wind turbine gearboxes representing deterioration in 7 states, 4 dif-

erent actions and using the policy iteration (PI) algorithm in a cost-

ffective related approach. 

Our approach aims to find a preventive O&M strategy that satisfies

he demand and optimizes the capacity utilization rate in the long-run.

ince the amount of prevention is a key decision in terms of maintenance

ptimization, our approach synchronizes production with preventive ac-

ivities. According to Vatn (2018) , the coordination between production

nd maintenance is among the crucial aspects of the approaches that be-

ong to the so-called Industry 4.0. 

The main similarities of our model with respect to those mentioned

bove are: (i) we investigate the relationship between time-to-failure

nd time-to-repair as Chan and Asgarpoor (2006) ; (ii) we aim to gen-

rate standardized policies for decision support in different scenarios

s Grillo et al. (2016) ; (iii) we search for integrated O&M policies as

ghezzaf et al. (2007) ; (iv) our model comprises a small set of re-

ated actions as Chen and Trivedi (2005) , Chan and Asgarpoor (2006) ,

mari et al. (2006) and Wu and Zhao (2010) . 

The distinct features of our model are: (i) the proposal to optimize

he rate of capacity utilization combined with decision flexibility as a

ay to mitigate risk of failure; (ii) the proposed prevention metric with

ower/upper bounds; and (iii) the simplicity and ease of communication

ith stakeholders. 

. Problem scope and solution approach 

.1. Problem statement 

A major Oil & Gas operator is experiencing a significant increase

n the maintenance backlog related to the power generation systems

f its FPSO fleet. Although a condition-monitoring system is available,

roviding diagnostics and prognostics for each of the turbo-generators,

he system has not been integrated towards a preventive operation of



M.M. Machado, T.L. Silva, E. Camponogara et al. EURO Journal on Decision Processes 11 (2023) 100034 

Fig. 1. Situation of the FPSO’s main power generation system. 

Table 1 

Failure and repair estimates. 

Failure estimates 𝜆 [/h] MTBF [h] 

TG-A (Case study) 0.004807 208 .0 

Aero-derivative gas turbine (OREDA) 0.002212 452 .0 

One failure per month 0.001369 730 .0 

One failure per year 0.000114 8760 .0 

Repair estimates 𝜇 [/h] MTTR [h] 

Short repair/inspection 0.125000 8 .0 

Preventive repair 1 (Case study) 0.045300 22 .1 

Preventive repair 2 0.041666 24 .0 

Corrective repair 1 (Case study) 0.025100 39 .8 

Mid-life (Case study) 0.013888 72 .0 

Overhaul (Case study) 0.004629 216 .0 

Source: Petrobras; Perera et al. (2015) ; Rausand and Høyland (2004) ; 

and Technology and Society (2015) . 
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P  
he parallel machines. After a series of meetings, it was decided that

tandard stationary policies should be identified and prescribed by the

eadquarter’s turbo-machinery experts, aiming to coordinate and syn-

hronize production with preventive activities. Considering a set of typ-

cal operating scenarios, based on a chosen case and also on statistics

 e.g. , failure/repair rates) from the technical literature, optimal oppor-

unities for preventive maintenance should be prescribed in accordance

ith the appropriate prevention range. 

The offshore power plant under study is located on the deck of an

PSO operating in Campos Basin, off the coast of Rio de Janeiro, Brazil

see Fig. 1 ). The system contains 4 identical parallel turbo-generators

TG-A/B/C/D) consisting of aero-derivative gas turbine engines with a

ominal capacity of 25000 kW, coupled with electric generators with a

ominal capacity of 28750 kVA. The range of required grid load is from

5 to 55 MW which dictates the operation of 2 or 3 generators, allowing

ifferent operating policies. 

Failure and repair rates were estimated by Perera et al. (2015) , from

 set of condition monitoring data ( e.g. , failure and repair events) con-

isting of 22596 operating hours of a selected gas turbine engine (TG-A).

ata from the preventive maintenance plan was also considered. Table 1

resents the failure and repair estimates used in this case study. 

The system is operated according to a cold standby strategy, assum-

ng that the standby components are protected from the stress associated

ith operation so that no component fails before its activation, as in

 Peiravi et al., 2019 ). Regarding the switching system, a starting failure

robability is also considered in our model as a constant value. 

The offshore machinery technician typically makes the control deci-

ions and takes actions empirically. However what she/he cannot know

or certain is: which action, among the available ones, in a given situa-

ion, is optimal in a long-term perspective. More specifically, in which

ecision epoch a standby component ( i.e. , a turbo-generator) should be

eleased for preventive maintenance. 

.2. Solution methodology 

According to Puterman (1994) , MDP, also referred to as stochastic

ynamic programs or stochastic control problems, can model sequential
3 
ecision-making problems. The approach assumes the Markov property,

hat is, the effect of an action on a state depends solely on the action

nd the current state of the system. The problem is to choose, prior to

he first decision epoch, a policy to maximize a function of a reward

equence which reflects the decision maker’s inter-temporal trade-offs. 

A Markov decision process is a tuple ( 𝑆, 𝐴, 𝑝, 𝑟 ) , where: 

• 𝑆 is a set of states for the process to visit, called state space; 
• 𝐴 is a set of actions that can be executed at different decision epochs;
• 𝑝 ∶ 𝑆 × 𝐴 × 𝑆 ↦ [0 , 1] is a function that returns the probability of the

system’s transition to a given state 𝑗 ∈ 𝑆, given that the process is in

a state 𝑖 ∈ 𝑆 and the decision-maker implements the action 𝑎 ∈ 𝐴 .

Each function evaluation is denoted as 𝑝 ( 𝑗|𝑖, 𝑎 ) ; 
• 𝑟 ∶ 𝑆 × 𝐴 ↦ 𝑅 is a function that gives the cost (or reward) of choos-

ing an action 𝑎 ∈ 𝐴 when the process is in a state 𝑖 ∈ 𝑆. 

At a given decision epoch, the decision maker observes the system in

 ∈ 𝑆, and may choose an action 𝑎 ∈ 𝐴 𝑠 from the set of feasible actions

n state 𝑠 . Let 𝐴 = ∪𝑠 ∈𝑆 𝐴 𝑠 and assume that 𝑆 and 𝐴 𝑠 do not vary with the

ime 𝑡 . As a result of choosing an action 𝑎 in state 𝑠 in decision epoch

 , two things happen: (i) the decision-maker receives a reward 𝑟 ( 𝑠, 𝑎 ) ;
nd (ii) the system state at the next decision epoch is determined by the

robability distribution 𝑝 ( ⋅|𝑠, 𝑎 ) . 
Let the real-valued function 𝑟 ( 𝑠, 𝑎 ) denote the reward received by

he decision-maker for taking action 𝑎 ∈ 𝐴 𝑠 at system state 𝑠 ∈ 𝑆. When

ositive, 𝑟 ( 𝑠, 𝑎 ) may be regarded as an income, otherwise as a cost. One

equirement is that its value or expected value is known before choosing

n action, another is that it is not affected by future actions. According

o Puterman (1994) a policy or strategy provides the decision-maker

ith a prescription for choosing actions in any possible state, whilst a

ecision rule specifies the action to be chosen at a particular decision

poch, i.e. , a policy is a sequence of decision rules and decision makers

eek policies which are optimal in some context. 

Three classical MDP solution methods are: (i) policy iteration (PI);

ii) value iteration (VI); and (iii) linear programming (LP). According to

ekker et al. (2008) , the VI algorithm can be faster than the PI algorithm

f the transition dynamic matrix is sparse and only few transitions are

ossible. 

Further, the VI algorithm is relatively easy to implement ( Hernández-

erma, 1989 ) and better suited for discrete solutions ( Dreyfus, 1956 ).

or these desirable features, we choose the dynamic programming for-

ulation and the VI algorithm to generate optimal preventive poli-

ies for a long-term operation of parallel machinery systems. The basic

omenclature used in the MDP model is presented in Table 2 . 

The VI algorithm induces a Markov process and finds, by iteratively

pdating the value of every state in a fixed order, the sequence of ac-

ions that yields the best outcome of the value function. In the present

pproach we use the average reward criterion, i.e. , without discount fac-

or, so it is necessary to determine when to stop calculating successive

pproximations. 

The convergence/stopping criterion is based on the span semi-norm

𝑝 ( 𝑣 𝑛 +1 − 𝑣 𝑛 ) , which is defined as 𝑠𝑝 ( 𝑣 ) = max 𝑠 ∈𝑆 𝑣 ( 𝑠 ) − min 𝑠 ∈𝑆 𝑣 ( 𝑠 ) for all

 ∈ 𝑉 . This is a measure of how close a vector is to being constant. 

As described by (Puterman, 1994, 364) , Algorithm 1 finds a sta-

ionary 𝜖-optimal policy ( 𝑑 𝜖) ∞ and an approximation to its gain.

uterman (1994) also shows that the algorithm produces iterates that
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Table 2 

MDP basic nomenclature. 

Symbol Description 

𝑆 Set of system states 𝑠 

𝐴 𝑠 Set of available actions 𝑎 in state 𝑠 ∈ 𝑆
𝑗 A given destination state 

𝑑( 𝑠 ) Action chosen by decision rule 𝑑 in state 𝑠 

𝑑 ∞ Stationary policy which uses decision rule 𝑑 in every period 

𝑑 𝜖 ( 𝑠 ) Optimal decision in state 𝑠 with respect to the tolerance 𝜖

𝜋 Policy ( 𝑑 1 , 𝑑 2 , … , 𝑑 𝑁−1 ); 𝑁 ≤ ∞
𝜋∗ Optimal policy 

𝜖 Error tolerance (stopping criteria) 

𝑠𝑝 ( ⋅) Span semi-norm 𝑠𝑝 ( 𝑣 𝑛 +1 − 𝑣 𝑛 ) 
argmax Subset of elements at which the maximum of a function is obtained 

𝑛 Iteration index 

𝑁 Number of iterations 

𝑉 Set of values 𝑣 𝑛 ( 𝑠 ) with 𝑛 denoting the iteration number 

𝑣 𝜋 Expected total reward under policy 𝜋

𝑣 0 ( 𝑠 ) Value at the iteration 0, 𝑣 0 ( 𝑠 ) ∈ 𝑉 
𝑣 𝑛 +1 ( 𝑠 ) Value of state 𝑠 at iteration 𝑛 + 1 
𝑟 ( 𝑠, 𝑎 ) Reward for choosing action 𝑎 in state 𝑠 

𝑝 ( 𝑗|𝑠, 𝑎 ) Probability that the system occupies state 𝑗 at time 𝑡 + 1 when 

action 𝑎 is chosen in state 𝑠 at time 𝑡 

𝑔 𝜋 ( 𝑠 ) Gain or expected average reward of policy 𝜋

Algorithm 1 Value Iteration. 

Require: an MDP 𝑀 = ( 𝑆, 𝐴, 𝑝, 𝑟 ) 
1: Select 𝑣 0 ∈ 𝑉 , specify 𝜖 > 0 and set 𝑛 = 0 . 
2: for 𝑠 ∈ 𝑆 do 

3: Compute 𝑣 𝑛 +1 ( 𝑠 ) by 𝑣 𝑛 +1 ( 𝑠 ) = max 
𝑎 ∈𝐴 𝑠 

{ 

𝑟 ( 𝑠, 𝑎 ) + 

∑
𝑗∈𝑆 

𝑝 ( 𝑗 |𝑠, 𝑎 ) 𝑣 𝑛 ( 𝑗 ) } 

4: end for 

5: if 𝑠𝑝 ( 𝑣 𝑛 +1 − 𝑣 𝑛 ) < 𝜖 then 

6: Go to step 8, otherwise increment 𝑛 by 1 and return to step 2 

7: end if

8: for 𝑠 ∈ 𝑆 do 

9: Choose 𝑑 𝜖( 𝑠 ) ∈ arg max 
𝑎 ∈𝐴 𝑠 

= 

{ 

𝑟 ( 𝑠, 𝑎 ) + 

∑
𝑗∈𝑆 

𝑝 ( 𝑗 |𝑠, 𝑎 ) 𝑣 𝑛 ( 𝑗 ) } 

10: end for 

11: return 𝜋∗ = ( 𝑑 𝜖( 𝑠 ) ∶ 𝑠 ∈ 𝑆) , an optimal policy 

c  

d

3
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w  

a  

Table 3 

Model nomenclature. 

Symbol Description 

𝜆 Component failure rate estimate 

𝜇1 Minor repair rate estimate (preventive) 

𝜇2 Major repair rate estimate (corrective) 

𝛼 Standby utility parameter - Range [0.5:1.5] 

𝛽 Starting failure probability - Range [0:0.15] 

Prev Prevention factor array [1:10] 

m Severity ratio ( 𝜆∕ 𝜇1 ) 
𝑠 𝑡 State vector 𝑠 𝑡 = ( 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ) 
𝑥 1 Number of components in operation 

𝑥 2 Number of components in standby 

𝑥 3 Number of components in preventive maintenance 

𝑥 4 Number of components in corrective maintenance 

𝑢 𝑠 Utility of state 𝑠 

𝐿 System current load (power demanded by the FPSO) 

𝑙 𝑠 Current component load (power generated per component), 𝑙 𝑠 ≤ 𝐿 ∕ 𝑥 1 
𝑙𝑎𝑐𝑡 Component activation load - Range [10:17] 

𝑙𝑡 Component target load - Range [22:27] 

𝑙𝑚𝑖𝑛 Component minimum load - Range [10:25] 

𝐸( 𝑠 ) Expected sojourn time in state 𝑠 
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onverge to the optimal value function, which thereby yield an optimal

ecision policy 𝜋∗ . 

.3. Proposed model 

In this section, we present the development of the MDP model for the

ffshore power plant under study. The nomenclature used in the model

ppears in Table 3 . 

The states and transitions at component-level are presented in Fig. 2

here solid arrows represent the transitions due to events ( e.g. , failures

nd repair completions), whereas dotted arrows represent the transi-
4 
ions governed by control actions which are coded as: (1) “Wait; ” (2)

Activate; ” (3) “Deactivate; ” and (4) “Do preventive. ”

Although stochastic, the system is observable by means of a state

ector 𝑠 𝑡 = ( 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ) containing the number of components in each

f the possible states (see Fig. 2 ). The quantity 𝑥 1 denotes the num-

er of components in “Operating State ” (OP), 𝑥 2 denotes the number of

omponents in “Standby ” (STB), whereas 𝑥 3 and 𝑥 4 denote the number

f components in “Preventive Repair ” (PRV) and “Corrective Repair ”

CRT) respectively. 

If the decision is to wait until the next decision epoch, transitions

ay occur by chance, either due to a failure or a repair completion.

ailure of a component causes a transition from (OP) to (CRT), while

 repair brings the respective component to (STB). By choosing to de-

ctivate a component, a transition from (OP) to (STB) occurs, and the

ecision to do preventive, which brings a standby component to (PRV)

s of special interest in this approach. 

In order to develop a model considering only the relevant states and

ransitions to represent the continuous and normal operation of the sys-

em of interest, a procedure has been adopted as follows: 

1. Define, with the stakeholders, the normal operating conditions, de-

cision rules, action sets and limits; 

2. From the full operative state ( i.e. , all components operating), add

states and transitions towards the least operative states, such that

a strongly connected graph is obtained, i.e. , an irreducible Markov

chain; 

3. Simulate all the plausible transitions, adding new states when neces-

sary, according to the combinations of failure and repair completion

events; 

4. Collect data in order to estimate the transition probabilities; 
Fig. 2. States and transitions at component-level. The system state 

𝑠 = ( 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ) is defined by the number of components in opera- 

tion ( 𝑥 1 , OP), in standby ( 𝑥 2 , STB), undergoing preventive mainte- 

nance ( 𝑥 3 , PRV), and undergoing corrective repair ( 𝑥 4 , CRT). Solid 

lines correspond to controllable actions, whereas dashed lines indi- 

cate uncontrollable events. 
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Fig. 3. States and transitions at system-level. Labeled from I to XVI, 

each state relates to a vector ( 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ) with the number of compo- 

nents in operation, standby, preventive maintenance, and corrective 

repair respectively. 
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Fig. 4. Transition probabilities from state IV under action (1) “Wait. ”
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5. Test the resulting Markov chain, decision rules and rewards. 

As a result of applying the above procedure, a 16-state Markov chain

volved as presented in Fig. 3 . The model assumptions are: (i) dis-

rete state- and action-spaces; (ii) rewards and transition probabilities

re stationary and bounded, i.e. , 𝑟 ( 𝑠, 𝑎 ) ≤ 𝑀 < ∞ and 𝑃 ( 𝑗|𝑠, 𝑎 ) ≤ 1 , ∀𝑎 ∈
, 𝑠, 𝑗 ∈ 𝑆; (iii) failure and repair rates are constant and equal for all

dentical components; (iv) the components time-to-failure/repair fol-

ows an exponential distribution; (v) failures are independent; (vi) the

hird consecutive component failure, resulting from independent causes,

s blocked assuming that one repair completion, preventive or correc-

ive, will happen previously; (vii) the system is maintained under perfect

epair ( i.e. , as good as new); and (viii) repair starts immediately after

ailure occurs. 

In Fig. 3 we present the states and transitions at system-level. The

tates 𝑆 = { 𝐼 , 𝐼 𝐼 , 𝐼 𝐼 𝐼 , … , 𝑋𝑉 𝐼 } are labeled with roman numerals, and

ncoded with a tuple of 4 digits which represent the 𝑥 1 , … , 𝑥 4 values.

ailure events/transitions are represented by red unidirectional arrows,

hereas activation and deactivation related transitions are represented

y green bidirectional arrows. Repair completion events are represented

y blue unidirectional arrows, and the release of a component for pre-

entive maintenance is indicated by a black unidirectional arrow. From

he full operative state (I-4000), for example, when a failure occurs the

ext system state will be (IV-3001) and a corrective repair starts. A re-

air completion at state (IV-3001), for example, triggers the system to

ransition to state (II-3100) and so on. 

.3.1. Transition probabilities 

The transition probabilities 𝑝 ( 𝑗|𝑠, 𝑎 ) are derived from the system’s

ailure and repair rates (see Table 1 ) according to the available ac-

ions/transitions in each state. When the action (1) “Wait ” is chosen

rom the states (I-4000), (II-3100) or (V-2200) for example, the system

ill remain in the current state until a failure occurs. Thus, assuming

 = ( 𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ) as the current state, we have: 

 ( 𝑗|𝑠, 1) = 1 , 𝑗 ←← → ( 𝑥 1 − 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 + 1) (1) 
𝑝

5 
On the other hand, action (2) “Activate ” is made probabilistic by

ssigning a value 𝛽 denoting the starting failure probability, whereas

ctions (3) “Deactivate ” or (4) “Do Preventive ” result in a deterministic

nd instantaneous transitions. 

From states where there are components under repair, i.e. , 𝑥 3 and/or

 4 ≠ 0 , the action (1) “Wait ” results in three possible events ( i.e. , a fail-

re, a preventive or a corrective repair completion), with transition

robabilities satisfying, respectively: 

 ( 𝑗|𝑠, 1) = 

𝑥 1 𝜆

𝑥 1 𝜆 + 𝑥 3 𝜇1 + 𝑥 4 𝜇2 
, 𝑗 ←← → ( 𝑥 1 − 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 + 1) (2) 

 ( 𝑗|𝑠, 1) = 

𝑥 3 𝜇1 
𝑥 1 𝜆 + 𝑥 3 𝜇1 + 𝑥 4 𝜇2 

, 𝑗 ←← → ( 𝑥 1 , 𝑥 2 + 1 , 𝑥 3 − 1 , 𝑥 4 ) (3) 

 ( 𝑗|𝑠, 1) = 

𝑥 4 𝜇2 
𝑥 1 𝜆 + 𝑥 3 𝜇1 + 𝑥 4 𝜇2 

, 𝑗 ←← → ( 𝑥 1 , 𝑥 2 + 1 , 𝑥 3 , 𝑥 4 − 1) (4) 

One example of the derivation of transition probabilities is presented

n Fig. 4 , considering state IV under action (1) “Wait. ”

On the other hand, the actions (2) “Activate, ” (3) “Deactivate, ” and

4) “Do Preventive, ” result in transition probabilities satisfying, respec-

ively: 

 ( 𝑗|𝑠, 2) = 1 − 𝛽, 𝑗 ←← → ( 𝑥 1 + 1 , 𝑥 2 − 1 , 𝑥 3 , 𝑥 4 ) (5) 

 ( 𝑗|𝑠, 3) = 1 , 𝑗 ←← → ( 𝑥 1 − 1 , 𝑥 2 + 1 , 𝑥 3 , 𝑥 4 ) (6) 
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Table 4 

Action availability scheme. 

States 

I II III IV V VI VII VIII 

Actions 4000 3100 3010 3001 2200 2110 2101 2011 

1 − 𝑊 𝑎𝑖𝑡 1 1 1 1 1 1 1 1 

2 − 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 0 1 0 0 1 1 1 0 

3 − 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 1 1 1 1 1 1 1 1 

4 − 𝐷𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 0 1 0 0 1 1 1 0 

IX X XI XII XIII XIV XV XVI 

Actions 2002 2020 1201 1111 1102 1120 1300 1210 

1 − 𝑊 𝑎𝑖𝑡 1 1 1 1 1 1 1 1 

2 − 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 0 0 1 1 1 1 1 1 

3 − 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 1 1 0 0 0 0 0 0 

4 − 𝐷𝑜 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 0 0 1 0 0 0 1 1 

“0 ” denotes a non-feasible action 
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Table 5 

Decision rules and rewards. 

Action choice Constraints Rewards Otherwise 

1 − 𝑊 𝑎𝑖𝑡 𝑙𝑚𝑖𝑛 < 𝑙 𝑠 ≤ 𝑙𝑡 𝑟 ( 𝑠, 1) = 𝑢 𝑠 𝐸( 𝑠 ) 0 

2 − 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 𝑥 2 > 0 and 𝑙 𝑠 ≥ 𝑙𝑎𝑐𝑡 𝑟 ( 𝑠, 2) = 𝑢 𝑠 0 

3 − 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 ( 𝑙𝑎𝑐𝑡 − 𝑙 𝑠 ) ≥ 0 𝑟 ( 𝑠, 3) = 𝑢 𝑠 0 

4 − 𝐷𝑜 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑥 2 ≥ 1 and ( 𝑥 3 + 𝑥 4 ) < 2 𝑟 ( 𝑠, 4) = 𝑢 𝑠 ( 𝑃𝑟𝑒𝑣 ∕ 𝑚 ) 0 

Maintenance capacity is limited to 2 simultaneous repair jobs. 

Table 6 

Main results (scenario-dependent prevention ranges). 

Scenario Prevention range Comp. time No. iterations 

- MTBF/MTTR(prev./corr.)[h] [Lower-Upper] [sec] @55MW 

S1 - 8760 / (24/72) 5 - 7 107.19 1493 

S2 - 8760 / (72/216) 6 - 6 77.72 1058 

S3 - 730 / (8/24) 2 - 3 37.72 328 

S4 - 730 / (8/72) 1 - 3 34.05 382 

S5 - 730 / (24/72) 2 - 5 27.07 297 

S6 - 730 / (24/216) 1 - 4 76.91 851 

S7 - 730 / (22.1/39.8) 3 - 5 19.02 179 

S8 - 452 / (22.1/39.8) 3 - 6 14.74 166 

S9 - 208 / (22.1/39.8) 1 - 6 13.28 136 
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 ( 𝑗|𝑠, 4) = 1 , 𝑗 ←← → ( 𝑥 1 , 𝑥 2 − 1 , 𝑥 3 + 1 , 𝑥 4 ) (7) 

The action availability scheme, i.e. , what actions are feasible in each

tate, is presented in Table 4 . 

.3.2. Decision rules and rewards 

The main factor composing the decision rules and rewards is the sys-

em current demand 𝐿 ( i.e. , the power drawn by the FPSO). The supplied

ower never exceeds 𝐿 and it is proportional to the current load carried

y each generator such that 𝑙 𝑠 ≤ 𝐿 ∕ 𝑥 1 , and the rewards are proportional

o the utility of the states. Let 𝑢 𝑠 denote the utility of a state 𝑠 which is

omputed as: 

 𝑠 = 

𝐿 

𝑥 1 ⋅ 𝑙𝑡 
+ 𝛼 ⋅ 𝑥 2 , ∀𝑠 ∈ 𝑆 (8)

here 𝑙𝑡 denotes the target load for one component, 𝑥 1 is the number of

omponents in operation, 𝛼 denotes the standby utility parameter, and

 2 the number of units in standby. 

The first term represents the capacity utilization rate and is given as

he ratio between the total demand ( 𝐿 ) and the total dispatched capacity

 𝑥 1 ⋅ 𝑙𝑡 ), since 𝑥 1 is the number of components in operation and 𝑙𝑡 is the

arget load for one component. Ideally, this ratio should approach 1,

.e. , 100%, and the model aims for dispatching the minimum capacity

o satisfy the demand. Notice that the above equation is well defined

ecause at least one turbo-generator is in operating mode, that is, 𝑥 1 ≥ 1
n all reachable system states (see Fig. 3 ). 

The second term represents the importance, given by the operator, to

he chance of carrying out preventive actions, i.e. , the utility of having

tandby components. It is given as the multiplication of the standby

tility parameter 𝛼 with the number of standby components 𝑥 2 in state

 . 

It can be seen from Table 4 that, normally, there are more feasible

ctions in states with some standby component ( 𝑥 2 > 0 ). Regarding the

arget load 𝑙𝑡 , since the turbo-generators share the load equally, it may

e adjusted, for example, to the best efficient point (BEP). In the appli-

ation the target load, 𝑙𝑡 was adjusted to the unit nominal capacity. 

Let 𝐸( 𝑠 ) denote the expected sojourn time in state 𝑠 when action (1)

Wait ” is chosen, which is computed by: 

( 𝑠 ) = 

1 
𝑥 1 𝜆 + 𝑥 3 𝜇1 + 𝑥 4 𝜇2 

, ∀𝑠 ∈ 𝑆 (9)

Considering equations (8) and (9) , the action sets and the normal

perating conditions/limits, the decision rules and rewards may be de-

ned as presented in Table 5 . 

It is important to notice that the current component load varies with

he state and demand. Since the power supplied never exceeds the de-

and 𝐿 in any given state, and the parallel components share the load

qually, we have 𝑙 ⋅ 𝑥 ≤ 𝐿 . 
𝑠 1 

6 
As can be seen from Table 5 , when action (1) “Wait ” is chosen, the

ojourn time is multiplied by the state utility. Actions (2) “Activate ” and

3) “Deactivate ” are rewarded by the current state utility only, and ac-

ion (4) “Do Preventive ” is rewarded considering the prevention factor,

 𝑟𝑒𝑣 , which is the level of prevention to be chosen by the operator as a

recaution to failure. 

Doing preventive (action 4) is the most important decision in our

pproach. However, not being a natural attitude, the adoption of pre-

entive actions depends on identifying a suitable O&M policy. This is

chieved by defining: (i) an appropriate scale for prevention, i.e. , ( 𝑃 𝑟𝑒𝑣 );

nd (ii) a proper reward to the precautionary attitude, otherwise such

n action would have no logical appeal. 

In summary, the objective is to find the policy that maximizes the se-

uence of rewards, which is computed recursively by Algorithm 1 , sub-

ect to: (i) the Markov chain topology; (ii) the decision rules/rewards

nd action sets; and (iii) the imposed prevention factor scale. Once the

I algorithm converges, the optimal policy is obtained. By changing

he MDP environment , optimal preventive opportunities are allowed to

merge. 

In each run of the application, the problem is solved for each demand

evel in the interval [35 , 36 , 37 , … , 55] MW, forming a policy chart with

1 columns (optimal policies) and 16 rows (system states) for each 𝑃 𝑟𝑒𝑣

alue. Fig. 5 presents an example of a policy chart for 𝑃 𝑟𝑒𝑣 = 5 . It is
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Fig. 5. Example of a policy chart for Scenario 

S8 and with 𝑃 𝑟𝑒𝑣 = 5 . ( 1 = 𝑊 𝑎𝑖𝑡 in red, 2 = 
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 in white, 3 = 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 in light blue, 

and 4 = 𝐷𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 in dark blue). When gen- 

erating, for a given scenario, a set of policy 

charts in a prevention scale with 𝑃 𝑟𝑒𝑣 ∈ [1 ∶ 
10] , for example, it is possible to observe the 

emergence and growth of preventive opportu- 

nity windows (in dark blue filled with number 

4) indicating the respective prevention ranges 

(see Table 7 ). 

Table 7 

Prevention range identification. 

[ 𝑃𝑟𝑒𝑣 ] Scenario S7 Scenario S8 Scenario S9 

[% ] [% ] [% ] 

10 25.2 25.2 32.0 

9 25.2 25.2 32.0 

8 25.2 25.2 32.0 

7 25.2 25.2 32.0 

6 25.2 25.2 32.0 

5 25.2 21.8 21.1 

4 3.4 14.3 21.1 

3 3.4 14.3 21.1 

2 0.0 0.0 17.7 

1 0.0 0.0 15.6 

Upper and lower bounds for prevention in “bold ”. 
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orth noting that the preventive action is only available in 7 of the 16

tates, as presented in Table 4 . 

In Fig. 5 , the opportunities for preventive maintenance appear as

ringes in dark blue filled with number 4 in state (V-2200) from demand

5 to 41 MW, in state (VII-2101) from demand 35 to 50 MW, and in

tate (II-3100) from demand 51 to 55 MW. With regards to the capacity

tilization rate defined in Eq. (8) , the term ( 𝐿 
𝑥 1 ⋅𝑙𝑡 

) varies between 0.4 and

.2 with an average of 1.2 and reaches 1 between states V and X from

8 to 52 MW (see Fig. 5 ), i.e. , the target region of the solution-space,

eaning that the power-generation system is supplying the demand.

hen the capacity utilization is greater than 1, it means that the FPSO’s

uxiliary power generator is activated to meet the power deficit. The

erm ( 𝛼 ⋅ 𝑥 2 ) varies from 0 to 3. 

Fig. 6 presents the gain and span evolution using Algorithm 1. As our

odel has only positive rewards, the calculated gain 𝑣 𝑛 ( 𝑠 ) is monotonic

nd bounded by the optimal policy gain. The span, which is the stopping

riterion, is driven towards 𝜖 as the algorithm approaches convergence.

Because the main power generation system does not fulfill its func-

ion with only one turbo-generator in operation, only the first ten states

re considered for decision support in the present case study. This is sim-

lar to the case of a four-engine aircraft that needs at least two engines

unning to keep the flight. 

. Case study 

To demonstrate the use of the proposed MDP model, in generating

reventive policies, experiments were carried out on a set of represen-

ative scenarios, so that, when observing the progressive appearance of
7 
reventive opportunities, in the policy charts, the corresponding pre-

ention ranges are identified (see Table 6 ). From the point where no

hanges are observed in the policies, as the prevention factor, 𝑃 𝑟𝑒𝑣 in-

reases/decreases, we assume the respective upper and lower bounds

or prevention. In summary, these results indicate when, and to what

xtent, the preventive opportunities ( i.e. , associated cost and down-

ime) are worthwhile in terms of mitigating the risks of system degra-

ation/failure. 

The computational experiments were implemented in Matlab run-

ing in a 2.90 GHz CPU, with processor Intel Core i5-2310 and 4 GB

f RAM in a 64-bit operating system. The experiments were performed

ith some default parameters such as: Activation load, 𝑙𝑎𝑐𝑡 = 15 MW;

arget load per component, 𝑙𝑡 = 25 MW; Minimum load per compo-

ent, 𝑙𝑚𝑖𝑛 = 12 MW; Power range, 𝐿 ∈ [35 ∶ 55] ; Standby utility, 𝛼 = 0 . 9 ;
tarting failure probability, 𝛽 = 0 . 05 ; Error tolerance, 𝜖 = 0 . 05 ; and a

aximum number of 3000 iterations. 

.1. Application results 

The results, i.e. , a set of policy charts (similar to Fig. 5 ), for each

revention level for a given scenario is referenced in Tables 6 and 7 and

 brief sensitivity evaluation is provided in Figs. 7 and 8 . 

Appendix A presents the transition probabilities and state utilities

omputed for the base-case (Scenario S8) at 45 MW, for verification

urposes. 

The MDP model has generated, for each of the nine scenarios, dif-

erent ranges for prevention, indicating its sensitivity to the combina-

ions of failure and repair rates. Notice that by maintaining the repair

ates and increasing only the failure rate ( i.e. , reducing the MTBF), for

xample, the recommended prevention ranges increase as presented in

able 7 , where the upper and lower bounds appear in bold. 

The percentage values in Table 7 refer to the proportional appear-

nce ( i.e. , area on the policy chart) of the preventive actions in relation

o a total of 147 situations where it might be available ( i.e. , 7 states in

1 demand levels). For Scenario S9 (the most severe one), for exam-

le, even for 𝑃 𝑟𝑒𝑣 = 1 ( i.e. , no reward for prevention), the MDP model

till “recommends ” some level of prevention. For Scenario S8 and S9,

ith 𝑃 𝑟𝑒𝑣 = 6 and above, for example, no changes are observed in the

espective optimal policies, indicating the upper bound for prevention. 

Another important result observed in the series of experiments is

hat the preventive opportunities emerged progressively from low- and

igh-power demands, towards the center of the demand range. In low

emands it is quite obvious since there is plenty of room for prevention

ut, in high demands, it appears that the recommended relief is aimed at
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Fig. 6. Convergence in a single run @45MW of Algorithm 1. 

Fig. 7. Effect of varying the failure rate on the preventive windows size. 𝜇1 = 
0 . 0453 ; 𝜇2 = 0 . 0251 ; 𝛼 = 0 . 9 ; 𝛽 = 0 . 05 ; 𝜆 = [0 . 001106; 0 . 004424] . 
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Fig. 8. Effect of varying the repair rate on the preventive windows. 𝜆 = 
0 . 002212 ; 𝜇1 = 0 . 0453 ; 𝛼 = 0 . 9 ; 𝛽 = 0 . 05 ; 𝜇2 = [0 . 0125; 0 . 0453] . 
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rotecting the system against catastrophic failures. A sensitivity analysis

s performed (see Figs. 7 and 8 ) to examine the effect on the optimal

revention levels by varying: i) the failure rate; and ii) the corrective

epair rate. 

.2. Discussion 

The proposed MDP model is employed as a decision support solu-

ion for maintenance backlog management related to an offshore power

lant. Based on a case study and a set of operating scenarios, we demon-

trated that the model can generate the optimal policies, prescribing

pper and lower bounds for prevention. As expected, two thresholds

ppeared in the solution space, as shown in the policy chart of Fig. 5 ,

learly defining three regions. A deactivation region at the top (in light

lue filled with number 3) and an activation one at the bottom (in white

lled with number 2). Between these two regions (in red filled with

umber 1), is where the preventive windows normally emerged as fringes

n dark blue filled with number 4. 
8 
Complementary experiments with increased starting failure proba-

ilities, i.e., 𝛽 > 0 . 05 resulted in less deactivations compared with the base-

ase, demonstrating consistency. 

In summary, the methodology indicated the proper levels of preven-

ion by finding the answer for the main question of this study, i.e., Under

hat operating conditions of a parallel production-system is a preventive ac-

ion optimal in the long run? 

As it can be seen in Fig. 7 , the effect of varying the failure rate has

 significant impact on the size of the preventive windows. An increase

n the failure rate causes an increase in the corresponding prevention

evels. In Fig. 8 a similar behavior can be observed, but in the opposite

irection, with regards to the corrective repair rates. In this case, the

aximum corrective repair rate was limited to the preventive one ( i.e. ,

2 ≤ 𝜇1 ) for coherence. 

Uncertainty aspects on failure rates could be taken into account in

he model by considering a semi-Markov formalism ( Chen and Trivedi,

005; Wu and Zhao, 2010 ) to allow probability distributions other than

he exponential. 
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The experimental results indicated that optimal preventive oppor-

unities may be non-intuitive. Notice, for example, that the preventive

ctions appeared only in the states (II-3100, V-2200 and VII-2101) and

o preventive actions appeared in the state (VI-2110). It happened in

ll the experiments, which can be an effect of the chain topology or an

mergent property of the system. 

The model solved the problem in reduced computation time possibly

ue to its low dimensionality ( i.e. , discrete and small state- and action-

pace). 

Notice that the MDP model proposed in the paper aims to serve as

 decision-support tool for the operator concerning the long-term per-

ormance of the power-plant, not as a detailed model for making au-

omatic/autonomous decisions. This means that a KPI analysis cannot

e carried out solely based on the recommended actions, but addition-

lly would have to factor in the decisions taken by the operator and the

xogenous inputs in the actual system. In order to investigate the im-

act on KPIs, we simulated the optimal decision policy considering: (i)

 randomized demand, 𝐿 and failure events; (ii) Scenario S8; and (iii)

 𝑟𝑒𝑣 = 5 , in a period of 180 decision epochs, i.e. , time units. From these

imulations, a set of KPIs resulted as follows: 

• Total capacity utilization rate = 84.4%; 
• Total demand fulfillment = 98.0%; 
• Average unit load, 𝑙 𝑠 = 21.1 MW (equivalent to average fuel flow); 
• Availability (probability that the demand is satisfied) = 91.1%; 
• Backlog resolution (main objective) = 147 of 360 maintenance man

time units; and 
• Maintenance capacity utilization = 51.9%. 

These suggested KPIs are to be considered for tuning the model in a

uture implementation. 

The model can be easily communicated to stakeholders and possesses

what if ” analysis capabilities, which may promote insights regarding a

reventive and smooth operation of similar parallel machinery systems.

n combination with condition-monitoring information, the approach

an promote O &M integration since it allows maintenance personnel to

hoose which machine should be given priority for preventive mainte-

ance at each decision epoch. From the headquarter’s perspective, a set

f policy charts can be published in a policy and procedures manual in

rder to coordinate and integrate operation with maintenance. 

. Final considerations 

This work proposed a methodology based on the Markov decision

rocess for a preventive operation and maintenance of parallel machin-
9 
ry systems subjected to a varying demand. The related stochastic pro-

ess is modeled, and the relationship between operating scenario sever-

ty ( i.e. , failure and repair rate combinations) and prevention levels is

nvestigated. A prevention metric is proposed allowing the identifica-

ion of the proper prevention range, according to the operating scenario.

mong the expected benefits of the approach, we highlight: (i) an indi-

ect optimization of the total operating costs; (ii) a regularization of the

apacity utilization rate of similar systems ( e.g. , fleet management); and

iii) a reduction of the total energy consumption/emissions of the gas-

urbine engines. Finally, the proposed model can be used for planning or

raining purpose, with promising applications in many offshore produc-

ion systems ( e.g. , power generation, water injection, gas compression,

tc. ) since most of them are designed as 4-unit parallel systems with 33 %
edundancy. 

As for future work we can mention: (i) include time-demand curves

n the algorithm and provide policies for a predefined planning horizon

 e.g. , for demand peaks, offloading, etc.); (ii) extend the model capabil-

ties ( e.g. , allowing intermediate degradation states and non-identical

omponents); (iii) study a semi-Markov formalism to allow probability

istributions other than the exponential; and (iv) test different value-

unctions. 
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ppendix A 

The appendix presents the transition probabilities and state utilities

omputed for Scenario S8 with 𝐿 = 45 MW and 𝑃 𝑟𝑒𝑣 = 2 for verification

 Appendix A.1 and Appendix A.2 ). 
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Appendix A.1. Transition probabilities and 

state utilities computed for Scenario 8; L = 45 

MW; and Prev = 2. 

10 
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Appendix A.2. Transition probabilities and 

state utilities computed for Scenario 8; L = 45 

MW; and Prev = 2. 
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