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Abstract
We prove a universal property for ∞-categories of spans in the generality of Barwick’s adequate triples, explicitly
describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-
equivalence on the class of orthogonal adequate triples, which we introduce for this purpose.

As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show
that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple
(generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and
Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the
orthofibration classifying the mapping category functor of an (∞, 2)-category (building on work of Abellán García
and Stern), formally identify the unstraightenings of the identity functor on the∞-category of∞-categories with the
(op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering
a question of Clausen).
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1. Introduction

Categories of spans typically appear in algebra and geometry as a convenient way to encode co-and
contravariant functorialities (transfer and restriction) and base change isomorphisms between these. For
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example, span categories of finite G-sets classically appear in representation theory as the indexing
categories of Mackey functors [Dr71]. In the∞-categorical setting, spans play an even more significant
role because they often provide the only feasible method to organise base change isomorphisms in a
homotopy-coherent way. As such, they naturally appear in equivariant homotopy theory (via the theory
of spectral Mackey functors [Ba17, Na16]), in motivic homotopy theory [BH21] and in higher algebra
[Cr11, Ha20a, EH20].

In each of these cases, one is interested in diagrams indexed by a certain∞-category of spans that is
constructed informally as follows: from the data of an∞-category X, together with two classes of maps
called ingressive (or forwards, denoted�) and egressive (or backwards, denoted�), one constructs an
∞-category Span(𝑋) with the same objects as X and with morphisms from x to y given by spans

𝑧

𝑥 𝑦.

Composition proceeds by pullback of spans, which of course requires that pullbacks of ingressive and
egressive maps exist and remain ingressive and egressive. From a geometric point of view, one can think
of Span(𝑋) as an∞-category of (combinatorial) bordisms in 𝑋op, the two legs of a span giving the two
boundary inclusions. As such, span categories also arise in various situations as objects of interest in
themselves. Notably, they appear in algebraic K-theory [Ba13, BGT13] and its hermitian refinements
[Sc10, CDH+20] via Quillen’s Q-construction [Qu73]; see, in particular, [RS19, CDH+20, HS21] for
works on K-theory where such a geometric perspective on spans is brought to fruition.

The above informal description of Span(𝑋) has been substantiated by Barwick, who constructs an
explicit functor sending each adequate triple (of an ∞-category X and two classes of maps) to a quasi-
category Span(𝑋) [Ba17]. The first purpose of this text is to study some further abstract properties of
this construction of span ∞-categories. For example, we give a description of span ∞-categories by a
universal property:

Theorem A. There is an adjoint pair Tw𝑟 : Cat AdTrip :Span, where Tw𝑟 (𝐴) is the twisted arrow
∞-category of A with the ingressive and egressive morphisms being those which induce equivalences in
the target and source component, respectively.

Here we follow the same notational conventions as in [HHLN23] and denote the ∞-category of
small ∞-categories by Cat (and similarly that of ∞-groupoids by Gpd, etc.). Let us point out that our
proof of this result relies on a Segal space construction of span ∞-categories, instead of the point-set
approach of Barwick; a slightly different proof was sketched by Raskin in [Ra14]. Theorem A also
has a 2-categorical upgrade, which identifies the diagram ∞-categories Fun(𝐴, Span(𝑋)) with a span
∞-category of the ∞-category of diagrams Tw𝑟 (𝐴) → 𝑋 . This statement has already been applied in
hermitian K-theory, where it forms the basis for the parametrised algebraic surgery of [HS21].

In addition, we give a description of the ‘universal span category’ (i.e., the cocartesian fibration
classified by the functor Span: AdTrip −→ Cat):

Theorem B. The opposite of the lax under-category ∗ � AdTrip admits the structure of an adequate
triple in which a map

∗

𝑋 𝑌

𝑦𝑥

𝑓

𝜇

is egressive if 𝜇 : 𝑦 → 𝑓 (𝑥) is egressive, and ingressive if 𝜇 is ingressive and f is an equivalence. The
natural map Span

(
(∗ � AdTrip)op) −→ AdTrip extracting the morphisms underlying egressive maps

(and inverting those underlying ingressive ones) is then equivalent to the cocartesian fibration classified
by Span: AdTrip −→ Cat.
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As a consequence of Theorem B, we obtain a new proof of the main result of [BGN18], which asserts
that the cocartesian unstraightening of a functor 𝐹 : 𝐵 → Cat can be constructed from its cartesian
unstraightening via a span construction.

Note that the ∞-category Span(𝑋) has the following features: the egressive arrows from X are
reverted, the ingressive arrows from X are kept and each map factors uniquely as a ‘reverted-egressive’,
followed by an ingressive map. This suggests that taking span ∞-categories acts as an involution on
adequate triples arising from (orthogonal) factorisation systems. The second part of the paper studies
such orthogonal adequate triples, whose egressive and ingressive arrows form a factorisation system
and in which all commuting squares of the form

𝑥 ′ 𝑥

𝑦′ 𝑦

(1.1)

are cartesian. Our most significant result about these is the following:

Theorem C. Taking span∞-categories gives rise to a 𝐶2-action on the full subcategory of orthogonal
adequate triples

Span⊥ : AdTrip⊥ −→ AdTrip⊥.

The simplest example of an orthogonal adequate triple is given by a product 𝐴 × 𝐵, with ingressive
maps coming from A and egressive maps coming from B. More generally, every cartesian fibration
𝑝 : 𝑋 −→ 𝐴 defines the structure of an orthogonal adequate triple on X, for which a map is ingressive
if it is p-cartesian and egressive if it is fibrewise (i.e. its image under p is invertible). In fact, every
orthogonal adequate triple arises in this way:

Theorem D. An orthogonal factorisation system arises from a cartesian fibration as the cartesian
and fibrewise maps if and only if it forms an orthogonal adequate triple. Moreover, this construction
restricts to an equivalence between the∞-category of orthogonal adequate triples and the∞-category
of cartesian fibrations whose fibres have contractible realisation.

This result extends previous work of Lanari [La19], who established such a correspondence for
pointed cartesian fibrations (i.e., those whose base and total∞-category have a terminal object which is
preserved by the fibration) and what he calls cartesian factorisation systems. Using the relation between
orthogonal adequate triples and cartesian fibrations, the span duality from Theorem C also gives an auto-
equivalence of the ∞-category of cartesian fibrations. This reduces to the duality functor of Barwick,
Glasman and Nardin from [BGN18].

Similarly, one can use Theorem C to obtain duality functors for fibrations over a product 𝐴 × 𝐵. For
example, one can consider maps of orthogonal triples 𝑝 = (𝑝1, 𝑝2) : 𝑋 −→ 𝐴 × 𝐵 such that

(1) the ingressive maps of X are exactly the p-cartesian lifts of arrows in A,
(2) 𝑝2 is a cocartesian fibration and for any square (1.1) in X where 𝑥 → 𝑦 is 𝑝1-cocartesian, the base

change 𝑥 ′ −→ 𝑦′ is 𝑝1-cocartesian as well.

Such maps are called orthofibrations in [HHLN23], or two-sided fibrations in [RV22, Section 7.1], and
can be straightened to functors 𝐴op × 𝐵 −→ Cat, which also correspond to cartesian fibrations over
𝐴×𝐵op via unstraightening. Using that Span⊥ sends 𝐴×𝐵 (with the adequate triple structure mentioned
above) to 𝐴 × 𝐵op, the dualisation of Theorem C also restricts to an equivalence

Span⊥ : Ortho(𝐴, 𝐵) � Cart(𝐴 × 𝐵op) (1.2)

between orthofibrations and cartesian fibrations, taking opposite categories at the level of fibres. There
are similar dualities for the various other types of two-variable fibrations considered in [HHLN23]; for
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example, Theorem C also restricts to a duality between curved orthofibrations over 𝐴 × 𝐵 and op-Gray
fibrations over 𝐴× 𝐵op (see [HHLN23] or Section 6 for definitions), which under straightening [Lu09b]
correspond to 2-functors out of the Gray tensor product 𝐵 � 𝐴op.

Relying on Toën’s equivalence Aut(Cat) � 𝐶2 [To05], we extend another result from [BGN18] and
show that any composite of dualisations and (un)straightenings as above is uniquely determined by its
action on fibres:

Theorem E. The three functors Catop × Catop → Cat given by

(𝐴, 𝐵) ↦−→ Fun(𝐴 × 𝐵, Gpd), Fun(𝐴 × 𝐵, Cat) and Fun(𝐴 � 𝐵, Cat)

have automorphism groups ∗, 𝐶2 and ∗, respectively. The nontrivial automorphism in the middle case
is given by post-composition with (−)op : Cat → Cat. (Here Cat denotes the (∞, 2)-category of ∞-
categories, as in [HHLN23].)

For example, this implies that the dualisation equivalence (1.2) arising from Theorem C coincides
with the dualisation constructed in [HHLN23] using straightening and unstraightening (though this can
also be deduced from Theorem B directly). As an application of this explicit dualisation for two-variable
fibrations, we consider the fibrations classified by the enhanced mapping functor

HomX : 𝑋op × 𝑋 → Cat

associated to an (∞, 2)-category X with underlying ∞-category X. On the one hand, this functor is
classified by a cartesian fibration

(𝑠, 𝑡) : Tw𝑟 (X) −→ 𝑋 × 𝑋op

from the oplax twisted arrow∞-category of X, explicitly constructed in [AGS23]. We show (Theorem
7.21) that dually (and upon taking opposite categories), this functor also classifies the orthofibration

(𝑠, 𝑡) : Aropl(X) −→ 𝑋 × 𝑋

from the∞-category underlying the oplax arrow∞-category, defined using the (in principle unrelated)
Gray tensor product of Gagna, Harpaz and Lanari from [GHL21]. This is a typical example of an
identification of dual fibrations which seems difficult to see by passing through a form of straightening
and unstraightening (as in [HHLN23]).

In a different direction, Theorem E shows that straightening a cartesian fibration over 𝐴×𝐵 to a functor
𝐴op × 𝐵op −→ Cat is naturally equivalent to straightening it first over A and then over B. This should
not be surprising, but deducing it from the definitions does not seem entirely obvious (nevertheless, we
provide a second proof as 6.20). As a consequence, we answer a recent question of Clausen:

Corollary F. The Yoneda embedding 𝐶 ↩→ P (𝐶) canonically extends to a natural transformation of
functors Cat −→ Cat from the inclusion to the composite

Cat
Fun(−,Gpd)
−−−−−−−−−→ (CatR)op � CatL ⊆ Cat.

Again, this result is certainly expected, and we were surprised to learn that it is apparently not
contained in the literature. Let us point out that, essentially by definition, the Yoneda embedding does
define a natural transformation to the functor P : Cat −→ Cat defined using that P (𝐶) is the free
cocompletion of C. However, it is not a priori clear that this functor agrees with the one appearing in the
corollary in a fashion compatible with the Yoneda embedding (but this follows from the result above as
well).
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Remark. Along with [HHLN23], this article is part of a recombination of our earlier preprints [Ha20b]
and [HLN20]. In [HHLN23], we described the dualisation of two-variable fibrations, as well as its
applications to monoidal and parametrised adjunctions, along the lines of [Ha20b]; these applications
were also discussed in terms of the dualisation functor Span⊥ in [HLN20] (in particular, Proposition A
and Theorem C in there). The results from [HLN20] concerning span∞-categories and the comparison
of various straightening functors for two-variable fibrations (in particular, Theorem B and Corollary D
there) are contained in the present paper.

Organisation

In Section 2, we redevelop Barwick’s theory of span ∞-categories for adequate triples in terms of
complete Segal spaces and then discuss some further properties of the span construction in Section 3. In
particular, here we prove Theorem A as Theorem 2.18 and deduce Theorem B as a corollary of Theorem
3.9.

We then introduce orthogonal adequate triples in Section 4 and establish Theorem C as Theorem
4.12. The relation between orthogonal adequate triples and fibrations is discussed in Section 5, where
Theorem D is proven as Proposition 5.4. In Section 6, we show how Theorem C induces dualities
between various types of two-variable fibrations considered in [HHLN23], we and use this to identify
oplax arrow and twisted arrow ∞-categories as duals in Section 7. We deduce Corollary F in the final
Section 8 as Theorem 8.1.

Finally, the uniqueness of all these dualities (i.e., Theorem E) is derived in Appendix A as
Theorem A.1.

Conventions

In order to declutter notation, we will write Gpd, Cat and Cat2 for the∞-categories of∞-groupoids (or
spaces),∞-categories and (∞, 2)-categories, respectively.

The letter 𝜄 will denote the core of an ∞-category (i.e., the ∞-groupoid spanned by
its equivalences). By a subcategory of an ∞-category we mean a functor such that the
induced morphisms on mapping ∞-groupoids and cores are inclusions of path compo-
nents. A subcategory is full if the functor furthermore induces equivalences on mapping
∞-groupoids, while it is wide if the functor induces an equivalence on cores. Similarly, a sub-2-category
of an (∞, 2)-category is a functor inducing subcategory inclusions on mapping ∞-categories and a
monomorphism on underlying∞-groupoids; we say such a sub-2-category is 1-full if it locally full (i.e.,
is given by full subcategory inclusions on mapping∞-categories).

Throughout, we shall use small caps such as Cat to indicate large variants of ∞-categories and
boldface such as Cat to denote (∞, 2)-categories. We have also reserved sub- and superscripts on
category names to refer to changes on morphisms (e.g., Cart(𝐴) ⊆ Cartopl(𝐴)).

We will write Ar(𝐶) for the arrow ∞-category Fun([1], 𝐶) of an ∞-category C, and Twℓ (𝐶) and
Tw𝑟 (𝐶) for the two versions of the twisted arrow category, geared so that the combined source-target
map defines a left fibraton in the former, and a right fibration in the latter case; see Example 2.8. Finally,
we write Λ0 [2] for the span category 1← 0→ 2 and Λ2 [2] for the cospan.

2. Adequate triples and∞-categories of spans

In this section, we will review the theory of adequate triples and their associated span ∞-categories,
as developed by Barwick in [Ba17] under the name effective Burnside ∞-categories. We will use the
opportunity to present an alternate viewpoint on the material by translating the assertions along the
equivalence between∞-categories and complete Segal∞-groupoids (i.e., complete Segal spaces). This
will allow for simpler proofs with far less explicit combinatorics and will form the basis for our analysis
of functors to span∞-categories in the next section.
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Since composition in span ∞-categories proceeds by pullback, one uses the following data as input
for span∞-categories:

Definition 2.1. An adequate triple (𝑋, 𝑋in, 𝑋eg) consists of an ∞-category X together with two wide
subcategories 𝑋in and 𝑋eg, whose morphisms are called ingressive (or forwards, denoted �) and
egressive (or backwards, denoted�), respectively, such that

(1) for any ingressive morphism 𝑓 : 𝑦 � 𝑥 and any egressive morphism 𝑔 : 𝑥 ′ � 𝑥, there exists a
pullback

𝑦′ 𝑥 ′

𝑦 𝑥,

𝑔′

𝑓 ′

𝑔

𝑓

(2) and in any such pullback, 𝑓 ′ is again ingressive and 𝑔′ egressive.

Squares whose horizontal arrows are ingressive and whose vertical arrows are egressive are called
ambigressive, and ambigressive cartesian if they are furthermore pullback diagrams. A functor

𝐹 : (𝑋, 𝑋in, 𝑋eg) → (𝑌,𝑌in, 𝑌 eg)

of adequate triples is given by a functor 𝐹 : 𝑋 → 𝑌 which preserves ambigressive pullbacks. Therefore,
we may define AdTrip, the ∞-category of adequate triples, as the subcategory of Fun(Λ2 [2], Cat)
spanned by the adequate triples and those natural transformations whose evaluation at 2 ∈ Λ2 [2]
preserves ambigressive pullback squares.

Note that being a natural transformation boils down to preserving ingressive and egressive maps,
since these form subcategories. We shall often drop them from notation to avoid cluttering.

Notation 2.2. Given a morphism 𝑝 : 𝑌 → 𝑋 of adequate triples, we write 𝑝in : 𝑌in → 𝑋in and
𝑝eg : 𝑌 eg → 𝑋eg for the restriction of p to ingressives and egressives.

Example 2.3. Let us record the following immediate examples:

(1) For any wide subcategory T of an∞-category S, we have the adequate triples (𝑆, 𝑇, 𝜄𝑆) and (𝑆, 𝜄𝑆, 𝑇)
where the ingressives are maps in T and the egressives are equivalences, and vice versa. In particular,
for any∞-category S, we always have the adequate triples (𝑆, 𝑆, 𝜄𝑆) and (𝑆, 𝜄𝑆, 𝑆).

(2) If S admits all pullbacks, we have the adequate triple (𝑆, 𝑆, 𝑆) where all maps are both egressive and
ingressive. This gives rise to a fully faithful embedding Catpb ↩→ AdTrip of the subcategory of Cat
spanned by those∞-categories which admit pullbacks, and those functors which preserve pullbacks.

(3) If (𝑋, 𝑋in, 𝑋eg) is an adequate triple, then 𝑋 rev = (𝑋, 𝑋eg, 𝑋in) is an adequate triple.

Lemma 2.4. The ∞-category of adequate triples admits all limits and one simply computes
lim

(
𝑋, 𝑋in, 𝑋eg) � (

lim 𝑋, lim 𝑋in, lim 𝑋eg) for every 𝑋 : 𝐼 → AdTrip. Likewise, AdTrip has filtered
colimits given by colim

(
𝑋, 𝑋in, 𝑋eg) � (

colim 𝑋, colim 𝑋in, colim 𝑋eg) .
Proof. Since the limit of a natural wide subcategory inclusion remains a wide subcategory inclusion,(

lim 𝑋, lim 𝑋in, lim 𝑋eg) is indeed a triple of a category together with two wide subcategories (and
likewise for filtered colimits). Notice that an ambigressive square in lim 𝑋 is cartesian if and only if its
image in each 𝑋𝑖 is cartesian. Furthermore, a cospan 𝑥 � 𝑥 ′ � 𝑥 ′′ in lim 𝑋 admits an ambigressive
pullback if its images in each 𝑋𝑖 do (in this case, those pullbacks assemble into an object of the limit).
This implies that lim 𝑋 is an adequate triple and that a map 𝑍 −→ lim 𝑋 preserves ambigressive pullback
squares if and only each composite 𝑍 −→ lim 𝑋 −→ 𝑋𝑖 does. This implies that the (pointwise) limit in
Fun(Λ2 [2], Cat) also provides the limit in the subcategory AdTrip ↩→ Fun(Λ2 [2], Cat).
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A dual argument applies to the colimit of a filtered diagram. In this case, the image of an ambigressive
pullback square in some 𝑋𝑖 under the map 𝑋𝑖 −→ colim 𝑋𝑖 remains an ambigressive pullback (since at
the level of mapping ∞-groupoids, filtered colimits commute with pullbacks). Conversely, any cospan
𝑥 � 𝑥 ′ � 𝑥 ′′ in colim 𝑋 arises as the image of a cospan in some 𝑋𝑖 , whose pullback in 𝑋𝑖 then provides
the desired ambigressive pullback in colim 𝑋 . It follows that colim 𝑋 is an adequate triple and that a map
of triples colim 𝑋 → 𝑍 preserves ambigressive pullback squares if and only if each 𝑋𝑖 → colim 𝑋 → 𝑍
does. This implies that colim 𝑋 is also the colimit in the subcategory AdTrip ↩→ Fun(Λ2 [2], Cat). �

Lemma 2.5. Let X and Y be two adequate triples and let us write FunAdTrip(𝑋,𝑌 ) for the full subcategory
of Fun(𝑋,𝑌 ) spanned by the morphisms of adequate triples. Say a natural transformation 𝜏 : 𝐹 ⇒ 𝐺
is ingressive if it is pointwise ingressive in Y and for every egressive 𝑓 : 𝑥 � 𝑦 in X, the square

𝐹 (𝑥) 𝐹 (𝑦)

𝐺 (𝑥) 𝐺 (𝑦)

𝐹 ( 𝑓 )

𝜏𝑥 𝜏𝑦

𝐺 ( 𝑓 )

is cartesian, and analogously for an egressive natural transformation. This endows FunAdTrip(𝑋,𝑌 ) with
the structure of an adequate triple, such that the evaluation map FunAdTrip(𝑋,𝑌 ) × 𝑋 → 𝑌 exhibits it
as the internal mapping object in AdTrip. In particular, AdTrip is cartesian closed.

Consequently, one obtains a natural equivalence of adequate triples

FunAdTrip(𝑋 × 𝑌, 𝑍) � FunAdTrip(𝑋, FunAdTrip(𝑌, 𝑍)).

Proof. The pointwise pullback P of an ingressive and an egressive natural transformation 𝐹 � 𝐻 � 𝐺
exists by assumption on Y. To verify that P is indeed a map of adequate triples, note that for an ingressive
𝑥 � 𝑥 ′, the map 𝑃(𝑥) → 𝑃(𝑥 ′) participates in the commutative cube

𝑃(𝑥 ′) 𝐺 (𝑥 ′)

𝑃(𝑥) 𝐺 (𝑥)

𝐹 (𝑥 ′) 𝐻 (𝑥 ′)

𝐹 (𝑥) 𝐻 (𝑥)

whose front and back face are cartesian by definition of P and whose bottom face is cartesian since
𝐹 � 𝐻 is egressive. Consequently, also the top face is cartesian showing that 𝑃(𝑥) → 𝑃(𝑥 ′) is
also ingressive. The argument for the preservation of egressives is the same, and that P preserves
ambigressives pullbacks follows directly from the pasting laws.

It is also obvious that the maps 𝑃 → 𝐺 and 𝑃 → 𝐹 are pointwise egressive and ingressive,
respectively, and the argument above also verifies the second condition in the definition of an egressive
transformation, and the argument is dual for the ingressives. In total, this shows that FunAdTrip(𝑋,𝑌 ) is
an adequate triple.

To verify the universal property, let Z be a third adequate triple. In suffices to verify that under the
equivalence HomCat (𝑍×𝑋,𝑌 ) � HomCat(𝑍, Fun(𝑋,𝑌 )), a functor 𝐹 : 𝑍×𝑋 −→ 𝑌 is a map of adequate
triples if and only if the corresponding map 𝐹 ′ : 𝑍 −→ Fun(𝑋,𝑌 ) takes values in FunAdTrip(𝑋,𝑌 ) and
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determines a map of adequate triples. To see this, note that any ambigressive square in 𝑍 × 𝑋 is uniquely
a composite of four types of squares:

(𝑧, 𝑥0) (𝑧, 𝑥1) (𝑧0, 𝑥) (𝑧1, 𝑥)

(𝑧, 𝑥2) (𝑧, 𝑥3) (𝑧2, 𝑥) (𝑧3, 𝑥)

(𝑧0, 𝑥0) (𝑧1, 𝑥0) (𝑧0, 𝑥0) (𝑧0, 𝑥1)

(𝑧0, 𝑥2) (𝑧1, 𝑥2) (𝑧2, 𝑥0) (𝑧2, 𝑥1)

Now, F preserving ambigressive (cartesian) squares of the first type is equivalent to 𝐹 ′ taking values in
FunAdTrip(𝑋,𝑌 ). Preserving the ambigressive (automatically cartesian) squares as in the lower row then
corresponds precisely to 𝐹 ′ : 𝑍 −→ FunAdTrip(𝑋,𝑌 ) preserving ingressive and egressive morphisms.
Finally, F preserves the cartesian ambigressive squares as in the upper right corner if and only if 𝐹 ′

preserves ambigressive pullbacks. �

One can generate more interesting examples of adequate triples using the following criterion:

Proposition 2.6. Let 𝑝 : 𝑌 −→ 𝑋 be a functor and let (𝑋, 𝑋in, 𝑋eg) be an adequate triple such that Y
has all p-cartesian lifts over 𝑋in. Then Y is part of an adequate triple

(
𝑌,𝑌†, 𝑝−1(𝑋eg)), where a map is

ingressive if it is p-cartesian and its image is ingressive in X, and egressive if its image under p is. This
structure also upgrades p to a map of adequate triples.

Proof. Consider the left solid cospan in the diagram

𝑦3 𝑦2 𝑥1 ×𝑥0 𝑥2 𝑥2

𝑦1 𝑦0 𝑥1 𝑥0

with 𝑥1 � 𝑥0 � 𝑥2 its image in X under p. By assumption, the right diagram can be completed to
an ambigressive pullback in X, and we let 𝑦3 � 𝑦2 be a p-cartesian lift of 𝑥1 ×𝑥0 𝑥2 � 𝑥2. The
universal property of p-cartesian maps then implies that there exists a unique map 𝑦3 → 𝑦1 which lives
over 𝑥1 ×𝑥0 𝑥2 → 𝑥1 and makes the left square commute. Note that the left square is ambigressive by
definition. To see that it is also a pullback, compute

Hom𝑌 (𝑦, 𝑦1) ×Hom𝑌 (𝑦,𝑦0) Hom𝑌 (𝑦, 𝑦2)

� Hom𝑋 (𝑝(𝑦), 𝑥1) ×Hom𝑋 (𝑝 (𝑦) ,𝑥0) Hom𝑌 (𝑦, 𝑦0) ×Hom𝑌 (𝑦,𝑦0) Hom𝑌 (𝑦, 𝑦2)

� Hom𝑋 (𝑝(𝑦), 𝑥1) ×Hom𝑋 (𝑝 (𝑦) ,𝑥0) Hom𝑌 (𝑝(𝑦), 𝑥2) ×Hom𝑋 (𝑝 (𝑦) ,𝑥2) Hom𝑌 (𝑦, 𝑦2)

� Hom𝑋 (𝑝(𝑦), 𝑥1 ×𝑥0 𝑥2) ×Hom𝑋 (𝑝 (𝑦) ,𝑥2) Hom𝑌 (𝑦, 𝑦2)

� Hom𝑌 (𝑦, 𝑦3)

for 𝑦 ∈ 𝑌 , where the first equivalence uses the universal property of the cartesian edge 𝑦1 � 𝑦0 and the
last one that of 𝑦3 � 𝑦2. Finally, note that the uniqueness of pullbacks implies that every ambigressive
pullback is of this form and is thus clearly preserved by p, which is thus a map of adequate triples. �

The case of Proposition 2.6 where p is a cartesian fibration admits the following generalisation:

Proposition 2.7. Let (𝑋, 𝑋in, 𝑋eg) be an adequate triple, 𝐹 : 𝑋op → AdTrip a functor and 𝑝 : 𝑌 −→ 𝑋
its cartesian unstraightening. Then Y has the structure of an adequate triple, in which a map 𝑦1 → 𝑦0 is
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egressive if it factors as an egressive morphism in the fibre 𝑌𝑝 (𝑦1) � 𝐹 (𝑝(𝑦1)), followed by a p-cartesian
morphism with egressive image in X (and likewise for the ingressives). Furthermore, this structure makes
p a map of adequate triples.

An equivalent description of the egressives is given by unstraightening the functor 𝑋op →

AdTrip
(−)eg

−−−−→ Cat and then restricting the arising cartesian fibration to 𝑋eg, and likewise for the in-
gressives; this follows immediately from the fact that every map in the domain of a cartesian fibration
factors uniquely as a fibrewise followed by a cartesian arrow.

Proof. Consider a cospan 𝑓 : 𝑦1 � 𝑦0 � 𝑦2 :𝑔 where the left arrow is ingressive and the right arrow
is egressive in Y. To show that this admits an ambigressive pullback, note that f decomposes into two
egressive maps in Y, one contained in a fibre of p and the other p-cartesian (and likewise for 𝑦2 � 𝑦0). By
the pasting lemma for pullbacks, it therefore suffices to show the existence of an ambigressive pullback
in the arising special cases.

First, suppose that both f and g are contained in a single fibre 𝑌𝑥 � 𝐹 (𝑥). Since the fibre forms
an adequate triple, there exists an ambigressive pullback of f and g within 𝑌𝑥 . This square remains a
pullback square in Y by [Lu09a, Proposition 4.3.1.10] and stays ambigressive by definition.

Next, suppose that g is a p-cartesian lift of an egressive arrow. Then Proposition 2.6 implies the
existence of a pullback

𝑦3 𝑦2

𝑦1 𝑦0
𝑓

𝑔

that maps to an ambigressive pullback in X. It also implies that the left vertical arrow is again p-cartesian
and that the upper horizontal one is p-cartesian or fibrewise if f is (the former by switching the roles of
ingressives and egressives in 2.6). In both cases, it follows that the square is ambigressive.

The final case (i.e., if f is assumed a p-cartesian lift of an ingressive arrow) follows in the same
fashion by again reversing the roles of the egressives and ingressives in Proposition 2.6. �

Example 2.8. Let (𝑋, 𝑋in, 𝑋eg) be an adequate triple and let Tw𝑟 (𝑋) be its twisted arrow ∞-category,
with the convention that the source and target define a right fibration. In particular, 𝑠 : Tw𝑟 (𝑋) −→ 𝑋
is a cartesian fibration and Proposition 2.6 endows Tw𝑟 (𝑋) with the structure of an adequate triple, in
which a map 𝛼 −→ 𝛽 given by

𝑥 𝑦

𝑤 𝑧

𝛼

𝑓

𝛽

𝑔

is egressive if f is egressive, and ingressive if f is ingressive and g is an equivalence.

Example 2.9. Let A be an ∞-category, considered as an adequate triple (𝐴, 𝐴, 𝜄𝐴) with all morphisms
ingressive and only the equivalences egressive. Example 2.8 endows Tw𝑟 (𝐴) with the structure of
an adequate triple, where a morphism is ingressive if its image under 𝑡 : Tw𝑟 (𝐴) −→ 𝐴op is an
equivalence, and egressive if its image under 𝑠 : Tw𝑟 (𝐴) −→ 𝐴 is an equivalence. This determines a
functor Tw𝑟 : Cat −→ AdTrip.
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For the construction of span ∞-categories, this structure will be of particular interest when A is a
simplex. For example, Tw𝑟 ([2]) is the poset

(0 ≤ 2)

(0 ≤ 1) (1 ≤ 2)

(0 ≤ 0) (1 ≤ 1) (2 ≤ 2),

where the left-pointing arrows are egressive and the right-pointing ones are ingressive. More generally,
the ambigressive pullbacks in Tw𝑟 ([𝑛]) are precisely given by the diagrams

(𝑖 ≤ 𝑙)

(𝑖 ≤ 𝑗) (𝑘 ≤ 𝑙)

(𝑘 ≤ 𝑗).

for 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑙.

We next set out to construct Barwick’s functor

Span: AdTrip −→ Cat,

sending each adequate triple to its ∞-category of spans, described informally in the introduction. We
will define Span more precisely as a functor into complete Segal∞-groupoids. Recall that such functors
can be obtained from the following general procedure:

Construction 2.10. Given a functor 𝐶 : 𝐷 → 𝐴 between∞-categories, we obtain a ‘singular complex’
functor S𝐶 : 𝐴→ P (𝐷) with P (𝐷) = Fun(𝐷op, Gpd) by currying the composition

𝐷op × 𝐴
𝐶op×id
−−−−−→ 𝐴op × 𝐴

Hom𝐴
−−−−→ Gpd;

that is, S𝐶 (𝑋)𝑑 = Hom𝐴(𝐶 (𝑑), 𝑋). If A is cocomplete, then S𝐶 is right adjoint to the colimit extension
|−|𝐶 : P (𝐷) → 𝐴; see [Lu09a, Proposition 5.2.6.3].

For the cosimplicial object 𝚫→ Cat, 𝑛 ↦→ [𝑛], we obtain in this fashion an adjunction

ac : sGpd Cat :N. ,

where sGpd = P (𝚫) is the ∞-category of simplicial ∞-groupoids. By results of Joyal, Lurie, Rezk
and Tierney [JT07, Lu09b, Re01], the nerve functor N is fully faithful with essential image the full
subcategory of complete Segal objects inside sGpd – that is, those simplicial∞-groupoids T that satisfy
the Segal condition and for which the diagram

𝑇0 𝑇0 × 𝑇0

𝑇3 𝑇1 × 𝑇1

Δ

𝑠 (𝑠,𝑠)

(𝑑{0,2} ,𝑑{1,3})

is cartesian; see [Re10, Section 10] for this characterisation of completeness. A general cosimplicial
object C in A therefore gives rise to a functor 𝐴 → Cat via the composition of S𝐶 with ac. When
S𝐶 takes values in (complete) Segal ∞-groupoids, we have a good understanding of this functor, since
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there is then no need to localise; this happens precisely when the cosimplicial object C satisfies the dual
version of the Segal and completeness conditions.

Example 2.11. Consider the functor S𝐵 : Cat −→ sGpd associated to the cosimplicial object

𝐵 : 𝚫 −→ Cat, [𝑛] ↦−→ [𝑛] ★ [𝑛]op.

Then S𝐵 (𝐶) � N Tw𝑟 (𝐶). This follows from the observation that Tw𝑟 arises from a right Quillen functor
between the Joyal model structures whose left adjoint sends [𝑛] to [𝑛]★ [𝑛]op (see [Lu17, Section 5.2.1]
or [HNP17, Proposition 4.13]). In particular, S𝐵 takes values in complete Segal∞-groupoids.

Applying this construction to the functor Tw𝑟 : 𝚫 −→ AdTrip sending each simplex [𝑛] to Tw𝑟 ([𝑛])
with the structure from Example 2.9, we obtain the following:

Definition 2.12. We define Span: AdTrip→ Cat as the composition

AdTrip
STw𝑟

−−−→ sGpd ac
−→ Cat.

Theorem 2.13 (Barwick). The essential image of STw𝑟 is contained in the complete Segal∞-groupoids.
In other words, there is a natural equivalence

HomCat
(
[𝑛], Span(𝑋)

)
� HomAdTrip(Tw𝑟 ([𝑛]), 𝑋).

We will give a new proof of this result (avoiding Barwick’s recourse to a point-set model). Recall also
that the category associated to a complete Segal ∞-groupoid T can be described rather explicitly. For
example, the core of ac(𝑇) is simply given by 𝑇0, and its morphism∞-groupoids are given by the fibres
of (𝑑1, 𝑑0) : 𝑇1 → 𝑇2

0 . In the case at hand, this gives us the desired description of Span(𝑋, 𝑋in, 𝑋eg):
objects are objects of X, morphisms from x to y are spans

𝑥 𝑧 𝑦

with the left arrow egressive and the right arrow ingressive, and composition proceeds by pullback
of spans. Completeness furthermore implies that 𝜄Span(𝑋, 𝑋in, 𝑋eg) � 𝜄(𝑋) via the degenerate spans
consisting of identities. Before we dive into the proof, let us record two immediate properties of the
construction, the second of which in particular yields inclusions of subcategories

(
𝑋eg)op Span(𝑋) 𝑋in,

when applied to

(𝑋, 𝜄𝑋, 𝑋eg) −→ 𝑋 ←− (𝑋, 𝑋in, 𝜄𝑋).

Lemma 2.14. For an adequate triple (𝑋, 𝑋in, 𝑋eg) with reverse 𝑋 rev = (𝑋, 𝑋eg, 𝑋in) as in Example 2.3,
there is a natural canonical equivalence

Span(𝑋)op � Span(𝑋 rev).

Proof. For each [𝑛], consider Tw𝑟 ([𝑛]) and Tw𝑟 ([𝑛]op) with the structure of an adequate triple as in
Example 2.9. There is a natural equivalence of cosimplical adequate triples Tw𝑟 ([−]op) � Tw𝑟 ([−])rev,
sending an object (𝑖 ≥ 𝑗) in Tw𝑟 ([𝑛]op) to the object ( 𝑗 ≤ 𝑖) in Tw𝑟 ([𝑛]). This induces a natural
equivalence of simplicial objects

HomAdTrip
(
Tw𝑟 ([−]op), 𝑋

)
� HomAdTrip

(
Tw𝑟 ([−])rev, 𝑋

)
� HomAdTrip

(
Tw𝑟 ([−]), 𝑋 rev)
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so that the simplicial∞-groupoid defining Span(𝑋) is the reverse of that defining Span(𝑋 rev). The result
follows since generally ac(𝑇)op � ac(𝑇 rev) as this is true on simplices. �

Proposition 2.15. Let 𝐴 ⊆ 𝐵 be a subcategory. Then the triples (𝐵, 𝐴, 𝜄𝐵) and (𝐵, 𝜄𝐵, 𝐴) are adequate
and

Span(𝐵, 𝐴, 𝜄𝐵) � 𝐴 and Span(𝐵, 𝜄𝐵, 𝐴) � 𝐴op.

Proof. We shall prove the first claim; the second then follows from 2.14. The triple (𝐵, 𝐴, 𝜄𝐵) is evidently
adequate (cf. Example 2.3). Note that the∞-groupoid of functors from an adequate triple (𝑋, 𝑋in, 𝑋eg)
into (𝐵, 𝐴, 𝜄𝐵) is equivalent to the ∞-groupoid of functors 𝑋 → 𝐵 which invert the edges in 𝑋eg and
take those of 𝑋in into A. Applying this to 𝑋 = Tw𝑟 ([𝑛]) shows that the remaining claim is equivalent to
the assertion that the source map

𝑠 : Tw𝑟 ([𝑛]) −→ [𝑛]

is a localisation (necessarily at those maps whose source component is an equivalence). This is, in fact,
true for all∞-categories C in place of [𝑛], for example, since Tw𝑟 (𝐶) → 𝐶 is a cocartesian fibration with
contractible fibres (which are always localisations; see Lemma 5.5 below). The localisation property is,
however, particularly easy to see when C admits a terminal object. In that case, the source evaluation
Tw𝑟 (𝐶) → 𝐶 is even a Bousfield localisation, with fully faithful left adjoint sending 𝑐 ↦→ (𝑐 → ∗). �

We now turn to the proof of Theorem 2.13. Instead of following Barwick’s strategy of explicitly
filling simplices in a point-set implementation of the above construction, our proof will be a simple
adaptation of the argument given in [CDH+20, Section 2.1] for the case of stable∞-categories (with all
maps ingressive and egressive). In fact, we will prove a slightly stronger statement, which will ultimately
allow us to deduce Theorem A. It uses the following definition:

Definition 2.16. Let A be an ∞-category and X an adequate triple. We write Q𝐴(𝑋) for the ∞-
category FunAdTrip(Tw𝑟 (𝐴), 𝑋), where Tw𝑟 (𝐴) is the adequate triple from Example 2.9 and denote by
Q: Catop × AdTrip −→ AdTrip the resulting functor.

In particular, each adequate triple X gives rise to a natural simplicial diagram Q•(𝑋) in Cat.

Lemma 2.17. Let X be an adequate triple. Then the simplicial ∞-category Q•(𝑋) satisfies the Segal
and completeness conditions; that is, the Segal maps

Q𝑛 (𝑋) −→ Q1 (𝑋) ×Q0 (𝑋 ) Q1 (𝑋) · · · ×Q0 (𝑋 ) Q1 (𝑋)

are equivalences and

Q0(𝑋) Q0 (𝑋) × Q0(𝑋)

Q3(𝑋) Q1 (𝑋) × Q1(𝑋)

Δ

𝑠 (𝑠,𝑠)

(𝑑{0,2} ,𝑑{1,3})

is cartesian.

Note that this immediately implies Theorem 2.13, as 𝜄 : Cat→ Gpd preserves limits.

Proof. Let J𝑛 ⊆ Tw𝑟 ([𝑛]) denote the subposet consisting of those (𝑖 ≤ 𝑗) with 𝑗 ≤ 𝑖 + 1 (i.e., the
zig-zag along the bottom). Note that J𝑛 decomposes as an iterated pushout

J𝑛 � Tw𝑟 ([1]) ∪Tw𝑟 ( [0]) Tw𝑟 ([1]) ∪ · · · ∪Tw𝑟 ( [0]) Tw𝑟 ([1])

along the Segal maps; in fact, the nerve N(J𝑛) is already the iterated pushout of the nerves N(Tw𝑟 ([1]))
in simplicial ∞-groupoids (see [Ha18, Proposition 5.13] for a similar argument). The iterated pullback
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appearing in the Segal condition is therefore equivalent to the full subcategory 𝐽𝑛 (𝑋) of Fun(J𝑛, 𝑋)
spanned by those functors taking left-pointing edges in J𝑛 (i.e., those of the form (𝑖 ≤ 𝑖 + 1) → (𝑖 ≤ 𝑖))
to ingressives and right-pointing arrows, namely, (𝑖 ≤ 𝑖+1) → (𝑖+1 ≤ 𝑖+1), to egressives. Furthermore,
this translates the Segal map to the map Q𝑛 (𝑋) → 𝐽𝑛 (𝑋) induced by the restriction

Fun(Tw𝑟 ([𝑛]), 𝑋) −→ Fun(J𝑛, 𝑋).

But from the pointwise formula for Kan extensions, one finds that a diagram 𝐹 : Tw𝑟 ([𝑛]) → 𝑋 lies in
Q𝑛 (𝑋) if and only if it is right Kan extended from its restriction to J𝑛, which has to lie in 𝐽𝑛. The claim
now follows from [Lu09a, Proposition 4.3.2.15], since right Kan extension from a full subcategory is
fully faithful.

Similarly, for completeness, we first note that the map 𝑃 → Q3 (𝑋) from the pullback in question to
the lower left corner is fully faithful since the degeneracy Q0 (𝑋)

2 → Q1(𝑋)
2 is (as | Tw𝑟 ([1]) | � ∗). We

claim that its essential image consists exactly of those diagrams whose edges are all equivalences; since
also | Tw𝑟 ([3]) | � ∗ these are precisely the constant ones, which gives the result. So consider a diagram

𝐹 (0 ≤ 3)

𝐹 (0 ≤ 2) 𝐹 (1 ≤ 3)

𝐹 (0 ≤ 1) 𝐹 (1 ≤ 2) 𝐹 (2 ≤ 3)

𝐹 (0 ≤ 0) 𝐹 (1 ≤ 1) 𝐹 (2 ≤ 2) 𝐹 (3 ≤ 3)

all of whose squares are (ambigressive) cartesian and such that the four compositions

𝐹 (0 ≤ 2) −→ 𝐹 (0 ≤ 0), 𝐹 (0 ≤ 2) −→ 𝐹 (2 ≤ 2)

𝐹 (1 ≤ 3) −→ 𝐹 (1 ≤ 1), 𝐹 (1 ≤ 3) −→ 𝐹 (3 ≤ 3)

are equivalences. Then it first follows that, as pullbacks of equivalences, also 𝐹 (0 ≤ 3) → 𝐹 (0 ≤ 1)
and 𝐹 (0 ≤ 3) → 𝐹 (2 ≤ 3) are equivalences and then by two-out-of-six, the entire outer slopes are. But
then by commutativity of the larger rectangles, also 𝐹 (0 ≤ 1) → 𝐹 (1 ≤ 1) and 𝐹 (2 ≤ 3) → 𝐹 (2 ≤ 2)
are equivalences, and then as pullbacks thereof also 𝐹 (0 ≤ 2) → 𝐹 (1 ≤ 2) and 𝐹 (1 ≤ 3) → 𝐹 (1 ≤ 2).
Finally, this implies that also 𝐹 (1 ≤ 2) → 𝐹 (1 ≤ 1) and 𝐹 (1 ≤ 2) → 𝐹 (2 ≤ 2) are equivalences by
two-out-of-three. �

Next we shall describe functors into span ∞-categories. More precisely, we will show that the
equivalence between functors [𝑛] −→ Span(𝑋) and maps of adequate triples Tw𝑟 ([𝑛]) −→ 𝑋 from
Theorem 2.13 extends to all∞-categories:

Theorem 2.18. The functors Tw𝑟 : Cat AdTrip :Span form an adjoint pair. In other words,
for each∞-category A and each adequate triple X, there is a natural equivalence

HomAdTrip(Tw𝑟 (𝐴), 𝑋) � HomCat (𝐴, Span(𝑋)),

where Tw𝑟 (𝐴) is as in Example 2.9.

Remark 2.19. Using a different argument, this result was first sketched by Raskin in [Ra14, Chapter
20]. The resulting description of functors into span categories is, for example, also used in [HS21] to
perform parametrised surgery on the cobordism ∞-categories Cob(𝐶, Ϙ) from [CDH+20], which are
hermitian refinements of Span(𝐶).
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Recall from Definition 2.16 that we abbreviate

Q𝐴(𝑋) = FunAdTrip(Tw𝑟 (𝐴), 𝑋).

The theorem will follow readily from the following:

Proposition 2.20. For each adequate triple X, the functor Q−(𝑋) : Catop → Cat preserves limits.

We will employ the (opposite of the) following criterion:

Lemma 2.21. Let 𝑓 : 𝐷 → 𝐸 be a functor from a small to a cocomplete category, such that the right
adjoint in the induced adjunction

|−| 𝑓 : P (𝐷) :S 𝑓

is fully faithful. Then for a functor 𝐹 : 𝐸 → 𝐶 to another cocomplete category, the following are
equivalent:

(1) F preserves colimits,
(2) the natural map |−|𝐹◦ 𝑓 =⇒ 𝐹 ◦ |−| 𝑓 is an equivalence, and
(3) (i) the natural map 𝑓! (𝐹◦ 𝑓 ) =⇒ 𝐹 is an equivalence (i.e., F is left Kan extended from its restriction

along f), and
(ii) |−|𝐹◦ 𝑓 : P (𝐷) → 𝐶 inverts all maps that |−| 𝑓 inverts.

Applying this to 𝚫 ⊂ Cat and taking opposites in particular shows that a functor 𝐹 : Catop → 𝐶
preserves limits if and only if it is right Kan extended from its restriction along 𝚫op ⊂ Catop and the
restriction 𝐹 : 𝚫op → 𝐶 is a complete Segal object in 𝐶. The maps

Δ {0,1} ∪Δ {1} · · · ∪Δ {𝑛−1} Δ {𝑛−1,𝑛} −→ Δ𝑛 and Δ3/Δ {0,2},Δ {1,3} −→ Δ0

encoding the Segal and completeness conditions are (by design) categorical equivalences (i.e., inverted
by ac : sGpd→ Cat), proving that if |−|𝐹op : sGpd→ 𝐶op inverts these, then 𝐹 : 𝚫op → 𝐶 is a complete
Segal object, and the Yoneda lemma reduces the converse to the case 𝐶 = Gpd, where it follows from
the fact that |−|(N𝐶)op � HomCat(ac(−), 𝐶) as (colimit preserving) functors sGpd→ Gpdop.

Proof. Let us point out that any colimiting cocone 𝐺 : 𝐼� → 𝐸 arises as the image of a colimiting cocone
𝐺 ′ : 𝐼� → P (𝐷) under |−| 𝑓 : indeed, one can take 𝐺 ′ to be the colimit of the diagram 𝑆 𝑓 ◦𝐺 |𝐼 : 𝐼 −→
P (𝐷). Consequently, a functor out of E preserves colimits if and only if its composition with |−| 𝑓 does.
Using this, (1)⇔ (2) is an immediate consequence of [Lu09a, Lemma 5.1.5.5].

For (2) ⇒ (3), (ii) follows immediately. To see (i), note that F agrees with the left Kan extension
of |−|𝐹◦ 𝑓 = 𝐹 ◦ |−| 𝑓 along |−| 𝑓 , since |−| 𝑓 is a localisation [Lu09a, Proposition 5.2.7.12]. In turn,
|−|𝐹◦ 𝑓 is the left Kan extension of 𝐹 ◦ 𝑓 along the Yoneda embedding ℎ : 𝐷 −→ P (𝐷) [Lu09a, Lemma
5.1.5.5]. The claim then follows from transitivity of Kan extensions.

Finally, for (3) ⇒ (2), note that (ii) implies that |−|𝐹◦ 𝑓 descends along |−| 𝑓 to some functor
𝐺 : 𝐸 → 𝐶, which is then automatically its left Kan extension along |−| 𝑓 . Part (i) and transitivity of
Kan extensions then imply that 𝐺 � 𝐹, or in other words, that |−|𝐹◦ 𝑓 � 𝐹 ◦ |−| 𝑓 as desired. �

Proof of Proposition 2.20. Since Q(𝑋) is a complete Segal object in Cat by Lemma 2.17, we have
already shown Item (ii) of Lemma 2.21(3). So we need only show that Q(𝑋) : Catop → Cat is right Kan
extended from its restriction to 𝚫op. By the pointwise formula for Kan extensions, this means that the
tautological map

Q𝐷 (𝑋) −→ lim
𝑛∈(𝚫/𝐷)op

Q𝑛 (𝑋)
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is an equivalence for all 𝐷 ∈ Cat. The diagram 𝚫/𝐷 → 𝚫 ↩→ Cat, giving rise to the right-hand side has
colimit D and is a typical example of a functor 𝐹 : 𝐼 → Cat such that the natural map

colim
𝑖∈𝐼

N(𝐹𝑖) −→ N(colim
𝑖∈𝐼

𝐹𝑖) (*)

is an equivalence (with both sides evaluating to N𝐷). We will directly show that Q(−) (𝑋) preserves all
limits over diagrams with this property.

To this end, note that there are natural equivalences of simplicial∞-groupoids

N(Tw𝑟 (𝐶)) �
[
𝑖 ↦−→ HomCat ([𝑖] ★ [𝑖]

op, 𝐶)
]
�

[
𝑖 ↦−→ HomsGpd (Δ

𝑖 ★ (Δ 𝑖)op, N(𝐶))
]
.

In particular, since Δ 𝑖 ★ (Δ 𝑖)op � Δ2𝑖+1 is completely compact in sGpd, we find an equivalence

colim𝑖∈𝐼 Tw𝑟 (𝐹𝑖) Tw𝑟
(
colim𝑖∈𝐼 𝐹𝑖

)∼

because of (*); let us warn the reader that the above map need not be an equivalence without any
assumption on F, as the diagram [1] 0

←− [0] 1
−→ [1] with pushout [2] shows. In the case at hand, it

follows that the map

Fun(Tw𝑟 (colim
𝑖∈𝐼

𝐹𝑖), 𝑋) −→ lim
𝑖∈𝐼

Fun(Tw𝑟 (𝐹𝑖), 𝑋)

is an equivalence.
We have to show that this restricts to an equivalence between the full subcategory Qcolim𝑖 𝐹𝑖 (𝑋) on

the left (spanned by morphisms of adequate triples) and lim𝑖∈𝐼 Q𝐹𝑖 (𝑋) on the right. To this end, notice
that any ambigressive pullback square in Tw𝑟 (𝐴), say

(𝑎0 → 𝑎3)

(𝑎0 → 𝑎2) (𝑎1 → 𝑎3)

(𝑎1 → 𝑎2),

is contained (up to equivalence) in Tw𝑟 ([3]) for a map [3] −→ 𝐴, namely, that given by the string
𝑎0 → 𝑎1 → 𝑎2 → 𝑎3. Consequently, a functor Tw𝑟 (𝐴) → 𝑋 is a morphism of adequate triples if and
only if each restriction

Tw𝑟 ([3]) −→ Tw𝑟 (𝐴) −→ 𝑋

is such. To apply this, note that one has

HomCat
(
[3], colim

𝑖∈𝐼
𝐹𝑖
)
� N3(colim

𝑖∈𝐼
𝐹𝑖) � colim

𝑖∈𝐼
N3 (𝐹𝑖) � colim

𝑖∈𝐼
HomCat ([3], 𝐹𝑖)

whenever F satisfies (*), so that a functor Tw𝑟 (colim𝑖 𝐹𝑖) → 𝑋 lies in Qcolim𝑖 𝐹𝑖 (𝑋) if and only if for
every 𝑗 ∈ 𝐼 and map [3] → 𝐹𝑗 , the composite

Tw𝑟 ([3]) −→ Tw𝑟 (𝐹𝑗 ) −→ Tw𝑟 (colim
𝑖

𝐹𝑖) −→ 𝑋

lies in Q3 (𝑋). But this is the case if and only if the functor restricts to an element of Q𝐹𝑗 (𝑋) for every
𝑗 ∈ 𝐼 and thus by definition if and only if it defines an element of lim𝑖 Q𝐹𝑖 (𝑋), as desired. �

Proof of Theorem 2.18. By Proposition 2.20, 𝜄Q(𝑋) � HomAdTrip(Tw𝑟 (−), 𝑋) : Catop → Gpd pre-
serves limits as does HomCat(−, Span(𝑋)), so by Lemma 2.21, they are both right Kan extended from
𝚫op ⊂ Catop. Thus, they agree if their restrictions to 𝚫op agree, which is the case by Theorem 2.13. �
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In fact, one can upgrade Theorem 2.18 to describe the full functor∞-category Fun(𝐾, Span(𝑋)):

Corollary 2.22. There is a canonical equivalence

Fun(𝐴, Span(𝑋)) � Span(Q𝐴(𝑋)),

natural in 𝐴 ∈ Cat and 𝑋 ∈ AdTrip.

We warn the reader that this result is misstated as Fun(𝐴, Span(𝑋)) � Q𝐴(𝑋) in [Ra14, Section
20.9], which is only true on groupoid cores.

Proof. The left adjoint Tw𝑟 : Cat → AdTrip preserves the cartesian product. By adjunction, the right
adjoint Span: AdTrip → Cat then sends the internal mapping object Q𝐴(𝑋) = FunAdTrip(Tw𝑟 (𝐴), 𝑋)
from Lemma 2.5 to the internal mapping object Fun(𝐴, Span(𝑋)) in Cat. �

Example 2.23. Since the functors 𝑠 : Tw𝑟 (𝐴) → 𝐴 and 𝑡 : Tw𝑟 (𝐴) → 𝐴op are localisations, it follows
easily from the formula of Corollary 2.22 that the functors

Fun(𝐴, 𝑋 in) −→ Fun(𝐴, Span(𝑋)) and Fun(𝐴op, 𝑋eg)op −→ Fun(𝐴, Span(𝑋))

are inclusions of (non-full) subcategories for all 𝐴 ∈ Cat. Alternatively, this statement can also be
reduced to the case 𝐴 = [0] (which we recorded before Lemma 2.14) by means of Lemma A.4.

In a different direction, note that even if X admits pullbacks and carries the trivial structure of an
adequate triple with all maps ingressive and egressive, the same is typically not true for Q𝐴(𝑋) =
FunAdTrip(Tw𝑟 (𝐴), 𝑋); this phenomenon is the basis for the notions of forwards and backwards surgery
in [HS21].

3. Cartesian fibrations and∞-categories of spans

The goal of this section is to describe the cocartesian fibration associated to the functor Span: AdTrip→
Cat, which is itself given by a certain span ∞-category of adequate triples. As a direct application, we
will obtain a new and fairly direct proof of the main result of [BGN18], which identifies the dual
cartesian fibration of a cocartesian fibration in terms of a span construction. We shall more generally
analyse the interaction of span categories and (co)cartesian fibrations in Section 5 below.

To understand (co)cartesian edges in span ∞-categories, we start by reproducing a criterion due to
Barwick. In fact, we provide a proof different from [Ba17] and inspired by the proof of the additivity
theorem for Grothendieck–Witt theory in [CDH+20, Section 2.6]; see Example 3.3 for the details of this
connection.

Theorem 3.1 (Barwick). Let 𝑝 : 𝑌 → 𝑋 be a morphism in AdTrip and let f be an edge in 𝑋in such that
the following conditions hold:

(1) Every pullback of f along an egressive edge has a lift in 𝑌in which is simultaneously p-cocartesian
and 𝑝in-cocartesian, for any choice of lift of its source.

(2) Consider any commutative square 𝜎 in Y

𝑤 𝑣

𝑢 𝑦

𝑔′

𝑔

𝜓

such that 𝑝(𝜎) is an ambigressive pullback in X, the edge 𝑔′ is ingressive, the morphism g is
egressive, and the morphism 𝜓 is a p-cocartesian and ingressive lift of f. Then 𝑔′ is p-cocartesian
if and only if the square is an ambigressive pullback.
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Then an edge 𝑥 → 𝑦 of Span(𝑌 ), represented by a span

𝑢

𝑥 𝑦

𝜙 𝜓

such that 𝜓 covers f, is Span(𝑝)-cocartesian if 𝜙 is 𝑝eg-cartesian and 𝜓 is p-cocartesian as indicated.

Proof. Unwinding definitions, we have to show that for any span 𝑥 𝑤 𝑧 in Y, the solid
diagram (ignoring the numbers for a moment)

𝑤

𝑢 •

𝑥 𝑦 𝑧

(1) (2)

𝜙 𝜓 (3) (4)

admits an essentially unique dashed filling lying over a given entirely solid diagram in Span(𝑋), such
that all left-pointing arrows are egressive and all right-pointing arrows ingressive, and the top square is
cartesian. We then first observe that the second condition on f (the image of 𝜓 in X) implies that for such
square in which the arrows 𝑤 → 𝑢 and 𝑤 → • are egressive and ingressive, respectively the assertion
that the square is cartesian and • → 𝑦 is egressive is equivalent to the assertion that the map 𝑤 → • is
p-cocartesian, so we may instead show that there is a unique filler with this property.

We do so by filling the diagram step by step, as indicated by the numbers in the above diagram,
essentially uniquely each time:

(1) There exists a unique egressive filler because 𝜙 is 𝑝eg-cartesian.
(2) The first assumption on f provides a p-cocartesian left, that is automatically unique and also 𝑝in-

cocartesian and ingressive.
(3) There exists a unique filler making the middle square commute because 𝑤 → • is p-cocartesian.
(4) There is a unique ingressive filler because 𝑤 → • is 𝑝in-cocartesian.

�

In the special case where f is an equivalence, the two assumptions are automatic, so we obtain the
following:

Corollary 3.2. If 𝑝 : 𝑌 → 𝑋 is a morphism in AdTrip, then a span in Y of the form

𝑢

𝑥 𝑦,

𝜙 ∼

represents a Span(𝑝)-cocartesian morphism whenever 𝜙 is 𝑝eg-cartesian.

Remark 3.3. We feel obliged to point out two oversights in the statement of the above result in [Ba17,
12.2 Theorem]:

(i) Barwick requires that the edge 𝜙 be p-cartesian and not 𝑝eg-cartesian. Our proof above hopefully
makes it transparent why this is not enough. For an explicit counterexample, consider 𝑋 = 𝑌 = [1]2
with p the identity, where we equip the source with the triple structure with the horizontal maps
(and the identities) ingressive and everything but the horizontal maps egressive and the target with
the same ingressives but all maps egressive.

(ii) As he is working at the point-set level, Barwick has to show that Span(𝑝) is an inner fibration. To
this end, he assumes that p is an inner fibration, but in fact requires the stronger assumption that p
is an isofibration, as can be seen by lifting a 2-simplex in Span(𝑌 ) of the form
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𝑤

𝑥 𝑥

𝑥 𝑥 𝑥

𝑓 𝑓

where f is some equivalence and all other maps identities.
In order to carry out iterated span constructions as in [BGN18] at the point-set level, one

therefore needs to check that if p is an isofibration, then so is Span(𝑝). This is indeed the case as a
direct consequence of equivalences in span∞-categories being precisely the spans of equivalences
(which itself follows from the completeness assertion for 𝜄Q(𝑋) in Lemma 2.17; see also [Ba17,
Proposition 3.4]).

Example 3.4. In particular, in light of the previous remark, let us recount the original purpose of
Theorem 3.1 in [Ba17], which is Barwick’s unfurling construction. The input is an adequate triple
(𝑋, 𝑋in, 𝑋eg) and a functor 𝐹 : 𝑋op → Cat such that

(1) for every ingressive 𝑓 : 𝑥 → 𝑦, the induced functor 𝑓 ∗ : 𝐹 (𝑦) → 𝐹 (𝑥) admits a left adjoint 𝑓!, and
(2) the image under F of every ambigressive pullback in X is left-adjointable; that is, given the left

square in

𝑥 𝑦 𝐹 (𝑥) 𝐹 (𝑦)

𝑤 𝑧 𝐹 (𝑤) 𝐹 (𝑧),

𝑓

𝑔 ℎ

𝑓!

𝑖

𝑔∗

𝑖!

ℎ∗

the right one commutes via the Beck-Chevalley transformation 𝑓!𝑔
∗ ⇒ ℎ∗𝑖!.

The output is an extension of 𝐹 : (𝑋eg)op → Cat to a functor Unf (𝐹) : Span(𝑋, 𝑋in, 𝑋eg) → Cat, the
unfurling of F, whose additional functoriality is given by the left adjoints to the images of the ingressive
edges in X.

It is constructed by considering the cartesian unstraightening 𝑝 : 𝑌 → 𝑋 of F, which carries the
structure of an adequate triple with ingressives 𝑝−1 (𝑋in) and egressives 𝑌†, the subcategory formed by
the p-cartesian lifts of degres in 𝑋eg, by Proposition 2.6. The claim is that the induced map

Span(𝑝) : Span(𝑌, 𝑝−1(𝑋in), 𝑝†) −→ Span(𝑋, 𝑋in, 𝑋eg)

is a cocartesian fibration and that its cocartesian straightening is the desired extension

Unf(𝐹) : Span(𝑋, 𝑋in, 𝑋eg) → Cat.

The first claim follows from an application of Theorem 3.1. Given a span

𝑥 𝑦 𝑧
𝑔 𝑓

in X and an element 𝑐 ∈ 𝐹 (𝑥) ⊆ 𝑌 , we can build a Span(𝑝)-cocartesian lift as follows. Per construction,
we can first choose a p-cartesian edge 𝜙 : 𝑑 → 𝑐 covering g. By the first assumption on F and the
fibrational characterisation of adjunctions, the edge f then further admits a locally p-cocartesian lift
𝜓 : 𝑑 → 𝑒, which is in fact p-cocartesian by [Lu09a, Corollary 5.2.2.4]. Note that this span in Y indeed
defines a morphism 𝑐 → 𝑒 in Span(𝑌, 𝑝−1 (𝑋in), 𝑝†). To see that it is Span(𝑝)-cocartesian, we check
the conditions of Theorem 3.1. For the first condition, note that all egressive pullbacks of f admit p-
cocartesian lifts by the same argument that gives the existence of 𝜙, since such pullbacks are again
ingressive. That these lifts are also 𝑝in-cocartesian follows directly from the definition of the ingressives
in Y. Next, a square in Y as in the second condition automatically has the form of the solid square

https://doi.org/10.1017/fms.2023.107 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.107


Forum of Mathematics, Sigma 19

𝑔∗𝑐 𝑓!𝑔
∗𝑐 𝑑

ℎ∗𝑖!𝑐

𝑐 𝑖!𝑐

cart

cocart

∼

cart
cocart

if it covers the ambigressive pullback

𝑥 𝑦

𝑤 𝑧

𝑓

𝑔 ℎ

𝑖

in X. The dotted map is the Beck-Chevalley transformation, which is an equivalence by the second
assumption on F, and the upper right triangle commutes by a simple diagram chase. The task is to show
that the large square is an ambigressive pullback if and only if the upper right horizontal map is an
equivalence. But if the diagram is ambigressive, the map 𝑑 → 𝑖!𝑐 is by definition p-cartesian, which
indeed forces the upper right-hand corner to consist of equivalences. And conversely, if the corner
consists of equivalences, then the right-hand composition is cartesian, making the square ambigressive
and also forcing it to be cartesian as it covers a cartesian base (see the proof of Proposition 2.6 above
for the relevant calculation).

To apply (the corrected version of) Barwick’s criterion, we finally have to check that 𝜙 is 𝑝eg-
cartesian. But since it is p-cartesian, we are saved by the left-cancellation property of cartesian edges.

Finally, it remains to check that the composite

(𝑋eg)op � Span(𝑋, 𝜄𝑋, 𝑋eg) −→ Span(𝑋, 𝑋in, 𝑋eg)
Unf (𝐹 )
−−−−−−→ Cat

agrees with the restriction of F. Unwinding definitions, this composite is given as the cocartesian
straightening of Span(𝑌, 𝑝−1 (𝜄𝑋), 𝑌†) → Span(𝑋, 𝜄𝑋, 𝑋eg) and the statement that this is indeed the
restriction of F is the main result of [BGN18], which we shall reprove momentarily in Corollary 3.18
below.

Example 3.5. Suppose that 𝐶 is stable and consider the target projection 𝑝 = 𝑡 : Ar(𝐶) → 𝐶, regarded
as a map of adequate triples with all maps both ingressive and egressive. One readily checks that every
edge f in 𝐶 satisfies the assumptions of Theorem 3.1. It follows that Span(Ar(𝐶)) → Span(𝐶) is a
cocartesian fibration for every stable 𝐶, and thus by Lemma 2.14, also a cartesian fibration. Taking
classifying∞-groupoids (i.e., classifying spaces) preserves pullback squares whose right edge is both a
cocartesian and cartesian fibration, as can be shown from Quillen’s Theorem B (see [St21, St22] or the
proof of [CDH+20, Theorem 2.5.1] for an account in the present language). Therefore, we conclude that

|Span(𝐶) |
𝑐 ↦→(𝑐→0)
−−−−−−−−→ |Span(Ar(𝐶)) | 𝑡

−→ |Span(𝐶) |

is a fibre sequence. Since K(𝐶) = Ω|Span(𝐶) | is one possible definition of the algebraic K-space of 𝐶,
looping this fibre sequence once recovers Waldhausen’s additivity theorem

K(Ar(𝐶)) � K(𝐶) ×K(𝐶)

since t is clearly split and K(𝐶) an E∞-group using the direct sum in C. In this way, Proposition 3.1
connects to the discussion of additivity in [CDH+20, Section 2].
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As a further application of Theorem 3.1, we can identify the cocartesian fibration corresponding to
the functor Span: AdTrip → Cat. More generally, let X be an ∞-category and consider a diagram of
adequate triples

𝐹 : 𝑋op −→ AdTrip.

Writing 𝑝 : 𝑌 −→ 𝑋 for the cartesian fibration classified by the underlying functor of F, we can use
Proposition 2.7 to endow Y with the structure of an adequate triple:

Notation 3.6. By forgetting different pieces of the data, the functor 𝐹 : 𝑋op −→ AdTrip gives three
diagrams of∞-categories 𝐹, 𝐹in and 𝐹eg, which are classified by three cartesian fibrations

𝑝 : 𝑌 = Unct (𝐹) −→ 𝑋, 𝑝in : 𝑌in = Unct(𝐹in) −→ 𝑋 and 𝑝eg : 𝑌 eg = Unct(𝐹eg) −→ 𝑋,

respectively, where we generally denote by

Unct : Fun(𝑋op, Cat) −→ Cart(𝑋) and Uncc : Fun(𝑋, Cat) −→ Cocart(𝑋)

the cartesian and cocartesian unstraightening functors, respectively. In our specific situation we further
write 𝑌fw, 𝑌 fw

in , 𝑌
eg
fw for the pullback of 𝑌,𝑌in, 𝑌 eg along 𝜄𝑋 → 𝑋 . Proposition 2.7 then shows that

𝑝 : 𝑌 −→ 𝑋 is part of a map of adequate triples

𝑌
∫
=
(
𝑌,𝑌 fw

in , 𝑌 eg) (𝑋, 𝜄𝑋, 𝑋)

which gives rise to a map

Span(𝑝) : Span(𝑌
∫
) → Span(𝑋, 𝜄𝑋, 𝑋) � 𝑋op. (3.7)

We will show that this is the cocartesian fibration classifying Span ◦ 𝐹. First we note the following:

Lemma 3.8. The functor Span(𝑝) is a cocartesian fibration.

Proof. Corollary 3.2 immediately implies that Span(𝑝) is a cocartesian fibration, with cocartesian edges
given by spans of the form: 𝑦′ 𝑦 𝑦, where 𝑦 → 𝑦′ is a 𝑝eg-cartesian edge in Y. �

We will now describe the functor classified by this cocartesian fibration:

Theorem 3.9. Let X be an∞-category. Then there exists a natural equivalence

𝛼 : Uncc(Span ◦ (−)) =⇒ Span((Unct(−))
∫
)

of functors Fun(𝑋op, AdTrip) → Cocart(𝑋op). In other words, for each 𝐹 : 𝑋op −→ AdTrip, the induced
cocartesian fibration (3.7) is classified by the functor Span ◦ 𝐹 : 𝑋op −→ Cat.

We will use the following description of (co)cartesian unstraightening from [GHN17, Theorem 7.4]:

Theorem 3.10. For a functor 𝐹 : 𝐵 −→ Cat, there is a natural equivalence

Uncc(𝐹) � colim
(

Tw𝑟 (𝐵)
(𝑠,𝑡)
−−−→ 𝐵 × 𝐵op 𝐹×𝐵−/

−−−−−→ Cat
)
.

Dually, for a functor 𝐹 : 𝐵op −→ Cat, there is a natural equivalence

Unct (𝐹) � colim
(

Tw𝑟 (𝐵op)
(𝑠,𝑡)
−−−→ 𝐵op × 𝐵

𝐹×𝐵/−
−−−−−−→ Cat

)
.
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We will apply this in the setting of 3.6 to compute the cocartesian fibration classified by
Span(𝐹) : 𝑋op −→ Cat. We find that Uncc(Span(𝐹)) is equivalent to the colimit of the diagram

Tw𝑟 (𝑋op) 𝑋op × 𝑋 Cat.(𝑠,𝑡) Span(𝐹 )×(𝑋op)−/

Now note that there are natural equivalences −/𝑋op � (𝑋/−)op � Span(𝑋/−, 𝜄(𝑋/−), 𝑋/−) and recall
that Span commutes with products of adequate triples to conclude that this colimit is the same as that
of the diagram

Tw𝑟 (𝑋op)
(𝑠,𝑡)
−−−→ 𝑋op × 𝑋

𝐹×(𝑋/−, 𝜄 (𝑋/−) ,𝑋/−)
−−−−−−−−−−−−−−−−−−→ AdTrip

Span
−−−→ Cat.

We shall prove Theorem 3.9 by showing that the colimit of the first two functors in this composition is
precisely 𝑌

∫
= (𝑌,𝑌 fw

in , 𝑌 eg) and that this colimit is preserved by Span.
We can directly apply the equivalence of Theorem 3.10 to conclude that

𝑌 � colim 𝐹 (−) × 𝑋/−, 𝑌 eg � colim 𝐹eg(−) × 𝑋/−, and 𝑌in � colim 𝐹in (−) × 𝑋/− (3.11)

where all colimits are taken over Tw𝑟 (𝑋op). To exhibit 𝑌 fw
in = 𝑌in ×𝑋 𝜄𝑋 as a colimit, we need the

following lemma:

Lemma 3.12. Let 𝐹 : 𝐵op −→ Cat be a functor. Then the functor Unct (𝐹) ×𝐵 𝜄𝐵 −→ Unct (𝐹) is
naturally equivalent to the functor

colim
Tw𝑟 (𝐵op)

𝐹 × 𝜄(𝐵/−) −→ colim
Tw𝑟 (𝐵op)

𝐹 × 𝐵/−. (3.13)

Proof. Consider the full subcategory of Fun
(
Fun(𝐵op, Cat), Cat

)
/Unct spanned by those natural trans-

formations Φ −→ Unct with the following two properties:

(1) At the terminal diagram, Φ(∗) −→ Unct (∗) � 𝐵 exhibits the inclusion of the core of B.
(2) For each 𝐹 : 𝐵op −→ Cat, the induced square

Φ(𝐹) Unct (𝐹)

Φ(∗) 𝐵.

(3.14)

is cartesian.

This subcategory is contractible and the natural transformation Unct (−) ×𝐵 𝜄𝐵 −→ Unct (−) is (by
definition) an object in there. It will therefore suffice to show that the composite natural transformation

Φ(𝐹) � colim
Tw𝑟 (𝐵op)

(
𝐹 × 𝜄(𝐵/−)

)
−→ colim

Tw𝑟 (𝐵op)

(
𝐹 × 𝐵/−

)
� Unct(𝐹)

satisfies conditions (1) and (2) as well.
Let us start by computing Φ(𝐹). To this end, let us write Ar(𝐵)𝑠 = Ar(𝐵) ×𝐵 𝜄𝐵, where the structure

map Ar(𝐵) → 𝐵 is evaluation at the source. Then 𝑡 : Ar(𝐵)𝑠 −→ 𝐵 is the left fibration classified by the
functor 𝑏 ↦→ 𝜄(𝐵/𝑏) and 𝑠 : Ar(𝐵)𝑠 −→ 𝜄𝐵 admits a fully faithful left adjoint cst : 𝜄𝐵 ↩→ Ar(𝐵)𝑠 taking
degenerate arrows. Let us now consider the following two pullbacks of∞-categories

𝐷 𝐶 Tw𝑟 (𝐵op)

𝜄𝐵 Ar(𝐵)𝑠 𝐵

𝜋

𝑞

𝑡

cst 𝑡
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as well as the following diagram of∞-categories

𝐹 ′ : 𝐶 Tw𝑟 (𝐵op) 𝐵op Cat.𝑞 𝑠 𝐹

Since 𝑞 : 𝐶 → Tw𝑟 (𝐵op) is the left fibration classifying 𝜄(𝐵/−) : Tw𝑟 (𝐵op) → 𝐵 → Gpd and 𝐹 ′

is constant along the fibres of q, the left Kan extension 𝑞!𝐹
′ is naturally equivalent to the diagram

𝐹 (−) × 𝜄(𝐵/−) of which we want to compute the colimit [Lu09a, Proposition 4.3.3.10]. By transitivity
of Kan extensions, it therefore suffices to compute colim𝐶 𝐹 ′.

Note that the vertical arrows in the above diagram are all cartesian fibrations, so that the fully faithful
inclusion 𝐷 ↩→ 𝐶 admits a (localising) right adjoint [Lu09a, Corollary 5.2.7.11]

𝑝 = (id, 𝑠) : 𝐶 = Tw𝑟 (𝐵op) ×𝐵 Ar(𝐵)𝑠 Tw𝑟 (𝐵op) ×𝐵 𝜄𝐵 = 𝐷.

By construction, the diagram 𝐹 ′ only depended on the first factor Tw𝑟 (𝐵op); Consequently, it factors
as 𝐹 ′ = 𝐹 ′′𝑝, for some 𝐹 ′′ : 𝐷 → Cat. Because p is a localisation, it is in particular cofinal, so we
conclude that colim𝐶 𝐹 ′ � colim𝐷 𝐹 ′′.

Let us first compute the left Kan extension 𝜋!𝐹
′′ of 𝐹 ′′ along the cocartesian fibration 𝜋 : 𝐷 → 𝜄𝐵.

We can compute this Kan extension as a colimit over the fibres, which are equivalently the fibres of
𝑡 : Tw𝑟 (𝐵op) → 𝐵. Unravelling the definitions then shows that

(𝜋!𝐹
′′) (𝑏) = colim

(
𝐵op/𝑏 −→ 𝐵op 𝐹

−→Cat
)
� 𝐹 (𝑏)

since 𝐵op/𝑏 has a terminal object. We conclude that there is a natural equivalence

Φ(𝐹) = colim
Tw𝑟 (𝐵op)

𝐹 × 𝜄(𝐵/−) � colim
𝐷

𝐹 ′′ � colim
𝜄𝐵

𝜋!𝐹
′′ � colim

𝜄𝐵
𝐹 � Unct(𝐹) ×𝐵 𝜄𝐵.

In particular, we see that Φ(∗) is an ∞-groupoid, so that (1) Φ(∗) → 𝐵 is a core inclusion, being a
colimit of core inclusions. For (2), note that the vertical maps in (3.14) are cartesian fibrations, so that
it suffices to show that the maps on vertical fibres are equivalences. By naturality of the transformation
Φ −→ Unct in the base B, this map on fibres map is simply the map when 𝐵 = ∗. In this case, the map
(3.13) is clearly an equivalence. �

Proposition 3.15. The diagram

Ψ : Tw𝑟 (𝑋op)
(𝑠,𝑡)
−−−→ 𝑋op × 𝑋

𝐹×(𝑋/−, 𝜄 (𝑋/−) ,𝑋/−)
−−−−−−−−−−−−−−−−−−→ AdTrip

has colimit given by the adequate triple 𝑌
∫
= (𝑌,𝑌 fw

in , 𝑌eg).
Proof. The equivalences (3.11) and Lemma 3.12 show that the colimit of Ψ in Fun(Λ2 [2], Cat) is given
by the triple 𝑌

∫
. To see that this is also a colimit in the subcategory of adequate triples, it suffices to

verify that the following are equivalent for a functor 𝜙 : 𝑌
∫
= colimΨ −→ 𝑍:

(1) 𝜙 preserves ambigressive pullback squares.
(2) the composite Ψ( 𝑓 op : 𝑥1 → 𝑥0) → colimΨ→ 𝑍 does so for each 𝑓 op ∈ Tw𝑟 (𝑋op).
Now note that (on underlying ∞-categories) the map Ψ( 𝑓 op : 𝑥1 → 𝑥0) −→ colimΨ can be identified
with the functor 𝜆 𝑓 : 𝐹 (𝑥1) × 𝑋/𝑥0 −→ 𝑌 sending (𝑦, 𝑔 : 𝑥2 → 𝑥0) to 𝑔∗ 𝑓 ∗(𝑦). Because 𝑔∗ is a map of
adequate triples for every map g in X, 𝜆 𝑓 is a map of adequate triples, which shows that (1) implies (2).

For the converse, note that every ambigressive pullback square in Y can be obtained as a pasting of
two types of squares: (a) the pullback of a fibrewise ingressive map along a p-cartesian lift of some
𝑔 : 𝑥2 → 𝑥0 and (b) the pullback of an ingressive and egressive map in a single fibre 𝑌𝑥0 � 𝐹 (𝑥0). It
suffices to show that each of these squares is the image of an ambigressive pullback square under some
𝜆 𝑓 . For (a), we can take the image under 𝜆id𝑥0

of the square in 𝐹 (𝑥0) × 𝑋/𝑥0 formed by an ingressive
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arrow in 𝐹 (𝑥1) and the arrow 𝑔 → id𝑥0 in 𝑋/𝑥0. For (b), we simply take the image under 𝜆id𝑥0
of an

ambigressive square in 𝐹 (𝑥0) × {id𝑥0 }. �

Applying Span to the colimiting cocone of Proposition 3.15, we therefore obtain a natural cocone of
the diagram

Tw𝑟 (𝑋op)
(𝑠,𝑡)
−−−→ 𝑋op × 𝑋

𝐹×(𝑋/−, 𝜄 (𝑋/−) ,𝑋/−)
−−−−−−−−−−−−−−−−−−→ AdTrip

Span
−−−→ Cat

whose tip is the∞-category Span(𝑌
∫
). This induces a natural functor

𝛼𝐹 : Uncc(Span(𝐹)) � colim
Tw𝑟 (𝑋op)

(
Span(𝐹) × (𝑋op)−/

)
−→ Span(𝑌

∫
) = Span

(
Unct (𝐹)

∫ )
.

Note that the construction of 𝛼𝐹 is functorial in the diagram F. Applied to the terminal diagram
𝐹 = ∗, it yields the identity map of Span(𝑋, 𝜄𝑋, 𝑋). Using the identification Span(𝑋, 𝜄𝑋, 𝑋) � 𝑋op

from Proposition 2.15, we then obtain the desired natural transformation 𝛼 : Uncc(Span ◦ (−)) =⇒
Span(Unct (−)

∫
) between functors Fun(𝑋op, AdTrip) −→ Cat/𝑋op.

Lemma 3.16. For each 𝐹 : 𝑋op −→ AdTrip, the functor 𝛼𝐹 preserves cocartesian edges over 𝑋op.

Proof. Note that F comes with a natural transformation 𝜄𝐹 −→ 𝐹, where each 𝜄𝐹 (𝑥) comes equipped
with the (only possible) adequate triple structure where all morphisms are both ingressive and egressive.
Unstraightening, this identifies Unct (𝜄𝐹)

∫
with the subcategory of Unct (𝐹) on the cartesian arrows, with

all arrows egressive and only the equivalences being ingressive.
The map 𝜄𝐹 −→ 𝐹 induces a natural transformation 𝜄Span(𝐹) � Span(𝜄𝐹) −→ Span(𝐹), where

the first equivalence uses that Span(𝜄𝐹) � 𝜄(𝐹) (Proposition 2.15). By naturality, we then obtain a
commuting diagram

Uncc (𝜄Span(𝐹)
)

Span(Unct (𝜄𝐹)
∫
)

Uncc (Span(𝐹)
)

Span(Unct (𝐹)
∫
).

𝛼( 𝜄𝐹 )

𝛼𝐹

The result now follows since both vertical arrows can be identified with the inclusion of the wide
subcategory of cocartesian arrows: for the left arrow this is evident and for the right arrow, this follows
from our description of Unct (𝜄𝐹)

∫
and Corollary 3.2. �

Proof of Theorem 3.9. We have seen that 𝛼 constitutes a natural transformation between functors into
Cat/𝑋op. By Lemma 3.16, the value of 𝛼 at a diagram F is a map between cocartesian fibrations over
𝑋op which preserves cocartesian edges. It then suffices to show that 𝛼𝐹 is an equivalence when restricted
to every fibre [Lu09a, Corollary 2.4.4.4]. Since Span preserves pullbacks (in particular fibres), we can
thus reduce to the case 𝑋 = ∗, where the map is equivalent to the identity by inspection. �

Remark 3.17. Given a functor 𝐺 : 𝑋op −→ Cat, one way to write down the cartesian fibration encoding
it is to write down the cocartesian fibration which classifies (−)op ◦ 𝐺, and then take its opposite. In
the case that 𝐺 = Span(𝐹), Lemma 2.14 shows that 𝐺op = Span(𝐹rev). Therefore, the previous result
allows us to describe its cocartesian straightening. Finally, we can again apply Lemma 2.14 to describe
the opposite of the result. In total, one finds that

Span(𝑝) : Span(𝑌,𝑌in, 𝑌
eg
fw ) −→ Span(𝑋, 𝑋, 𝜄𝑋) � 𝑋

is a cartesian fibration which classifies the functor Span(𝐹) : 𝑋op −→ Cat.

As a special case, we recover the key insight of [BGN18].
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Corollary 3.18. Let 𝑝 : 𝑌 −→ 𝑋 be a cartesian fibration and define 𝑌∨ −→ 𝑋op to be the functor

Span(𝑝) : Span(𝑌,𝑌 ×𝑋 𝜄𝑋,𝑌†) −→ Span(𝑋, 𝜄𝑋, 𝑋) � 𝑋op,

where 𝑌† is the subcategory of p-cartesian morphisms (cf. Proposition 2.6). This gives rise to an
equivalence SDcc : Cart(𝑋) −→ Cocart(𝑋op) which fits into a commuting triangle

Cart(𝑋) Cocart(𝑋op)

Fun(𝑋op, Cat).

SDcc

Strct Strcc

Proof. Note that once we have exhibited the triangle as commutative, the two-out-of-three prop-
erty will immediately imply that SDcc is an equivalence. We will provide a natural equivalence
SDcc (Unct(𝐹)) −→ Uncc(𝐹) for functors 𝐹 : 𝑋op −→ Cat. To this end, consider the functor
𝛿 : Cat −→ AdTrip sending 𝐶 ↦→ (𝐶, 𝐶, 𝜄𝐶) and note that Span ◦ 𝛿 � id. One then has natural equiva-
lences

SDcc(Unct (𝐹)) � Span
(
Unct(𝛿(𝐹))

∫ )
� Uncc (Span(𝛿(𝐹))

)
� Uncc(𝐹),

where the middle equivalence is Theorem 3.9. �

As another special case, we may consider the universal example.

Construction 3.19. Let us define the lax under-category ∗�AdTrip to be the domain of the cocartesian
fibration classifying the functor (−)op : AdTrip −→ Cat; see the next remark for a justification. One can
identify an object of ∗ � AdTrip with a tuple (𝑋, 𝑥) of an adequate triple and an object 𝑥 ∈ 𝑋 , and a
map (𝑋, 𝑥) → (𝑌, 𝑦) with a map 𝑓 : 𝑋 → 𝑌 and a map 𝜇 : 𝑦 → 𝑓 (𝑥) in Y. We will say that ( 𝑓 , 𝜇) is
egressive if 𝜇 is egressive, and ingressive if 𝜇 is ingressive and f is an equivalence.

Remark 3.20. If we write ∗�Cat for the domain of the cocartesian fibration classified by (−)op : Cat −→
Cat, then ∗ � AdTrip = ∗ � Cat ×Cat AdTrip. We will show in Section 7 (see specifically Remark 7.22)
that ∗ � Cat really is equivalent to the lax under-category, defined a priori via a construction in (∞, 2)-
category theory, justifying the notation.

Corollary 3.21. Construction 3.19 defines the structure of an adequate triple on
(
∗ �AdTrip

)op and
the map

Span(𝑝) : Span
(
(∗ � AdTrip)op) −→ Span(AdTripop, 𝜄AdTripop, AdTripop) � AdTrip

is a cocartesian fibration, classified by the functor Span: AdTrip −→ Cat.

Proof. Apply Theorem 3.9 to the identity functor on AdTrip and observe that the adequate triple structure
from 3.6 corresponds precisely to the one from Construction 3.19 under taking opposite categories. �

Remark 3.22. Applying the conclusions of Remark 3.17, we obtain that if we declare a map ( 𝑓 , 𝜇) in
∗ � AdTrip to be ingressive if 𝜇 is ingressive and egressive if 𝜇 is egressive and f is an equivalence,
then we obtain a different adequate triple structure on (∗ � AdTrip)op, which gives rise to a cartesian
fibration Span((∗ � AdTrip)op) −→ AdTripop, classifying the functor Span: AdTrip −→ Cat.

Remark 3.23. In [Na16], Nardin proves that for an orbital ∞-category T, the T-∞-category of T-
commutative monoids in a T-∞-category C with finite T-products is equivalent to the T-∞-category
Fun×𝑇 (A

eff(𝑇), 𝐶), where Aeff(𝑇) is a cocartesian fibration whose fibre over 𝑡 ∈ 𝑇 is equivalent to
Span((F𝑇 )/𝑡), where F𝑇 is the finite coproduct completion of T. This indicates that T-commutative
monoids are computed by a generalisation of Mackey functors. By inspecting the definition of Aeff(𝑇)
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from [Na16, Definition 4.10], one observes that Aeff(𝑇) = Span(𝑌
∫
), where Y is the cartesian unstraight-

ening of the functor underlying

𝑇op → AdTrip, 𝑡 ↦→ ((F𝑇 )/𝑡, (F𝑇 )/𝑡, (F𝑇 )/𝑡),

where the functoriality is given by pullback. Therefore, Theorem 3.9 shows that the functoriality of the
T-∞-category Fun×𝑇 (A

eff(𝑇), 𝐶) is induced by the standard functoriality of Span(−).

4. Orthogonal adequate triples and their duals

Work of Barwick, Glasman and Nardin uses the span category construction from Section 2 to produce
an equivalence between cartesian fibrations and cocartesian fibrations of∞-categories [BGN18]. In the
previous section, we provided an alternative proof of this fact by exhibiting it as a specific example of
a general phenomenon: the cocartesian fibration classifying Span ◦ 𝐹 is given by the span construction
applied to a particular adequate triple structure on the cartesian unstraightening of F.

In this section, we will describe a different perspective on this result, which is a priori entirely
independent from the discussion of (co)cartesian fibrations. The construction of span ∞-categories
upgrades to an automorphism (of order 2) of a certain full subcategory of adequate triples spanned by
those triples that we will call orthogonal. In Section 5, we will show how this construction interacts
with various notions of (cartesian) fibrations between such orthogonal adequate triples. In particular,
we will extend Lanari’s results on the relation between cartesian fibrations and factorisation systems
from [La19] and thus recover the main result from [BGN18] in a different way.

To define the notion of an orthogonal adequate triple, let us start by briefly recalling Joyal’s notion of
a factorisation system on an ∞-category 𝐶 (also called an orthogonal factorisation system), following
[Lu09a, Section 5.2.8]. It consists of two classes of arrows 𝐶𝑙 (left) and 𝐶𝑟 (right), denoted� and�,
such that

(i) both classes of maps are closed under retracts,
(ii) each solid commutative diagram

𝑥 𝑦

𝑥 ′ 𝑦′

𝑓 𝑔

admits a unique dashed filler whenever 𝑓 ∈ 𝐶𝑙 and 𝑔 ∈ 𝐶𝑟 , and

(iii) every map in 𝐶 factors as · · ·
𝑓 𝑔 with 𝑓 ∈ 𝐶𝑙 and 𝑔 ∈ 𝐶𝑟 .

Let us point out that the notation for the left and right classes is inspired by the notation for the epi-mono
factorisation system and is opposite to the convention typically employed for model categories.

Both 𝐶𝑙 and 𝐶𝑟 then define subcategories of 𝐶 that contain all equivalences and each class uniquely
determines the other [Lu09a, Proposition 5.2.8.6 & 5.2.8.11].

Remark 4.1. The factorisation in the last item is essentially unique, and this uniqueness is, in fact,
equivalent to the first two items [Lu09a, Proposition 5.2.8.17]. More precisely, writing Fact(𝐶) ⊆
Fun([2], 𝐶) for the full subcategory of functors sending 0 ≤ 1 to 𝐶𝑙 and 1 ≤ 2 to 𝐶𝑟 , one has that
restriction to the arrow 0 ≤ 2 defines an equivalence

◦ : Fact(𝐶) Ar(𝐶).∼

An (essentially unique) section provides a functorial factorisation of morphisms in C.

Definition 4.2. We call an adequate triple (𝑋, 𝑋in, 𝑋eg) orthogonal if every ambigressive square in X is
cartesian, and the egressives (�) and ingressives (�) are the left and right classes, respectively, of an
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orthogonal factorisation system on X. We denote the full subcategory of orthogonal adequate triples by
AdTrip⊥.

Remark 4.3. Since every ambigressive square in an orthogonal adequate triple is automatically carte-
sian, it follows that AdTrip⊥ is a full subcategory of Fun(Λ2 [2], Cat) (in contrast to AdTrip).

The simplest examples are (𝐴, 𝜄𝐴, 𝐴) and (𝐴, 𝐴, 𝜄𝐴) for any ∞-category A. We will generate more
interesting examples by means of the following observation, which follows directly from the mapping
properties of cartesian edges:
Proposition 4.4. If X is an orthogonal adequate triple and 𝑝 : 𝑌 −→ 𝑋 has all p-cartesian lifts over
𝑋in, then the adequate triple

(
𝑌,𝑌†, 𝑝−1 (𝑋eg)) from Proposition 2.6 is again orthogonal.

In particular, for a cartesian fibration 𝑝 : 𝑌 → 𝑋 the triple structure on Y with ingressives the p-
cartesian edges and egressives the fibrewise maps is orthogonal; in this way, our constructions contain
those from [BGN18].

Proof. The fact that any ambigressive square is cartesian follows immediately from the proof of Propo-
sition 2.6. To show that the ingressives and egressives form a factorisation system on Y, let us start by
noting that both classes are stable under retracts (for the cartesian morphisms, this uses that they are
characterised by a lifting property relative to the base X). Next, consider a commutative square

𝑥 𝑦

𝑥 ′ 𝑦′,

𝜙 𝜓

where 𝜙 ∈ 𝑌 eg and 𝜓 ∈ 𝑌in. We need to exhibit a unique dotted arrow making the diagram commute.
After applying p, there exists a unique dotted edge in X making the square commute. Since 𝜓 is p-
cartesian, we find that there is a unique dotted edge in Y which makes the square commute. Finally,
given an edge 𝑓 : 𝑥 → 𝑦 in Y, one can factor 𝑝( 𝑓 ) = 𝑔ℎ with 𝑔 ∈ 𝑋in and ℎ ∈ 𝑋eg. Taking a p-cartesian
lift 𝑔′ of g, we can factor 𝑓 = 𝑔′ℎ′ with ℎ′ ∈ 𝑝−1 (𝑋eg), so that 𝑌† and 𝑝−1 (𝑋eg) form a factorisation
system. �

Example 4.5. A product 𝐴 × 𝐵 of two ∞-categories admits the structure of an orthogonal adequate
triple, denoted (𝐴, 𝐵)⊥, with ingressives 𝐴 × 𝜄𝐵 and egressives 𝜄𝐴 × 𝐵.
Example 4.6. Let X be a stable ∞-category, together with reflective stable subcategories exhibiting X
as a recollement [Lu17, Definition A.8.1]

𝑈 𝑋 𝑍;
𝑗∗

𝑗∗ 𝑖∗

𝑖∗

explicitly, this means that 𝑖∗ and 𝑗∗ jointly detect equivalences and 𝑗∗𝑖∗ sends every object to the terminal
object, but there are several other characterisations; see [CDH+20, Appendix A.2]. In particular, by
[CDH+20, Lemma A.2.5], 𝑖∗ admits a further right adjoint 𝑖! such that 𝑖∗𝑖

!𝑥 −→ 𝑥 −→ 𝑗∗ 𝑗
∗𝑥 is a fibre

sequence for each 𝑥 ∈ 𝑋 .
We now claim that X has the structure of an orthogonal adequate triple, in which a map is ingressive

or egressive if its image under 𝑖! or 𝑗∗ is an equivalence, respectively. By [CDH+20, Corollary 2.6.1],
𝑗∗ is a cartesian fibration with an edge in X being 𝑗∗-cartesian if and only if it is an 𝑖!-equivalence.
Thus, Proposition 4.4 (applied with target (𝑈, 𝑈, 𝜄𝑈)) yields the structure of an orthogonal triple on X
as desired.
Example 4.7. For each ∞-category A, the source projection 𝑠 : Ar(𝐴) −→ 𝐴 is a cartesian fibration.
Applying Proposition 4.4 to the triple (𝐴, 𝐴, 𝜄𝐴), we find that Ar(𝐴) admits the structure of an orthogonal
adequate triple in which a map is egressive (ingressive) if its image under the source map 𝑠 : Ar(𝐴) → 𝐴
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(target map 𝑡 : Ar(𝐴) → 𝐴) is an equivalence. For every 𝐴→ 𝐵, the induced functor Ar(𝐴) −→ Ar(𝐵)
preserves ingressive and egressive maps, so that we obtain a functor

Ar : Cat AdTrip⊥.

In fact, Example 4.7 provides the free orthogonal adequate triple generated by A:

Proposition 4.8. The functor Ar: Cat −→ AdTrip⊥ is the left adjoint to the forgetful functor
AdTrip⊥ −→ Cat taking underlying ∞-categories. More precisely, the degeneracy map cst : 𝐴 −→
Ar(𝐴) provides the unit transformation exhibiting Ar as the left adjoint to the forgetful functor.

Proof. It will suffice to define a natural counit map and provide natural homotopies for the triangle
identities. Given an adequate triple X, let 𝜖𝑋 : Ar(𝑋) −→ 𝑋 be the unique functor that fits into a
commuting diagram

Fact(𝑋) Fun([2], 𝑋)

Ar(𝑋) 𝑋.

◦ ∼ ev1

𝜖𝑋

Here, the left vertical functor is the equivalence from Remark 4.1, a section of which provides a functorial
egressive-ingressive factorisation. Since all three solid maps are functorial in the adequate triple X, the
map 𝜖𝑋 is functorial in X. Explicitly, the value of 𝜖𝑋 on a map 𝜇 : 𝑓 → 𝑔 in Ar(𝑋) given by the square

· ·

· ·

𝜇0

𝑓 𝑔
𝜇1

is given by the middle vertical arrow in the unique diagram

· ·

· ·

· ·

𝑓

𝜇0

𝑔

𝜇1

From this, we see that 𝜖𝑋 is a map of adequate triples. Indeed, if 𝜇 is ingressive (i.e., 𝜇1 is an equivalence),
then the middle horizontal map is ingressive by the right cancellation property for ingressives [Lu09a,
Proposition 5.2.8.6 (3)], and likewise in the egressive case where 𝜇0 is an equivalence.

It remains to provide the triangle identities. If X is an adequate triple, then the composite

𝑋 Ar(𝑋) 𝑋
cst 𝜖𝑋

is evidently naturally equivalent to the identity (using that the functorial factorisation Ar(𝑋) → Fact(𝑋)
sends degenerate arrows to constant diagrams). Furthermore, for an∞-category A, the composite

Ar(𝐴) Ar(Ar(𝐴)) = Fun([1] × [1], 𝐴) Ar(𝐴)cst 𝜖Ar(𝑋 )

sends an arrow f to 𝑓
∼
−→ 𝑓 and then applies the ingressive-egressive factorisation to this natural

equivalence. This is again naturally equivalent to the identity. �

Proposition 4.9. For any adequate triple (𝑋, 𝑋in, 𝑋eg), the subcategory inclusions (𝑋eg)op, 𝑋in →
Span(𝑋) from Proposition 2.15 give an orthogonal factorisation system on Span(𝑋). If the triple
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(𝑋, 𝑋in, 𝑋eg) is furthermore orthogonal, then (Span(𝑋), 𝑋in, (𝑋eg)op) is again an orthogonal adequate
triple.

Proof. To prove the first claim, we use the criterion from Remark 4.1; that is, we show that the map

◦ : Fact(Span(𝑋, 𝑋in, 𝑋eg)) Ar(Span(𝑋, 𝑋in, 𝑋eg))

is an equivalence. We first observe that this map is an equivalence on cores for all adequate triples. This
assertion translates to the statement that the∞-groupoid of dotted extensions of the solid diagram

•

• •

• • •

∼∼

∼ ∼

is contractible, which is obvious.
To conclude, we now observe that it suffices to show that

◦∗ : HomCat ([𝑛], Fact(Span(𝑋, 𝑋in, 𝑋eg))) HomCat ([𝑛], Ar(Span(𝑋, 𝑋in, 𝑋eg)))

is an equivalence for all 𝑛 ≥ 0 (in fact, 𝑛 = 1 suffices, but this will not simplify the argument). But by
Corollary 2.22 we can rewrite the target as

HomCat([𝑛] × [1], Span(𝑋, 𝑋in, 𝑋eg)) � 𝜄 Ar(Span(Q𝑛 (𝑋, 𝑋in, 𝑋eg))).

Similarly, the source is equivalent to a set of path components in HomCat ([2], Span(Q𝑛 (𝑋, 𝑋in, 𝑋eg))),
and we claim that it precisely corresponds to 𝜄Fact(Span(Q𝑛 (𝑋, 𝑋in, 𝑋eg))). Thus, the statement on
groupoid cores applied to the various Q𝑛 (𝑋, 𝑋in, 𝑋eg) gives the statement in full. To verify the remaining
claim, one unwinds definitions to find both sides spanned by those diagrams Tw𝑟 [𝑛] × Tw𝑟 [2] → 𝑋
whose restriction along the Segal maps

• • • • • • • •

• • • • • · · · • • •

• • • • • • • •

• • • • • · · · • • •

• • • • • • • •

has all ambigressively marked squares cartesian and all upwards-pointing maps equivalences.
Now assume the adequate triple (𝑋, 𝑋in, 𝑋eg) is orthogonal. To prove that (Span(𝑋), 𝑋in, (𝑋eg)op)

is adequate, we must show that Span(𝑋) admits ambigressive pullbacks. By Lemma 2.14, we may
equivalently show that Span(𝑋 rev) admits ambigressive pushouts, which turns out to be notationally
slightly more convenient. Let us start by observing that by adjunction, a commuting square in Span(𝑋 rev)
with horizontal arrows in (𝑋in)

op and vertical arrows in 𝑋eg corresponds to a diagram of the form
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• • •

• • •

• • •

𝑔

𝑓 𝛼

𝛽

𝛾 𝑘

(∗)

in X, including the dotted arrows, whose top right and bottom left squares are pullbacks (so that the
arrows with the blue labels are equivalences as well). Such a diagram is uniquely determined by its solid
part (i.e., the left column and top row). Indeed, we can first fill the top right square with equivalences
in the vertical direction. Then we can uniquely factor the composite in the bottom left square as an
egressive followed by an ingressive edge (the resulting square is cartesian because X is an orthogonal
adequate triple). Finally, we fill the right two squares with equivalences as indicated.

We can therefore conclude that the triple (Span(𝑋), 𝑋in, (𝑋eg)op) is both adequate and orthogonal as
soon as we can show that any diagram as above defines a pushout square in Span(𝑋 rev). This is, however,
rather unpleasant to do directly. We shall instead use the fact that pushout squares in an ∞-category 𝐶
are precisely the cocartesian edges of the source map 𝑠 : Ar(𝐶) → 𝐶. Here, we regard the diagram (∗)
as a morphism in Ar(Span(𝑋 rev)) from the left vertical span to the right vertical span, so that the top
horizontal span is the image of this morphism under s.

By Corollary 2.22, we can identify the functor 𝑠 : Ar(Span(𝑋 rev)) → Span(𝑋 rev) with

Span(Q1𝑋 rev)
Span(ev(0≤0) )
−−−−−−−−−−→ Span(𝑋 rev).

Put into this form, we can apply Barwick’s criterion 3.1 for cocartesian edges, or more precisely
Corollary 3.2. It tells us that the diagram (∗) defines a Span(ev(0≤0) )-cocartesian edge if its left-pointing
half defines an (ev(0≤0) )

eg-cartesian edge in Q1𝑋 rev.
To see that it does, recall from Lemma 2.5 that an edge in Q1𝑋 rev = FunAdTrip(Tw𝑟 ([1]), 𝑋 rev) is

egressive if it is pointwise ingressive and its ambigressive square is cartesian. Consider thus the (solid)
lifting problem (ignoring the red arrow for a moment)

• • •

• • •

• • •

𝑔

𝑓 𝛼

𝛽

𝛾 𝑘

whose right-hand column is the left half of (∗), and whose lower bent rectangle is a pullback. We have
to show that it admits a unique dotted filling (whose lower square is then automatically a pullback by
pasting).

Considering the top half of the diagram, there is an essentially unique choice for the upper dotted
arrow, because the middle upwards-pointing map is an equivalence, and the composite of ingressives it
is itself ingressive. By composition we also obtain the red arrow.

The bottom row of the diagram together with the middle left dot then fit into a diagram

• •

• •.

𝑔′ 𝛼

𝑓 ′◦𝛽

𝛾

𝑗

Because the egressives and ingressives in X determine an orthogonal factorisation system, this lifting
problem has a unique filler. Moreover, because the right class of an orthogonal factorisation system
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satisfies right cancellation [Lu09a, Proposition 5.2.8.6 (3)], this filler is necessarily ingressive. This
provides the necessary lift and concludes the argument. �

Definition 4.10. We shall refer to (Span(𝑋), 𝑋in, (𝑋eg)op) as the dual of an orthogonal adequate triple
(𝑋, 𝑋in, 𝑋eg) and denote by Span⊥ : AdTrip⊥ → AdTrip⊥ the resulting functor.

Remark 4.11. Unravelling the proof above, one arrives at the following description of induced maps
out of the ambigressive pushouts in Span(𝑋 rev) from the previous proof. Suppose we are given a
commutative square in Span(𝑋 rev) represented by a diagram

• • •

• • •

• • •

𝑔

𝑓 𝛼

𝛽

𝛾 𝑘

whose lower left and upper right squares are cartesian. Factor the composite 𝑓 𝑔 into an egressive edge
𝑓 ′ followed by an ingressive edge 𝑔′. From the proof above, we learn that the pushout of the two spans
starting in the upper left corner is given by the source of 𝑔′ (or equivalently the target of 𝑓 ′). The induced
map out of it unwinds to the span

•

• •,

𝑗 𝑘

where j is the solution of the lifting problem

• •

• •.

𝑔′ 𝛼

𝑓 ′◦𝛽

𝛾

𝑗

As a consistency check, note that j is indeed ingressive, as both 𝛾 and 𝑔′ are.

The remainder of this section is dedicated to proving the following result:

Theorem 4.12. The functor Span⊥ is an auto-equivalence of AdTrip⊥, which is its own inverse.

Below in Corollary 5.7, we will upgrade this equivalence to a C2-action. In the large, our strategy
of proof is the same as that of Barwick, Glasman and Nardin in [BGN18], who essentially treat the
special case corresponding to factorisation systems given by (co)cartesian edges and morphisms lying
in a single fibre.

We have to construct a natural equivalence between Span⊥2 = Span⊥ ◦ Span⊥ and the identity of
AdTrip⊥. To do this, let us start by describing the composite Span⊥2 more explicitly.

Observation 4.13. Let us write 𝜄Q♯ : sGpd −→ sGpd for the functor sending a simplicial ∞-groupoid
S to the simplicial∞-groupoid given by

𝜄Q♯
𝑛 (𝑆) = HomsGpd

(
N Tw𝑟 ([𝑛]), 𝑆

)
.

By the definition of span ∞-categories (see Lemma 2.17), there is a natural transformation of functors
AdTrip −→ sGpd

N
(
Span(𝑋)

)
𝜄Q♯ (N(𝑋)).

In every simplicial degree, this is given by the inclusion of path components

HomAdTrip(Tw𝑟 ([𝑛]), 𝑋) ⊆ HomCat (Tw𝑟 ([𝑛]), 𝑋).
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Applying this reasoning twice, one sees that for X in AdTrip⊥, there is a natural map of simplicial
∞-groupoids

N
(
Span⊥2 (𝑋)

)
𝜄Q♯

(
N(Span⊥(𝑋))

)
𝜄Q♯

(
𝜄Q♯ (N𝑋)

)
,

which is an inclusion of path components in each degree. To unravel the target of the above map, let us
denote by

Tw(2) (𝐴) = Tw𝑟 (Tw𝑟 (𝐴))

the twofold iterated twisted arrow∞-category of an∞-category A. We then obtain a natural equivalence

𝜄Q♯
𝑛

(
𝜄Q♯ (N𝑋)

)
� HomsGpd

(
N Tw𝑟 ([𝑛]), 𝜄Q♯ (N𝑋)

)
� lim
[𝑚] ∈𝚫/N(Tw𝑟 [𝑛])

HomsGpd
(
N Tw𝑟 ([𝑚]), N𝑋

)
� HomsGpd

(
N
(
Tw(2) ( [𝑛])

)
, N𝑋

)
� HomCat (Tw(2) ( [𝑛]), 𝑋).

Here, the third line uses that N Tw𝑟 (−) preserves those colimits of ∞-categories that are preserved
by the nerve functor (see the proof of Proposition 2.20). Summarising, we see that there is a map of
simplicial ∞-groupoids, depending functorially on 𝑋 ∈ AdTrip⊥, which is a degreewise inclusion of
path components

N
(
Span⊥ ◦ Span⊥(𝑋)

)
HomCat

(
Tw(2) (−), 𝑋

)
. (4.14)

To identify the essential image of (4.14), let us make the following construction:

Construction 4.15. Note that Tw(2) ( [𝑛]) is equivalent to the poset whose objects are tuples 𝑎𝑏𝑐𝑑 with
0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 𝑛, corresponding to a map (𝑎 ≤ 𝑑) −→ (𝑏 ≤ 𝑐) in Tw𝑟 ([𝑛]). The partial order
is then given by 𝑎𝑏𝑐𝑑 ≤ 𝑎′𝑏′𝑐′𝑑 ′ when 𝑎 ≤ 𝑎′ ≤ 𝑏′ ≤ 𝑏 ≤ 𝑐 ≤ 𝑐′ ≤ 𝑑 ′ ≤ 𝑑. We define the following
four wide subcategories of Tw(2) ( [𝑛]):

(1) Tw(2) ( [𝑛])1 is the subcategory spanned by the edges 𝑎𝑏𝑐𝑑 → 𝑎′𝑏𝑐𝑑.
(2) Tw(2) ( [𝑛])2 is the subcategory spanned by the edges 𝑎𝑏′𝑐𝑑 → 𝑎𝑏𝑐𝑑.
(3) Tw(2) ( [𝑛])3 is the subcategory spanned by the edges 𝑎𝑏𝑐𝑑 → 𝑎𝑏𝑐′𝑑.
(4) Tw(2) ( [𝑛])4 is the subcategory spanned by the edges 𝑎𝑏𝑐𝑑 ′ → 𝑎𝑏𝑐𝑑.

Proposition 4.16. Let 𝑋 ∈ AdTrip⊥ and let [𝑛] ∈ 𝚫. Then the natural transformation (4.14) identifies the
domain with those path components in HomCat(Tw(2) ( [𝑛]), 𝑋) consisting of maps 𝑓 : Tw(2) ( [𝑛]) −→ 𝑋
that restrict to

Tw(2) ( [𝑛])1 𝑋in Tw(2) ( [𝑛])2 𝜄𝑋

Tw(2) ( [𝑛])3 𝑋eg Tw(2) ( [𝑛])4 𝜄𝑋.

𝑓 𝑓

𝑓 𝑓

Proof. A functor

𝑓 : [𝑛] −→ Span⊥ ◦ Span⊥(𝑋)

corresponds by adjunction to a map Tw𝑟 ([𝑛]) −→ Span⊥(𝑋) of adequate triples – that is, a map of
∞-categories 𝑓 ′ : Tw𝑟 ([𝑛]) −→ Span⊥(𝑋) such that

𝑓 ′(Tw𝑟 ([𝑛])in) ⊆ Span⊥(𝑋)in and 𝑓 ′(Tw𝑟 ([𝑛])eg) ⊆ Span⊥(𝑋)eg.
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Here, we importantly use that every ambigressive square in the target is automatically a pullback;
otherwise, the functor 𝑓 ′ would have to furthermore preserve ambigressive pullbacks. By Theorem
2.18, the map of ∞-categories underlying 𝑓 ′ corresponds itself to a map Tw𝑟 (Tw𝑟 ([𝑛])) −→ 𝑋 of
adequate triples; that is, a map 𝑓 ′′ : Tw𝑟 (Tw𝑟 ([𝑛])) −→ 𝑋 such that

𝑓 ′′
(

Tw𝑟 (
Tw𝑟 ([𝑛])

)
in

)
⊆ 𝑋in and 𝑓 ′′

(
Tw𝑟 (

Tw𝑟 ([𝑛])
)eg

)
⊆ 𝑋eg.

Let us now unravel these conditions using the description of Tw(2) ( [𝑛]) from Construction 4.15. Note
that, on the one hand, Tw𝑟 (Tw𝑟 ([𝑛]))in consists of maps of tuples of the form 𝑎𝑏𝑐𝑑 ≤ 𝑎′𝑏𝑐𝑑 ′, while
Tw𝑟 (Tw𝑟 ([𝑛]))eg consists of maps 𝑎𝑏𝑐𝑑 ≤ 𝑎𝑏′𝑐′𝑑. On the other hand, Tw𝑟 (Tw𝑟 ([𝑛])in) consists of
maps of the form 𝑎𝑏𝑐𝑐 ≤ 𝑎′𝑏′𝑐𝑐 and Tw𝑟 (Tw𝑟 ([𝑛])eg) consists of maps 𝑎𝑎𝑐𝑑 ≤ 𝑎𝑎𝑐′𝑑 ′.

Furthermore, Span⊥(𝑋)in is the subcategory consisting of spans of the form · · ·
∼ , where the

right map is in 𝑋in. Similarly, Span⊥(𝑋)eg is the subcategory whose morphisms are spans of the form
· · ·

∼ , where the left map is in 𝑋eg. Combining all this, the above conditions translate as follows:

(1) Every 𝑎𝑏𝑐𝑑 ≤ 𝑎′𝑏𝑐𝑑 ′ is mapped to 𝑋in.
(2) Every 𝑎𝑏𝑐𝑑 ≤ 𝑎𝑏′𝑐′𝑑 is mapped to 𝑋eg.
(3) Every 𝑎𝑏𝑐𝑐 ≤ 𝑎′𝑏𝑐𝑐 is sent to 𝑋in and every 𝑎𝑏𝑐𝑐 ≤ 𝑎𝑏′𝑐𝑐 is sent to an equivalence.
(4) Every 𝑎𝑎𝑐𝑑 ≤ 𝑎𝑎𝑐′𝑑 is sent to 𝑋eg and every 𝑎𝑎𝑐𝑑 ≤ 𝑎𝑎𝑐𝑑 ′ is sent to an equivalence.

Note that these conditions are certainly implied by the ones from the proposition. Conversely, given these
conditions, the ones from the statement follow: for example, the map 𝑎𝑏𝑐𝑑 ≤ 𝑎𝑏𝑐𝑑 ′ fits into a square

𝑎𝑎𝑐𝑑 𝑎𝑎𝑐𝑑 ′

𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑑 ′.

The top horizontal arrow is mapped to an equivalence in X by (4), and the vertical arrows are sent to
maps over 𝑋eg by (2). In particular, the bottom arrow maps to 𝑋eg, but also to 𝑋in by (1). An edge which
is in both the left and right part of an orthogonal factorisation system is an equivalence, and therefore,
𝑎𝑏𝑐𝑑 ≤ 𝑎𝑏𝑐𝑑 ′ maps to an equivalence. �

Let us write LTw(2) ( [𝑛]) for the localisation of Tw(2) ( [𝑛]) at the classes of maps (2) and (4) and let
LTw(2) ( [𝑛])1 and LTw(2) ( [𝑛])3 be its wide subcategories generated by the images of the maps (1) and
(3) from Construction 4.15. Since each map in 𝚫 induces a map Tw(2) ( [𝑚]) −→ Tw(2) ( [𝑛]) preserving
these four classes of maps, it follows that the triple of∞-categories(

LTw(2) ( [𝑛]), LTw(2) ( [𝑛])1, LTw(2) ( [𝑛])3
)
∈ Fun

(
Λ2 [2], Cat) (4.17)

depends functorially on [𝑛]. Proposition 4.16 implies that the∞-groupoid N(Span⊥2 (𝑋))𝑛 is naturally
equivalent to the∞-groupoid of maps in Fun(Λ2 [2], Cat)(

LTw(2) ( [𝑛]), LTw(2) ( [𝑛])1, LTw(2) ( [𝑛])3
)
−→

(
𝑋, 𝑋in, 𝑋eg) .

We will now identify the localised triples (4.17) more explicitly. To do this, consider the composition

[𝑘] × [1] → [𝑘] ★ [𝑘] → [𝑘] ★ [𝑘]op ★ [𝑘] ★ [𝑘]op,

where the first map is the unique natural transformation between the two inclusions [𝑘] → [𝑘] ★ [𝑘] of
the summands into the join. This induces a natural transformation

𝑧 : Tw(2) (−) −→ Ar(−)
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sending a tuple 𝑎𝑏𝑐𝑑 in Tw(2) ( [𝑛]) to 𝑎𝑐 in Ar([𝑛]). Recall from Example 4.7 that the arrow category
Ar([𝑛]) comes equipped with the structure of an adequate triple in which a map is egressive (ingressive)
if its image under the source (target) map is an equivalence. The map z then sends the maps (2) and (4)
to equivalences, the maps (1) to ingressive arrows and the maps (3) to egressive arrows. Consequently,
we obtain a natural transformation of cosimplicial diagrams in Fun(Λ2 [2], Cat)(

LTw(2) (−), LTw(2) (−)1, LTw(2) (−)3
)
−→ Ar(−). (4.18)

Restriction along this diagram of triples then induces a natural map of simplicial∞-groupoids

𝜁 : N(𝑋) � HomAdTrip⊥
(
Ar(−), 𝑋

)
−→ HomFun(Λ2 [2],Cat)

(
LTw(2) (−), 𝑋

)
� NSpan⊥2 (𝑋)

for every 𝑋 ∈ AdTrip⊥. Here, the first equivalence follows from the fact that Ar([𝑛]) is the free
orthogonal adequate triple generated by [𝑛], by Proposition 4.8.

Lemma 4.19. For every 𝑋 ∈ AdTrip⊥, the natural transformation 𝜁 is an equivalence of complete Segal
∞-groupoids.

Proof. Since the domain and the target of 𝜁 are complete Segal ∞-groupoids, 𝜁 is an equivalence of
simplicial ∞-groupoids as soon as it induces an equivalence in simplicial degrees 0 and 1. It therefore
suffices to show that the natural transformation (4.18) is an equivalence of triples of ∞-categories for
𝑛 = 0 or 𝑛 = 1.

For 𝑛 = 0, this is evident since the domain and codomain of (4.18) are both just a point. For 𝑛 = 1, at
the level of the underlying ∞-categories, we have to verify that the functor 𝑧 : Tw(2) ( [1]) −→ Ar([1])
exhibits Ar([1]) as the localisation of Tw(2) ( [1]) at the maps in Tw(2) ( [𝑛])2 and Tw(2) ( [𝑛])4. The map
z is given by the map

(
0000←− 0001 −→ 0011←− 0111 −→ 1111

) (
00 −→ 01 −→ 11

)
collapsing the two left-pointing arrows. This is manifestly a localisation. Furthermore, under the map
z, the noninvertible arrow in Tw𝑟 ([1])1 (i.e., 0111 → 1111) is sent to the ingressive 01 → 11 and the
noninvertible arrow in Tw𝑟 ([1])3 (i.e., 0001 → 0011) is sent to the egressive 00 → 01. We conclude
that the map LTw(2) ( [1]) −→ Ar([1]) is an equivalence of (adequate) triples, as desired. �

Proof of Theorem 4.12. Lemma 4.19 shows that after post-composing with the forgetful functor
𝑈 : AdTrip→ Cat, there is a natural equivalence

𝜁 : 𝑈 (𝑋) 𝑈 (Span⊥2 (𝑋)).
∼

It remains to verify that this equivalence on the underlying∞-categories also identifies the subcategories
of ingressives and egressives. But this is a direct consequence of the naturality of 𝜁 in 𝑋 ∈ AdTrip⊥,
since the inclusions Span⊥2 (𝑋)in ↩→ Span⊥2 (𝑋) ←↪ Span⊥2 (𝑋)eg arise as the functors underlying the
maps of adequate triples

Span⊥2 (𝑋in, 𝑋in, 𝜄𝑋) −→ Span⊥2 (𝑋) ←− Span⊥2 (𝑋eg, 𝜄𝑋, 𝑋eg)

and the same for 𝑋in ↩→ 𝑋 ←↪ 𝑋eg. �

5. Cartesian fibrations between orthogonal adequate triples

The purpose of this section is to analyse the interaction between orthogonal adequate triples and cartesian
fibrations. In particular, we show that orthogonal adequate triples (𝑋, 𝑋in, 𝑋eg) uniquely correspond to
cartesian fibrations with contractible fibres, by taking X to 𝑋 → 𝑋 [(𝑋eg)−1], generalising results of
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Lanari [La19]. More generally, we study various kinds of fibrations between adequate triples that are
preserved (or exchanged) by the dualisation equivalence from Theorem 4.12. When the base X arises
from a product of two∞-categories (Example 4.5), we can identify these fibrations with the two-variable
fibrations studied extensively in [HHLN23]; this specialisation will occupy the next section.

The main notion this section will be concerned with is the following:

Definition 5.1. We will say that a map 𝑝 : 𝑌 → 𝑋 of orthogonal adequate triples is an ingressive
cartesian fibration if Y admits all p-cartesian lifts over 𝑋in and these precisely make up 𝑌in. Given an
orthogonal adequate triple X, we will write Cartin(𝑋) ⊆ AdTrip⊥/𝑋 for the full subcategory on the
ingressive cartesian fibrations.

Observation 5.2. Let us make the following remarks:

(1) Let 𝑝 : 𝑌 −→ 𝑋 be an ingressive cartesian fibration. By definition, Y has all p-cartesian lifts over
𝑋in, and 𝑌in is the wide subcategory on the p-cartesian lifts of ingressive morphisms. Since 𝑌in and
𝑌 eg form a factorisation system, this determines 𝑌 eg uniquely and we find that Y arises exactly from
the construction in Proposition 4.4; in particular, 𝑌 eg = 𝑝−1 (𝑋eg).

(2) For a map of orthogonal adequate triples 𝑝 : 𝑌 → 𝑋 , an ingressive edge g in Y is p-cartesian if and
only if it is 𝑝in-cartesian, since lifting an arbitrary map 𝑓 : 𝑥 → 𝑥 ′ in an orthogonal adequate triple
along an ingressive 𝑔 : 𝑧 → 𝑥 ′ is equivalent to lifting 𝑓 ′ : 𝑤 → 𝑥 ′ along g where 𝑓 = 𝑓 ′ℎ is the
factorisation of f into an egressive followed by an ingressive.

(3) Ingressive cartesian fibrations are stable under pullbacks. In particular, if 𝑝 : 𝑌 −→ 𝑋 is an ingressive
cartesian fibration and 𝑥 ∈ 𝑋 , then the fibre over x carries the structure of an orthogonal adequate
triple (𝑌𝑥 , 𝜄𝑌𝑥 , 𝑌𝑥).

We start with the following partial converse to Proposition 4.4:

Proposition 5.3. Let (𝑋, 𝑋in, 𝑋eg) be an orthogonal adequate triple. Then the map

𝑝 : (𝑋, 𝑋in, 𝑋eg) −→ (𝑋 [(𝑋eg)−1], 𝑋 [(𝑋eg)−1], 𝜄(𝑋 [(𝑋eg)−1]))

is an ingressive cartesian fibration. In other words, 𝑝 : 𝑋 → 𝑋 [(𝑋eg)−1] is a cartesian fibration, inverts
only the egressives in X, and the ingressive maps in X are precisely the p-cartesian edges.

Before we dive into the proof, we spell out some consequences. To this end, let us write Cart for the
subcategory of Ar(Cat) spanned by objects the cartesian fibrations and by morphisms those squares

𝑋 𝑌

𝑆 𝑇

𝑝

𝑓

𝑞

such that f sends p-cartesian edges to q-cartesian edges. By Proposition 5.3, the assignment 𝑋 ↦−→
(𝑋 → 𝑋 [(𝑋eg)−1]) extends to a functor

Leg : AdTrip⊥ −→ Cart,

which is fully faithful by the universal property of a localisation. We claim that the assignment of the
orthogonal adequate triple (𝑌,𝑌†, 𝑝−1 (𝜄𝑆)) to a cartesian fibration 𝑝 : 𝑌 → 𝑆 defines a right adjoint to
Leg. Both

HomCart
(
𝑋 → 𝑋 [(𝑋eg)−1], 𝑝

)
and HomAdTrip

(
𝑋, (𝑌,𝑌†, 𝑝−1 (𝜄𝑆))

)
are given by those functors 𝑋 → 𝑌 that take ingressives and egressives to p-cartesian and fibrewise
maps, respectively.
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Proposition 5.4. The functor Leg restricts to an equivalence between the category AdTrip⊥ and the full
subcategory of Cart spanned by those cartesian fibrations whose fibres all have contractible realisations.

Given the discussion above, this follows immediately from the equivalence between the first and third
items in the following:

Lemma 5.5. For a cartesian fibration 𝑝 : 𝐴→ 𝐵, the following conditions are equivalent:

(1) p is a localisation,
(2) p is cofinal, and
(3) the realisations of the fibres of p are contractible.

Proof. It is generally true that localisations are cofinal (and coinitial). If p is a localisation, it follows
straight from the definition of Kan extension as an adjoint to restriction that any functor 𝐹 : 𝐵 → 𝐶
is right (and left) Kan extended from its restriction along p and thus has the same colimit as 𝐹𝑝. This
proves (1) ⇒ (2).

To see that (2) ⇔ (3), we observe that the inclusion

𝑝−1 (𝑏) ⊆ 𝑏/𝑝, 𝑎 −→ (𝑎, id𝑏),

where 𝑏/𝑝 denotes the pullback 𝑏/𝐵 ×𝐵 𝐴 along p, admits a right adjoint, given by taking (𝑎, 𝑓 : 𝑏 →
𝑝(𝑎)) to a p-cartesian lift of f ending at a. Thus, |𝑝−1 (𝑏) | � |𝑏/𝑝 |, whence the claim follows from
Joyal’s cofinality criterion [Lu09a, Theorem 4.1.3.1].

To finally see that (3) ⇒ (1), consider for some∞-category C the functor

𝑝∗ : Fun(𝐵, 𝐶) −→ Funw(𝐴, 𝐶),

where the superscript on the right denotes those functors inverting all maps that p inverts. We have to
show that 𝑝∗ is an equivalence. We first claim that it has a right adjoint 𝑝∗. By [Lu09a, 4.3.3.7], this
will follow from

𝑏/𝑝
fgt
−−→ 𝐴

𝐹
−→ 𝐶,

admitting a limit for every 𝑏 ∈ 𝐵 and 𝐹 : 𝐴→ 𝐶 that inverts the fibrewise maps. But as we just discussed
above, the inclusion 𝑝−1 (𝑏) ⊆ 𝑏/𝑝 admits a right adjoint and is thus coinitial, so we may instead consider

𝑝−1 (𝑏) ⊆ 𝐴
𝐹
−→ 𝐶,

which factors through the localisation 𝑝−1 (𝑏) → |𝑝−1 (𝑏) | since F inverts all fibrewise maps by
assumption. Thus, the assumption |𝑝−1 (𝑏) | � ∗ implies that 𝐹 (𝑎) is a limit of the above diagram for
any 𝑎 ∈ 𝑝−1(𝑏). It also follows from the formula for the adjoint as a right Kan extension that the unit
and counit of the adjunction (𝑝∗, 𝑝∗) are equivalences, as desired. �

Example 5.6. A cartesian fibration 𝑝 : 𝑋 → 𝑆 is called pointed if both X and S have a terminal object and
p preserves it. In [La19], Lanari shows that the∞-category of pointed cartesian fibrations is equivalent
to a certain subcategory of factorisation systems (he calls them cartesian).

To see the relationship between this equivalence and ours, note that every fibre 𝑋𝑠 of a pointed
cartesian fibration admits a final object, given by the source x of a cartesian edge 𝑥 → ∗, which lies
over the unique map 𝑠 → ∗ in S. Therefore, the fibre of pointed cartesian fibrations have contractible
realisations, and we conclude that our equivalence extends that of [La19].

In fact, in the case of pointed cartesian fibrations, Lemma 5.5 can be sharpened. It is easy to check
that assigning to some 𝑠 ∈ 𝑆 the source x of a cartesian lift 𝑥 → ∗ of 𝑠→ ∗ defines a right adjoint to p,
so that any pointed cartesian fibration is, in fact, a left Bousfield localisation. As a typical application,
one finds that an exact functor between stable ∞-categories is a cartesian fibration if and only if it is a
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right split Verdier projection (in the language of [CDH+20, Appendix A]), and both a cartesian and a
cocartesian fibration if and only if it participates (as 𝑗∗) in a stable recollement as in Example 4.6.

Corollary 5.7. The self-equivalence Span⊥ upgrades to a C2-action on AdTrip⊥.

Proof. According to Corollary 3.18 above, the embedding Leg : AdTrip⊥ → Cart from Proposition
5.4 translates Span⊥ to the functor that takes a cartesian fibration to its fibrewise opposite (defined via
straightening, postcomposing with (−)op : Cat→ Cat, and then unstraightening). Since Aut(Cat) � C2
by Toën’s theorem [To05], this latter operation defines a C2-action, and hence, so does the former. �

It would be interesting to provide a more direct construction of the coherences for this C2-action that
does not rely on the (un)straightening equivalence, but we have not pursued this.

As another consequence, we obtain the following description of free cartesian fibrations, a generali-
sation of which was already proven by different means in [GHN17]:

Corollary 5.8. Consider the functor Cart −→ Cat sending a cartesian fibration 𝑝 : 𝑌 → 𝑋 to its domain
Y. This functor admits a left adjoint sending A to the cartesian fibration 𝑠 : Ar(𝐴) → 𝐴.

Proof. The forgetful functor factors as Cart −→ AdTrip⊥ −→ Cat. The first functor has left adjoint Leg

by Proposition 5.4, and the second has left adjoint Ar by Proposition 4.8. The composite precisely sends
A to 𝑠 : Ar(𝐴) −→ 𝐴, since this has contractible fibres and the associated orthogonal triple structure on
Ar(𝐴) is precisely that from Example 4.7. �

We now come to the proof of Proposition 5.3.

Proof of Proposition 5.3. Let us start by recalling the model for 𝑋 [(𝑋eg)−1] given by the relative Rezk
nerve [MG19]. For each [𝑛], let us write

Nrel(𝑋) (𝑛) Fun([𝑛], 𝑋)

for the subcategory of all functors [𝑛] −→ 𝑋 and natural transformations which are pointwise egressive.
The core of this∞-category is simply HomCat ([𝑛], 𝑋). Taking geometric realisations, we then obtain a
map of simplicial∞-groupoids

N(𝑋) = HomCat(−, 𝑋)
		Nrel(𝑋)

		
such that the induced map on associated∞-categories is the localisation 𝑋 −→ 𝑋 [(𝑋eg)−1].

We are now going to give a smaller description of
		Nrel (𝑋)

		, which will show in particular that it
already satisfies the Segal condition (so that the associated ∞-category is just its completion). To this
end, consider the full subcategories

Nrel
in (𝑋) (𝑛) ⊆ Nrel(𝑋) (𝑛)

whose objects are functors [𝑛] −→ 𝑋 with values in 𝑋in. For each 𝛼 ∈ Nrel(𝑋) (𝑛), there exists an initial
𝛼̃ in Nrel

in (𝑋) (𝑛) equipped with a map from 𝛼, given by the unique factorisation (starting at the end)

𝛼(0) 𝛼(1) . . . 𝛼(𝑛 − 1) 𝛼(𝑛)

𝛼̃(0) 𝛼̃(1) . . . 𝛼̃(𝑛 − 1) 𝛼̃(𝑛).
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It follows that each inclusion Nrel
in (𝑋) (𝑛) ↩→ Nrel (𝑋) (𝑛) admits a left adjoint. We thus obtain a diagram

of simplicial categories

N(𝑋in) Nrel
in (𝑋)

		Nrel
in (𝑋)

		

N(𝑋) Nrel(𝑋)
		Nrel(𝑋)

		,
∼ (5.9)

where the objects on the left and on the right are simplicial ∞-groupoids and the right vertical map is
an equivalence, since it is given in each simplicial degree by the geometric realisation of a right adjoint
functor.

The simplicial ∞-category Nrel
in (𝑋) satisfies the Segal conditions. The equivalence Fun([𝑛], 𝑋) �

Fun([1], 𝑋) ×𝑋 · · · ×𝑋 Fun([1], 𝑋) restricts to an equivalence of∞-categories

Nrel
in (𝑋) ( [𝑛]) Nrel

in (𝑋) ( [1]) ×Nrel
in (𝑋 ) (0)

· · · ×Nrel
in (𝑋 ) (0)

Nrel
in (𝑋) ( [1]). (5.10)

Here, the pullbacks are taken along the source and target functors. The target functor

𝑡 : Nrel
in (𝑋) ( [1]) Nrel

in (𝑋) ({1}) = 𝑋eg (5.11)

is both a left fibration (since each �� fits into a unique ambigressive square) and a right fibration
(since ingressive maps can be pulled back along egressive maps). This implies that the pullbacks along
t in (5.10) induce pullbacks after taking realisations (see again [St21, St22] or the proof of [CDH+20,
Theorem 2.5.1] for the more (co)cartesian version of this assertion), so that the equivalent simplicial
∞-groupoids on the right in (5.9) also satisfy the Segal conditions.

We will use this description of 𝑋 [(𝑋eg)−1] in terms of Nrel
in (𝑋) to identify its over-categories. To this

end, recall that for any Segal∞-groupoid S and 𝑠 ∈ 𝑆(0), the simplicial∞-groupoid(
𝑆/𝑠

)
(𝑛) = 𝑆([𝑛 + 1]) ×𝑆 ( {𝑛+1}) {𝑠} (5.12)

is again a Segal∞-groupoid, such that the associated∞-category ac(𝑆/𝑠) � ac(𝑆)/𝑠 is a model for the
over-category of s [CDH+20, Lemma 2.4.7]. Let us now take an object 𝑥 ∈ 𝑋 and consider the maps of
simplicial∞-groupoids induced by the top row in (5.9)

N(𝑋in)/𝑥
		Nrel

in (𝑋)/𝑥
		 		Nrel

in (𝑋)
		/𝑥. (5.13)

Here, the middle term is given by first taking (5.12) at the level of simplicial ∞-categories and then
taking realisations. Unraveling the definitions, the simplicial ∞-category Nrel

in (𝑋)/𝑥 is given in degree
n by the∞-category with objects 𝛼(0) � · · ·� 𝛼(𝑛) � 𝑥 and morphisms

𝛼(0) 𝛼(1) . . . 𝛼(𝑛) 𝑥

𝛽(0) 𝛽(1) . . . 𝛽(𝑛) 𝑥.

Since the ingressives and egressives form a factorisation system, all vertical maps are equivalences.
Consequently, the first map in (5.13) is an equivalence (even before taking geometric realisations). In
addition, since the target map (5.11) is a Kan fibration, so is the map Nrel

in (𝑋) ( [𝑛+1]) −→ Nrel
in (𝑋) ({𝑛+

1}) (being a composite of its base changes). It follows that the pullbacks (5.12) are preserved under
taking classifying∞-groupoids, so that the second map in (5.13) is an equivalence. Since

		Nrel
in (𝑋)

		 has
associated∞-category 𝑋 [(𝑋eg)−1], the associated∞-category of

		Nrel
in (𝑋)

		/𝑥 is 𝑋 [(𝑋eg)−1]/𝑝(𝑥).
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All in all, we have therefore found that for each object 𝑥 ∈ 𝑋 , the composite functor

𝑋in/𝑥 𝑋/𝑥 𝑋 [(𝑋eg)−1]/𝑝(𝑥)
𝜄 𝑝

is an equivalence. Under this equivalence, the functor p is identified with the functor 𝑋/𝑥 −→ 𝑋in/𝑥
sending each 𝑦 → 𝑥 to the ingressive part 𝑦′ � 𝑥 of its functorial egressive-ingressive factorisation.
This functor admits a fully faithful right adjoint, whose essential image is given by the ingressive maps
to x. By [AF20, Lemma 2.16], this implies that p is a cartesian fibration and that an arrow in X is
p-cartesian if and only if it is ingressive.

In particular, we can apply Proposition 4.4 to obtain an orthogonal triple structure on X whose
ingressives are the p-cartesian arrows and whose egressives are the maps that are inverted by p. Since
the first class coincides with 𝑋in, the second class coincides with 𝑋eg. �

We now turn to more restrictive types of fibrations between orthogonal triples:

Definition 5.14. An ingressive cartesian fibration 𝑝 : 𝑌 −→ 𝑋 is said to be

(1) an op-Gray fibration if 𝑝eg : 𝑌 eg −→ 𝑋eg is a cartesian fibration, and
(2) a curved orthofibration if 𝑝eg : 𝑌 eg −→ 𝑋eg is a cocartesian fibration.

For X an orthogonal adequate triple, we will write CrvOrtho(𝑋), OpGray(𝑋) for the subcategories
of Cartin(𝑋) spanned by the curved orthofibrations and op-Gray fibrations, and maps between them
preserving (in addition) 𝑝eg-(co)cartesian morphisms.

Remark 5.15. To avoid confusion, we would like to explicitly mention that while arrows with the
decoration � denoted cartesian edges in [HHLN23], with our conventions it is exactly the ingressive
edges in Y which are all p-cartesian, and that the egressive edges are almost never all p-cartesian.

The naming schema above is inspired by the definitions of [HHLN23]. We will show in Section 6
that in the case 𝑋 = (𝐴 × 𝐵, 𝐴 × 𝜄𝐵, 𝜄𝐴 × 𝐵), the definitions above reduce to the corresponding objects
of [HHLN23].

Note that, on the one hand, Cartin(𝐴, 𝐴, 𝜄𝐴) is simply the∞-category of cartesian fibrations over A,
as are the two subcategories CrvOrtho and OpGray in this case. On the other hand, Cartin(𝐴, 𝜄𝐴, 𝐴) is
just Cat/𝐴, while OpGray(𝐴, 𝜄𝐴, 𝐴) = Cart(𝐴) and CrvOrtho(𝐴, 𝜄𝐴, 𝐴) = Cocart(𝐴).

One can informally think about an op-Gray fibration over X as encoding a lax functor from X to
Cat, which is strong on 2-simplices in 𝑋in or 𝑋eg, as well as 2-simplices of the form 𝑥0 � 𝑥1 � 𝑥2.
This is substantiated (using the scaled straightening construction of Lurie [Lu09b]) by the following
observation:

Lemma 5.16. An op-Gray fibration 𝑝 : 𝑌 −→ 𝑋 is, in particular, a locally cartesian fibration. Further-
more, for each 2-simplex 𝜎 : [2] −→ 𝑋 arising from the composition of an ingressive and an egressive
map 𝑥0 � 𝑥1 � 𝑥2, the restriction 𝜎∗(𝑝) : 𝜎∗𝑌 −→ [2] is a cartesian fibration.

Proof. Note that the second part implies that p is a locally cartesian fibration since every morphism in
X fits into a 2-simplex 𝜎 as indicated. To see that 𝜎∗(𝑝) is a cartesian fibration, one simply notes that it
admits enough cartesian lifts of 𝑥1 � 𝑥2 (since p does) and locally cartesian lifts over 𝑥0 � 𝑥1. �

Lemma 5.17. Let 𝑝 : 𝑌 −→ 𝑋 be an op-Gray fibration between orthogonal adequate triples. Then the
following are equivalent:

(1) The underlying functor 𝑝 : 𝑌 −→ 𝑋 is a cartesian fibration.
(2) For every ambigressive square
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𝑦00 𝑦01

𝑦10 𝑦11

𝑓 𝑓 ′ (5.18)

in which 𝑓 ′ is 𝑝eg-cartesian, f is 𝑝eg-cartesian as well.

Proof. Assuming (1), the uniqueness of cartesian lifts implies that an egressive morphism in Y is 𝑝eg-
cartesian if and only if it is p-cartesian. Except for 𝑓 ′, all arrows in the square (5.18) are therefore
p-cartesian, which implies that 𝑓 ′ is p-cartesian as well.

For the converse, Lemma 5.16 already asserts that p is a locally cartesian fibration. It then suffices to
verify that locally p-cartesian morphisms are closed under composition. To this end, let f and g be two
composable locally p-cartesian morphisms in Y and consider the diagram

· · ·

· ·

·

𝑓

𝑓1

𝑓2

𝑔

𝑔1

𝑔2

Here, the two triangles factor f and g into an egressive followed by an ingressive morphism; Lemma
5.16 shows that the maps 𝑓1, 𝑓2, 𝑔1 and 𝑔2 are all locally p-cartesian. The top right square is obtained by
factoring the down-right composite into an egressive, followed by an ingressive map. Condition (2) then
implies that all individual arrows depicted in the above picture are locally p-cartesian (and the horizontal
ones are p-cartesian). Since 𝑝eg was a cartesian fibration, the top composite is then locally p-cartesian,
and since the right vertical composite is p-cartesian, the composite 𝑔 𝑓 is locally p-cartesian as well. �

Definition 5.19. We will say that a map 𝑝 : 𝑌 −→ 𝑋 of orthogonal adequate triples is a cartesian
fibration if it is an op-Gray fibration satisfying the equivalent conditions of Lemma 5.17. Dually, a
curved orthofibration is called an orthofibration if for each ambigressive square (5.18) in which f is
𝑝eg-cocartesian, 𝑓 ′ is 𝑝eg-cocartesian as well.

Let us write Cart(𝑋) ⊆ OpGray(𝑋) and Ortho(𝑋) ⊆ CrvOrtho(𝑋) for the full subcategories on
cartesian and orthofibrations; this notation is justified by the following observation:

Observation 5.20. Note that the datum of a cartesian fibration of orthogonal adequate triples 𝑝 : 𝑌 −→ 𝑋
is equivalent to that of a cartesian fibration between the underlying ∞-categories. In addition, a map
in Cart(𝑋) is required to preserve cartesian lifts over ingressive and egressive maps in X; since every
map in X factors into an egressive map followed by an ingressive one, it follows that the maps in
Cart(𝑋) preserve all cartesian arrows. In other words, Cart(𝑋) is simply equivalent to the ∞-category
of cartesian fibrations over the underlying∞-category of X.

The main result about these various types of fibration is that they behave well under dualisation:

Theorem 5.21. Let X be an orthogonal adequate triple. Then the natural equivalence

Span⊥ : AdTrip⊥/𝑋 −→ AdTrip⊥/Span⊥(𝑋)

restricts to natural equivalences

Cartin (𝑋) � Cartin(Span⊥(𝑋))
OpGray(𝑋) � CrvOrtho(Span⊥(𝑋))

Cart(𝑋) � Ortho(Span⊥(𝑋)).

Furthermore, for each fibration 𝑝 : 𝑌 −→ 𝑋 , the dual fibration Span⊥(𝑌 ) −→ Span⊥(𝑋) has fibres
given by the opposites of the fibres of p.
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In the simple case 𝑋 = (𝐴, 𝐴, 𝜄𝐴), this result specialises to the statement that taking span categories
for the adequate triple structure given by the cartesian and fibrewise maps provides an equivalence

Span: Cart(𝐴) = Cartin(𝑋) → Cartin(Span⊥(𝑋)) = Cart(𝐴)

sending a cartesian fibration to the cartesian fibration with opposite fibres. Postcomposing with the
equivalence Cart(𝐴) � Cocart(𝐴op) sending 𝑌 −→ 𝐴 to 𝑌op −→ 𝐴op, we obtain the equivalence first
established by Barwick, Glasman and Nardin [BGN18, Theorem 1.4]. Note that by Lemma 2.14, this
composite equivalence coincides with the equivalence obtained by first exchanging the ingressive and
egressive maps and then applying the equivalence from Corollary 3.18.

In the case 𝑋 = (𝐴, 𝜄𝐴, 𝐴), however, the result simply specialises to the equivalence

Cat/𝐴 = Cartin(𝑋) → Cartin(Span⊥(𝑋)) = Cat/𝐴op,

given by taking opposites. In the case of a general X, our equivalence combines these two extremes, as
we shall discuss in the case of two-variable fibrations from [HHLN23] in the next section.

Proof. Note that naturality of these equivalences follows directly from Span⊥ being a functor and taking
over-categories being natural in the base.

Let us start with the first equivalence. Since Span⊥ is its own inverse, it suffices to verify that for
an ingressive cartesian fibration 𝑝 : 𝑌 −→ 𝑋 , the dual map 𝑞 = Span⊥(𝑝) : Span⊥(𝑌 ) −→ Span⊥(𝑋)
is an ingressive cartesian fibration. Recall that an ingressive map in Span⊥(𝑌 ) is given by a span
𝑦11

∼
←−𝑦01 � 𝑦00 in Y.
To see that q is an ingressive fibration, it suffices to verify that all such spans define q-cartesian

edges in Span(𝑌 ), since there are then clearly enough cartesian lifts of edges in 𝑋in. Equivalently, this
means that the reverse span 𝑦00 � 𝑦01

∼
−→𝑦11 defines a 𝑞op-cocartesian arrow. We can identify the

opposite map 𝑞op : Span(𝑌 )op −→ Span(𝑋)op with Span(𝑝rev) : Span(𝑌 rev) −→ Span(𝑋 rev) (that is, we
exchange the roles of the ingressive and egressive maps). The reverse span is then Span(𝑝rev)-cocartesian
by Corollary 3.2.

To see the second equivalence, we observe that given any 𝑝 : 𝑌 −→ 𝑋 in Cartin(𝑋), the functor
𝑞eg : Span⊥(𝑌 )eg −→ Span⊥(𝑋)eg is equivalent to the opposite of 𝑝eg : 𝑌 eg −→ 𝑋eg. This immediately
implies that Span⊥ exchanges curved orthofibrations and op-Gray fibrations and furthermore preserves
maps between them that preserve (co)cartesian ingressive arrows.

For the third equivalence, recall from Proposition 4.9 that an ambigressive square in Span⊥(𝑌 )
corresponds to a diagram of the form

• • •

• • •

• • •

∼

𝛼

∼ ∼

∼

𝛽

∼

𝛾

∼

in Y. Suppose p is a cartesian fibration. The left span defines a 𝑞eg-cocartesian arrow if and only if
𝛼 is 𝑝eg-cartesian. This immediately implies that 𝛽 is also 𝑝eg-cartesian. Finally, the top right square
is cartesian, and therefore, we conclude by 5.17 that 𝛾 is also 𝑝eg-cartesian, so that the right vertical
span is 𝑞eg-cartesian. This implies by definition that q is an orthofibration of orthogonal triples. A dual
argument (again using 5.17) shows that the dual of an orthofibration is a cartesian fibration.

Finally, for the statement about fibres, note that Span⊥ (being an equivalence) preserves fibres (i.e.,
pullbacks along a map (of orthogonal adequate triples) ∗ −→ 𝑋). Observation 5.2 then implies that
the fibre of Span⊥(𝑌 ) −→ Span⊥(𝑋) over a point x is given by Span⊥(𝑌𝑥 , 𝜄𝑌𝑥 , 𝑌𝑥), whose underlying
category is equivalent to 𝑌

op
𝑥 by Proposition 2.15. �
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6. Dualisation and straightening of two-variable fibrations

The purpose of this section is to use the results of the previous section to dualise and straighten various
kinds of fibrations over a product of ∞-categories. The first part essentially consists of specialising
Theorem 5.21 to the case where X is the particular orthogonal triple

(𝐴, 𝐵)⊥ � (𝐴 × 𝐵, 𝐴 × 𝜄𝐵, 𝜄𝐴 × 𝐵)

associated to a product of two∞-categories. We will find that the various fibrations defined over (𝐴, 𝐵)⊥

in the previous section recover a subset of the fibrations which we considered in [HHLN23].
In particular, we will extend the explicit description of dual (co)cartesian fibrations to the situation

of curved ortho- and Gray fibrations. As an application, we give an explicit description of parametrised
adjoints from [HHLN23], extending previous work of Torii [To20].

Let us start by making the various types of fibrations of orthogonal adequate triples 𝑝 : 𝑌 −→ (𝐴, 𝐵)⊥

appearing in Section 5 more explicit. Recall that for all these fibrations, the structure of an adequate
triple on Y is uniquely determined by the underlying functor (see Observation 5.2)

𝑝 = (𝑝1, 𝑝2) : 𝑌 −→ 𝐴 × 𝐵.

By Proposition 4.4, such p determines an ingressive cartesian fibration if and only if all (ingressive)
arrows in 𝐴 × 𝜄𝐵 have enough cartesian lifts. By [HHLN23, Corollary 2.2.2] or [Lu09a, Proposition
2.4.1.3(3)], this is equivalent to

𝑌 𝐴 × 𝐵

𝐴

𝑝

𝑝1 pr1

defining a map of cartesian fibrations over A preserving cartesian arrows. In particular, each 𝛼 : 𝑎 −→ 𝑎′

in A gives rise to a cartesian transport functor 𝛼∗ : 𝑌𝑎′ −→ 𝑌𝑎 between the fibres of 𝑝1. Following
[HHLN23], let us write LCart(𝐴, 𝐵) for the∞-category of 𝑝 : 𝑌 −→ 𝐴× 𝐵 having p-cartesian lifts over
𝐴 × 𝜄𝐵 and maps preserving such p-cartesian lifts. In these terms, we have the following:

Observation 6.1. There are natural equivalences of∞-categories

Cartin((𝐴, 𝐵)⊥) � LCart(𝐴, 𝐵).

Remark 6.2. There is an evident analogue LCocart(𝐴, 𝐵) consisting of 𝑝 : 𝑌 −→ 𝐴 × 𝐵 having p-
cocartesian lifts over 𝐴 × 𝜄𝐵. This∞-category does not have a good interpretation in terms of adequate
triples; one can typically not equip Y with the natural structure of an adequate triple.

Lemma 6.3. Let 𝑝 = (𝑝1, 𝑝2) : 𝑌 −→ 𝐴 × 𝐵 be a map in LCart(𝐴, 𝐵). Then p defines the following:

(1) an op-Gray fibration in the sense of Definition 5.14 if and only if for each 𝑎 ∈ 𝐴, the map
𝑝2 : 𝑌𝑎 −→ 𝑌 −→ 𝐵 from the fibre of 𝑝1 is a cartesian fibration.

(2) a curved orthofibration in the sense of Definition 5.14 if and only if for each 𝑎 ∈ 𝐴, the map
𝑝2 : 𝑌𝑎 −→ 𝑌 −→ 𝐵 from the fibre of 𝑝1 is a cocartesian fibration.

Proof. Observe that the map 𝑌 eg −→ ((𝐴, 𝐵)⊥)eg is simply given by the restriction of 𝑝 : 𝑌 −→ 𝐴 × 𝐵
to 𝜄𝐴 × 𝐵. It follows from [HHLN23, Remark 2.2.9] that this restriction to 𝜄𝐴 × 𝐵 is a (co)cartesian
fibration if and only if for each 𝑎 ∈ 𝐴, the restriction 𝑝𝑎 : 𝑌𝑎 −→ {𝑎}×𝐵 of p is a (co)cartesian fibration.
Finally, note that 𝑝𝑎 can be identified with 𝑝2 (restricted to the fibre 𝑌𝑎). �

Definition 6.4. Let us denote by CrvOrtho(𝐴, 𝐵) the subcategory of Cat/𝐴 × 𝐵 whose objects are
curved orthofibrations and whose morphisms are maps preserving locally p-cartesian morphisms over
𝐴 × 𝜄𝐵 and locally p-cocartesian morphisms over 𝜄𝐴 × 𝐵. We define OpGray(𝐴, 𝐵) similarly.
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We then immediately find the following:

Corollary 6.5. There are natural equivalences

CrvOrtho((𝐴, 𝐵)⊥) CrvOrtho(𝐴, 𝐵)

OpGray((𝐴, 𝐵)⊥) OpGray(𝐴, 𝐵).

∼

∼

Remark 6.6. As one may expect, the notion of a Gray fibration 𝑝 : 𝑌 −→ 𝐴 × 𝐵 was introduced in
[HHLN23] as the opposite of an op-Gray fibration; that is, there is an equivalence

(−)op : Gray(𝐴, 𝐵) OpGray(𝐴op, 𝐵op).
∼

In particular, Gray(𝐴, 𝐵) is a certain subcategory of LCocart(𝐴, 𝐵). As in Remark 6.2, it does not have
a good analogue for general orthogonal adequate triples.

Remark 6.7. In [HHLN23, Section 2], we recorded various other ways to recognise (op-)Gray fibrations
and curved orthofibrations. For example, (𝑝1, 𝑝2) : 𝑌 −→ 𝐴 × 𝐵 is a curved orthofibration if 𝑝1 is a
cartesian fibration and 𝑝2 is a cocartesian fibration [HHLN23, Proposition 2.3.3]; that is,

CrvOrtho(𝐴, 𝐵) = LCart(𝐴, 𝐵) ∩ RCocart(𝐴, 𝐵).

Lemma 6.8. A map 𝑝 = (𝑝1, 𝑝2) : 𝑌 −→ 𝐴 × 𝐵 is an orthofibration in the sense of Definition 5.19 if
and only if it is a curved orthofibration and for each map 𝛼 : 𝑎 −→ 𝑎′, the cartesian transport functor
𝛼∗ : 𝑌𝑎′ −→ 𝑌𝑎 preserves 𝑝2-cocartesian arrows.

Proof. Let us start by noting that an arrow in some fibre 𝑌𝑎 ⊆ 𝑌 is 𝑝2-cocartesian if and only if it
defines a cocartesian arrow for the base change of p to 𝜄𝐴 × 𝐵; see [HHLN23, Corollary 2.2.7]. This
base change coincides with 𝑝eg : 𝑌 eg −→ ((𝐴 × 𝐵)⊥)eg, so an arrow in 𝑌𝑎 is 𝑝2-cocartesian if and only
if it defines a 𝑝eg-cocartesian arrow.

Using this, it follows that 𝛼∗ preserves 𝑝2-cocartesian arrows if and only if the following holds: for
each square in Y

𝑦𝑎,𝑏 𝑦𝑎′,𝑏 (𝑎, 𝑏) (𝑎′, 𝑏)

𝑦𝑎,𝑏′ 𝑦𝑎′,𝑏′ (𝑎, 𝑏′) (𝑎′, 𝑏′)

𝛼

𝛽 𝛽

𝛼

in which the vertical arrows are p-cartesian and the bottom horizontal arrow is 𝑝in-cocartesian, the
top horizontal arrow is 𝑝2-cocartesian. This is precisely the condition of Definition 5.19, since the
ambigressive squares in Y are precisely squares of the above form whose vertical maps are p-cartesian.

�

Lemma 6.8 asserts that the notion of an orthofibration as defined in Definition 5.19 agrees (over
𝑋 = 𝐴 × 𝐵) with the notion of an orthofibration employed in [HHLN23] (see, in particular, [HHLN23,
Proposition 2.3.11]). Writing Ortho(𝐴, 𝐵) ⊆ CrvOrtho(𝐴, 𝐵) for the full subcategory spanned by the
orthofibrations, we therefore obtain the following:

Corollary 6.9. There are natural equivalences of∞-categories

Ortho((𝐴, 𝐵)⊥) � Ortho(𝐴, 𝐵).

All in all, we have found that over the orthogonal triple (𝐴, 𝐵)⊥ = (𝐴 × 𝐵, 𝐴 × 𝜄𝐵, 𝜄𝐴 × 𝐵), the ∞-
categories of fibrations introduced in Section 5 coincide with those appearing under the same name in
[HHLN23].
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We will now unravel the content of the dualisation equivalence from Theorem 5.21 over the base
𝑋 = (𝐴, 𝐵)⊥. To this end, let us start with the following observation:

Lemma 6.10. Let A and B be two ∞-categories. Then there is an equivalence of orthogonal adequate
triples

Span⊥
(
(𝐴, 𝐵)⊥

)
� (𝐴, 𝐵op)⊥.

Proof. Note that (𝐴, 𝐵)⊥ decomposes as a product of the triples (𝐴, 𝐴, 𝜄𝐴) and (𝐵, 𝜄𝐵, 𝐵), both of which
are evidently orthogonal and adequate (and both these properties are preserved under taking products).
Since the span construction preserves products, being a right adjoint, the claim follows from Proposition
2.15. �

Consequently, Theorem 5.21 provides equivalences between certain types of fibrations over 𝐴 × 𝐵
and 𝐴 × 𝐵op, respectively. Recall from Theorem 5.21 that these equivalences take opposite categories
at the level of fibres. To conform with the conventions of [HHLN23], we will therefore compose the
equivalences of Theorem 5.21 with taking opposites, resulting in the following:

Definition 6.11. For∞-categories A and B, we define functors

SDcc : LCart(𝐴, 𝐵) LCart(𝐴, 𝐵op) LCocart(𝐴op, 𝐵)

SDct : LCocart(𝐴op, 𝐵) LCart(𝐴, 𝐵op) LCart(𝐴, 𝐵)

Span⊥ (−)op

(−)op Span⊥

using the identifications from Observation 6.1 and Lemma 6.10.

Using Theorem 5.21 and the identifications Corollary 6.5 from Corollary 6.9, we then immediately
find the following:

Corollary 6.12. The functor SDcc : LCart(𝐴, 𝐵) → LCocart(𝐴op, 𝐵) is an equivalence with inverse
SDct and restricts to equivalences

CrvOrtho(𝐴, 𝐵)
∼
−→ Gray(𝐴op, 𝐵) and Ortho(𝐴, 𝐵)

∼
−→ Cocart(𝐴op × 𝐵)

natural in 𝐴, 𝐵 ∈ Cat. For 𝐴 = ∗, and thus in particular on fibres, this equivalence restricts to the
identity.

Remark 6.13. For a map 𝑝 : 𝑌 → 𝐴 × 𝐵 in LCart(𝐴, 𝐵), the dual fibration SDcc (𝑝) : SDcc (𝑌 ) −→
𝐴op×𝐵 is given explicitly as follows. The objects of SDcc (𝑌 ) are the same as those of Y, and a morphism
from y to 𝑦′ is given by a span

𝑧 (𝑎, 𝑏)

𝑦 𝑦′ (𝑎′, 𝑏) (𝑎, 𝑏′),
𝑝

(id, 𝑓 )(𝑔,id)

where the left map 𝑧 → 𝑦 is p-cartesian. Dually, for a map 𝑞 : 𝑋 → 𝐴 × 𝐵 in LCocart(𝐴, 𝐵), we find
SDct (𝑌 ) → 𝐴op × 𝐵 has morphisms from y to 𝑦′ given by diagrams

𝑧 (𝑎′, 𝑏′)

𝑦 𝑦′ (𝑎′, 𝑏) (𝑎, 𝑏′),
𝑞

(id, 𝑓 ) (𝑔,id)

where the right map 𝑦′ → 𝑧 is q-cocartesian.
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Taking 𝐵 = ∗, Corollary 6.12 reproduces the dualisation equivalence between cartesian fibrations
over A and cocartesian fibrations over 𝐴op from [BGN18], which their main result shows is equivalent
(naturally in A and B) to

Cart(𝐴) Strct

−−−→ Fun(𝐴op, Cat) Uncc

−−−→ Cocart(𝐴op);

we gave a more direct proof of this fact as Theorem 3.18 above (it also follows from the unicity results
from Appendix A). In [HHLN23, Section 2.5], we extended this procedure to an equivalence

Dcc : LCart(𝐴, 𝐵)
Strct

−−−→ Fun(𝐴op, Cat/𝐵) Uncc

−−−→ LCocart(𝐴op, 𝐵) :Dct

by straightening in one variable. We deduce the following:

Corollary 6.14. The functors

SDcc : LCart(𝐴, 𝐵) LCocart(𝐴op, 𝐵) :SDct

agree with the equivalences Dcc and Dct constructed in [HHLN23, Section 2.5].

Proof. Essentially by construction, the two diagrams

LCart(𝐴, 𝐵) LCocart(𝐴op, 𝐵) LCart(𝐴, 𝐵) LCocart(𝐴op, 𝐵)

Cart(𝐴)/pr1 Cocart(𝐴op)/pr1 Cart(𝐴)/pr1 Cocart(𝐴op)/pr1

SDcc Dcc

fgt

SDcc

fgt fgt

Dcc

fgt

commute naturally in A and B. Here, the bottom copy of SDcc arises from Definition 6.11 by taking
𝐵 = ∗. Since the vertical maps are equivalences, the agreement of the two functors in the one-variable
case implies that in the two-variable case. �

Example 6.15. As an example, consider the dual of the bifibration (𝑠, 𝑡) : Ar(𝑋) −→ 𝑋×𝑋; see [Lu09a,
Corollary 2.4.7.11], which, in particular, defines an object in Ortho(𝑋, 𝑋). We claim that the functor
from Definition 6.11 sends this to(

Twℓ (𝑋) −→ 𝑋op × 𝑋
)
� SDcc(Ar(𝑋) −→ 𝑋2).

Let us mention that an analogous identification(
Twℓ (𝑋) −→ 𝑋op × 𝑋

)
� Dcc(Ar(𝑋) −→ 𝑋2)

is a direct consequence of [HMS22, Corollary A.2.5], the argument of which is based on the universal
property of twisted arrow ∞-categories from [Lu17, Corollary 5.2.1.22]. In the (current) absence of a
similar universal property for twisted arrow ∞-categories of (∞, 2)-categories, such a proof does not
generalise to this more general situation. The present example should be considered a warm-up for
Section 7 below, where we provide this extension using the span model for dual fibrations.

Now for the proof: Unravelling the definitions, we find that SDcc is given by the opposite of the
associated ∞-category of a certain simplicial ∞-groupoid Φ, where Φ𝑛 is given by the ∞-groupoid
of diagrams 𝜙 : Tw𝑟 ([𝑛]) × [1] −→ 𝑋 that take edges in Tw𝑟 ([𝑛])eg × {0} and Tw𝑟 ([𝑛])in × {1} to
equivalences. We now claim that the localisation of Tw𝑟 ([𝑛]) × [1] at these subcategories is naturally
equivalent to [𝑛] ★ [𝑛]op via the map

Tw𝑟 ([𝑛]) × [1] −→ [𝑛] ★ [𝑛]op, ((𝑖 ≤ 𝑗), 𝜖) ↦−→

{
𝑖𝑙 𝜖 = 0
𝑗𝑟 𝜖 = 1

, (*)
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where we have used subscripts to indicate join factors. Restriction along this map then shows that
ac(Φ) � Tw𝑟 (𝑋), and so ac(Φ)op � Twℓ (𝑋), as required. One can also check that this equivalence lives
over 𝑋op × 𝑋 .

To see the claim, we note that both restrictions Tw𝑟 ([𝑛]) × {𝜖} → 𝑋 of a diagram 𝜙 as considered
above take all squares in Tw𝑟 ([𝑛]) to pushout squares in X (namely, ones in which two opposite
edges are equivalences). Using the pointwise formula for left Kan extensions, one readily checks that
𝜙 : Tw𝑟 ([𝑛]) × [1] → 𝑋 is then left Kan extended from the subposet J𝑛 × [1], where J𝑛 is the arch
along the top of Tw𝑟 ([𝑛]) consisting of all (𝑖 ≤ 𝑗) with 𝑖 = 0 or 𝑗 = 𝑛. It follows that the inclusion
J𝑛 × [1] → Tw𝑟 ([𝑛]) × [1] induces an equivalence upon localisation.

Now note that J𝑛 consists of two copies of [𝑛] glued along the initial vertex. The claim then follows
from the fact that the localisation of [𝑛] × [1] at [𝑛] × {1} is given by [𝑛 + 1] and likewise for the
localisation at [𝑛] × {0}; this realises the localisation of J𝑛 as the pushout of [𝑛 + 1] and [1 + 𝑛] along
[1], embedded into the former as the terminal segment, and into the latter as the initial one. Finally,
observe that the localisation map J𝑛 × [1] → [𝑛 + 1] ∪[1] [1+ 𝑛] � [𝑛]★ [𝑛]op just described is indeed
the restriction of (*).

We can also use the identification of Dcc and the functor SDcc from Definition 6.11 to describe the
fibrewise adjoints constructed in [HHLN23, Section 3.1] more explicitly. For this, we need to recall
some notation from [HHLN23, Section 3]. Fix a parametrised left adjoint

𝐷 𝐶

𝐵,

𝐿

𝑝 𝑞

(i.e., a map between two cartesian fibrations (though not necessarily preserving cartesian edges)) such
that the restrictions 𝐿𝑏 : 𝐷𝑏 −→ 𝐶𝑏 to the fibres admit right adjoints 𝑅𝑏 : 𝐶𝑏 −→ 𝐷𝑏 . In [HHLN23],
we constructed from this data a diagram

Dcc(𝑝) Dcc(𝑞)

𝐵op,

𝑅

such that R restricts to the functors 𝑅𝑏 under the identifications Dcc(𝑝)𝑏 � 𝐷 𝑝 and Dcc(𝑞)𝑏 � 𝐶𝑏 arising
from the naturality of Dcc and showed that this gives an equivalence between the (∞, 2)-category of
parametrised left adjoints and that of parametrised right adjoints (after taking opposites appropriately).
One can use the equivalence SDcc � Dcc to give an explicit description of the functor R; see also [To20,
Section 3.1] for a point-set variant of this construction of fibrewise adjoints.

To formulate the statement, observe that for each 𝛽 : 𝑏′ → 𝑏, the left adjoints 𝐿𝑏 and 𝐿 ′𝑏 and the
cartesian transport functors of p and q are related by a natural transformation 𝜆𝛽 : 𝐿𝑏′𝛽

∗ → 𝛽∗𝐿𝑏 . We
then have the following:

Proposition 6.16. For a parametrised left adjoint L, the associated parametrised right adjoint

SDcc (𝑝) SDcc (𝑞)

𝐵op,

𝑅

can be described as follows:
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◦ For an object 𝑦𝑏 in the fibre SDcc (𝑞)𝑏 � 𝐶𝑏 over 𝑏 ∈ 𝐵, one has 𝑅(𝑦𝑏) � 𝑅𝑏 (𝑦𝑏).
◦ For a map 𝛽 : 𝑏′ → 𝑏 in B, the functor R is given on morphisms over 𝛽op in SDcc (𝑞) by

𝛽∗𝑥𝑏 𝛽∗𝑅𝑏 (𝑥𝑏)

𝑥𝑏 𝑦𝑏′ 𝑅𝑏 (𝑥𝑏) 𝑅𝑏′ (𝑦𝑏′ ).

𝑓 𝑔

Here, the left-pointing arrows are cartesian lifts of 𝛽 in C and D, and the right-pointing arrows are
fibrewise over 𝑏′, with g given by the (fibrewise) adjoint to

𝐿𝑏′𝛽
∗𝑅𝑏 (𝑥𝑏) 𝛽∗𝐿𝑏𝑅𝑏 (𝑥𝑏) 𝛽∗𝑥𝑏 𝑦𝑏′ .

𝜆𝛽 𝜖 𝑓 (6.17)

Proof. A direct construction of R can be carried out exactly as in [HHLN23, Theorem 3.1.11], so
we will be brief. Applying cocartesian unstraightening to the functor L yields a curved orthofibra-
tion 𝜋 : 𝑋 −→ 𝐵 × [1]. Since L admits fibrewise right adjoints, this map is an op-Gray fibration as
well. Applying the span dualisation from Corollary 6.12 to this op-Gray fibration yields a curved or-
thofibration SDct (𝜋) : SDct (𝑋) −→ [1] × 𝐵op, which can be straightened over [1] to yield the desired
functor R.

Let us now describe the behaviour of R on arrows (and hence also on objects). Note that the functor R
arises from cartesian transport in SDct (𝜋) : SDct (𝑋) −→ [1] ×𝐵op in the direction of [1]. Consequently,
it suffices to understand those squares in SDct (𝜋) whose vertical maps are cartesian lifts of the map
in [1] and whose horizontal maps cover an arrow 𝛽op in 𝐵op. Like in the proof of Theorem 5.21,
unraveling the definitions shows that such a square in SDct (𝑋) corresponds to a diagram in the domain
of 𝜋 : 𝑋 −→ 𝐵 × [1] of the form

𝑅𝑏 (𝑥) 𝛽∗𝑅𝑏 (𝑥) 𝑅𝑏′ (𝑦)

𝑅𝑏 (𝑥) 𝛽∗𝑅𝑏 (𝑥) 𝑅𝑏′ (𝑦)

𝑥 𝛽∗𝑥 𝑦

𝑔

∼ ∼

𝑔

∼

𝑓

↦−→

(𝑏, 0) (𝑏′, 0) (𝑏′, 0)

(𝑏, 0) (𝑏′, 0) (𝑏′, 0)

(𝑏, 1) (𝑏′, 1) (𝑏′, 1),

𝛽

𝛽

𝛽

where the top right and bottom left squares are (cartesian) ambigressive in X. In particular, the left-
pointing arrows are all 𝜋-cartesian lifts of 𝛽. Let us explain the rest of the diagram in more detail.
For the left and right vertical spans to describe cartesian arrows in SDct (𝑋), one needs their upwards-
pointing leg to be an equivalence (as indicated) and their downwards-pointing leg to define a carte-
sian arrow for the map 𝜋𝑏 : 𝑋𝑏 −→ {𝑏} × [1]. Because each 𝜋𝑏 is both a cocartesian and a carte-
sian fibration classifying the adjoint pair (𝐿𝑏 , 𝑅𝑏), the objects in the middle row are then given by
𝑅𝑏 (𝑥), 𝛽∗𝑅𝑏 (𝑥) and 𝑅𝑏′ (𝑦). Finally, the right vertical square is entirely contained in the fibre 𝑋𝑏′ .
Since 𝑅𝑏′ (𝑦) −→ 𝑦 was 𝜋𝑏′-cartesian, the map g is therefore the unique one making the square
commute.

It now remains to verify that we can indeed take g to be the adjoint to (6.17). This follows from
an analysis very similar to [HHLN23, Proposition 3.2.7]. In fact, when f is the identity, the adjoint to
(6.17) is precisely the mate of 𝜆𝛽; In this case, [HHLN23, Proposition 3.2.7] precisely asserts that the
mate makes the bottom right square commute. �

Finally, we will use Corollary 6.12 to identify various ways of straightening orthofibrations.
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Proposition 6.18. The four equivalences given by

Ortho(𝐴, 𝐵) Cocart(𝐴op × 𝐵) Fun(𝐴op × 𝐵, Cat)

Ortho(𝐴, 𝐵) Cart(𝐴 × 𝐵op) Fun(𝐴op × 𝐵, Cat)

Ortho(𝐴, 𝐵) Fun(𝐴op, Cocart(𝐵)) Fun(𝐴op × 𝐵, Cat)

Dcc Strcc

Dct Strct

Strct Strcc

and

Ortho(𝐴, 𝐵) Fun(𝐵, Cart(𝐴)) Fun(𝐴op × 𝐵, Cat)Strcc Strct

are pairwise equivalent, naturally in 𝐴, 𝐵 ∈ Cat.

Definition 6.19. We shall refer to any of the functors above as the orthocartesian (un)straightening
equivalence, in formulae

Stroc : Ortho(𝐴, 𝐵) Fun(𝐴op × 𝐵, Cat) :Unoc.

For example, we learn from Example 6.15 that

Stroc ((𝑠, 𝑡) : Ar(𝐶) → 𝐶 × 𝐶
)
�
(
Hom𝐶 : 𝐶op × 𝐶 → Gpd

)
,

which we will generalise to (op)lax arrow categories of (∞, 2)-categories in the next section.
We shall give a fairly direct comparison between the four equivalences above in the present section,

but there could be more ways of straightening an orthofibration. For example, in [St18], Stevenson
produced an equivalence

Bifib(𝐴, 𝐵) � Fun(𝐴op × 𝐵, Gpd)

by comparing both sides to a model category of correspondences. In order to settle such coherence
questions once and for all, we take another cue from [BGN18] and show in the appendix that any
equivalence as in the statement of Proposition 6.18 that is natural in the input categories and restricts
to the identity for 𝐴 = ∗ = 𝐵 agrees with that above (in an essentially unique fashion). We also include
similar statements for curved orthofibrations and bifibrations, in particular settling the comparison with
Stevenson’s construction.

For the direct proof (and also the naturality of the Yoneda embedding), we need the following:

Lemma 6.20. The three functors

Cocart(𝐴 × 𝐵)
Strcc

𝐴×𝐵
−−−−−→ Fun(𝐴 × 𝐵, Cat)

Cocart(𝐴 × 𝐵)
Strcc

𝐴
−−−→ Fun(𝐴, Cocart(𝐵))

Strcc
𝐵

−−−→ Fun(𝐴 × 𝐵, Cat)

Cocart(𝐴 × 𝐵)
Strcc

𝐵
−−−→ Fun(𝐵, Cocart(𝐴))

Strcc
𝐴

−−−→ Fun(𝐴 × 𝐵, Cat)

are pairwise equivalent.

Proof. We again use the formula

Uncc(𝐹) � colim
(
Φ𝐹 : Tw𝑟 (𝐴 × 𝐵)

(𝑠,𝑡)
−−−→ (𝐴 × 𝐵) × (𝐴 × 𝐵)op 𝐹×(𝐴×𝐵)−/

−−−−−−−−−→ Cat
)
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from [GHN17]. Using Tw𝑟 (𝐴 × 𝐵) = Tw𝑟 (𝐴) × Tw𝑟 (𝐵) and (𝐴 × 𝐵)−/ = 𝐴−/ × 𝐵−/ and the fact that
colimits over a product can (naturally in the indexing categories) be computed in two steps, we find that
this colimit agrees with that of

Tw𝑟 (𝐵) −→ Fun(Tw𝑟 (𝐴), Cat) colim
−−−−→ Cat,

where the first functor is curried from Φ𝐹 ; that is, it takes 𝑓 : 𝑥 → 𝑦 ∈ Tw𝑟 (𝐵) to

Tw𝑟 (𝐴)
(𝑠,𝑡)
−−−→ 𝐴 × 𝐴op 𝐹 (−,𝑥)×𝐴−/×𝐵𝑦/

−−−−−−−−−−−−−−→ Cat.

But the colimit of this functor is naturally equivalent to the unstraightening of 𝐹 (−, 𝑥) × 𝐵𝑦/ : 𝐴→ Cat,
so in total, Uncc(𝐹) is naturally identified with

colim
(
Tw𝑟 (𝐵) −→ 𝐵 × 𝐵op Uncc

𝐴 (𝐹 )×𝐵−/
−−−−−−−−−−→ Cat

)
,

which is itself unstraightening over B; here, we regard Uncc
𝐴 as the functor

Fun(𝐴 × 𝐵, Cat) −→ Fun(𝐵, Cocart(𝐴)) −→ Fun(𝐵, Cat)/cst𝐴

by forgetting the map to A. In total, this process identifies

Uncc
𝐴×𝐵 : Fun(𝐴 × 𝐵, Cat) −→ Cocart(𝐴 × 𝐵)

as the composite

Fun(𝐴 × 𝐵, Cat)
Uncc

𝐴
−−−→ Fun(𝐵, Cocart(𝐴))

Uncc
𝐵

−−−→ Cocart(𝐴 × 𝐵)

as desired. �

Proof of Proposition 6.18. Recall that Dcc is defined as the composite

Ortho(𝐴, 𝐵)
Strct

−−−→ Fun(𝐴op, Cocart(𝐵)) Uncc

−−−→ Cocart(𝐴op × 𝐵).

Thus, Lemma 6.20 immediately identifies the functors

Ortho(𝐴, 𝐵)
Dcc

−−→ Cocart(𝐴op × 𝐵)
Strcc

−−−→ Fun(𝐴op × 𝐵, Cat)

and

Ortho(𝐴, 𝐵)
Strct

−−−→ Fun(𝐴op, Cocart(𝐵)) Strcc

−−−→ Fun(𝐴op × 𝐵, Cat),

and the argument for the first and fourth functors is dual. To compare the first composite with

Ortho(𝐴, 𝐵)
Dct

−−→ Cart(𝐴 × 𝐵op)
Strct

−−−→ Fun(𝐴op × 𝐵, Cat),

we observe that the diagram

Cocart(𝐴op × 𝐵) Cart(𝐴 × 𝐵op)

Ortho(𝐴, 𝐵)
SDct

SDct

SDct
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commutes essentially by construction (whereas this does not seem clear from the construction for Dct).
It now follows from Corollary 6.14 that Dcc : Ortho(𝐴, 𝐵) → Cocart(𝐴op × 𝐵) agrees with

Ortho(𝐴, 𝐵)
Dct

−−→ Cart(𝐴 × 𝐵op)
Dcc

−−→ Cocart(𝐴op × 𝐵),

whence the result follows from Corollary 3.18. �

Remark 6.21.

(1) Straightening of bifibrations is also discussed in detail in [HLAS16, Section 5], [HMS22, Appendix
A] and [CDH+23, Section 7.1], in each case by choosing one of the last two equivalences from 6.18
as the definition. For example, the stable∞-category underlying the Poincaré∞-category Pair(C, Ϙ)
from [CDH+23, Section 7.3] is simply the orthocartesian unstraightening of Ω∞BϘ : Cop × Cop →
Gpd in the language of the present paper.

(2) The equivalence

Gray(𝐴, 𝐵) � Fun(𝐴 � 𝐵, Cat)

constructed in [HHLN23, Section 5.2] by definition restricts to the composite

Cocart(𝐴 × 𝐵)
Strcc

−−−→ Fun(𝐴, Cocart(𝐵)) Strcc

−−−→ Fun(𝐴 × 𝐵, Cat);

see [HHLN23, Remark 5.2.10]. As another consequence of (the dual of) Corollary 6.20, we obtain
that our straightening equivalence for Gray fibrations extends the usual one for cocartesian fibrations
over 𝐴 × 𝐵.

7. (Op)lax arrow and twisted arrow∞-categories

In this section, we will discuss an application of the dualisation procedure from Corollary 6.12 which
extends Example 6.15. The duality between the arrow and twisted arrow category of an ∞-category X
extends to a duality between the oplax arrow and twisted arrow category of an (∞, 2)-category X. More
precisely, the oplax twisted arrow category of X

(𝑠, 𝑡) : Tw𝑟 (X) −→ 𝑋 × 𝑋op

is introduced in work of Abellán García and Stern [AGS23] as an explicit model for the cartesian
fibration classified by the enriched mapping functor of X (restricted to its underlying (∞, 1)-category X)

HomX : 𝑋op × 𝑋 −→ Cat.

We will show that the enriched mapping functor also classifies the orthofibration

(𝑠, 𝑡) : Aropl(X) −→ 𝑋 × 𝑋

from the (∞, 1)-category underlying the oplax arrow category, defined using the (a priori unrelated)
Gray tensor product of Gagna, Harpaz and Lanari from [GHL21].

Since the oplax twisted arrow category and the Gray tensor product are both defined using the model
for (∞, 2)-categories given by scaled simplicial sets [Lu09b], we will start with a minimalistic review
of these.

Notation 7.1. Recall that a scaled simplicial set is a pair (X, 𝑆) consisting of a simplicial set X and a
subset 𝑆 ⊆ X2 of 2-simplices that are called thin. The category sSetsc of scaled simplicial sets carries a
model structure in which the cofibrations are the monomorphisms, which is related to the model category
Cat(sSet+) of categories enriched in marked simplicial sets (with the categorical model structure) by a
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Quillen equivalence ℭsc : sSetsc 	 Cat(sSet+) :Nsc [Lu09b, Theorem 4.2.7]. We define the∞-category
Cat2 of (∞, 2)-categories as the ∞-category associated to any of these two Quillen equivalent model
categories (or any of the other standard models, cf. [Lu09b, Theorem 0.0.3]).

Notation 7.2. For a simplicial set X, we write 𝑋♯ for the associated scaled simplicial set in which every
2-simplex is thin. This determines a left Quillen functor (−)♯ : sSet −→ sSetsc, where sSet is equipped
with the Joyal model structure. Its right adjoint sends a scaled simplicial set (X, 𝑆) to the sub-simplicial
set of X spanned by the thin 2-simplices. At the level of ∞-categories, this induces the fully faithful
inclusion Cat ↩→ Cat2 of (∞, 1)-categories into (∞, 2)-categories, together with its right adjoint sending
an (∞, 2)-category X to its underlying (∞, 1)-category X.

To manipulate simple diagrams in (∞, 2)-categories, such as lax commuting squares and triangles,
let us recall from [BSP21] that a gaunt 2-category is a strict 2-category whose only invertible 1- and
2-cells are the identities. For example, a gaunt 1-category A gives rise to a gaunt 2-category [1]𝐴 with

Hom[1]𝐴 (0, 1) = 𝐴, Hom[1]𝐴 (1, 0) = ∅, and Hom[1]𝐴 (𝑖, 𝑖) = ∗.

Every gaunt 2-category determines an object in Cat(sSet+) by taking the nerves of its mapping categories
(with degenerate marking), and this determines a fully faithful functor Gaunt2 ↩→ Cat2 from the
(ordinary) category of gaunt 2-categories into the∞-category of (∞, 2)-categories, with essential image
given by the 0-truncated objects [BSP21, Corollary 12.3]. To decompose diagrams indexed by gaunt
2-categories into simpler ones, let us record the following:

Proposition 7.3. The inclusion Gaunt2 ↩→ Cat2 preserves coproducts and the following pushouts:

(1) Pushouts of the form [1]𝐴←− {𝑖}
𝑥
−→ X for 𝑖 = 0, 1.

(2) Pushouts of the form [2] 𝜕1

←−− [1]
𝛾
−→X, freely adding a factorisation 𝛾 = 𝛼𝛽.

(3) Pushouts of the form [1][1] ←− [1]{𝑖 }
𝛾
−→X for 𝑖 = 0, 1, where 𝛾 : 𝑥 → 𝑦 is an arrow in X such that

x has no nontrivial incoming arrows and y has no nontrivial outgoing arrows.

Proof. Let us first give explicit descriptions of these three types of strict pushouts in Cat(sSet+), for an
arbitrary marked simplicial category X. These will show that when X arises from a gaunt 2-category,
then so does the pushout X′.

Case (1): We only treat the pushout along {0} −→ [1]𝐴. The pushout X′ contains X as a full
subcategory, together with a new object z, so that for any object 𝑢 ∈ X,

HomX′ (𝑢, 𝑧) = 𝐴 × HomX(𝑢, 𝑥), HomX′ (𝑧, 𝑢) = ∅, HomX′ (𝑧, 𝑧) = ∗.

Composition is defined by acting on the right factor of 𝐴 ×HomX(𝑢, 𝑥). Case (2): The pushout X′ then
freely adds a factorisation 𝛾 = 𝛼𝛽, where 𝛼 has source x, 𝛽 has target y, and they have a new object z
as common target and source, respectively. More precisely, X′ has one additional object z and mapping
categories

HomX′ (𝑢, 𝑣) = HomX(𝑢, 𝑣), HomX′ (𝑢, 𝑧) = 𝛼 · HomX(𝑢, 𝑥),

HomX′ (𝑧, 𝑣) = HomX(𝑦, 𝑣) · 𝛽, HomX′ (𝑧, 𝑧) = {id𝑧} � 𝛼 · HomX(𝑦, 𝑥) · 𝛽

for 𝑢, 𝑣 ∈ X. Here, the notation 𝛼 ·HomX(𝑢, 𝑥) indicates that 𝛼 ◦ (−) : HomX(𝑢, 𝑥) −→ HomX′ (𝑢, 𝑧) is
an isomorphism for all 𝑢 ∈ X. The composition is then the evident one, using the (formal) relation that
𝛼𝛽 = 𝛾.

Case (3): The pushout X′ has the same objects and mapping categories as X, except for HomX′ (𝑥, 𝑦),
which is given by a (homotopy) pushout [1] ←− {𝑖} −→ HomX(𝑥, 𝑦). Note that when HomX(𝑥, 𝑦) is
the nerve of a gaunt 1-category, this pushout of marked simplicial sets is weakly equivalent to the nerve
of a gaunt 1-category (essentially by Case (1)).
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It remains to show that the above (strict) pushouts also model the pushout in the ∞-category Cat2.
From the above descriptions, one sees that a Dwyer–Kan equivalence of marked simplicial categories
X −→ Y induces a Dwyer–Kan equivalence between the resulting pushouts. It clearly induces weak
equivalences on mapping objects, and since we add at most one extra object, it remains essentially
surjective on homotopy categories. Since Cat(sSet+) is left proper [Lu09a, Proposition A.3.2.4], this
means that the above pushouts are all homotopy pushouts, and the result follows. �

The∞-category Cat2 admits a closed (non-symmetric) monoidal structure given by the (oplax) Gray
tensor product�. The Gray tensor product is induced by a Quillen bifunctor� : sSetsc×sSetsc −→ sSetsc.
The scaled simplicial set (X, 𝑆) � (Y, 𝑇) equals (X × Y, 𝑆 � 𝑇), where a 2-simplex (𝜎, 𝜎′) is in 𝑆 � 𝑇
if the following conditions hold:

(1) (𝜎, 𝜎′) ∈ 𝑆 × 𝑇 ,
(2) 𝜎 factors through Δ2 → Δ {1,2} or 𝜎′ factors through Δ2 → Δ {0,1}.

See [GHL21] for the details of this construction. Furthermore, by [HHLN23, Proposition 5.1.9], its
value on the pair ([𝑚], [𝑛]) is naturally equivalent to the expected (gaunt) (∞, 2)-category

00 01 02 0𝑛

10 11 12 1𝑛

𝑚0 𝑚1 𝑚2 𝑚𝑛.

(7.4)

The internal mapping objects induced by the Gray tensor product via

HomCat2
(
A, Funlax(B, X)

)
� HomCat2 (A � B, X) � HomCat2

(
B, Funopl(A, X)

)
are by definition the (∞, 2)-categories of 2-functors and (op)lax natural transformations between them;
see [Ha21, Definition 3.9].

Let us now describe the complete Segal∞-groupoid models for the fibrations

(𝑠, 𝑡) : Aropl(X) −→ 𝑋 × 𝑋, (𝑠, 𝑡) : Tw𝑟 (X) −→ 𝑋 × 𝑋op

associated to an (∞, 2)-category X. We will start with the oplax arrow∞-category.

Definition 7.5. Let X be a (∞, 2)-category. The oplax arrow ∞-category Aropl(X) is the ∞-category
underlying the oplax functor∞-category Aropl(X) = Funopl ([1], X

)
.

Informally, Aropl(X) is the∞-category with objects given by arrows of X, such that morphisms from
f to g are given by oplax commuting squares:

𝑥 𝑥 ′

𝑦 𝑦′.

𝑓 𝑔

More precisely, Aropl(X) can be characterised in terms of the Gray tensor product by the natural
equivalence

HomCat
(
𝑆, Aropl(X)

)
� HomCat2

(
[1] � 𝑆, X

)
.

Example 7.6. If X is a gaunt 2-category (i.e., a 0-truncated object in Cat2), then the above natural
equivalence becomes a natural bijection of sets. It follows that Aropl(X) is a gaunt 1-category (i.e.,
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a strict category without nontrivial isomorphisms), and from the description (7.4) of the Gray tensor
product, one sees that it coincides with the classical oplax arrow category of X.

Remark 7.7. Of course, the lax arrow category Arlax(X) is defined by a similar universal property:

HomCat
(
𝑆, Arlax(X)

)
� HomCat2

(
𝑆 � [1], X

)
.

The description of the Gray tensor product of simplices (7.4) shows that for any simplex [𝑚], there
is a natural equivalence of gaunt 2-categories [1] � ([𝑚]op) �

(
[𝑚] � [1]op)op. By adjunction, this

determines a natural equivalence

Aropl(X)op � Arlax(X1−op) (7.8)

where X1−op has only the directions of the 1-morphisms inverted. On objects, this equivalence sends an
arrow in X to the opposite arrow in X1−op.

Proposition 7.9. Suppose X is an (∞, 2)-category. Then the functor

(𝑠, 𝑡) : Aropl(X) → 𝑋 × 𝑋

is an orthofibration where an edge 𝜎, given by an oplax square

𝑥 𝑥 ′

𝑦 𝑦′,

𝑓 𝑔𝜌

over 𝜄𝑋 × 𝑋 is cocartesian if and only if 𝜌 is invertible, and similarly, an edge over 𝑋 × 𝜄𝑋 is cartesian
if and only if 𝜌 is invertible. More formally, a morphism 𝜎 : [1] � [1] → X over 𝜄𝑋 × 𝑋 (resp. 𝑋 × 𝜄𝑋)
is cocartesian (resp. cartesian) if and only if it factors through the 2-functor [1] � [1] → [1] × [1].

Proof. Let us first show that a square 𝜎 : [1] × [1] −→ X (i.e., a square 𝜎 for which 𝜌 is an equivalence),
corresponding to an arrow in Aropl(X) living over 𝜄𝑋 × 𝑋 , is cocartesian. To see this, consider the
following two equivalent unique lifting problems:

Λ0 [2] Aropl(X) Λ0 [2] � [1]
∐

Λ0 [2]×{0,1}
[2] × {0, 1} X

[2] 𝑋 × 𝑋 [2] � [1],

(𝑠,𝑡)

where Λ0 [2] is the∞-category 1← 0→ 2. Using the explicit description of the Gray tensor product of
simplices of (7.4), the right vertical map is the inclusion of the sub-(∞, 2)-category of [2]� [1] given by

10 00 20

11 01 21.

Now suppose that the morphism 0 ≤ 1 in Λ0 [2] projects to 𝜄𝑋 × 𝑋 and the corresponding map
[1] � [1] −→ X factors over [1] × [1]. This means that in the above diagram, the left oplax square
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commutes and that 00 −→ 10 is an equivalence. The ∞-groupoid of such diagrams is given by the
∞-groupoid of 2-functors from the (∞, 2)-category

00 20

11 01 21

to X, where the left triangle commutes. For example, this follows by decomposing the 2-category before
as a pushout in Cat2 using Proposition 7.3 and then observing that the 2-category

•

• •

∼
∼

is equivalent to [1]. A similar argument shows that the ∞-groupoid of diagrams [2] � [1] → X such
that the morphism 0 ≤ 1 in [2] projects to 𝜄𝑋 × 𝑋 and the corresponding map [1] � [1] −→ X factors
over [1] × [1] is also equivalent to the∞-groupoid of 2-functors from the (∞, 2)-category above to X.
The functor

HomCat2
(
[2] � [1], X

)
−→ HomCat2

(
Λ0 [2] � [1]

∐
Λ0 [2]×{0,1}

[2] × {0, 1}, X
)

lives over the restriction to [0, 1] � [1]. By the previous argument, taking fibres over 𝜎, we obtain an
equivalence, and so we conclude that 𝜎 is a cocartesian edge.

Next, note that for any arrow in 𝜄𝑋 × 𝑋 and a lift of its domain, there exists an (𝑠, 𝑡)-cocartesian lift
𝜎 : [1] × [1] → X and that lifts of this form are closed under equivalence. This shows both that there
are enough (𝑠, 𝑡)-cocartesian edges over 𝜄𝑋 × 𝑋 , and that, up to equivalence, all (𝑠, 𝑡)-cocartesian lifts
over 𝜄𝑋 × 𝑋 are of the form asserted in the proposition.

A dual argument proves the existence and form of (𝑠, 𝑡)-cartesian arrows over 𝑋 × 𝜄𝑋 . It follows that
(𝑠, 𝑡) is a curved orthofibration in the sense of Definition 6.4.

To show that (𝑠, 𝑡) is an orthofibration, consider 𝛼 : 𝑎′ −→ 𝑎, 𝛽 : 𝑏 −→ 𝑏′ and let 𝑓 : 𝑎 −→ 𝑏 be
an object in the fibre Aropl(X)(𝑎,𝑏) . We have to show that the interpolating edge associated to this data
is an equivalence. Because interpolating edges are unique, we may equivalently exhibit a commutative
square in Aropl(X) living over the square

(𝑎′, 𝑏) (𝑎′, 𝑏′)

(𝑎, 𝑏) (𝑎, 𝑏′),

(id,𝛽)

(𝛼,id) (𝛼,id)
(id,𝛽)

whose bottom left corner is f and whose horizontal and vertical morphisms are cocartesian and cartesian,
respectively; indeed, in this case, the interpolating edge is the identity on 𝛽 𝑓 𝛼 in Aropl(X). Such a square
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is given by the following cube in X

𝑎′ 𝑎′

𝑎 𝑎

𝑏 𝑏′

𝑏 𝑏′

𝑓 𝛼

𝛽 𝑓 𝛼

𝛼

𝑓

𝛽 𝑓

id

𝛽

in which all faces commute. �

Let us now introduce the model for the enhanced twisted arrow∞-category given in [AGS23], which
is constructed via the model of scaled simplicial sets.

Notation 7.10. In the following, we will denote the image of 𝑖 ∈ Δ𝑛 under the inclusionΔ𝑛 ⊂ Δ𝑛★Δ𝑛,op

by i and the image of 𝑗 ∈ Δ𝑛,op under the inclusion of Δ𝑛,op ⊂ Δ𝑛 ★Δ𝑛,op by 𝑗 .

Definition 7.11. Consider the cosimplicial object

𝜅𝑟 : 𝚫 sSetsc; [𝑛] Δ𝑛 ★sc Δ𝑛,op

sending each n to the join Δ𝑛 ★Δ𝑛,op, where a 2-simplex 𝜎 ∈ Δ𝑛 ★Δ𝑛,op is thin if one of the following
conditions holds:

(i) 𝜎 is degenerate,
(ii) 𝜎 is contained totally in either Δ𝑛 or Δ𝑛,op,

(iii) 𝜎 = Δ {𝑖, 𝑗 , 𝑘̄ } for 𝑖 < 𝑗 ≤ 𝑘 , or
(iv) 𝜎 = Δ {𝑘, 𝑗,𝑖 } for 𝑖 < 𝑗 ≤ 𝑘 .

The functor 𝜅𝑟 induces a functor Tw𝑟 = 𝑆𝜅𝑟 : sSetsc −→ sSet from scaled simplicial sets to simplicial
sets such that Tw𝑟 (X, 𝑆)𝑛 � HomsSetsc (𝜅𝑟 ([𝑛]), (X, 𝑆)). We enhance this to a functor with values in
marked simplicial sets by declaring an edge in Tw𝑟 (X, 𝑆) to be marked if it arises from a totally thin
diagram (Δ1 ★Δ1,op)♯ −→ (X, 𝑆) and write

Tw𝑟
+(−) : sSetsc sSet+

for the resulting functor. Note that the two inclusions (Δ𝑛)♯ ↩→ (Δ𝑛) ★sc Δ𝑛,op ←↪ (Δ𝑛,op)♯ induce a
map Tw𝑟 (X, 𝑆) → 𝑋 × 𝑋op.

Theorem 7.12 (Abellán García, Stern). Let 𝑝 : (Y, 𝑇) −→ (X, 𝑆) be a fibration between fibrant scaled
simplicial sets. Then the map

Tw𝑟
+(Y, 𝑇) Tw𝑟

+(X, 𝑆) ×𝑋×𝑋op 𝑌 × 𝑌op

is a fibration between fibrant objects in the cartesian model structure on (sSet+)/𝑌 × 𝑌op (where all
arrows in 𝑋 × 𝑋op and 𝑌 × 𝑌op are marked).

For each fibrant scaled simplicial set (X, 𝑆), the cartesian fibration Tw𝑟 (X, 𝑆) −→ 𝑋 × 𝑋op is
classified by the functor HomX : 𝑋op × 𝑋 −→ Cat.

Proof. For the first part, it suffices to verify that Tw𝑟
+(Y, 𝑇) −→ Tw𝑟

+(X, 𝑆) ×𝑋×𝑋op 𝑌 × 𝑌op has the
right lifting property with respect to all marked anodyne maps [Lu17, Proposition B.2.7]. Let us write
L for the left adjoint of Tw𝑟

+ and note that for each marked simplicial set (𝐴, 𝐸), there is a natural map
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𝐴♯ � 𝐴op,♯ −→ 𝐿(𝐴, 𝐸), such that mapping into (X, 𝑆), we obtain the value of the canonical projection
Tw𝑟 (X, 𝑆) −→ 𝑋 × 𝑋op on (𝐴, 𝐸). The desired right lifting property now follows from the fact that for
each (generating) marked anodyne map (𝐴, 𝐸) −→ (𝐵, 𝐹), the map

𝐿(𝐴, 𝐸)
∐

𝐴♯�𝐴op,♯
(
𝐵♯ � 𝐵op,♯

)
𝐿(𝐵, 𝐹)

is a scaled anodyne map [AGS23, Lemma 2.9 and 2.10]. The second part of the theorem is [AGS23,
Theorem 3.3]. �

Corollary 7.13. The functor Tw𝑟 : sSetsc −→ sSet is a right Quillen functor, where sSet is endowed
with the Joyal model structure.

Proof. The left adjoint to Tw𝑟 preserves cofibrations, which are simply monomorphisms. Furthermore,
Theorem 7.12 implies that the map

Tw𝑟
+(Y, 𝑇) −→ Tw𝑟

+(X, 𝑆) ×𝑋×𝑋op 𝑌 × 𝑌op −→ Tw𝑟
+(X, 𝑆)

is a composite of fibrations in the cartesian model structure. Since fibrations in the cartesian model
structure are, in particular, categorical fibrations [Lu09a, Proposition 3.1.5.3], we conclude that Tw𝑟

sends fibrations between fibrant scaled simplicial sets to categorical fibrations between quasicategories.
This suffices by [Jo08, Proposition E.2.14]. �

Definition 7.14. The right Quillen functor from Corollary 7.13 induces a right adjoint functor of ∞-
categories which we will denote Tw𝑟 : Cat2 −→ Cat and refer to as taking the oplax twisted arrow
∞-category.

To compare with the oplax arrow category, it will be convenient to give a slightly different presentation
of Tw𝑟 (X) in terms of Segal ∞-groupoids (which a posteriori does not make use of scaled simplicial
sets). To this end, let us make the following observation:

Definition 7.15. Let us write [𝑛] ★opl [𝑛]
op for the gaunt 2-category informally depicted as

0 1 2 . . . 𝑛

0 1 2 . . . 𝑛.

More precisely, the categories Hom[𝑛]★opl [𝑛]op (𝑖, 𝑗) and Hom[𝑛]★opl [𝑛]op ( 𝑗 , 𝑖) are a point if 𝑖 ≤ 𝑗 and
empty otherwise, and Hom[𝑛]★opl [𝑛]op (𝑖, 𝑗) is the poset of integers max(𝑖, 𝑗) ≤′≤ 𝑛, ordered by size.
We will refer to these integers as heights. The composition maps preserve these heights. One readily
verifies that this defines a functor 𝚫 −→ Gaunt2 ⊆ Cat2.

Lemma 7.16. For each n, there is a natural equivalence between [𝑛]★opl [𝑛]
op and the (∞, 2)-category

presented by the scaled simplicial set Δ𝑛 ★sc Δ𝑛,op.

Proof. We will provide a natural weak equivalence of cosimplicial diagrams in Cat(sSet+)

𝜙 : ℭsc (Δ𝑛 ★sc Δ𝑛,op) [𝑛] ★opl [𝑛]
op,

where the target is viewed as a marked simplicially enriched category by taking nerves of the mapping
categories.

Unraveling the definitions, ℭsc (Δ𝑛 ★sc Δ𝑛,op) is given as follows. Its objects are the objects of the
poset 0 ≤ · · · ≤ 𝑛 ≤ 𝑛 ≤ · · · ≤ 0. Given two such objects 𝑎, 𝑏, the simplicial set Hom(𝑎, 𝑏) is the nerve
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of the poset of chains 𝑎 = 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑙 = 𝑏, ordered by inclusion. Within (the nerve of) this poset
of chains, the following arrows are marked:

(a) if 𝑎 = 𝑖 and 𝑏 = 𝑗 are both contained in the first half or if 𝑎 = 𝑖 and 𝑏 = 𝑗 are both contained in the
second half, then all inclusions of chains are marked.

(b) for 𝑎 = 𝑖 and 𝑏 = 𝑗 , let us define the height of a chain 𝜎 : 𝑖 = 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑙 = 𝑗 to be the
largest number k such that either k or 𝑘 is contained in 𝜎. Then an inclusion of chains is marked if
it does not change the height.

The map 𝜙 is then given by the identity on objects and on (nerves of) mapping categories it (a) either
sends all chains to the point or (b) takes the height of a chain. It suffices to verify that these maps
between mapping categories are exactly the localisations at the marked arrows. This is evident in case
(a), since the poset of chains is either empty or a cube (hence contractible). In case (b), the functor
sending a chain to its height has a fully faithful right adjoint, sending each height k to the maximal chain
𝑖 ≤ 𝑖 + 1 ≤ · · · ≤ 𝑘 − 1 ≤ 𝑘 ≤ 𝑘 ≤ 𝑘 − 1 ≤ · · · ≤ 𝑗 + 1 ≤ 𝑗 . �

Corollary 7.17. Let X be an (∞, 2)-category. Then the simplicial∞-groupoid

[𝑛] HomCat2
(
[𝑛] ★opl [𝑛]

op, X
)

is a complete Segal∞-groupoid, whose associated∞-category is naturally equivalent to Tw𝑟 (X).

Proof. Corollary 7.13 and Lemma 7.16 identify the simplicial∞-groupoid HomCat2
(
[−] ★opl [−]

op, X
)

with N(Tw𝑟 (X)). �

We will now compute the image of Aropl(X) under the dualisation functor

SDct : Ortho(𝑋, 𝑋) → Cart(𝑋, 𝑋op)

and show it is equivalent to the functor

(𝑠, 𝑡) : Tw𝑟 (X) → 𝑋 × 𝑋op.

Recall that SDct is given as the composite of (−)op and Span⊥. Since Remark 7.7 identifies the
opposite of the oplax arrow category of X with the lax arrow category of X1−op, we find that the dual of
(𝑠, 𝑡) : Aropl(X) −→ 𝑋 × 𝑋 is given by

SDct (𝑠, 𝑡) : D � Span⊥(Arlax(X1−op)) 𝑋 × 𝑋op.

Unwinding definitions, we find that D is the associated ∞-category of the complete Segal ∞-groupoid
given in level n by the sub-∞-groupoid of

HomCat2
(
Tw𝑟 ([𝑛]) � [1], X1−op)

spanned by the functors

𝑓 : Tw𝑟 ([𝑛]) � [1] −→ X1−op

which send

(i) Tw𝑟 ([𝑛])in � {1} to 𝜄𝑋op,
(ii) Tw𝑟 ([𝑛])eg � {0} to 𝜄𝑋op, and

(iii) every 2-morphism 𝜎 ⊆ Tw𝑟 ([𝑛])in � [1] to an invertible 2-morphism in X.
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This is, of course, naturally equivalent to the ∞-groupoid of functors 𝑓 :
(
Tw𝑟 ([𝑛]) � [1]

)1−op
−→ X

satisfying analogous conditions. To obtain a functor D → Tw𝑟 (X), we will write down a natural
transformation of cosimplicial objects in Cat2

𝜙𝑛 :
(
Tw𝑟 ([𝑛]) � [1]

)1−op
[𝑛] ★opl [𝑛]

op.

We will produce this map at the level of scaled simplicial sets, using that for a scaled simplicial set
(Y′, 𝑇) modeling Y, the opposite Y1−op is modelled by ((Y′)op, 𝑇). Let us therefore define

𝜙𝑛 : (Tw𝑟 ([𝑛]) × [1])op −→ Δ𝑛 ★Δ𝑛,op; ((𝑖 ≤ 𝑗), 𝜖) ↦−→

{
𝑖 𝜖 = 0
𝑗 𝜖 = 1

exactly as in Example 6.15. By inspection, this defines a map of scaled simplicial sets. For example,
𝜙𝑛 (𝜎, 𝜎′) = Δ {𝑖, 𝑗 , 𝑘̄ } for 𝑖 ≤ 𝑗 ≤ 𝑘 when 𝜎′ equals 𝑠1 : Δ2 → Δ {0,1}. By definition, this is thin in
Δ ★sc Δ𝑛,op. Similarly, one can readily show that the image of the other thin simplicies is thin. We
conclude that the 𝜙𝑛 determine a natural transformation of cosimplicial objects in sSetsc.

Example 7.18. Let us describe the induced map 𝜙𝑛 :
(
Tw𝑟 ([𝑛]) � [1]

)op
−→ [𝑛] ★opl [𝑛]

op in Cat2 a
bit more precisely in the case 𝑛 = 1. In this case, the domain is the pushout in Cat2 of two lax squares
along a common 1-morphism, which is a gaunt 2-category by Proposition 7.3. In particular, the domain
and codomain of 𝜙1 are gaunt 2-categories, and the map 𝜙1 is then given by the strict 2-functor

00 01 11 0 1̄

0̄0 0̄1 1̄1 0 1

∼

∼

∼

(7.19)

obtained by collapsing the 1- and 2-morphisms marked by ∼. To see that this agrees with the description
of 𝜙1 in terms of scaled simplicial sets, it suffices to note that this strict 2-functor is uniquely determined
by its values on objects and 1-morphisms.

Remark 7.20. More generally, since [𝑛] ★opl [𝑛]
op is a gaunt 2-category, 𝜙𝑛 is adjoint to a (strict)

functor Tw𝑟 ([𝑛])op −→ Aropl ([𝑛] ★opl [𝑛]
op) into its strict oplax arrow category (see Example 7.6).

This functor sends each (𝑖 ≤ 𝑗) in Tw𝑟 ([𝑛]) to the arrow 𝑗 → 𝑖 in [𝑛] ★opl [𝑛]
op of minimal height.

For each X, the maps 𝜙𝑛 induce a natural transformation of simplicial∞-groupoids

𝑁D −→ 𝑆𝜅𝑟 (X),

which, after taking associated∞-categories, gives a functorΦ : D→ Tw𝑟 (X)which evidently commutes
with the canonical functors to 𝑋 × 𝑋op.

Theorem 7.21. The functor

Φ : D −→ Tw𝑟 (X)

is an equivalence of∞-categories. Consequently, the orthofibration (𝑠, 𝑡) : Aropl(X) → 𝑋×𝑋 classifies
the mapping∞-category functor

HomX(−,−) : 𝑋op × 𝑋 −→ Cat.

Proof. Given the first part of the theorem, the second part follows from Corollary 6.14 and Theorem
7.12. Because both sides of the equivalence are the associated ∞-category of Segal ∞-groupoids, and
the functor is induced by a natural transformation of Segal∞-groupoids, it suffices to prove that Φ0 and
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Φ1 are equivalences of ∞-groupoids. Note that the map 𝜙0 is simply the identity on [1], so that Φ0 is
certainly an equivalence.

To see that Φ1 is an equivalence, note that its domain N(D)1 is the ∞-groupoid of 2-functors from
the gaunt 2-category (Tw𝑟 ([1]) × [1])op

00 01 11

0̄0 0̄1 1̄1

∼

∼

∼

sending the marked 1- and 2-cells to equivalences in X. It therefore suffices to verify that the functor
𝜙1 (7.19) is the universal functor of (∞, 2)-categories that collapses these marked morphisms and 2-
morphisms.

To see this, we observe that the above gaunt 2-category can be obtained by ‘cell attachments’, along
the lines of the following picture:

00 01 11

0̄0 0̄1 1̄1.

∼

∼

∼

Here, we start from the middle vertical arrow and attach the bottom horizontal arrows, then the 2-cells
and finally the factorisations over 00 and 11. Each step is given by a pushout of gaunt 2-categories as
described in Proposition 7.3 (which is hence also a pushout in Cat2).

For each pushout where we add a marked cell, collapsing the resulting cell in Cat2 simply has the
result of not adding a cell at all. Consequently, the (∞, 2)-category obtained from (Tw𝑟 ([1]) × [1])op by
collapsing the marked cells is the gaunt 2-category obtained by performing only those cell attachments
where no marked cell was added. The result of this is then precisely [1] ★opl [1]op, and the collapsing
map is precisely 𝜙1. �

Remark 7.22. Note that the functor HomCat (∗,−) : Cat → Cat is equivalent to the identity on Cat.
Therefore, we conclude immediately from the previous theorem that the functor

𝑡 : Aropl(Cat) ×Cat {∗} −→ Cat

is a model for the universal cocartesian fibration (i.e., the cocartesian fibration which classifies the
identity on Cat). The fibre of 𝑠 : Aropl(Cat) → Cat over ∗ is one definition for the oplax slice category
∗//opl Cat, and the previous theorem therefore gives one way to make precise the statement that the
forgetful functor ∗//opl Cat→ Cat is the universal cocartesian fibration.

The universal cartesian fibration has a similar description. Indeed, by Remark 7.7, the functor

(𝑡op, 𝑠op) : Arlax(X)op −→ 𝑋op × 𝑋op

is equivalent to

(𝑠, 𝑡) : Aropl(X1−op) −→ 𝑋op × 𝑋op.

Again by Theorem 7.21, this classifies the enhanced mapping functor of X1−op, which is equivalent to
the functor

𝑋 × 𝑋op � 𝑋op × 𝑋
HomX (−,−)
−−−−−−−−−→ Cat.
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Applying this in the case X = Cat, we obtain that the functor

𝑡op : Arlax(Cat)op ×Catop {∗} −→ 𝑋op

is a cartesian fibration which classifies the identity on Cat. Because the fibre of 𝑡 : Arlax(Cat) → Cat over
{∗} is one definition for the lax over-category, this makes precise the statement that (∗�Cat)op → Catop

is the universal cartesian fibration.
Remark 7.23. Let us also briefly discuss the cocartesian fibration encoding the enhanced mapping
functor of an (∞, 2)-category X. Just as for ∞-categories, it is given by a version of the left twisted
arrow∞-category. However, simply taking the opposite of Tw𝑟 (X), as one does for∞-categories, would
also apply (−)op to the fibres. Therefore, we instead consider the simplicial object 𝜅𝑙 = (𝜅𝑟 )

rev,2−op

in Cat2 obtained from that defining Tw𝑟 by reversing the simplicial direction and taking opposites
for 2-morphisms at each level and define Twℓ (X) = 𝑆𝜅𝑙 (X). By direct inspection, one then finds
Twℓ (X) � Tw𝑟 (X2−op)op. In particular, it follows from Theorem 7.12 that

(𝑠, 𝑡) : Twℓ (X) −→ 𝑋op × 𝑋

is a cocartesian fibration, which classifies the composition

𝑋op × 𝑋
HomX2−op
−−−−−−−→ Cat

(−)op

−−−−→ Cat.

We claim this composite is the enhanced mapping functor of X. One way to see this is to note that the
functor (−)2−op : Cat2 → Cat2 is modelled on categories enriched in marked simplicial sets (which we
used to define the enhanced mapping functor) by changing the enrichment via (−)op : sSet+ → sSet+.
Let us remark that the model of scaled simplicial sets does not seem to admit a simple implementation
of reversing 2-morphisms, so, in particular, we do not know of a simplicial object in scaled simplicial
sets giving rise to 𝜅rev,2−op, and consequently also no explicit model for Twℓ (X) as a scaled simplicial
set even if X is given as such. Nevertheless, applying the equivalence of Lemma 7.16, one can write
down a cosimplicial diagram of gaunt 2-categories equivalent to 𝜅𝑙 .

Note also that Tw𝑟 (X1−op) � Tw𝑟 (X) as cartesian fibrations over 𝑋 × 𝑋op, since (𝜅𝑟 )
1−op � 𝜅𝑟 .

Remark 7.24. For the sake of completeness, let us also mention the behaviour of Aropl and Arlax under the
two kinds of taking opposites. Recall that we have already seen in (7.8) that Aropl(X1−op) � Arlax(X)op.
We are left to note

Aropl(X2−op) � Aropl(X1−op)op � Arlax(X).

To see this, observe that both are orthofibrations over 𝑋 × 𝑋 and that the functors 𝑋op × 𝑋 → Cat which
both classify are equivalent by Theorem 7.21 and the corresponding statements for the twisted arrow
∞-categories.

8. Naturality of the Yoneda embedding

In this short final section, we deduce the following result as an application of Lemma 6.20:
Theorem 8.1. The Yoneda embedding 𝐴 → P (𝐴) canonically extends to a natural transformation of
functors Cat→ Cat from the inclusion to the composite

Cat
Fun(−op ,Gpd)
−−−−−−−−−−→ (CatR)op � CatL ⊆ Cat.

Remark 8.2. As our model of the equivalence (CatR)op � CatL, we take the equivalence of [HHLN23,
Theorem 3.1.11]. Intuitively, it acts as the identity on objects and sends a left adjoint 𝐿 : 𝐶 → 𝐷 to a
choice of right adjoint 𝑅 : 𝐷 → 𝐶.
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Remark 8.3. This question was recently posed to the second author (among others) by D. Clausen
during a visit to the University of Copenhagen, as it can be used to simplify a number of arguments in
[CØJ21, Section 2] and appears missing from the literature so far. It is a lucky accident that our methods
answer it.

Let us also mention that, building on Theorem 8.1, Ben Moshe and Schlank have recently upgraded
the monoidal (and modal) versions of the Yoneda embedding to natural transformations as well; see
[BMS21, Theorem D].

Before giving a proof of Theorem 8.1, let us briefly comment on related results that already appear
in the literature. First, the characterisation of P (𝐴) as the free cocompletion of 𝐴 [Lu09a, Section 5.1.5]
implies that the assignment 𝐴 ↦→ P (𝐴) extends to a functor equipped with a natural transformation
𝐴 −→ P (𝐴) given pointwise by the Yoneda embedding (essentially by construction). However, it is not
a priori clear that this second functor agrees with the one described in Theorem 8.1; let us write Pfree and
PKan to distinguish these two functorialities, the first being the functoriality via the free cocompletion
and the second the functoriality of the statement.

Without considering the naturality of the Yoneda embedding, one can produce a natural equivalence
Pfree � PKan as follows. Both of these functors are easily checked to factor as

Cat
(−)♮

−−−→ Cat♮ P
−→ Catccpt ⊂ Cat,

where the second term denotes the ∞-category of small idempotent complete ∞-categories (and the
first functor idempotent completion), and the third term the ∞-category of cocomplete ∞-categories
admitting a set of completely compact objects that jointly detect equivalences, and functors among
them preserving both colimits and completely compact objects. By an argument analogous to [Lu09a,
Proposition 5.5.7.8], Pfree is an equivalence between the middle two terms. Since Pfree and PKan are
homotopic on individual morphism ∞-groupoids [Lu09a, Proposition 5.2.6.3], the same follows for
PKan. But by a minor modification of Toën’s theorem [To05], Cat♮ has a discrete automorphism ∞-
groupoid consisting of two objects (the identity and op), whence there is a unique natural equivalence
between Pfree and PKan.

To conclude that the Yoneda embedding extends to a natural transformation as in Theorem 8.1, it
thus remains to verify that this equivalence is given pointwise by the identity of P (𝐴); the trouble is
that this latter identification is not clear.

After this paper appeared, a proof of Theorem 8.1 along the lines just sketched was completed by
Ramzi, with the additional input being a nifty rigidity result for the identity functor on Cat; see [Ra23,
Theorem 2.2].

Proof of Theorem 8.1. Recall that for any∞-category 𝐴, the Yoneda embedding 𝐴→ P (𝐴) is defined
as the adjoint of the functor Hom𝐴 : 𝐴op × 𝐴 → Gpd, which in turn is given by the cocartesian
unstraightening of Twℓ (𝐴) → 𝐴op × 𝐴. The definition of the twisted arrow category makes this left
fibration functorial in 𝐴. More precisely, we can consider the pullback square

𝐸 Ar(Cat)

Cat × Cat Cat

𝑡

(−)op×−

and note that Twℓ defines a functor from Cat to the full subcategory of 𝐹 ⊂ 𝐸 spanned by the left
fibrations. Note that F is the cartesian unstraightening of the functor (𝐴, 𝐵) ↦→ LFib(𝐴op × 𝐵), where
the functoriality is in pullback. There are equivalences

LFib(𝐴op × 𝐵)
Strcc

−−−→ Fun(𝐴op × 𝐵, Gpd) � Fun(𝐵,P (𝐴))
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which are natural in the input ∞-categories (where the contravariant functoriality on P (−) is given by
precomposition). Writing F : (Catop)2 → Cat for the functor sending (𝐴, 𝐵) ↦→ Fun(𝐵,P (𝐴)), we
therefore obtain a functor

Twℓ : Cat −→ 𝐹 � Unct(F).

On objects, this takes an ∞-category 𝐴 to its Yoneda embedding, and on morphisms, it witnesses the
lax commutativity of the diagrams

𝐴 P (𝐴)

𝐵 P (𝐵)

𝑓 𝑓 ∗

given pointwise by the maps Hom𝐴(−, 𝑐) −→ Hom𝐵
(
𝑓 (−), 𝑓 (𝑐)

)
. It therefore contains all the requisite

data for a natural transformation 𝐴 −→ P (𝐴) as in the statement.
To extract the desired natural transformation, curry F into a functor

Catop −→ Fun(Catop, Cat), 𝐵 ↦−→
(
𝐴 ↦→ Fun(𝐵,P (𝐴))

)
.

Now observe that this functor takes values in the subcategory of Fun(Catop, Cat) spanned by functors
to CatR with left adjointable squares as morphisms. Via cartesian unstraightening, this ∞-category is
equivalent to Bicart(Cat), the intersection the two subcategories Cocart(Cat) and Cart(Cat) in the
over-∞-category Cat/Cat. Via cocartesian unstraightening, it is then also equivalent to the subcategory
of Fun(Cat, Cat) spanned by functors into CatL and right adjointable squares.

Applying these equivalences to F results in a functor G in

Fun(Catop, Fun(Cat, Cat)) � Fun(Catop × Cat, Cat),

which still has G (𝐵, 𝐴) � Fun(𝐵,P (𝐴)), but now the functoriality in the 𝐴-variable is by the left adjoint
to restriction (i.e., by left Kan extension).

Let Unoc(G) −→ Cat × Cat be the orthocartesian unstraightening of G. We claim that there is a
canonical equivalence Unct(F) � Unoc(G). To this end, invoke Corollary 6.20 to write the cartesian
unstraightening functor as

Fun(𝐵op, Fun(𝐴op, Cat)) Unct

−−−→ Fun(𝐵op, Cart(𝐴)) Unct

−−−→ Cart(𝐴 × 𝐵)

and the orthocartesian one as

Fun(𝐵op, Fun(𝐴, Cat)) Uncc

−−−→ Fun(𝐵op, Cocart(𝐴)) Unct

−−−→ Ortho(𝐴 × 𝐵).

But now by definition, G and F have the same image in Fun(Catop, Bicart(Cat)), viewed as a subcat-
egory of Fun(Catop, Cocart(Cat)) and Fun(Catop, Cart(Cat)), respectively. This gives the claim that
Unct(F) � Unoc(G).

The resulting functor

Twℓ : Cat→ Unoc(G)

again takes 𝐴 to its Yoneda embedding, but this time morphisms witness lax commuting squares

𝐴 P (𝐴)

𝐵 P (𝐵).

𝑓 𝑓!
𝜇
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But by [Lu09a, Proposition 5.2.6.3] (or rather the second step of its proof), the natural transformation
𝜇 is an equivalence (i.e., the diagram actually commutes).

Armed with this information, consider the diagram

Unoc(G) Unoc(Fun(−,−))

Cat × Cat Cat × Cat(P ,incl)

whose top right corner is the oplax arrow ∞-category Aropl(Cat) of large ∞-categories by Theorem
7.21. Via the inclusion HomCat(𝐴, 𝐵) ⊆ Fun(𝐴, 𝐵), it contains the actual arrow ∞-category Ar(Cat)
as a wide subcategory, and by the previous observation, the composite

Cat Twℓ

−−−→ Unoc(G) −→ Aropl(Cat)

actually takes values in this subcategory. The resulting functor Cat → Ar(Cat) is then the natural
transformation we set out to construct. �

A. Uniqueness of straightening and dualisation

To resolve coherence questions surrounding the dualisation and straightening equivalences once and
for all, we will prove a rigidity result in this appendix, implying that any two ways of straightening
or dualising a two-variable fibration are naturally equivalent; namely, we compute the automorphism
groups of the functors

F : Catop × Catop Cat, (𝐴, 𝐵) Fun(𝐴 × 𝐵, Cat),

FGpd : Catop × Catop Cat, (𝐴, 𝐵) Fun(𝐴 × 𝐵, Gpd)

FGray : Catop × Catop Cat; (𝐴, 𝐵) Fun
(
𝐴 � 𝐵, Cat

)
,

following ideas of [BGN18], who treated the case of a single variable. Here, � denotes the Gray tensor
product (see Section 7), and Fun(𝐴 � 𝐵, Cat) denotes the ∞-category of functors from the (∞, 2)-
category 𝐴 � 𝐵 to the (∞, 2)-category of ∞-categories. By [HHLN23, 5.2.9], the functor FGray is
equivalent to the functor Gray(−,−) which sends a pair (𝐴, 𝐵) to the ∞-category of Gray fibrations
over 𝐴 × 𝐵 (see Remark 6.6).

Before we describe the result of our calculations, note that the functor F carries a natural action
of the group Aut(Cat), acting pointwise on Fun(𝐴 × 𝐵, Cat) by postcomposition. When evaluated at
([0], [0]) ∈ Cat×2, this simply gives the canonical action of Aut(Cat) on Cat. By a theorem of Toën,
Aut(Cat) is discrete with two path components, corresponding to the identity and (−)op : Cat → Cat
[To05]. Our goal will be to prove the following:

Theorem A.1. Acting by postcomposition and evaluation at ([0], [0]) ∈ Cat×2 determines inverse
equivalences

Aut(Cat) Aut(F).

In particular, Aut(F) is discrete with 𝜋0Aut(F) = Z/2 having its nontrivial element induced by
postcomposition with (−)op : Cat→ Cat. Furthermore, Aut(FGpd) � ∗ and Aut(FGray) � ∗.

Remark A.2. Orthocartesian (un)straightening restricts to a natural (un)straightening equivalence
Strbi : Bifib −→ FGpd for bifibrations by [HHLN23, 2.3.15]. Theorem A.1 implies that the equiva-
lence Strbi in fact agrees with the equivalence from [St18], provided the latter is natural. This can be
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verified using the techniques of [GHN17, Appendix A]; we refrain from working out further details, as
we do not need the statement.

Remark A.3. As mentioned, the analogue of Theorem A.1 for the functor 𝐴 ↦→ Fun(𝐴, Cat) is one step
in the proof of [BGN18, Theorem 1.4], and our proof below follows their strategy in the large. There is,
however, one crucial difference: Barwick, Glasman and Nardin use Yoneda’s lemma to deduce that the
automorphisms of the functor

Catop → Gpd, 𝐴 ↦→ HomCat(𝐴, Cat)

are given by Aut(Cat). This suffices to establish the analogue of Theorem A.1 after taking∞-groupoid
cores, but it is unclear to us how to obtain the actual statement from this information.

By contrast, our more elaborate proof of Theorem A.1 below also makes use of intermediate steps
of Toën’s results (and the strategy applies equally well in the situation of [BGN18]).

In the proof, we will make use of two tangential results. For the first, recall that 𝑓 : 𝐴→ 𝐵 is called
a faithful functor if each Hom𝐴(𝑎, 𝑏) → Hom𝐵 ( 𝑓 (𝑎), 𝑓 (𝑏)) is an inclusion of path components, or
equivalently, if h 𝑓 is faithful and the commutative square

𝐴 𝐵

h𝐴 h𝐵

𝑓

h 𝑓

is cartesian.

Lemma A.4. If 𝑓 : 𝐴 −→ 𝐵 is faithful, then the diagram

Fun(𝐶, 𝐴) Fun(𝐶, 𝐵)

Fun(h𝐶, h𝐴) Fun(h𝐶, h𝐵)

is cartesian and, in particular, 𝑓∗ : Fun(𝐶, 𝐴) −→ Fun(𝐶, 𝐵) is again faithful for any 𝐶 ∈ Cat. If,
furthermore, the restriction 𝜄(𝐴) → 𝜄(𝐵) is an inclusion of path components, then so is

𝜄(Fun(𝐶, 𝐴)) −→ 𝜄(Fun(𝐶, 𝐵)).

Remark A.5. Note that the functor

hFun(𝐶, 𝐴) −→ Fun(h𝐶, h𝐴)

is not usually an equivalence, so the square of the lemma does not agree with the square

Fun(𝐶, 𝐴) Fun(𝐶, 𝐵)

hFun(𝐶, 𝐴) hFun(𝐶, 𝐵)

which is cartesian if and only if 𝑓∗ is faithful.

Proof of Lemma A.4. The first assertion is immediate from Fun(h𝐶, h𝐵) � Fun(𝐶, h𝐵) and the analo-
gous assertion for 𝐴 in place of 𝐵. The second assertion then follows, since the lower horizontal functor
is clearly faithful, and faithful functors are closed under pullback. This is most easily seen from the
characterisation that all induced maps on morphism complexes have empty or contractible fibres, which

https://doi.org/10.1017/fms.2023.107 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.107


64 R. Haugseng et al.

is evidently stable under pullback. The third statement similarly follows from the analogue for ordinary
categories by applying cores to the diagram of the lemma. �

In the following, recall that a full subcategory 𝐼 ↩→ 𝐶 is said to be dense if the restricted Yoneda
embedding 𝐶 −→ P (𝐼) is fully faithful, or equivalently, if for each 𝑐 ∈ 𝐶, the canonical map
colim𝑖∈𝐼 /𝑐 𝑖 → 𝑐 in C is an equivalence.

Lemma A.6. Let X be an (∞, 2)-category and Fun(X, Cat) the ∞-category of 2-functors X −→ Cat.
For each 𝑥 ∈ X and 𝐴 ∈ Cat, there exists an object ℎ𝑥,𝐴 ∈ Fun(X, Cat) with the universal property

HomFun(X,Cat)
(
ℎ𝑥,𝐴, 𝐹

)
� HomCat (𝐴, 𝐹 (𝑥)). (A.7)

The full subcategory 𝚫X ⊆ Fun(X, Cat) spanned by all ℎ𝑥, [𝑘 ] with 𝑥 ∈ X and 𝑘 ≥ 0 then forms a dense
subcategory.

Observation A.8. For any functor 𝑓 : X −→ Y, let 𝑓! : Fun(X, Cat) −→ Fun(Y, Cat) be the left adjoint
to the restriction functor. By the universal property (A.7), this sends ℎ𝑥,𝐴 to ℎ 𝑓 (𝑥) ,𝐴 and hence restricts
to 𝑓! : 𝚫X −→ 𝚫Y.

Proof. Let us start by observing that by the enriched Yoneda lemma [Hi20, Proposition 6.2.7], these
universal functors ℎ𝑥,𝐴 indeed exist and are given by

ℎ𝑥,𝐴 = HomX(𝑥,−) × 𝐴 : X Cat. (A.9)

Moreover, Hinich’s results show that the ∞-category Fun(X, Cat) can be described as that of X-
modules in Cat (in the sense of algebras for a many-object module ∞-operad whose underlying many-
object algebra is the Cat-enriched ∞-category X). From this description, it follows that Fun(X, Cat)
admits all colimits, and so the inclusion 𝑗 : 𝚫X ↩→ Fun(X, Cat) induces an adjoint pair 𝑗! : P (𝚫op

X ) 	
Fun(X, Cat) : 𝑗∗ and we have to verify that the counit map

𝑗! 𝑗∗𝐹 � colim
ℎ𝑥, [𝑘 ] ∈𝚫X/𝐹

ℎ𝑥, [𝑘 ] 𝐹 (A.10)

is an equivalence for all F. We will prove this in increasing levels of generality.
First, suppose that 𝐹 = ℎ𝑦,𝐴. In this case, we claim that there is a cofinal functor ℎ𝑦 : 𝚫/𝐴 −→

𝚫X/ℎ𝑦,𝐴 sending each [𝑘] → 𝐴 to ℎ𝑦, [𝑘 ] −→ ℎ𝑦,𝐴. The result then follows from the fact that 𝐴 ↦−→ ℎ𝑦,𝐴

preserves colimits and that 𝐴 � colim[𝑘 ] ∈𝚫/𝐴[𝑘]. To see that ℎ𝑦 is indeed cofinal, it suffices to verify
that the natural map

colim[𝑘 ] ∈𝚫/𝐴 HomFun(X,Cat)
(
ℎ𝑥, [𝑛] , ℎ𝑦, [𝑘 ]

)
HomFun(X,Cat)

(
ℎ𝑥, [𝑛] , ℎ𝑦,𝐴

)
is an equivalence. From the universal property (A.7) and the explicit formula (A.9) for ℎ𝑦,𝐴, one sees
that this map is equivalent to

colim
[𝑘 ] ∈𝚫/𝐴

HomCat
(
[𝑛], HomX(𝑦, 𝑥) × [𝑘]

)
HomCat

(
[𝑛], HomX(𝑦, 𝑥) × 𝐴

)
.

Taking the constant factor HomCat
(
[𝑛], HomX(𝑦, 𝑥)

)
out of the colimit, one sees that this is an equiva-

lence since 𝚫 ↩→ Cat is a dense subcategory [Re01].
Next, note that the class of F for which (A.10) is an equivalence is closed under all colimits that are

preserved by 𝑗∗. For example, one easily sees from the universal property (A.7) that 𝑗∗ preserves all
coproducts.
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To conclude, we now write each functor F as the geometric realisation of a bar construction. More
precisely, let us fix a set S and an essentially surjective functor 𝑓 : 𝑆 −→ X. The description of
Fun(X, Cat) as modules then gives a free/forgetful adjunction

𝑓! :
∏

𝑆 Cat Fun
(
X, Cat

)
: 𝑓 ∗, (A.11)

where 𝑓 ∗ evaluates at each object in S. Note that 𝑓 ∗ preserves all limits and colimits and detects
equivalences, so that ( 𝑓!, 𝑓 ∗) is a monadic adjunction. The left adjoint 𝑓! sends each (𝐴𝑠)𝑠∈𝑆 ∈ Cat to∐

𝑠∈𝑆 ℎ𝑠,𝐴𝑠 .
Any 𝐹 : X −→ Cat can now be written as the geometric realisation 𝐹 � |𝐵• |, where 𝐵• =

Bar( 𝑓!, 𝑓 ∗ 𝑓!, 𝑓 ∗𝐹) is the usual bar resolution of F for the monadic adjunction (A.11). The functor 𝑗∗

preserves these geometric realisations (i.e., for any 𝑥 ∈ X and 𝑘 ≥ 0, the map
		HomCat ([𝑘], 𝐵•(𝑥)

) 		 −→
HomCat

(
[𝑘], 𝐹 (𝑥)

)
is an equivalence). Indeed, up to equivalence, we may take 𝑥 = 𝑓 (𝑠), in which case

this follows from the augmented simplicial object 𝑓 ∗𝐵• → 𝑓 ∗𝐹 having extra degeneracies [Lu17, Ex-
ample 4.7.2.7]. Since each term in the bar construction is a coproduct of functors of the form ℎ 𝑓 (𝑠) ,𝐴,
for which we have already verified that the counit map (A.10) is an equivalence, it follows that (A.10)
is an equivalence for F as well. �

Proof of Theorem A.1. We will spell out the case of F and discuss the modifications required for FGpd
and FGray at the end of the proof. �

Step 1: reducing to simplices

Recall that precomposition with the localisation ac : sGpd→ Cat gives a fully faithful embedding

Fun(Catop × Catop, 𝑋) −→ Fun(sGpdop × sGpdop, 𝑋)

for any∞-category 𝑋 . Since ac preserves colimits, this inclusion furthermore preserves the property of
commuting with small limits in each variable separately, and on the right, the full subcategory spanned
by such functors is equivalent to Fun(𝚫op × 𝚫op, 𝑋). Since F : Catop × Catop → Cat does indeed
preserve small limits in each variable, we find that Aut(F) agrees with the automorphisms of the (large)
bisimplicial ∞-category F |𝚫2 given by (𝑛, 𝑚) ↦→ Fun([𝑛] × [𝑚], Cat), with functoriality arising from
restriction.

Step 2: restricting to generators

Note that F |𝚫2 takes values in the subcategory PrR of Cat consisting of presentable ∞-categories and
right adjoint functors. Although the inclusion PrR ⊆ Cat is not fully faithful, it does induce a fully
faithful map on ∞-groupoid cores, and by Lemma A.4, this feature persists to simplicial objects. We
may therefore compute the automorphisms of F |𝚫2 as a bisimplicial object in PrR instead.

From the equivalence PrR � (PrL)op, given by taking adjoints, we find

Fun(𝚫op × 𝚫op, PrR) � Fun(𝚫 × 𝚫, PrL)op.

By another application of Lemma A.4, it follows that Aut(F |𝚫2) � Aut(G), where G denotes the (large)
bicosimplicial∞-category

(𝑛, 𝑚) ↦−→ Fun([𝑛] × [𝑚], Cat)

with functoriality arising by left Kan extension.
Now consider the dense subcategories H(𝑛, 𝑚) = 𝚫[𝑛]×[𝑚] ⊆ G (𝑛, 𝑚) from Lemma A.6. By Obser-

vation A.8, every induced map on homotopy categories hG (𝑛, 𝑚) → hG (𝑛′, 𝑚′) carries hH(𝑛, 𝑚)
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into hH(𝑛′, 𝑚′). In fact, H(𝑛, 𝑚) coincides with the full subcategory spanned by the images of
𝚫 ⊆ Cat = G (0, 0) under all structure maps G (0, 0) → G (𝑛, 𝑚). Since there are pullbacks

H(𝑛, 𝑚) G (𝑛, 𝑚)

hH(𝑛, 𝑚) hG (𝑛, 𝑚),

it follows from the functoriality of pullbacks that the H(𝑛, 𝑚) assemble into a functor 𝚫2 → Cat
equipped with a natural transformation H→ G.

Let us now consider the induced maps

Homc2PrL (G,G) −→ Homc2CAT(H,G) ←− Homc2Cat (H,H).

We claim that both are inclusions of path components. To see this, note that the universal property
of P (H(𝑛, 𝑚)) as the free cocompletion of H(𝑛, 𝑚) produces a natural transformation P (H) −→ G.
By Lemma A.6, this exhibits each G (𝑛, 𝑚) as a (left Bousfield) localisation of P (H(𝑛, 𝑚)) for each
(𝑛, 𝑚) ∈ 𝚫2. Consequently, writing out the terms as∞-groupoids of natural transformations and applying
[GHN17, Proposition 5.1], we find

Homc2PrL (G, G) � lim HomPrL (G (𝑛, 𝑚),G (𝑛′, 𝑚′))

⊆ lim HomPrL (P (H(𝑛, 𝑚)),G (𝑛′, 𝑚′))

� lim HomCat(H(𝑛, 𝑚),G (𝑛′, 𝑚′))

� Homc2CAT(H,G),

where the limits run over [ 𝑓 : (𝑛, 𝑚) → (𝑛′, 𝑚′)] ∈ Tw𝑟 (𝚫 × 𝚫). The second term is a set of path
components in the third; indeed, this is so before taking limits, so that the fibre over a point in the target
is the limit of a diagram only taking values ∅ and ∗, and thus also either empty or contractible itself.
Similarly, we find

Homc2Cat(H,H) � lim HomCat (H(𝑛, 𝑚),H(𝑛′, 𝑚′))

⊆ lim HomCat(H(𝑛, 𝑚),G (𝑛′, 𝑚′))

� Homc2CAT(H,G).

Now notice that any automorphism 𝜑 of G preserves the sub-diagram H. Indeed, the induced auto-
morphism on G (0, 0) = Cat preserves the full subcategory 𝚫 ⊂ Cat by [Lu09b, Corollary 4.4.11 &
Proposition 4.4.13] and naturality with respect to left Kan extension and then implies that 𝜑 preserves
the full subcategory H(𝑛, 𝑚) ⊂ G (𝑛, 𝑚) as well. The inclusions of path components above therefore
refine to inclusions of path components

Aut(G, G) ⊆ Aut(H,H) ⊆ Homc2CAT(H,G).

In particular, the claim that Aut(G, G) is discrete with two components will follow from the analogous
statement for H.
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Step 3: automorphism group of the generators

Recall that H(𝑛, 𝑚) is spanned by the functors ℎ (𝑖, 𝑗) , [𝑘 ] for (𝑖, 𝑗) ∈ [𝑛] × [𝑚] and 𝑘 ≥ 0, defined by
the universal property (A.7) or by the explicit formula (A.9). The latter formula reduces to

ℎ (𝑖, 𝑗) , [𝑘 ] : [𝑛] × [𝑚] −→ Cat, (𝑎, 𝑏) ↦−→

{
[𝑘] 𝑎 ≥ 𝑖, 𝑏 ≥ 𝑗

∅ otherwise.

Combined with (A.7), one sees that the mapping ∞-groupoids between such functors are discrete and
that there are equivalences

[𝑛]op × [𝑚]op × 𝚫 H(𝑛, 𝑚); (𝑖, 𝑗 , [𝑘]) ℎ (𝑖, 𝑗) , [𝑘 ] .
∼

In particular, the ∞-categories H(𝑛, 𝑚) are 0-truncated (i.e., equivalent to ordinary categories with
discrete core); one can use this to conclude that the above equivalence is natural in (𝑛, 𝑚) (which is now
a property, rather than a structure), for the obvious functoriality on the left leaving 𝚫 fixed.

Since all H(𝑛, 𝑚) are 0-truncated, H is a 0-truncated object in the∞-category of bicosimplicial∞-
categories, and Aut(H) is discrete. Furthermore, any automorphism of H induces one on H(0, 0) = 𝚫,
and this restriction determines the entire transformation: The composite

[𝑛]op × [𝑚]op × 𝚫 [𝑛]op × [𝑚]op × 𝚫 𝚫
𝜑𝑛,𝑚

is determined by naturality for the codegeneracy map (𝑛, 𝑚) → (0, 0) and the composite

[𝑛]op × [𝑚]op × 𝚫 [𝑛]op × [𝑚]op × 𝚫 [𝑛]op × [𝑚]op𝜑𝑛,𝑚

by naturality with respect to the boundary maps (0, 0) → (𝑛, 𝑚). Thus,

Aut(H) � Aut(𝚫) = Z/2

as desired.

The other two cases

To conclude, we briefly describe the modifications to be made to the above argument to prove that FGpd
and FGray have trivial automorphism groups.

For FGpd, we repeat the entire argument, but in Step 2 we use the natural subcategory HGpd(𝑛, 𝑚) ⊆
Fun([𝑛] × [𝑚], Gpd) of diagrams of ∞-groupoids given by left Kan extensions along (𝑖, 𝑗) : [0] −→
[𝑛] × [𝑚] of the constant diagram on the point. One then identifies the diagram HGpd, with functoriality
by left Kan extension, with the obvious diagram sending (𝑛, 𝑚) ↦→ [𝑛]op × [𝑚]op. This has trivial
automorphisms.

For FGray, one uses the dense subcategories HGray(𝑛, 𝑚) = 𝚫[𝑛]�[𝑚] ⊆ Fun([𝑛] � [𝑚], Cat). Again,
these full subcategories can also be characterised as those spanned by the essential images of 𝚫 under all
structure maps GGray (0, 0) → GGray (𝑛, 𝑚). Formula (A.9) shows that the object ℎ (𝑖, 𝑗) , [𝑘 ] in HGray(𝑛, 𝑚)
is given by the 2-functor

ℎ (𝑖, 𝑗) , [𝑘 ] : [𝑛] � [𝑚] −→ Cat, (𝑎, 𝑏) ↦−→ Hom[𝑛]�[𝑚]
(
(𝑖, 𝑗), (𝑎, 𝑏)

)
× [𝑘] .

The explicit description of the Gray tensor product (7.4) (see [HHLN23, Proposition 5.1.9]) identifies
the mapping ∞-category Hom[𝑛]�[𝑚] ((𝑖, 𝑗), (𝑎, 𝑏)) with the poset of maximal chains from (𝑖, 𝑗) to
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(𝑎, 𝑏) in the grid [𝑛] × [𝑚], ordered using that for each square, ‘right-after-down’ is smaller than ‘down-
after-right’. Using this and the equivalence (A.7) to compute mapping ∞-groupoids, one readily sees
that each HGray(𝑛, 𝑚) is a 0-truncated ∞-category. This already implies that Aut(HGray) is discrete, so
it remains to verify that it has only one component.

To see this, consider the fully faithful functor (which we only need for gaunt 2-categories)

Φ : Cat2 Cart(𝚫)

defined as follows: for each (∞, 2)-category C and [𝑘] ∈ 𝚫, let Φ(C)𝑘 be the ∞-category obtained by
applying the monoidal functor HomCat ([𝑘],−) : Cat −→ Gpd to each mapping object. By naturality
in [𝑘], this defines a simplicial diagram of ∞-categories, whose underlying simplicial diagram of ∞-
groupoids of objects is constant; we define Φ(C) −→ 𝚫 to be the cartesian unstraightening of this
simplicial diagram of ∞-categories. Unraveling the definitions then shows that the codegeneracy map
HGray (𝑛, 𝑚) −→ HGray (0, 0) � 𝚫 can be identified with the cartesian fibration between 0-truncated
∞-categories Φ([𝑛] � [𝑚]) −→ 𝚫 (naturally in [𝑛] and [𝑚]).

Let us now consider the map of sets Aut(HGray) −→ Aut(HGray (0, 0)) restricting an automorphism
𝜑 of HGray to the component 𝜑0,0. For an automorphism 𝜓 of HGray(0, 0), the fibre Aut(HGray)𝜓 can be
identified with the set of isomorphisms

HGray 𝜓∗HGray

of bicosimplicial diagrams in the over-∞-category Cat/HGray (0, 0). By the above discussion, H actually
determines a cosimplicial diagram in the subcategory Cart(HGray (0, 0)) ⊆ Cat/HGray (0, 0). By Lemma
A.4, it then suffices to compute the sets of isomorphisms HGray −→ 𝜓∗HGray within Cart(HGray(0, 0)).

Identifying H(0, 0) � 𝚫, it now suffices to compute the set of isomorphisms of bicosimplicial
diagrams in Cart(𝚫)

Φ
(
[−] � [−]

)
𝜓∗Φ

(
[−] � [−]

)
for all 𝜓 ∈ Aut(𝚫) � {id, op}. Since Φ : Cat2 −→ Cart(𝚫) is fully faithful (at least on gaunt 2-
categories), this comes down to computing the sets of natural isomorphisms

𝜑 : [𝑛] � [𝑚] −→ [𝑛] � [𝑚] and 𝜑′ : [𝑛] � [𝑚] −→
(
[𝑛] � [𝑚]

)2−op
.

Since such isomorphisms are determined by their behaviour on objects, compatibility with the vertex
inclusions shows that there is a unique natural 𝜑 (the identity) and no natural 𝜑′. We conclude that
Aut(𝐹Gray) ⊆ Aut(HGray) � ∗.
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