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ABSTRACT Sparsity-promoting techniques show promising results in improving the generalization of
neural networks. However, the literature contains limited information on how different sparsity techniques
affect generalization when using neural networks to model non-linear dynamical systems. This study
examines the use of sparsity-enhancing techniques to improve accuracy and reduce the divergence rate
of neural networks used to simulate such systems. A range of sparsity methods, including hard and soft
thresholding, pruning and regrowing, and L1-regularization, were applied to neural networks and evaluated
in a complex nonlinear aluminum extraction process by electrolysis. The results showed that the most
effective technique was L1 regularization, which enhanced the important connections in the network and
improved the model performance. In contrast, many of the more advanced sparsity techniques resulted in
significantly worse performance and higher divergence rates. Additionally, the application of Stochastic
Weight Averaging during training increased performance and reduced the number of diverging simulations.
These findings suggest that carefully selecting the right sparsity techniques and model structures can improve
the performance of neural network-based simulations of dynamical systems.

INDEX TERMS Aluminum electrolysis, data-driven modeling, nonlinear dynamics, ordinary differential
equations, sparse neural networks.

I. INTRODUCTION

Deep Learning and neural networks have had a significant
impact in many scientific and technological domains as
varied as genetic expressions [l], hyperspectral image
analysis [2] or smart fish farming [3]. In the field of Computer
Vision neural networks have proven to excel in a wide range
of tasks beyond image classification [4], such as image
segmentation [5], object detection [6] or image restoration
[7]. Moreover, recent generative models DALL-E 2 [8],
[9] and ChatGPT [10] have changed the game in terms of
possibilities with more powerful networks that generate data
almost impossible to discern as “artificial”.
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Despite the success of Deep Learning and its flexibility to
be used in many applications, its advantages have not been
broadly explored in engineering problems such as modeling
non-linear dynamical systems, for which more traditional
analytical techniques, often more time-consuming and expen-
sive, difficult to apply, and presumably, less accurate in highly
variable settings, need to be applied. Despite the topic of
combining neural networks and dynamical systems being
introduced as early as 1990 [11], their application in this field
is still a largely unexplored area. The successful integration
of neural networks into highly variable non-linear dynamical
systems has the potential to speed up simulations, increase
accuracy, model more complex systems, or discover unknown
hidden physics, among other advantages, motivating a more
thorough investigation.
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To understand the advantages that using neural networks to
simulate dynamical systems can bring, we must acknowledge
that dynamical systems are governed by differential equations
and that they can be a challenge to model in certain settings.
Some dynamical systems can be represented with linear
equations in simple environments, but most of them are
characterized by complex non-linear differential equations.
Highly non-linear differential equations, when they are
perfectly known, require the development of numerical
simulators which require considerable resources in terms of
time, cost, and human expertise not only to build them but to
execute them as well. Moreover, often assumptions need to
be made that are unrealistic, and the highly varying environ-
ments make the simulators deviate from the real trajectories
and need constant revisions and adjustments. Other times, the
dynamics of the system are not completely known, which
makes the development of numerical simulators even more
difficult or even unfeasible.

Neural networks, for their part, despite their vast popularity
nowadays, also have drawbacks that may motivate why they
are not popular to simulate dynamical systems and need to
be handled. The absence of interpretability, the difficulty in
assessing their reliability, or their generalization problems
(overfitting) to unseen data are among those common
drawbacks [12], [13]. Among the techniques that can help
to fix these issues, we focus our attention on sparsification
techniques. The fundamental idea of promoting sparsity in
neural networks is that it helps the network gain generaliz-
ability [14], [15] by learning the most important and general
structures in the data. This helps to avoid overfitting scenarios
[16] in which the training data are presumably memorized
and very specific patterns are given too much weight, causing
poor generalizability to new data. Most of the regularization
techniques are focused on this goal, but sparsity has a
feature that is absent in the rest: it reduces the connections
between neurons, hence smaller numbers of parameters.
Sparse neural networks exhibit a smaller size compared to
dense fully connected without losing performance, exhibit
better generalization capabilities, and require less computer
power. Moreover, the decrease in interconnections between
neurons has the potential to produce networks with some level
of interpretability, although it falls out of the scope of this
work.

In simulating dynamical systems, rather than only regard-
ing accuracy, it can be more important to have stable and
reliable models. Sparsity techniques can be fundamental here
because they promote parameters by ruling out less important
ones. This supports the assumption that promoting sparsity
may lead to learning the most general behaviors embedded
in the training data, leveraging the bias-variance trade-off,
and enforcing to a certain degree models that are less prone
to diverge from real trajectories in the face of unseen data.
For all these reasons, we believe that the use of sparse neural
networks to simulate dynamical systems deserves further
evaluation.
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Although not their primary application, the use of neural
networks to simulate dynamical systems can be found in
the literature. In [17], an algorithm is introduced to develop
general dynamical systems by synthesizing recurrent neural
networks capable of working on continuous time. Another
work in which recurrent neural networks are used to model
dynamical systems is [18], and it presents how these networks
are capable of handling complex non-linear dynamical
systems and forecasting a time horizon of predictions in
aircraft motion. A recent extensive literature review on the
field [12] shows many ways in which neural networks can be
used to simulate dynamical systems.

Sparsity in neural networks has been a very popular field
recently. It generally focuses on how to reduce the number
of parameters in a neural network model without sacrificing
performance to reduce the memory usage and inference
cost of large neural networks. For example, recent advances
have allowed large image classification models to achieve
significant reductions in the number of parameters without
sacrificing accuracy [19], [20] [21]. These techniques work
by identifying and amplifying the important connections and
weights in the network while pruning the less important
ones. A comprehensive review of state-of-the-art sparsity
techniques can be found in [22].

There can also be found research about how inducing
sparsity can be used in the context of dynamical systems
[23], but sparse neural networks are only briefly referenced,
and only due to 11 normalization, which is often applied
as a regularization technique but can also be considered a
method to sparsify neural networks. The authors of [24] show
how to perform Sparse Identification of Nonlinear Dynamics
with an algorithm called SINDy that promotes sparsity
through sparse regression over candidate non-linear terms.
Based on SINDy’s framework, [25] extends it and combines
it with Model Predictive Control, proposing the SINDy-
MPC framework. In [26], sparse polynomial regression
is employed together with neural networks to present an
operator inference framework for dynamical systems. These
works are examples of the use of sparse neural networks in
the field of dynamical systems.

Works that combine sparse neural networks and dynamical
systems are of the type of [27] and [28] and do not delve
into simulating dynamical systems with neural networks.
In [27], the authors investigate the efficiency of constructing
graph neural networks by exploiting ““‘the idea of representing
each input graph as a fixed point of a dynamical system”.
In their approach, sparsity is studied by limiting the number
of connections of each hidden neuron. In [28] sparsity is
examined in the context of recurrent neural networks, but with
the goal of recovering sparse input signals from the output of
the networks, and the dynamics being investigated are those
of the recurrent networks.

It can be noticed that the use of sparse neural networks to
simulate dynamical systems cannot be found in the works
referenced here or those presented in the literature surveys
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mentioned. To the best of our knowledge, we have not found
literature that delves into it, remaining an underdeveloped
area.

To address this absence, this work presents an empirical
study on how to address neural network limitations by incor-
porating sparsity to improve the stability and generalizability
of neural networks and how that can lead to the successful
modeling of a complex non-linear dynamical system. To do
so, we use popular well-established sparsification techniques
with different complexities, some novel and some that have
been applied for some time already: soft thresholding for
learnable sparsity [20], magnitude pruning [19], and dynamic
sparse reparameterization [21], which will be described in the
next section.

The research questions we intend to answer with this work
are as follows:

« By inducing sparsity to a neural network during training,

is it possible to train neural networks that learn only
the important and general parts of the dynamics of a
dynamical system?

« Will the application of generalization techniques during
training result in more stable simulations with better
accuracy?

« Will feasible combinations of sparsity and generaliza-
tion techniques together lead to more stable, general-
izable, and accurate simulations conducted by Neural
Networks?

The structure of this work is as follows. Section I
presents an introduction with relevant works and the goal
of this work, along with the research questions that will
be answered. The theoretical knowledge and information
to understand the ideas, experiments, and results of this
work are presented in Section II, which includes the
applied techniques. Section III provides the information
needed to understand and replicate the experiments and
results, explaining how the data is generated, how the
neural networks are designed to apply the different sparsity
and regularization techniques, which hyperparameters are
explored, and what is the general design of the experiments
performed. The results are presented in Section IV along
with a discussion of the findings. Finally, Section V sum-
marizes the main findings of the experiments and discusses
potential directions for future research based on the results
achieved.

Il. THEORY

A. NON-LINEAR DYNAMICAL SYSTEM

Dynamical systems are continuous and discrete systems gov-
erned by differential equations [29]. Differential equations
describe how systems evolve over time and are therefore
important in many scientific and engineering applications.
The two main categories of differential equations are ordinary
differential equations (ODEs) and partial differential equa-
tions (PDEs) [29]. ODEs involve only a single independent
variable, typically time, while PDEs may involve multiple
independent variables, such as time and space. Although
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FIGURE 1. Schematic of the aluminum process.

the approaches presented in this work can be applied
to both ODEs and PDEs, the focus will be mainly on
ODEs.

A general system of ODEs can be written as follows:

X1 =A0C1, ..., %)

Xn = fu(X1, ..o, Xn), (D

as provided by [29]. Here, x; denotes the time derivative of
X, %, and the variables x; represent the different states of
the system, such as temperature, speed, or concentrations
of liquids in a chemical process. The functions fi, ..., f,
describe the dynamics of the system by defining how the
different states evolve based on the values of all the states

in the system.

1) ALUMINIUM EXTRACTION PROCESS

The data in this work come from a simulation of a dynamical
system that describes an aluminum extraction process [30],
which will be presented as a set of differential equations in
state-space form. A schematic of the process is shown in
Fig. 1. The model is based on a single aluminum electrolysis
cell and is derived using energy and mass balance. Each
constant, state, and input is denoted by k;, x;, and u;,
respectively. With five inputs, # € R, and eight states,
x € RS, the model can be written as a set of nonlinear
ODEs:

X =f(x w, (@)

where x € RS is the time derivative of states x, and f is some
non-linear function of states and inputs.

The nonlinear dynamics of the system are complex.
To make the final equations easier to understand, some
equations that partially describe the nonlinear dynamics are
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presented here:

g1 ="991.2+ 112¢y, + 61 ¢’ — 3265.5 ¢;

793¢y,
- (3a)
=23 cyyeny — 17 ¢2 +9.36 ¢y + 1
2.496 2068.4 2.07 (3b)
= X . —_—— — 4. C
52 =cxp 273 + x6 0
g3 = 0.531 +3.06- 107847 —2.51- 107 "%}
B 14.37(cy, — Cx2.crir) — 0.431
+6.96-10""u; — 2 * (3¢)
735-3(Cx2 - Cx2,crit) +1
0.5517 + 3.8168 - 10 %u,
- 3d
&4 1+ 8271 - 10-5u, (3d)
3.8168 - 10 %g304ur
g5 = 8384102 (3e)

821 —g3)

In the equations above, g; is the liquidus temperature, Tiiq,
g» is the electrical conductivity, «, g3 is the bubble coverage,
g4 1s the bubble thickness, dpyp, and gs is the bubble voltage
drop, Upub. Cx, and ¢y, cric are the mass ratio of alumina
(Al,03) and its corresponding critical value, respectively. ¢y,
is the mass ratio of aluminum fluoride (AlF3). They are,
again, given as:

Cx, = X2/ (X2 + X3 + x4)
Cxy = X3/(x2 + X3 + x4). 4

With the above equations in mind, the state-space
equation describing the aluminum electrolysis cell is given
by:

= % ~kalxs — g1) (50)
X2 = uy — kun (5b)
)'63 = uz — k4u1 (SC)
= - (’“(‘2—;0”) ~ kalxs — go) 1 ks (50)
X5 = keuo — ug (Se)
. o uzus

S [“2 (gs " 262082)

X6 — X7

g—0 7T
k1o + k11koxi

(x6 — g1)(g1 — x7)
- (k7<x6 — )’ — kg B8 T A )} (50
kox1
. B
X7 = ol kia(xe — g1)(g1 — x7)
_k13(gl —X7)2) LR —an) w7 :|
kox1 kiskoxy kia + kiskoxi
(52)
) X7 — g xg — k16 )
xg = ki7k — (5h)
’ 17 (k14 +kisko - x1 kia +kig

Each of the above states represents some physical quantity,
see Table 1 for how they can be interpreted.
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TABLE 1. Physical meaning of the variables in the aluminum extraction

process, states xy, ..., xg and inputs uy, . .., us, along with its units.
Variable | Physical meaning Unit
X1 Mass side ledge kg
X9 Mass Al,O3 kg
X3 Mass AlF; kg
X4 Mass Na3yAlFg kg
X5 Mass metal kg
Xe Temperature bath °C
X7 Temperature side ledge °C
Xg Temperature wall °C
uy A1203 feed kg
Us Line current kA
us AlF; feed kg
uy Metal tapping kg
Us Anode-cathode distance | cm

B. NEURAL NETWORKS AND SPARSITY

Neural networks, which have found applications across
various scientific disciplines due to their robust modeling
capabilities, are structured as interconnected layers of neu-
rons. Their training relies on the backpropagation technique,
optimizing parameters through gradient-based optimization
of specific loss functions [31], [32]. These networks excel
in handling complex and highly nonlinear data, thanks in
part to their efficient nonlinear activation functions [33],
[34]. In this work, our focus is on fully connected neural
network models. These models, based on a comprehensive
architecture, interconnect every unit of one layer with every
unit of the subsequent layer, with the exception of the
input and output layers [31]. This architecture results in
a significant number of parameters, including weights for
neuron connections and bias terms, excluding input units. The
performance of these models depends heavily on the chosen
architecture and the training process, often benefiting from
access to substantial datasets of high quality. It is worth noting
that modern neural networks are often characterized by a high
degree of overparameterization [35]. However, techniques
such as pruning can effectively reduce network parameters
without compromising accuracy and performance. As a
result, the concept of introducing sparsity into deep neural
networks has gained attention, primarily to optimize memory
usage and computational resources. Remarkably, inducing
sparsity often has minimal impact on overall performance and
generalizability, and in some cases, it can even enhance these
metrics [22] while enhancing interpretability. The following
subsection introduces the sparsification methods used in this
work in greater detail.

1) DYNAMIC SPARSE REPARAMETERIZATION

Methods for iterative pruning and regrowth of weights have
existed for some time. However, such techniques often suffer
from high computational costs and the need for manual
configurations of the number of free weights for each layer.
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Dynamic sparse reparameterization (DSR) aims to exploit the
benefits of pruning and regrowing without the computational
overhead of earlier techniques [21]. The DSR algorithm is a
training process that explores the different possible structures
of the network during training and aims to identify important
structures rather than overparameterizing the network from
the start.

DSR aims to introduce a reparameterization of an existing
network architecture, rather than designing a new one. A net-
work or a single layer within a network can be represented
asy = f(x;0), where # € O denotes the parameters
of the network or layer. A general reparameterization is to
reparameterize @ as § = g(¢, ¥) with¢ € ®, ¥y € ¥, and
g being differentiable with respect to ¢ but not necessarily
with respect to ¥. ¥ is referred to as a metaparameter, which
denotes the parameters of the reparameterization function g
and is not optimized by gradient descent, unlike 6. Following
this, the general reparameterization can be written as:

y =186, ¥) £ fy(x; ). (©6)

The network can still be trained using backpropagation
through g, which is differentiable with respect to ¢: % =

g—g%. With this parameterization, by choosing ® and ¥

such that dim(®) + dim(¥) < dim(®) and fy ~ f
in terms of generalization performance, f will be a more
parameter-efficient function approximation than f.

DSR reparameterizes the network by letting ¢ be the values
of the non-zero weights in the network and ¥ be the indices
of the weights in the different layers of the network. The
reparameterization function g(¢, ¥) is a placement function
that places the weights in ¢ at the indexes given in ¢.

The reparameterization is applied to the layers of the
network. Let all reparameterized layers in the network be
denoted as W;, where [ = 1,...,L, such that W; =
g(¢;, ¥;). The number of zero elements in W; is denoted as
N; and the non-zero elements of W; as M;. Then N = >, N
is the total number of non-zero parameters in the network and
M = > ;M is the total number of zero parameters in the
network.

DSR consists of two phases: training a sparse network
for a given number of epoch iterations and redistributing the
parameters in the network through pruning and regrowth.
The algorithm aims to maintain a given sparsity level S;
throughout training and before and after the pruning/regrow-
ing phase. To do this, define a global desired number of
parameters to prune/regrow at each iteration, N, and adjust
the pruning threshold based on whether this number is met
or not. Overall, the algorithm can be summarized in these
steps:

1) Train the model parameterized by {( y), 5:))} for P

batch iterations.
2) Prune and regrow the weights of the model according
to the DSR algorithm to arrive at { (¢§t+]), 1#5'“)) }
The pruning and regrowing phase is the most unique aspect
of DSR and includes the following key features.

VOLUME 11, 2023

1) Prune the network, layer-wise, by threshold H.
Store the number of pruned parameters globally in
variable K.

2) Check if the number of pruned parameters is in the
region of the desired number of pruned parameters, N,,.
If so, keep H. If not so, adjust H accordingly.

3) Regrow, layer-wise, roughly K parameters. The
regrown parameters are distributed across all layers.
The heuristic guiding the layer-wise growth is:

) [ R (r)}

¢ = S K|, )

(1) l
2R T

where K. l(t) is the number of pruned parameters for each

layer and RY) =M l(t) -K l(t) is the number of surviving
weights in a layer.

The entire algorithm can be defined using a few hyper-
parameters: (S;, P, N, 8, H®). S, is the sparsity level, P is
the frequency of reallocation, N, is the desired number of
reallocations, § is a parameter that affects how strict N, should
be, and H© is the initial threshold value.

2) SOFT THRESHOLD REPARAMETERIZATION FOR
LEARNABLE SPARSITY

Soft Thresholding Reparameterization (STR) reparameter-
ization for learnable sparsity introduces a new approach
to thresholding the weights of neural networks using a
learnable threshold parameter [20]. The threshold parameter,
s, is the input to a thresholding function #(s) that serves as
a thresholding value for the weights in the network. The
thresholding function is incorporated into the loss function
in the network, allowing it to be optimized during training.

The concept of soft thresholding is not new and was
introduced in [36] in 1995. The soft thresholding function
is applied to the weights of each layer to create the soft
thresholded version of the weights W; of the /-th layer in
the network: S(W;, ;) := sign(W;) - ReLU(|W;| — o)),
where o is the pruning threshold for the /-th layer. Because
the loss function can be written as a continuous function of
the ¢;’s, the backpropagation algorithm is still applicable for
learning both the values of the weights and the threshold «;.
This results in a layer-specific and learnable soft thresholding
technique.

Since each layer in a neural network provides different
information extraction features to the network, it is interesting
that it is possible to learn unique threshold values and
sparsity for each layer. This allows for fine-tuning of the
network’s sparsity and pruning behavior, which can improve
the network’s performance.

The reparameterization part of this approach is to reparam-
eterize the weights of the network as S;(W; s) and, instead
of updating the weight matrix first, directly optimize the
projection of the weights to find the optimal combination
of weights and sparsity level. The reparameterization of
W, S:(W; s), is parameterized by the threshold parameter s
and the thresholding function ¢. The projection is applied
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element-wise to the weight matrix as follows:
St(w, s) := sign(w) - ReLU(|w| — t(s)). 8)

Note that ReLU(a) = max(a, 0), hence if |w| < t(s), then
St (w, s) = 0. The introduction of STR modifies the parameter
optimization problem of neural networks to:

n%n L(SgW, 5), D). C))

A typical DNN architecture is divided into L-layers.
Something that makes is possible to also divide WV into L
different weight matrices: [W;]IL= 1- This opens the possibility
for assigning an individual learnable weight parameter s; to
each layer resulting in s = [sq, ..., s.].

One challenge of using STR is that it is difficult to set
an explicit overall sparsity budget. Instead, the sparsity level
is determined by the hyperparameters, primarily the type of
regularization applied and its parameter value, but also by
adjusting the initial values of the sparsity parameter sipj.
Typically, to avoid pruning all small weights in the beginning,
Sinit 18 set to values that make 7(s) close to zero.

3) MAGNITUDE PRUNING

Conventional neural networks fix the architecture before
training, so the architecture cannot change or improve during
training. To address this, magnitude pruning tries to learn the
important weights and connections by iteratively removing
a fraction of the smallest weights in each layer. This allows
the network’s architecture to adapt and improve during
training [19].

The magnitude pruning algorithm is initialized with a
fully-connected neural network with a sparsity of 0. The user
specifies the total number of epochs to train N, when to prune
M, and the desired sparsity s. The network is then trained
for M iterations before pruning. The pruning step involves
calculating a layer-specific weight threshold by sorting the
weights and finding the threshold that yields the desired
sparsity. After pruning, the remaining non-zero weights are
trained for N — M iterations.

By repeating this training and pruning process several
times with different learning rates, number of epochs, and
sparsity levels, it is possible to find sparse representations of
the network that perform as well as fully dense networks in
terms of generalizability and fit to the data.

Traditionally, magnitude pruning has been used to reduce
the memory usage and computational cost of large neural
networks (e.g. convolutional networks for image recogni-
tion). For example, in [19] the authors managed to reduce
the number of parameters from 138 million to 10.3 million
without any loss of accuracy using this approach.

4) L;-REGULARIZATION

L1-regularization, also known as the Least Absolute Shrink-
age and Selection Operator (LASSO) regularization, is a
widely used regularization technique in the fields of machine
learning and statistics. It works by adding an extra term to
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the model’s loss function, which consists of a predetermined
scaling factor and the sum of the absolute values of the
weights. This term penalizes the weights with respect to their
absolute values, hence encouraging them to take on smaller
values, reducing overfitting and improving the model’s
generalizability. This extra term consists of a predetermined
scaling factor and the sum of the absolute value of the
weights:

N M
Li=2- > > wil, (10)

i=1 j=1

where A1 is the L scaling factor and N and M are the numbers
of rows and columns of the weight matrix respectively. Lastly,
|w; j| is the absolute value of the weight at position (i, j) in the
weight matrix.

By encouraging small weights to take on values of zero,
L1-regularization leads to sparser networks less prone to
overfitting. Similarly, by keeping the weights with higher
magnitudes the network retains the significant parts and only
the less important are removed. This can improve the model’s
generalizability and reduce overfitting.

Another commonly used regularization method is
L2-regularization, which uses the squared values of the
weights as a penalty, instead of the absolute values.
L2-regularization punishes higher-valued weights more
harshly than lower-valued weights, while L1-regularization
punishes all weights equally. When training a neural network
using L2-regularization, the values of the weights will tend
towards zero, but they will not reach as small values as they
do with L1. This is because the gradient of the penalty term
for the weights becomes increasingly small as the weights
approach zero. In contrast, if the networks are trained using
L1-regularization, more weights will become even closer to
zero because the gradient of the penalty term is always 1 for
positive weights and —1 for negative weights, regardless
of their magnitude. L1-regularization will rarely force the
weight to exactly 0, but their value often becomes so small
that they may be regarded as 0, which is more interesting for
sparsification.

C. GENERALIZATION CAPABILITY OF NEURAL NETWORKS
Generalizability is a fundamental aspect of the design and
evaluation of neural network models. In brief, the ability
of a model to generalize refers to its capacity to make
accurate predictions on previously unseen data. This property
is desirable in neural network models because it allows them
to effectively capture the underlying patterns in a dataset
and make reliable predictions on new unseen instances. This
is especially crucial in real-world applications where the
performance of a model is judged based on its ability to
accurately make predictions on novel data.

In the context of using neural networks to simulate dynam-
ical systems, generalizability is particularly relevant. This is
because the ability of a neural network to accurately capture
the underlying dynamics of a system and make reliable
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predictions on unseen data is essential for its performance.
For instance, when simulating the behavior of a physical
system, a neural network with strong generalizability will
be able to accurately predict the future state of the system
based on its current state and the external forces acting on it.
A model with good generalizability will also be able to handle
different initial conditions of the system.

1) STOCHASTIC WEIGHT AVERAGING

Stochastic Weight Averaging (SWA) is a method that aims
to improve the generalizability of the final model by
averaging the model weights during parts of the training
procedure. This technique has been shown to improve the
performance of neural networks trained using SGD-based
optimizers by closing in on the optimal solution of the opti-
mization problem, with almost no additional computational
overhead [37].

The SWA algorithm begins by using a set of pre-trained
weights, denoted W, as a starting point. These weights may be
the result of a complete or partial network training procedure.
The training process then continues using either a cyclic
or a constant learning rate. Unlike normal training steps,
the weights are now a function of both the new weights
updated using stochastic gradient descent (SGD) and the prior
weights. Upon completion of this training procedure, the final
weights wswa are obtained.

Algorithm 1 Stochastic Weight Averaging

Require: weights w, number of iterations n, learning rate
o, loss function £
Ensure: wswa
w < w {Initialize weights with w}
WSWA < W
fori < 1,2,...,ndo
w <« w — aVL(w) {Stochastic gradient update}
WSWA < %“‘l‘;‘f;”’, {Update average}
end for

In the average function:

WSWA * Mmodels + W
WSWA < ; (11)
Nmodels + 1

wswa is the SWA version of the weights, npegels 1S the
number of models used in the weight averaging procedure,
and w is the version of the weight from the current gradient
descent update. When the above calculation is the only extra
step when using this algorithm compared to normal weight
update, it is clear that this technique does not introduce much
overhead.

SWA is closely related to model ensembling, which is a
group of techniques that combine the outputs of multiple
models to generate a more accurate prediction or output. For
example, the Fast Geometric Ensambling method proposed
in [38] uses the average of the model outputs to improve
performance. In contrast, SWA uses the average of the
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weights to generate better results. Both approaches aim to
produce an output that is as close as possible to the optimal
model.

To better understand why the SWA method may be
effective in training a neural network, let’s take a closer
look at the underlying mathematics. Start by considering
the dimensionality of the weight space of a neural network,
denoted by d. For each iteration of Stochastic Gradient
Descent (SGD), a new set of weights, w;, is found, where
i = 1,2,...,k and k is the total number of iterations.
Assume that all of the weights, w;, are located close to
some local optimum w. SWA then calculates the average of
the gradient-updated weights at all time steps, resulting in
WSWA = % Zf‘: 1 wi- Under certain assumptions, it can be
shown that the weights for all iterations of the gradient update
are samples from a multidimensional Gaussian distribution,
N(@v, ), where X is a covariance matrix defined by the
optimization surface, batch size, and learning rate. In a
d-dimensional space, the samples of a multidimensional
Gaussian distribution are concentrated in an ellipsoid:

{zeRd HI=" 2z = W) =JZ}. (12)

In a multidimensional setup, the probability of an updated
weight sample, w;, ending up close enough to w is negligible.
However, for SWA, by sampling from this distribution, wgwa
is guaranteed to converge to w as k approaches infinity [37].

Intuitively, by considering a set of points all with relatively
low training loss, running SGD in this area will result in the
algorithm iterating over the surface of this set. With enough
iterations, it becomes clear that averaging the weights will
converge to a more general solution. Most likely, averaging
over different low-valued solutions will move wswa to a more
central point that is closer to the optimal solution.

D. NEURAL NETWORKS AND DYNAMICAL SYSTEMS

1) NEURAL NETWORKS IN THE CONTEXT OF DYNAMICAL
SYSTEMS

One potential application of neural networks, and the main
focus of this work, is in the simulation of dynamical systems.
This use of neural networks was first proposed in 1990 [11].
As a dynamical system is a system that evolves over time
according to a set of rules or equations, neural networks
can be used to simulate such a system by learning these
underlying rules or equations that govern its behavior. Many
dynamical systems exhibit highly nonlinear and chaotic
behavior, for which analytical solutions do not exist, and
obtaining numerical solutions is computationally demanding
[29]. In these cases, neural networks can be a valuable tool for
improving the accuracy of simulations and gaining a deeper
understanding of the behavior of the system.

However, there are also potential limitations to using neural
networks for simulating dynamical systems. Neural networks
require a large amount of data during training, which may
not always be available. Additionally, the quality of the data
can greatly affect the performance of a neural network [31].
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In many real-world applications of neural networks and
dynamical systems, the data used to simulate or predict the
states of a system may be sparse and/or noisy, which can
make training challenging. Another challenge of using neural
networks in this context is the black-box nature of these
models. While they are effective at approximating nonlinear
functions and complex dynamics, there is no guarantee of
stability or performance.

There are various approaches for using neural networks
to simulate dynamical systems and the reader can refer to
[12] for an overview of some common approaches. In all of
these approaches, a neural network is trained and then used
as part of the prediction process. The simulation schemes
can broadly be divided into two categories: direct-solution
models and time-stepper models. A direct-solution model
maps a given time, #, to a solution at that timestep, xi. A time-
stepper model, on the other hand, approximates the derivative
of the system in some way before integrating it over time.

A simple example of a direct-solution model is a vanilla
direct-solution model. Such a model estimates the function
Xi at timestep f; by learning how a function evolves over
time. Vanilla direct-solution models typically perform well
when given training data of good quality. However, if the
quality of the training data is poor or the model is presented
with samples outside of its training data (extrapolation),
itusually performs poorly. Another, more complex, version of
a direct-solution model is a physics-informed neural network
(PINN) [39]. As the name suggests, a PINN is a type of
neural network in which knowledge about the system being
simulated is incorporated into the network, often as an
additional term in the loss function.

Time-stepper models are more similar to traditional numer-
ical solvers as the derivative of the model is approximated
at each time step, f;, and the model is integrated through
time. A benefit of such models is that they can make use
of knowledge and be combined with classical integration
schemes. An Euler time-stepper is used to simulate the
system in this work. The Euler time-stepper tries to learn
the derivative of the system at a timestep, #x, given the
estimated states of the system. Starting with a given set of
initial conditions the method estimates the derivative at each
timestep given the internal states and inputs to the system.
Mathematically, it integrates through time by

¥ =fGE;0)
X1 =X + AT - x4, (13)

where ¥, is the derivative of the system at the current timestep
estimated by the neural network. f(¥;; ) is a neural network
with parameters 6 taking prior estimated values of the states
at the current input, X; as input. X;4 is the estimated value of
the states at the next timestep, and it is found by taking the
current state value and adding the estimate of the derivative
time the size of the timestep, AT. It is worth noting that the
inputs to a system may be known and their exact value can be
incorporated into X;.
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How to use the Euler time-stepper to estimate the values of
the dynamical system through the time horizon is shown in
Algorithm 2.

Algorithm 2 Neural Network Based Euler

Time-Stepper

Require: Initial conditions, x¢, size of timestep AT,
prediction horizon, T, retrained neural network, f, with
parameters 6.

Initialize prediction vector, Xpreq
Insert initial conditions as first input in prediction
vector: Xpred[0] < xo
Add prior information to Xpreq such as controllable
inputs to the system.
fori=1,...,T do
Predict derivative: X < f (Xprealil; 0)
Update next prediction step, i + 1:
Xpred[i + 1] < AT - x
end for

2) INDUCING SPARSITY TO IMPROVE STABILITY,
GENERALIZABILITY, AND ACCURACY IN SIMULATIONS OF
DYNAMICAL SYSTEMS USING NEURAL NETWORKS

As previously mentioned, neural networks are often highly
overparameterized, with many state-of-the-art models in
image classification and natural language processing having
millions or even billions of parameters [40], [41]. This can
lead to computationally demanding training and inference
processes. Sparsity techniques aim to address this issue
by removing small and less important weights and con-
nections from the model without significantly reducing its
performance. If successful, this means that the patterns and
information in the data are primarily described by a small
subset of the network’s weights and connections.

The theory that inducing sparsity into neural networks
used for the simulation of dynamical systems may lead to
more stable, generalizable, and accurate models is based
on the following premise. Given a dense, fully connected
neural network trained on data from some dynamical system,
provided that the network is large enough, it is likely capable
of learning the dynamics of the system to some extent.
However, when trying to use the network to make predictions
using initial conditions or time horizons outside of what it
saw in the training data, it will likely fail. This indicates that,
although the model is able to interpolate well, it has not truly
“learned” the general dynamics of the system, but rather has
simply memorized how the dynamical system behaves within
a limited horizon and set of initial conditions. The goal of
inducing sparsity in such a model is to force the model to
learn connections that represent the actual dynamics, rather
than simply memorizing the data. This can lead to models
that are more stable and that generalize better on unseen
data. Ultimately, this approach may even enable the use of
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neural networks to discover unknown dynamics or physical
equations.

All of the sparsity techniques mentioned above have been
shown to result in a significant reduction in the number
of parameters without reducing the accuracy of the model.
Therefore, it is believed that they may also apply to smaller
networks used for simulating dynamical systems. However,
it is important to keep in mind that there is a significant
difference between large image classification models and
small, fully-connected neural networks. This may affect the
performance of the sparsified networks in the context of
simulating dynamical systems.

lll. METHOD

A. DATASET

Numerous dynamical systems can be found online with
code examples to generate data [42], [43]. These systems
offer various scenarios to test model performance. How-
ever, for real-world applications, working with actual asset
data is more compelling. Therefore, we use data from a
real aluminum extraction process to assess our models.
Ideally, real-data measurements would train models and
validate predictions against actual asset states. However,
obtaining these measurements is costly and time-consuming.
The aluminum extraction process presents such challenges,
emphasizing the need for accurate predictive models. To this
end, we generate data by simulating the aluminum extraction
process numerically, as detailed in II-Al. In Fig. 2 five
simulations of the internal states from the test data set
are shown, all with different initial conditions. The inputs
corresponding to the simulations are plotted in Fig. 3. This
demonstrates the complexity of the dynamical system and the
importance of accurate modeling and prediction.

B. DATA GENERATION

The training set, the validation set, and the test set each
consist of 40 simulations for 5000 timesteps for 13 states. The
data were generated using high-fidelity numerical simulation.
40 models were trained for each sparsity technique, with
10 models using the regular training process, 10 using L1
regularization during training, 10 using SWA during training,
and 10 using a combination of L1 regularization and SWA.
The different simulations and data sets are distinguished
by their unique sets of initial conditions and inputs. The
initial conditions are randomly sampled from a predefined
range of possible values. Since the different states represent
different physical quantities, each state has a unique range
and initialization process. This allows for a diverse and
representative data set that captures the complexity of the
underlying dynamical system.

C. DATA PRE-PROCESSING

Learning the dynamics requires advancing the state in
time. With a neural network, this will require learning
the derivatives. Hence, the derivative at each timestep was
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FIGURE 2. The figure shows plots of 5 simulations of the internal states,
X1, ..., Xg, of the dynamical system describing the aluminum extraction
process. The different states exhibit very different dynamics that are

challenging to simulate, both with and without the use of neural
networks.

estimated using the following equation:

= Xr+1 — Xt

AT

where x is a vector of the time derivatives of the states, x4
is a vector with the state values at timestep ¢ + 1, and x; is
a vector with the state values at timestep . AT is the size
of each timestep. This x vector served as the target during
training.

Another pre-processing step applied to the data was
normalization. Normalizing data before using it in the
training process of neural networks can significantly reduce
both the prediction error and the time it takes to find an
optimal solution [44]. The data is normalized according to
the following equation:

)

X — Xmean
Xnorm = —————»
Xstd
where x is the entire data set, in this case of size
[40, 5000, 13], Xmean and x4 are both vectors of size [1, 13].
Each element in Xyean and xgq corresponds to the mean and

standard deviation of its corresponding state, respectively.
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FIGURE 3. The figure shows 5 simulations of the inputs, u, ..., us,

to the aluminium extraction process. As they are inputs, they are known
for all timesteps throughout the simulation.

D. MODEL ARCHITECTURE
All models used in this work are based on fully-connected
Multilayer Perceptron neural networks. Most sparsity meth-
ods work by performing thresholding, pruning, or regulariza-
tion during network training. However, some methods require
initial sparsity at the start of training. The models have several
features in common: they are all trained using the Adam
optimizer [45] with a learning rate of 10~3 with a scheduler,
the cost function is calculated using the MSE loss function,
the weights are initialized using the He initialization method
[46], and the activation function in all layers (except for the
last) is ReLU. All models are also trained using a step-wise
learning rate scheduler. Although varying a bit, it was applied
such that the learning rate was reduced by 0.1 at each 10-20
epoch. This is the base architecture of all models, and any
variances in it are specified in their respective descriptions.
Hyperparameters and layers’ architecture were chosen
based on the performance of the dense models by hand-
tuning. The basic characteristics of the dense models are
described in the following subsection. Note the common char-
acteristics that are described before also apply. To optimize
the models some architectures were tried out with different
numbers of hidden neurons and layers. Models with 2 to
5 hidden layers, each hidden layer with 15, 25, or 40 hidden
neurons. The hand-tuning process involved the use of two
optimizers, Adam and stochastic gradient descent with and
without momentum [47]. Learning rates of 0.1, 0.05, 0.01,
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0.005, 0.001, and 0.0001 were tested, and batch sizes of 32,
64, 128, and 256. ReLU was the only activation function
used throughout the process, as it typically behaves well for
ANN and, particularly, for regression tasks performed by
ANN. Note that the purpose of this work is to study sparsity
techniques in ANN used to simulate dynamical systems,
hence the optimization process is of little interest from the
moment the models provide accurate solutions in terms of the
metric chosen, MSE in this case.

1) DENSE MODEL

The dense “‘vanilla” model serves as the baseline model
for the experiments and is the simplest model considered.
A dense “‘vanilla” neural network is a fully connected neural
network with ReLU activation functions that is trained using
the Adam optimizer. ““Vanilla” implies that no significant
changes are made to the network architecture or training
process to improve the network’s performance. The network
consists of an input layer of size 13 (corresponding to the
number of system states), three hidden layers of size 25, and
an output layer of size 8 (matching the number of internal
states to be estimated). This results in a neural network with
dimensions [13, 25, 25, 25, 8].

2) L1-REGULARIZATION MODEL

The L1-regularized model is a dense model trained using
L1-regularization. See III-D1 for details about network
size. L1-regularization is applied during training by adding
an additional term, Ly = Aj - >r, zjni] lwijl, to the
cost function. The value of A; was 10~* for all cases of
L1-regularization.

3) SOFT THRESHOLD REPARAMETERIZATION MODEL

As was previously the case with L1-regularization, adding the
sparsity technique of soft thresholding for learnable sparsity
to a neural network model requires no modifications to
the basic network architecture. Thus, the same dense fully
connected network as presented in III-D1 serves as a basis
for this case. What differs from a dense network, in this
case, is the addition of a layer-specific learnable thresholding
parameter, s, that needs to be initialized to some value.
A simple hyperparameter search was performed by testing
different values. This resulted in s = —2 being the initial s-
value for all models. Also, during the training of this model,
the thresholding is performed according to the value of s
for the weights of each layer when feeding data through the
networks.

4) MAGNITUDE PRUNING MODEL

The process of magnitude pruning is based on the simple
idea of removing a specified proportion of the smallest
weights in a neural network. To implement this technique
functionality for sorting and setting to zero the smallest
weights in a layer had to be added. Apart from this added
functionality, the magnitude pruned model is the same as
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the dense model described in III-D1. However, because this
model prunes its smallest weights iteratively during training,
the final magnitude pruned model has a predefined level of
sparsity. To provide additional flexibility, the network size
was increased compared to the dense model, to a size of
[13, 64, 64, 64, 8].

5) DYNAMIC SPARSE REPARAMETERIZATION MODEL

The dynamic sparse reparameterization (DSR) model is the
most different from the dense model described in III-D1. This
technique involves changes to both network initialization
and training. To implement this technique, the network is
initialized with a fraction of the weights set to zero. The DSR
model also has specific pruning and regrowing phases that
require special algorithms. In order to execute these phases
properly, additional functionality was added on top of the
dense net. This includes functionality for re-initializing a
given number of weights at random zero-valued positions in
each layer, and for pruning all weights below an adaptive
threshold value, among other things. See II-B1 for details
on all algorithms related to the DSR model. Because the
DSR model has a set sparsity level after initialization and
its performance was poor, it was modified to use a larger
network, with dimensions [13, 128, 128, 128, 8].

6) ADDING STOCHASTIC WEIGHT AVERAGING

Stochastic Weight Averaging (SWA) is a technique that can
be added during the training of neural networks. SWA simply
computes the average of the weights in the network over
a subset of the training epochs. In this study, it was added
during the last 25% of the training epochs of the different
models. As suggested in [37] on SWA, the learning rate was
increased and kept constant during the epochs in which SWA
was applied.

E. SCENARIO AND CASE SET-UP

The objective of this study is to predict the evolution of
the internal states of a dynamical system over time by
estimating the derivative of the states. Algorithm 2 illustrates
how to use a neural network to estimate the derivative
of a system and integrate forward in time based on this
estimate. The theory, presented in Section II, provides all
of the necessary information to implement the different
algorithms, and Section III-D presents the specific details of
the implementation and model training.

To evaluate the performance of the sparsity methods and
their combinations, ten models are trained and evaluated
for each case. The models are then tested by simulating
40 trajectories from a test set according to Algorithm 2. Ten
models are trained for each case because their performance
may vary based on randomness in their initialization and
training. The performance is evaluated by measuring the
number of models that diverge and the Rolling-Forecast-
Mean-Squared-Error (RFMSE) of the simulations. RFMSE is
the mean square error at all timesteps through the simulation,
calculated for each state of the model and summarized as
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the mean of the normalized error for all states. A model is
considered to have diverged if the RFMSE of one of its states
is more than three times the standard deviation of that state.

IV. RESULTS AND DISCUSSIONS

In this work, sparsity-promoting techniques like LI-
regularization, soft thresholding, magnitude pruning, and
dynamic sparse reparameterization (DSR) have been applied
and studied. The goal was to determine whether these
techniques can improve the accuracy of the simulation and
reduce the number of simulations that diverge. Stochastic
Weight Averaging (SWA), a technique to improve the
generalization of neural networks, was also applied.

In Section IV-A, the results of applying sparsity tech-
niques to dense vanilla neural networks are presented.
In Section IV-B, L1-regularization is applied to the training
process of the different networks with different sparsity
techniques. Section IV-C presents the results of using
SWA to improve generalization in the training process.
Finally, Section IV-D investigates whether combining all
of these techniques leads to performance improvements or
degradations.

The results are presented in two plots: a bar plot showing
the percentage of simulations that diverge at different points
throughout the simulation horizon and a violin plot showing
the RFMSE at the same points during the simulations.
To determine whether or not a simulation has diverged,
the RFMSE is used. A model is considered divergent if its
RFMSE in one of its states is greater than three times the
standard error of the state. The points in both graphs are
at 100AT, 1000AT, 2500AT, and 5000AT, where AT is
the timestep. The violin plot provides information on the
distribution of the RFMSE values, while the bar plot provides
a simple visualization of the stability of the simulations.
Together with the numerical results, these plots will be used
to evaluate the stability and generalizability of the models,
which are features that we consider key for dynamical system
simulation.

To provide some context regarding different networks’
performance and show the trajectories forecasted by the
models, the following two simulation examples shown in
Fig. 4 and Fig. 5 illustrate the performance of 10 models with
L1 regularization and soft thresholding respectively.

A. DENSE NETWORKS

Fig. 6 shows the divergence frequency of the different sparsity
techniques at different timesteps. For each sparsity technique,
10 different models were trained using the dense network,
and each model was used to predict 40 sets of test data.
Table 2 shows the divergence rate percentages of all models.
The vanilla dense network performs well, with less than
15% of the models diverging throughout the test horizon.
Soft thresholding also performs well for the first 1000 AT’s,
with less than 20% divergence. However, after 1000AT’s,
the divergence rate increases significantly. For the magnitude
pruning models, only a few percent of the models diverge at
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FIGURE 4. The figure shows the true trajectories of the internal states of
the aluminum extraction process along with simulations from 10 different
L1-regularized models.

100AT. However, after 1000AT, over 30% of the models
diverge. The DSR models perform poorly from the start, with
3.75% of the models diverging at 100AT, indicating how
inadequate these architectures can be for dynamical system
simulation with predictions that quickly diverge and get out
of control.

The violin plot in Fig. 7 illustrates the RFMSE of
non-diverging simulations for various techniques. As the
DSR simulations, at one point, has no non-diverging
simulations it is not included in this plot and can be
considered the worst performing. All model types exhibit an
increasing RFMSE throughout the prediction horizon with
the exception of the dense model, which exhibits a decrease
in its maximum RFMSE from 2500AT to 5000AT. This
decrease is likely due to a simulation diverging and therefore
being excluded from the calculations. The plot displays
the apparent effectiveness of L1-regularization in producing
denser distributions of RFMSE, which seem to reduce the
increase in RFMSE for the L1 models. There is a discernible
pattern in the change of RFMSE for the other models; their
distributions begin with most simulations having an REFMSE
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FIGURE 5. The figure shows the true trajectories of the internal states of
the aluminum extraction process along with simulations from 10 different
models trained with soft thresholding. The divergence can be observed as
time proceeds in the simulation.

below the mean, but over the course of the simulations, the
densest part of the RFMSE distribution shifts increasingly
toward and above the mean.

It is not surprising that applying LI-regularization to a
dense model improves the simulations, as training a dense
model without any regularization usually results in overfit-
ting. L1-regularization is known to be effective against this
and its low divergence rates and dense RFMSE distributions
are likely a direct result of the generalization improvement.
This also suggests that L1-regularization drives the models
to learn the dynamics and reduce data memorization. The
soft thresholding model, despite having learnable sparsity,
seems to induce too much sparsity in the model, resulting
in diverging simulations. However, compared to a sparsity
technique with a predefined sparsity, such as the magnitude
pruning models, it appears to improve performance by
inducing sparsity at the right weights in the right layer of the
network. When used without any regularization technique,
the magnitude pruning model seems to remove too many
weights, indicating that the models may not be able to
represent important dynamics in their layers, but rather spread
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FIGURE 7. The figure displays a violin plot of the RFMSE of the
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L1-regularized model have low RFMSE and compact error distributions,
particularly at early time steps, while the models trained with soft
thresholding and magnitude pruning exhibit higher RFMSE and less
compact error distributions. The simulations by models trained with DSR
are not included in the plot because they had no non-diverging models at
some timesteps.

information across many low-valued weights. Removing
these weights leads to poor performance. For DSR, it seems
that pruning and regrowing destroy many of the initial
connections made at the start of training, and the networks
are unable to relearn these connections. From the results
displayed in Fig. 6 and Fig. 7, it is easy to recognize that
the best-performing models are the L1-regularized, with less
divergence and better RFMSE.

B. L1-REGULARIZATION

In the experiment results shown in Fig. 8 and Table 2,
L1-regularization was added to the training of all model
types. As mentioned earlier, the results show that the number
of divergent simulations decreased significantly for dense
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FIGURE 8. The figure presents a bar plot of the percentage of diverging
simulations for models that combine L1-regularization with different
sparsification methods. The “vanilla” dense model is also included in the
plot. The models with L1-regularization only and those that combine
L1-regularization with magnitude pruning exhibit a low percentage of
divergence, while the models that combine L1-regularization with DSR
show a high percentage of divergence.
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FIGURE 9. The figure shows a violin plot of the RFMSE of the simulations
for models that combine L1-regularization with different sparsification
methods. The “vanilla” dense model is also included for reference. The
models with L1-regularization and the models with L1-regularization plus
magnitude pruning have significantly denser error distributions and lower
maximum errors than the others, especially at early timesteps. The
simulations by models trained with DSR are not included in the plot
because they had no non-diverging models at some timesteps.

models. However, the number of diverging simulations also
decreased significantly for magnitude pruning models, with
a decrease of 60.75% at S000AT. In contrast, the opposite
effect was observed for soft thresholding and DSR models,
which diverged at a higher rate after L1-regularization was
applied to their training procedure. In fact, DSR models
reached a divergence percentage of 100% at only 2500AT .
In Fig. 9, a violin plot of the RFMSE of the non-diverging
simulations for the different models is shown. The DSR
model is not included because all of its predictions diverged,
resulting in no available measurements under non-divergence
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FIGURE 10. The figure shows a bar plot of divergence percentage for
simulations using dense models combined with SWA and different
sparsity methods. All models have a low divergence rate at early

timesteps, with the rate decreasing towards the prediction horizon. The
L1-regularized model has the lowest increase in divergence percentage.
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FIGURE 11. The figure shows a violin plot of the RFMSE of simulations
performed by models combining sparsity methods and SWA. All models
have a low error at the start with it increasing towards the end. The

simulations of the models with L1-regularization and SWA maintain a low
and dense error distribution throughout the whole simulation.

conditions. At 100AT, all models except for soft thresholding
had approximately the same error distribution and mean, and
interestingly, magnitude pruning had the lowest maximum
error of all model types at this point. As the simulation
progressed in time, all models exhibited increasing means,
minimum values, and maximum values for their RFMSE,
with the soft thresholding models increasing the most
and L1-regularized models achieving the best performance
in terms of mean and maximum RFMSE values, closely
followed by L1 with magnitude pruning.

The application of soft thresholding combined with
L1-regularization increased the sparsity in the final models
from 56% to 71%, as shown in Table 4. The most
interesting result from this set of experiments is the dramatic
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FIGURE 12. The figure shows a bar plot of divergence percentage for
simulations by models applied some sparsity method together with
L1-regularization and SWA. The simulations of all models have a low
divergence rate at early stages, except for the simulations using the DSR
models. The number of diverging simulations increases towards the
simulation horizon, but the simulations by models with L1-regularization
only combined with SWA and magnitude pruning with L1-regularization
and SWA has a rather low divergence percentage through the whole
simulation.
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FIGURE 13. The figure shows a violin plot of RFMSE for simulations by
models applied some sparsity method together with L1-regularization
and SWA. The simulations by all models have a low error at early stages,
with dense and low error distributions. The error increases through the
simulations, but the simulations by models with L1-regularization only
combined with SWA and magnitude pruning with L1-regularization and
SWA has a rather low error and dense error distribution throughout the
simulation horizon.

improvement in model performance when L1-regularization
is combined with magnitude pruning. Since L1-regularization
pulls weights towards zero and magnitude pruning removes
a proportion of the smallest weights, it seems that the
combination of these approaches results in models with a
larger proportion of important and representative weights
for the dynamics of the system. As L1 does not remove
weights by itself the application of some mechanism, such
as magnitude pruning, to effectively remove the irrelevant
weights is necessary for the models to be actually sparse in
terms of inference speed and computing cost.
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FIGURE 14. The figure shows the RFMSE of the dense and magnitude
pruned models with L1-regularization only and with a combination of
L1-regularization and SWA.

C. SWA

Fig. 10 illustrates the divergence of various methods when
SWA is applied to their training processes. As shown in
Table 2, the application of SWA to the training of dense,
Ll-regularized, and soft thresholding models appears to
primarily affect their performance in the early stages of
the simulation. From the table, it can be seen that using
SWA during training yields an equal or better divergence
percentage at 100AT and 1000AT for all models compared
to the ““vanilla” models. Notably, SWA results in a significant
improvement in the performance of the DSR models at all AT
values.

Fig. 11 further supports the results from the divergence plot
and table. The plot shows all model types, including DSR.
It can be seen that the RFMSE values are low for all models at
early stages, but as time progresses the RFMSE of all models
increases. The application of SWA seems to lower the densest
part of the REMSE distribution for the earlier timesteps.

It is interesting to note that SWA results in a performance
increase for all models, particularly at early timesteps.
Learning the dynamics of a complex and nonlinear system,
such as the aluminum extraction process, is a challenging
task. As such, it is likely that small changes in the weights
of the networks, even at low learning rates, can result
in significant changes in performance. In this case, the
application of SWA seems to help the neural network
find a better and more general solution that serves as a
compromise between the different trajectories in the training
data. However, since the error of the neural network is
amplified as time progresses when integrating through the
simulation, a more general solution may work well in the
early stages of the simulation but may result in larger errors
as time progresses.

D. SWA + L1
Fig. 12 shows the results of combining the different sparsity
techniques with both L1 and SWA. As can be seen, combining
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TABLE 2. The table contains the divergence percentage for the different
model types.

Model type: | 100AT | 1000AT | 2500AT | 5000AT
Dense 0% 3% 6.75% 12%
Dense + 0% 3% 6.75% 12%
SWA

L1 0% 0.75% 1.75% 6.25%
L1+ SWA 0% 0.25% 2.00% 6.25%
Soft thresh- 0% 6.75% 18.25% 38%
olding

Soft thresh- 0% 8.5% 27.5% 52%
olding + L1

Soft 0% 5.75% 23.75% | 52.25%
thresholding

+ SWA

Soft thresh- 0% 4.25% 21.25% 44.5%
olding + L1

+ SWA

Magnitude 0.25% 30.5% 50% 71.75%
pruning

Magnitude 0% 0.75% 3.75% 11%
pruning  +

L1

Magnitude 0.25% 27.5% 52.75% | 75.25%
pruning  +

SWA

Magnitude 0% 0.5% 4% 13.5 %
pruning +

L1+ SWA

DSR 3.75% 79.5% 94.5% 100%
DSR + L1 64.25% | 99.25% 100% 100%
DSR+SWA | 0.5% 54.5% 82% 95.25%
DSR + L1 + 25% 50% 75% 100.00%
SWA

L1 and SWA results in almost no diverging simulations
at 100AT for all model types except for DSR. Inspecting
Table 2, it shows that 0% of soft thresholding models,
magnitude pruning models, and dense, L1-regularized mod-
els are diverging. Combining L1 and SWA improves the
performance at early timesteps for all models, compared to
simply L1-regularizing the models.

Inspecting the violin plot of these models in Fig. 13,
suggests a combination of the earlier discussed effects of L1
and SWA independently. Applying L1-regularization resulted
in lower mean RFMSE values for most model types, and
SWA resulted in more compact distributions at early stages
than “vanilla” models. And, as it can be seen from Fig. 13,
the distributions of the error at early stages seem to have
its highest density centered lower for early timesteps. But as
time progresses, especially soft thresholding has a significant
increase in its RFMSE.

By combining SWA and L1-regularization the models are
able to take advantage of the strengths of both methods. SWA
helps the model’s weights approach the global minimum,
while L1-regularization helps the model learn the underlying
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TABLE 3. The table contains the RFMSE of the different model types at
the different timesteps. It is presented as the mean =+ the standard
deviation.

Model type: | 100AT | 1000AT | 2500AT | 5000AT
Dense 0.06 + 0.13 + 0.18 £ 0.25 +
0.04 0.12 0.14 0.15
Dense + | 006£ | 014+ 0.19+ 0.27 +
SWA 0.04 0.12 0.18 0.22
L1 0.04+ | 0.09 £ 0.12+ 0.18 +
0.03 0.08 0.11 0.13
L1+ SWA 0.04£ | 0.08% 0.10 £ 0.16 £
0.03 0.06 0.08 0.10
Soft thresh- | 0.10£ | 0.29+ 0.42 + 0.57 £
olding 0.06 0.19 0.23 0.25
Soft thresh- | 0.11+ | 0.31+£ 0.47 £ 0.63 £
olding + L1 0.06 0.17 0.22 0.22
Soft 0.10£ | 031+ 0.47 + 0.63 +
thresholding 0.07 0.21 0.24 0.26
+ SWA
Soft thresh- | 0.11£ | 0.33 % 0.48 = 0.63 £
olding + L1 0.06 0.17 0.24 0.26
+ SWA
Magnitude 017+ | 040+ 0.55 £ 0.72 £
pruning 0.12 0.20 0.28 0.31
Magnitude 0.04+ | 010+ 0.16 £ 0.22 +
pruning  + 0.03 0.10 0.20 0.19
L1
Magnitude 014+ | 044+ 0.60 = 0.79 £
pruning  + 0.08 0.30 0.37 0.45
SWA
Magnitude 0.04£ | 0.10% 0.14 + 0.21 £
pruning  + 0.02 0.08 0.14 0.16
L1+ SWA
DSR 025+ | 0.67+ 1.01 + -
0.13 0.26 0.29
DSR + L1 050+ | 1.256+ - -
0.19 0.44
DSR+SWA | 0.20+ | 0.60 £+ 0.76 + 0.89 £
0.11 0.27 0.30 0.38
DSR+L1+ | 0.53+ - - -
SWA 0.19

dynamics of the system, rather than just memorizing the data.
In particular, magnitude pruning and dense L1-regularized
models have been shown to benefit from the combination
of L1-regularization and SWA. This is discussed further in
section IV-E. However, the performance of soft thresholding
and DSR models is not improved by the combination of
L1-regularization and SWA, and they perform better when
only the less detrimental technique is used.

E. L1-REGULARIZATION COMPARED TO
L1-REGULARIZATION AND SWA FOR DENSE AND
MAGNITUDE PRUNED MODELS

Combining L1 and SWA improves the performance of the
dense and magnitude-pruned models, which can be seen in
the comparison made in Fig. 13. It shows the RFMSE of the
models with only L1-regularization applied during training
and with both L1-regularization and SWA applied. From this
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TABLE 4. The table presents the sparsity of the different model types
after training. It denotes the percentage of weights in the models that
are 0.

Model type: Mean sparsity:
Dense 0%
SWA 0%
L1 0%
L1+ SWA 0%
Soft thresholding 56%
Soft thresholding + L1 71%
Soft thresholding + SWA 56 %
Soft thresholding + L1 + SWA 71%
Magnitude pruning 33%
Magnitude pruning + L1 33%
Magnitude pruning + SWA 33%
Magnitude pruning + L1 + SWA 33%
DSR 50%
DSR + L1 50%
DSR + SWA 50%
DSR + L1 + SWA 50%

plot, it is easier to see how the different models differ in
performance.

It is evident from the plot that models with SWA
applied exhibit a denser RFMSE distribution, particularly
at 100AT. This indicates that SWA improves the model’s
generalization during training by averaging the weights of
the best models. While the gap between regular L1 models
and SWA models narrows over time, the accuracy of the
L1 4+ SWA models remains consistently higher throughout
the simulations.

V. CONCLUSION AND FURTHER WORK

This study presents the application of sparsity-inducing tech-
niques to neural networks to improve accuracy and reduce
divergence when simulating complex dynamical systems.
Techniques used include hard thresholding with magnitude
pruning, soft thresholding with learnable sparsity, pruning
and regrowing with dynamic sparse reparameterization,
and L1 regularization. The impact of Stochastic Weight
Averaging (SWA) was also evaluated. The methods were
tested on a fully connected neural network and compared
with dense Ll-regularized networks using the aluminum
extraction process as a test case. The main conclusions from
this work are as follows.

o The application of L1 regularization to the training
process was found to be the most crucial factor for
model performance among the techniques explored in
this study.

o The combination of magnitude pruning and L1 reg-
ularization resulted in slightly inferior performance
compared to L1 alone, suggesting that L1 regularization
strengthens critical connections in the network, while
magnitude pruning removes redundant ones.

o Soft threshold reparameterization for learnable sparsity
and dynamic sparse reparameterization, techniques
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designed to reduce the number of parameters in large
image classification models, appear to be ill-suited for
smaller and simpler models. In particular, dynamic
sparse reparameterization appears to remove important
connections during training without providing adequate
means for regrowing others to compensate.

The application of SWA during training increases
performance for both the L1-regularized dense model
and the magnitude pruned model. It also reduces the
number of diverging simulations and RFMSE for all
models in an early to medium time horizon.

The results of this study indicate that L.1-regularized models
perform best, supporting the notion that imposing sparsity on
neural networks can improve their performance by forcing
them to learn only the most important connections. However,
it is clear that the choice of sparsity technique is not
arbitrary, and the experiments in this work suggest that
simpler methods are typically more effective. There are many
more sparsity-imposing techniques available that have yet to
be applied in the context of dynamical systems. Evaluating
their performance remains one of the future tasks.

Reproducibility: The code implemented for this work is
publicly available in https://www.github.com/emilhaugstvedt/
sparsity. This includes all model training files and all trained
models.
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