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A B S T R A C T

The safety of maritime operations has become a paramount concern with the advancement of intelligent ships.
Ship stability and safety are directly impacted by roll motion, making the prediction of short-term ship roll
motion pivotal for assisting navigators in making timely adjustments and averting hazardous roll conditions.
However, predicting ship roll motion poses challenges due to nonlinear dynamics. This study aims to predict
short-term ship roll motion by leveraging the encoder–decoder structure of Bidirectional Long Short-Term
Memory Networks (Bi-LSTM) with teacher forcing. The model is accomplished by employing an encoder–
decoder structure to map input sequences to output sequences of varying lengths, and employing teacher
forcing to enhance the network’s ability to extract information. To refine and analyze the prediction model,
aspects such as the quantity of training data to guarantee model generalization, establishing apposite length
relationships between input and output sequences, and assessing the model performance in various sea states
are investigated. Additionally, comparative experiments assessing roll motion prediction for intervals of 10s,
30 s, 60 s, and 120 s are conducted to substantiate the necessity and effectiveness of the proposed network. The
dataset originates from a commercial professional simulator developed by the Norwegian company Offshore
Simulator Center AS (OSC).
1. Introduction

The installation of subsea equipment, pipe replacement, seismic
streamer deployment, and other offshore operations significantly con-
tribute to the global energy and resource supply (Major et al., 2021).
Achieving sustainable and responsible development of offshore re-
sources necessitates the implementation of effective safety manage-
ment (Skulstad et al., 2021; Han et al., 2023). Monitoring the rolling
state of ships is one critical aspect as excessive rolling motion would
lead to severe consequences, including human injuries and damages
to ships. Ship operators typically rely on onboard motion sensors to
monitor the vessel responses. However, relying solely on the available
information does not always ensure a safe operational window, partic-
ularly considering potential fluctuations in environmental conditions.
Therefore, accurate short-term predictions of ship roll motion during
operations are crucial for enhancing offshore safety. Such predictions
offer valuable insights, aiding in the analysis of ship roll motion, and
thereby facilitating the formulation of precautionary plans to ensure
the safety of offshore operations.

Ship roll motion prediction methods are commonly categorized into
two types: physics-based and data-driven approaches. Physics-based
models rely on mathematical equations and fundamental principles of

∗ Corresponding author.
E-mail address: shiyang.li@ntnu.no (S. Li).

physics to describe interactions between ships and external forces for
precise predictions (Kanazawa et al., 2023). However, constructing a
reliable model is challenging due to the determination of numerous
coefficients, including damping coefficients, restoring coefficients, and
environmental disturbances. To obtain and analyze the roll damping
coefficients, computational fluid dynamics (CFD) (Liu et al., 2021), or-
thogonal design and variance analysis (Gu et al., 2015), finite element
method (Chen et al., 2022), and system identification (Sun et al., 2021)
have been investigated.

Hou and Zou (2015) proposed a novel system identification method
based on support vector regression for identifying the parameters of the
nonlinear equations governing the roll motion equations of a floating
production storage and offloading vessel in regular waves. Yu et al.
(2019) employed a five degrees-of-freedom (DOF) nonlinear time do-
main model based on potential flow to predict the roll angle of a
KCS container ship quantitatively. Kianejad et al. (2019) proposed
a numerical simulation method based on a harmonic excitation roll
motion technique to determine the roll-added mass moment of inertia
using CFD simulations. Rodríguez et al. (2020) proposed a hybrid
approach to estimate roll damping coefficients in waves combining
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experimental results from model tests in waves with numerical sim-
ulations. Zhang et al. (2022) established a high-precision prediction
method by CFD of roll damping for the trimaran vessel and verified the
roll decay motion of multi-forward speeds and multi-degrees of freedom
by experiment. Nevertheless, mathematical models exhibit limited gen-
eralizability, particularly in the presence of significant environmental
disturbances attributed to the extensive inclusion of nonlinear dynam-
ics in ship roll motion (Bu et al., 2019). The ship roll mathematical
model is only suitable for a particular ship and cannot be adapted
to other vessels. Additionally, the six DOFs are interconnected, and
the impact of environmental forces on every DOF varies, making it
challenging to establish a relationship (Lyu et al., 2022). Identifying
roll damping typically involves computationally intensive tests, such
as the calm water and seakeeping tests. However, data-driven models
excel in capturing intricate nonlinear relationships and patterns directly
from historical data.

Data-driven models based on neural networks have gained promi-
nence in ship motion prediction, due to their ability to automatically
discern the underlying patterns and relationships from extensive data
without the need for prior knowledge and comprehensive mathematical
analysis (Li et al., 2016b). Numerous researchers have investigated
ship roll motion prediction based on data-driven methods, aiming to
enhance safety and stabilize the vessel, such as Elman network (Li et al.,
2016a), Radial Basis Function network (Bahmyari et al., 2017; Yin
et al., 2018), and Recurrent Neural Network (RNN) (Su et al., 2020; Xu
et al., 2021). RNNs are characterized by feedback connections between
nodes, enabling the output of each node to depend not only on the
current inputs but also on the past inputs (Fang et al., 2021), a de-
sign particularly well-suited for processing time series data. However,
RNNs often encounter issues of vanishing or diverging gradients during
backpropagation. To mitigate these issues, LSTM networks incorporate
recurrent connections into memory blocks, housing memory cells ca-
pable of retaining the network’s temporal states. Additionally, LSTM
introduces gate structures to regulate gradient flow (Alzubaidi et al.,
2021). The bidirectional long short-term memory recurrent neural
network, shortened as Bi-LSTM, expanding upon the LSTM architecture,
employs two RNNs functioning in opposite directions, enabling simul-
taneous processing of input sequences in both forward and backward
directions. Wang et al. (2021a) proposed single-input single-output and
multiple-input single-output ship roll prediction methods based on Bi-
LSTM and studied the influence of input variables on the ship roll
prediction model.

Some researchers combine the advantages of various methods to
establish a hybrid model to predict ship roll motion. Wang et al.
(2021b) proposed a ship roll angle prediction method based on Bi-LSTM
and temporal pattern attention mechanism combined deep learning
model, aiming at the problem of low accuracy of ship roll angle
prediction by traditional prediction algorithms and single neural net-
work. Wei et al. (2021) proposed a new hybrid multi-step forecasting
model, including adaptive empirical wavelet transform, multi-step fore-
casting under the multi-input multi-output strategy of the Bi-LSTM
model, and hybrid particle swarm optimization to predict ship roll
motion. Wei et al. (2022) proposed an ensemble multi-step forecasting
model for ship roll motion under different environmental conditions,
including adaptive secondary decomposition, deep belief network un-
der MIMO strategy, multi-objective optimization, and adaptive error
correction. Zhang et al. (2023) proposed a hybrid neural network that
combines LSTM and convolutional neural network in parallel to extract
the nonlinear dynamic characteristics and the hydrodynamic memory
information through the advantage of Convolutional Neural Network
(CNN) and LSTM, respectively to predict multi-step ship roll motion
in high sea states. Despite recent advancements, most researchers have
only managed to achieve one-step or multi-step roll motion prediction,
which is not practical in real-world maritime applications.

Current research on ship roll motion prediction primarily focuses
on multi-step forecasts, commonly restricted to a maximum predic-
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tion horizon of 10 s. Nevertheless, this constraint makes the current
approaches impractical for real-world maritime applications. In this
study, the ship undergoes dynamic position control, facilitating various
operations, making it practically applicable. The succinct nature of
current predictions provides limited information, posing a potential risk
to the safety of operations extending over several minutes to hours.
Consequently, this paper aims to bridge this gap by investigating ex-
tended prediction horizons, providing a more thorough understanding
crucial for ensuring the safety and effectiveness of maritime operations
in dynamic conditions. So in this paper, we propose a data-driven
sequence-to-sequence model using the encoder–decoder architecture
with Bi-LSTM and employ a technique known as teacher forcing to
predict short-term ship roll motion. LSTM and Bi-LSTM models typ-
ically require input and output sequences of equal lengths, making
them unsuitable for sequences of varying lengths. The encoder–decoder
architecture overcomes this limitation by utilizing two RNNs to process
sequences with diverse lengths. Moreover, teacher forcing is employed
to enhance prediction models. This technique involves providing the
decoder with its past output, educating it on the forecasting impreci-
sion, and guiding the necessary adjustments for a quicker and more
effective model convergence, especially in cases of limited training
data. The data used in this study were gathered from a commercial
professional simulator developed by the Norwegian company Offshore
Simulator Center AS (OSC, 2023). A series of experiments are con-
ducted to optimize and analyze the model. Firstly, the inclusion of a
sufficient number of cases in the training data is imperative to enhance
the model’s generalization capabilities, enabling it to effectively discern
the underlying patterns and relationships between input and output
sequences. The quantity of training data is evaluated and verified using
the validation loss. Second, the periodicity of ship roll motion affects
the relationship between the lengths of the input and output sequences
in prediction tasks. Therefore, appropriate lengths for the input and
output sequences are identified to improve the performance of the ship
prediction model. Additionally, model performance is assessed across
different sea states to analyze the model’s generalization capabilities.
The contributions of this paper are as follows:

• A sequence-to-sequence method based on the encoder–decoder
Bi-LSTM with teacher forcing is proposed to predict short-term
ship roll motion.

• The impact of the training data quantity, input and output se-
quence length, and model performance in various sea states are
investigated.

• Comparative experiments are conducted to verify the necessity of
our network.

The paper is organized as follows. Section 2 elaborates on the
methodology, mainly the experimental process, including the Bi-LSTM
model, encoder–decoder architecture, and teacher forcing. Section 3
presents the experiment results encompassing model optimization,
analysis, and the comparative experiment. Then, Section 4 discusses the
limitations of the proposed method. Finally, Section 5 offers a summary
of the paper.

2. Methodology

This paper investigates short-term ship roll motion prediction us-
ing a Bi-LSTM encoder–decoder architecture with the integration of
teacher forcing. The choice of a data-driven model stems from its
aptness in handling nonlinear dynamics and intricate coupling effects,
effectively capturing complex relationships and behaviors that chal-
lenge traditional conventional methods. The schematic overview of
the paper is depicted in Fig. 1. Firstly, the generated data undergoes
data processing, encompassing time domain sampling, input feature
selection, and data normalization. Subsequently, the processed data
serves as the input for our proposed network. The Bi-LSTM is a widely
acknowledged and effective approach for time series prediction, partic-

ularly proficient in managing long-term dependencies within sequential
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Fig. 1. The schematic of the overall paper.
data. Short-term prediction necessitates a higher emphasis on feature
extraction compared to multi-step prediction scenarios. Incorporating
an encoder–decoder structure not only enhances the network’s feature
extraction capability but also accommodates variations in input and
output lengths, proving advantageous in addressing the uncertainty
of the impact period. Convergence challenges faced by the network,
owing to the system’s nonlinear and complex dynamics, lead to the
introduction of teacher forcing to facilitate network convergence during
the training process. Subsequently, verification experiments are con-
ducted, which include model optimization and comparative analyses.
The investigation explores the relationship between the input and
output length, the volume of train data, and model performance across
various sea states, along with a comparison of the proposed network
with other networks.

2.1. Bidirectional long short-term memory model

LSTM, a specialized form of RNN, is designed to capture temporal
relationships, handle long-term dependencies, and efficiently preserve
information in time-series data. The development of LSTM was initially
proposed by Hochreiter and Schmidhuber (1997). An integral part of
LSTM is its a RNN module with an integrated memory cell, fortifying
the network’s capability to determine the information to retain or
discard while processing input sequences. Within LSTM, three gates
are pivotal: the input gate, forget gate, and output gate. These gates
selectively retain or discard sequence information and are fundamental
to prolonging information storage within the network. The forget gate
𝑓𝑡 facilitates the discarding of irrelevant or outdated information by
calculating the element-wise multiplication of the current input 𝑥𝑡 and
the previous hidden state ℎ𝑡−1 via the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function 𝜎,
as shown in Eq. (1). Conversely, the input gate 𝑖𝑡 decides information
to reserve within the memory cell. It combines the current input 𝑥𝑡
with the previous hidden state ℎ𝑡−1 and employs the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation
function 𝜎, as shown in Eq. (2), (3). A candidate cell state �̃�𝑡 is
calculated by the 𝑡𝑎𝑛ℎ function and used as the proposed updating
content. The updated cell state 𝐶𝑡 is calculated by the 𝑡𝑎𝑛ℎ activation
function, transforming the cell state from the previous moment 𝐶𝑡−1
combined with the output �̃�𝑡, as shown in Eq. (4). Finally, the output
gate 𝑜𝑡 determines information from the current memory cell state 𝐶𝑡
that should be conveyed to the subsequent time step. It combines the
current input 𝑥 and the previous hidden state ℎ while employing
3

𝑡 𝑡−1
the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function 𝜎 to generate the current hidden state
ℎ𝑡 and the output 𝑜𝑡, as shown in Eq. (5), (6).

𝑓𝑡 = 𝜎
(

𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(1)

𝑖𝑡 = 𝜎
(

𝑊𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(2)

�̃�𝑡 = tanh
(

𝑊𝐶 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝐶
)

(3)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 (4)

𝑜𝑡 = 𝜎
(

𝑊𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

(5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh
(

𝐶𝑡
)

(6)

where 𝑊𝑓 ,𝑊𝑖,𝑊𝑐 ,𝑊𝑜 are the weights of the forget gate, input gate,
state update unit, and output gate, respectively. 𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 , 𝑏𝑜 are the
biases of the forget gate, input gate, state update unit, and output gate,
respectively.

Bi-LSTM represents an advancement over traditional LSTMs by
processing input data in both forward and backward directions se-
quentially. The bidirectional approach enables the network to capture
context from both past and future time steps simultaneously, resulting
in better performance. Analyzing earlier and later time steps enables
the network to identify dependencies more accurately and comprehend
the context comprehensively. This attribute proves especially advanta-
geous in tasks heavily reliant on information from both past and future
time steps. The core equation of Bi-LSTM can be summarized to Eq. (7)
at 𝑘th time step.

ℎ𝑘 = 𝑓 (𝑥𝑘, ℎ𝑘−1) (7)

where 𝑓 is a non-linear activation function. By iterating these equations
over time steps, the Bi-LSTM captures the temporal dynamics in the
data and retains important information in the cell state while selec-
tively outputting relevant information in the hidden state. This chain-
like structure enables the Bi-LSTM to naturally capture the temporal
behavior of sequences, making it suitable for tasks where temporal
dependencies are important.

2.2. Encoder–decoder architecture

To enhance the understanding of the temporal context within the
data and enable it to handle sequences with varying input and output
lengths, an encoder–decoder architecture is incorporated into Bi-LSTM.
The encoder employs the Bi-LSTM, and the decoder employs the LSTM.
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The encoder–decoder architecture is a type of neural network model
commonly employed for sequence-to-sequence mapping and comprises
two main components: an encoder and a decoder (Cho et al., 2014;
Sutskever et al., 2014). The encoder–decoder model has the ability to
manage sequence-to-sequence mapping, whereby it receives a sequence
of input data and produces a corresponding sequence of output data.
By leveraging contextual information more effectively, it is anticipated
that the model will make more accurate predictions, especially in
scenarios that involve long-term dependencies or complex patterns.
Additionally, the model becomes more adaptable to diverse time series
data because it can handle input and output lengths that vary.

The encoder takes an input sequence 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑡), where
represents the length of the input sequence. It processes the input

equence step by step and updates the hidden state 𝐡 = (ℎ1, ℎ2,… , ℎ𝑡)
t every time step using Bi-LSTM to capture the temporal information
f the input sequence, as shown in Eq. (8).

𝑘 = 𝐵𝑖 − 𝐿𝑆𝑇𝑀𝑒𝑛𝑐 (𝑥𝑘, ℎ𝑘−1) (8)

n the end, the encoder compresses the input sequence into a single
ector, and the ultimate hidden state of the encoder called context
ector 𝐯 represents a compressed summary of the entire input se-
uence (Ghimire et al., 2022). The decoder includes autoregressive
onnections from the previous time step’s output to the next time step’s
ell input and utilizes the LSTM layer to process input at each time
tep (Hewamalage et al., 2021). The decoder is trained to generate the
redicted output sequence �̂� = (�̂�𝑡+1, �̂�𝑡+2,… , �̂�𝑡+𝑝), where 𝑝 represents

the length of the output sequence, given the hidden state ℎ(𝑡). Both
�̂�𝑡 and ℎ̂𝑡 are also conditioned on �̂�𝑡−1 and the summary 𝐯 of the input
equence. Hence, the hidden state of the decoder at time 𝑘 is computed
y Eq. (9).

𝑘 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐 (ℎ𝑘−1, �̂�𝑘−1, 𝐯) (9)

he output at each time step serves as the input for the succeeding
ime step, enabling the decoder to consecutively generate the output
equence. The decoder produces the output sequence continuously until
t hits a designated end-of-sequence token or a predetermined length.

The encoder–decoder architecture is trained in a joint manner to
aximize the conditional log-likelihood, as shown in Eq. (10).

𝑎𝑥
𝜃

1
𝑁

𝑁
∑

𝑛=1
𝑙𝑜𝑔(𝑝𝜃(𝐲𝑛|𝐱𝑛)) (10)

where 𝜃 is the set of the model parameters and each (𝐱𝑛, 𝐲𝑛) is an
(input sequence, output sequence) pair from the training set. Once the
encoder–decoder model is trained, the model can generate a target
sequence given an input sequence.

2.3. Teacher forcing

The ship roll motion prediction involves a regression problem,
where the output corresponds to a continuous value. Teacher forcing
is well-suited to regression problems due to its efficacy in enabling
the model to effectively discern underlying data patterns (Kucherenko
et al., 2020). In the training process, teacher forcing implies feeding
the ground truth sequence from the previous time step 𝑦𝑘−1 as input
to the decoder model instead of using the predicted output �̂�𝑘−1. This
pproach ensures that the model learns from the actual output, leading
o improved results over the long term. Consequently, this alteration
esults in a modification of Eq. (9) to Eq. (11), signifying the integration
f the teacher forcing technique within the decoder equation.

𝑘 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐 (ℎ𝑘−1, 𝑦𝑘−1, 𝐯) (11)

uring the inference process, ground truth data becomes unavailable
hen decoding unfamiliar input sequences, necessitating a modified
pproach. Initially, the encoder processes the input sequence to gener-
te the context vector 𝐯. To initialize the target sequence, the decoder
4

Table 1
Test ship specifications.
Specifications Value

length between perpendiculars 82.7 m
breadth 23.058 m
draught 7.5 m
mass 1.0179 × 107 kg

then utilizes a target sequence of size one, which corresponds to
the first ground truth value. To predict subsequent elements in the
output sequence, the decoder relies on the previous state vectors and
a one-step predicted sequence. The decoder selects and appends to
the target sequence the prediction with the highest probability, de-
termined using the 𝑎𝑟𝑔𝑚𝑎𝑥 function. This process iterates, where the
previously predicted value becomes input for predicting the succeeding
value. Repetitively applying this iterative procedure concludes when
the entire output sequence is generated. By leveraging the encoded
information and its own predictions, the decoder effectively deciphers
unknown input sequences.

3. Experimental results

3.1. Experiment setting

The experiment data come from a commercial professional simula-
tion platform developed by the Norwegian company Offshore Simulator
Center AS. The platform features a simulated environment in which
users may manipulate the wind, waves, and ocean currents to simulate
real-life conditions and offers a library of virtual vessels to choose from.
Table 1 shows the ship specifications we use. A 3 DOF dynamic posi-
tion controller is utilized for station-keeping. Each DOF is controlled
through a single proportional–integral–derivative controller. The out-
put of the motion controller is then connected to a basic generalized
inverse-control allocator, which distributes the generalized force vector
into individual commands for each thruster.

This paper investigates a stable environment characterized by con-
stant environmental forces, including wind direction, wind velocity,
wave direction, and wave height. This choice is based on the assump-
tion that the natural environment does not typically experience sudden
or frequent changes. In each scenario, the environmental forces can be
characterized as random constants, while the wind and wave directions
remain the same. Specifically, the wind direction ranges from 0 to
360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, the wind velocity ranges from 0 to 13.5 m/s, the wave
direction spans from 0 to 360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, and the wave height ranges
from 0 to 4 m, as shown in Fig. 2. The time interval is downsampled
to 1 s. The data is transformed into a three-dimensional array, with
a shape represented by (sample number, time step, feature number).
The model predicts the upcoming roll angle based on historical data
information. The input is the historical data with a specified input
length, and the output is the subsequent roll angle with a specified
output length. The network employs twelve features to extract rele-
vant information, including roll angle, roll velocity, pitch angle, pitch
velocity, yaw angle, yaw velocity, surge velocity, sway velocity, heave
velocity, north position, east position, and down position. To prevent
biases and enhance the performance of certain algorithms, the features
are scaled and standardized before input into the network.

3.2. Model optimization and analysis

Developing a data-driven model with high accuracy typically re-
quires meticulous adjustment of various parameters and settings. The
LSTM kernel size hyperparameter is optimized using Optuna (Akiba
et al., 2019). The hyperparameter candidates for the neural units in
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t

Fig. 2. (a) Wind data in polar coordinates. (b) Wave data in polar coordinates.
Fig. 3. The validation loss influenced by the number of training samples for different
input and output lengths.

the hidden layer of the LSTM range from one to 32 times 16, with the
optimal parameter fixed at 256. The performance and generalization
ability of the model can be significantly affected by the relationship be-
tween the input and output length, as well as the quantity of available
training data. To evaluate the performance of the proposed model, the
results are analyzed and evaluated by the index of the mean absolute
error (MAE), as shown in Eq. (12) and the visualization of the predicted
performance.

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| (12)

where 𝑦 denotes the benchmark obtained by the original mathematical
model, �̂� denotes the estimated value of the parameters, and 𝑛 denotes
5

he length of time.
• The amount of the training data
The performance of the model is greatly affected by the quantity
of available training data. A larger dataset usually provides a
more diverse range of examples, allowing the model to learn
enhanced representations and patterns. By increasing the amount
of data, the risk of overfitting is reduced and the model becomes
better at generalizing to novel and unknown examples. How-
ever, training machine learning models entails longer and more
compute-intensive training times, as well as increased resource
consumption. The validation loss aids in assessing the extent to
which the model generalizes. That is because the validation loss is
calculated using a distinct dataset for validation, which the model
has not encountered during the training process.
In this experiment, the training and validation datasets consist of
30 cases each, with each case containing 700 samples. For each
iteration, an additional 3500 samples, equivalent to the inclusion
of 5 cases, are added. Six experiments were conducted, including
training samples of 3500, 7000, 10,500, 14,000, 17,500, and
21,000. Fig. 3 illustrates the relationship between the validation
loss and the increase in the number of training data cases for
varying input and output lengths. It is evident that as the number
of training data increases, the validation loss decreases. This
indicates that the model’s performance improves with a larger
amount of training data. However, it should be noted that after
exceeding 14,000 training samples, additional increments in the
volume of training data do not yield a substantial decrease in the
validation loss. So 17,500 training samples are selected for the
experiment.

• The relationship between the input and output length
Investigating the input and output length aims to investigate
how prediction accuracy varies with different prediction horizons,
thus aiding in understanding the ability of the model to capture
long-term dependencies and make accurate long-term predictions.
Determining the suitable relationship between input and output
lengths can enhance the ability of the model to capture and utilize
different levels of temporal information, providing insights into
how the model understands past observations, and how perfor-

mance varies with different amounts of historical information.
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Table 2
Classification of wave level.
WMO sea state code Wave height (m) Characteristics Character of the sea swell

1 0–0.1 calm (rippled) low2 0.1–0.5 smooth (wavelets)

3 0.5–1.25 slight
moderate4 1.25–2.5 moderate

5 2.5–4 rough
Fig. 4. The effect of the MAE influenced by variations in input and output lengths.

Additionally, it can reveal the trade-off between prediction accu-
racy and computational efficiency, assisting in finding an optimal
balance that achieves accurate predictions while considering com-
putational constraints. A total of 75 cases were generated from the
simulator. Of these, 30 cases are allocated for training, 30 cases
for validation, and 15 cases for testing. To mitigate overfitting
during training caused by the high similarity of data within
each case, diverse cases are selected as the validation set which
enhances the model’s capacity for generalization and prevents
overfitting. The experiment employed a training dataset size of
17,500 samples for the training dataset, which is the same as the
validation dataset. The test set consists of 750 samples taken from
25 test cases with a spacing of 10 steps between each sample.
The effect of the MAE influenced by variations in input and output
lengths is shown in Fig. 4. Each line represents MAE for a specific
output length, distinguished by different colors. It can be seen
that the length of the input sequence has a direct impact on the
accuracy of the prediction model. The period of ship roll motion
is around 10 s, but it is not very regular due to the influence of
environmental forces and the DP controller. Predicting the future
roll motion for a specific time period based on just one cycle is
inadequate, resulting in low prediction accuracy. This is likely
due to the low similarity between successive cycles of the rolling
motion despite the periodic changes. A shorter input length may
not provide adequate information for the model, whereas longer
input lengths have the potential to introduce irrelevant data,
ultimately compromising the accuracy of the predictions. Based
on the achieved highest performance, the optimal input length
for the subsequent prediction models is determined to be 60
steps. While predicting for a duration of 30 s, the performance is
optimal when employing a 30-step input; however, the disparity
in MAE is negligible. The optimal input length for succeeding
prediction models is determined to be 60 steps, attaining the
highest performance.
The results demonstrate the MAE of the model concerning varied
input and output time lengths, concurrently illustrating a notable
6

surge in error proportional to the augmentation in the number
of output steps. As the prediction horizon extends, the model en-
counters greater complexity in capturing intricate data patterns.
This complexity stems from the necessity to forecast more distant
future states, entailing a higher level of uncertainty, variabil-
ity, and interdependencies within the dataset. Consequently, the
model’s accuracy diminishes over extended forecasting periods
due to the augmented difficulty in extrapolating and precisely
predicting future data points. Predicting 10 steps yields more
accurate results on the MAE metric compared to predicting 120
steps.

• The generalization ability under different sea conditions
To study the generalization ability of proposed models, the test
dataset is categorized by sea state level, according to the World
Meteorological Organization (WMO) sea state code , as shown in
Table 2. The wave height in our data ranges from 1 m to 4 m.
The DP operation is deemed unsafe in high-sea states, making
it infeasible to carry out. There are 3 cases in code 2, 3 cases
in code 3, 7 cases in code 4, and 2 cases in code 5 for the sea
state code. The results are depicted in a box plot, as presented
in Fig. 5. Output lengths of 10, 30, 60, and 120 are displayed
for different sea states, with input lengths derived from preceding
results. The box plot illustrates the interquartile range (IQR) by
means of a box, spanning from the first quartile (Q1) to the third
quartile (Q3) of the dataset. Inside the box, a horizontal line
represents the median (Q2). Extending from the box, the whiskers
encompass the minimum and maximum values within a specific
range, commonly 1.5 times the IQR. While disregarding outliers,
the whiskers provide an overview of the data’s range, portrayed
as dotted lines. Any data points that exceed the whiskers are
individually plotted as small circles, indicating potential extreme
values or anomalies within the dataset.
The models perform better in lower sea states, as smaller envi-
ronmental forces have less impact on roll motions. As the sea
conditions increase, the dispersion of MAE increases, indicating
that the models become less stable, causing their predictions
to be less accurate and more varied under high sea conditions.
Conversely, an increase in the number of prediction steps leads to
a proportional increase in the minimum value of MAE. This might
indicate that predicting further into the future is more challenging
for the model, resulting in higher prediction errors. The 120-step
prediction model has fewer outliers compared to other models,
indicating greater stability in its predictions. However, the MAE
for this model is higher than that of other prediction models,
suggesting that while it may be stable, it is less accurate in its
predictions.

3.3. The experiment results

To assess the effectiveness of the proposed model, the proposed
model undergoes comparisons with various models for short-term roll
motion predictions across different sea states. The comparative models
include the CNN, the CNN–Bi-LSTM, the Bi-LSTM encoder–decoder
without teacher forcing, and the Bi-LSTM model, as depicted in Fig. 6,
Fig. 7, and Table 3. It can be seen that our proposed model, the

encoder–decoder Bi-LSTM with teacher forcing model, demonstrates
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Fig. 5. The box plot of the MAE for multi-step prediction models. (a) 10-step prediction model. (b) 30-step prediction model. (c) 60-step prediction model. (d) 120-step prediction
model.
Table 3
The MAE of the prediction results.
Time steps CNN CNN–Bi-LSTM Encoder–decoder Bi-LSTM Bi-LSTM Our proposed model

10-step 0.125 0.130 0.074 0.142 0.066
30-step 0.215 0.166 0.183 0.202 0.146
60-step 0.219 0.197 0.207 0.198 0.181
120-step 0.234 0.227 0.253 0.269 0.212
optimal performance, particularly in the initial stage, yet is suscep-
tible to cumulative error in later stages. Although there is a slight
deviation in the predicted values, the overall trend remains accurate.
The predicted values are impacted by cumulative errors, particularly
concerning the amplitude. The comparative models are trained using
the identical dataset but undergo individual parameter optimizations.
Without the encoder–decoder structure, it is essential for the length
of the input sequence to be equivalent to the length of the output
sequence. In the case of an encoder–decoder structure, the input length
is set to 60 steps for the 10-step, 30-step, 60-step, and 120-step roll
predictions, which matches the configuration of our proposed model.

In low sea conditions, ships exhibit a relatively restricted range of
roll. Therefore, a noticeable discrepancy arises between the predicted
values and the ground truth data. The performance of the Bi-LSTM
model is significantly compromised in these conditions, nearly render-
ing accurate predictions infeasible. Although CNN can predict 10 steps,
it encounters challenges in short-term prediction. The encoder–decoder
Bi-LSTM prediction results align with the trend of the real values, yet
there is a considerable numerical deviation. In contrast, the CNN–Bi-
7

LSTM model exhibits a relatively enhanced predictive capability when
compared to other models, but its accuracy falls short of our proposed
model. In moderate sea conditions, the variation range of roll is more
extensive than in low sea conditions, and the disparity between the
model prediction results is not as conspicuous. However, it can be
seen that our model performs best, followed by the encoder–decoder
model and the CNN–Bi-LSTM model, with the Bi-LSTM and CNN models
exhibiting the least favorable performance. This observation under-
scores that the encoder–decoder structure contributes to the enhanced
accuracy of models, and the implementation of teacher forcing further
improves their short-term prediction ability. The MAE serves as a
statistical measure across different sea conditions, as shown in Table 3.
Calculated by averaging the absolute differences between predicted
and actual values, the MAE remains small when there is minimal
fluctuation in its value. While the numerical distinction between the
encoder–decoder Bi-LSTM model and our proposed model seems slight,
the encoder–decoder Bi-LSTM model demonstrates the difference in
comparison to our proposed model. Additionally, even a marginal im-
provement in such engineering applications can be immensely valuable
for operators, aiding in the mitigation of potential risks and hazards.

These nuanced variations can signify critical shifts in system behavior,
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Fig. 6. The outcomes of roll prediction and comparative experiments conducted under low sea conditions. (a) The result of the 10-step ship roll prediction. (b) The result of the
30-step ship roll prediction. (c) The result of the 60-step ship roll prediction. (d) The result of 120-step ship roll prediction. The light orange line represents the results of the
CNN, the light blue represents the results of the CNN–Bi-LSTM, the green line represents the results of the encoder–decoder Bi-LSTM, the gray line represents the results of the
Bi-LSTM, the dark blue line represents the results of the proposed model, and the dark orange line represents the actual roll values.
particularly in situations where precise adjustments or limited oscilla-
tions are essential, indicating potential advancements or optimizations
in ship stability or control under specific environmental conditions.
This improvement, no matter how small, contributes to ensuring safer
and more reliable ship operations in challenging maritime conditions.
The persistence of this issue is evident regardless of the sea state—
whether it is categorized as low or moderate. Notably, the predictions
exhibit higher accuracy in the initial stages in comparison to later
stages. This disparity in accuracy might potentially be linked to the
8

accumulation of errors over time, exerting an impact on the model’s
predictive performance.

4. Discussions

In this paper, the specific characteristics of the network input are
impacted by the experimental setup. In this experiment, the ship op-
erates under DP control, employing a control system or simulation to
offset the forces caused by environmental factors. In other words, the
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Fig. 7. The outcomes of roll prediction and comparative experiments conducted under moderate sea conditions. (a) The result of the 10-step ship roll prediction. (b) The result
of the 30-step ship roll prediction. (c) The result of the 60-step ship roll prediction. (d) The result of 120-step ship roll prediction.
ship’s movement adheres to predetermined rules, thereby not employ-
ing the command as input for the network. The data-driven model
endeavors to discern patterns and relationships within the ship’s mo-
tion data without relying on the ship’s command. Throughout the
entire process, the simulator maintains constant environmental forces.
Nonetheless, employing these constant environmental forces as net-
work inputs detrimentally impacts the network’s performance. This
issue arises due to the challenge posed when a feature term remains
constant throughout the time series. The model confronts difficulty
in capturing the dynamic relationship between this unvarying feature
and other variables. As this feature remains constant across time steps,
the model may perceive no correlation between it and the output,
leading to potential inaccuracies in predicting the target. Therefore, the
9

input needs to be modified when applying the ship roll motion model
to different scenarios. Additionally, future research should address
feature selection and weighting. It is crucial to evaluate the significance
of input data and whether implementing weighting mechanisms is
advantageous.

While our method exhibits promise in the specific context of ship
roll prediction, it is essential to recognize its broad applicability in
time series prediction. Its applications can be extended beyond the
specific domain of ship roll prediction encompassing areas such as
financial data analysis and weather forecasting. In essence, the ap-
proach’s flexibility stems from the nature of the neural network itself,
which prioritizes analyzing data characteristics rather than being ex-
plicitly tailored to specific data types. While a theoretical foundation
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supports the method’s potential applicability in various fields, empirical
validation is imperative to substantiate its efficacy in specific contexts.

5. Conclusions

The paper introduces a data-driven ship roll motion prediction
model based on the Bi-LSTM encoder–decoder architecture with teacher
forcing, which facilitates precise short-term ship roll motion prediction.
To enhance the efficiency and accuracy of the model, the appropriate
amount of training data is allocated, and the input and output lengths
are adjusted through the encoder–decoder structure. Shorter input
lengths lack sufficient features for accurate prediction, while longer
lengths include irrelevant information that impedes prediction accu-
racy. The study assesses the model’s performance across various sea
states and conducts comparative experiments to identify the efficiency
of the proposed model. Future research endeavors should concentrate
on enhancing the prediction accuracy of the model for longer time
periods, particularly in the high-sea states.
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