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We consider pion condensation in QCD at finite isospin density μI and zero temperature using two-flavor
chiral perturbation theory (χPT). The pressure is calculated to next-to-leading order (NLO) in the low-energy
expansion. In the nonrelativistic limit, we recover the classic result by Lee, Huang, and Yang for the energy
density of a dilute Bose gas with an s-wave scattering length that includes loop corrections from χPT. In the
chiral limit, higher-order calculations are tractable. We calculate the pressure to next-to-next-to-leading order
(NNLO) in the low-energy expansion, which is an expansion in powers of μ2I =ð4πÞ2f2, where f is the (bare)
pion decay constant. The spontaneous breakdown of the global internal symmetry Uð1ÞI3 gives rise to a

massless Goldstone boson or phonon. We discuss the properties of the low-energy effective theory
describing this mode. Finally, we compare our results for the pressure and the speed of sound with
recent lattice simulations with 2þ 1 flavors. The agreement is very good for isospin chemical potentials up
to 180–200 MeV, depending on the physical quantity.
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I. INTRODUCTION

Bose-Einstein condensation (BEC), spontaneous sym-
metry breaking and the subsequent appearance of massless
Goldstone modes frequently occur in condensed matter and
high-energy physics. In the past decades, there has been
significant progress in our understanding of the properties
of these massless excitations, their classification, and the
construction of low-energy effective theories that describe
their dynamics, see, e.g., Refs. [1–10].
The classic textbook example is the Bose-Einstein

condensation of a dilute nonrelativistic Bose gas at zero
and finite temperature [11]. The homogeneous Bose gas
has been studied extensively for many decades beginning
with the paper by Bogoliubov [12] in the 1940s. The
nonrelativistic Lagrangian that describes the system at
finite particle density is

L ¼ ψ†ði∂0 þ μNRÞψ −
1

2m
∇ψ† ·∇ψ −

1

4
gðψ†ψÞ2

−
1

36
g3ðψ†ψÞ3 þ � � � ; ð1Þ

where the quantum field ψ† creates a particle, ψ destroys a
particle, μNR is the nonrelativistic chemical potential, and g
and g3 are coupling constants. The term ðψ†ψÞ2 represents
two-particle scattering and the coupling g is related to the
s-wave scattering length a as g ¼ 8πa

m . The term ðψ†ψÞ3
represents 3 → 3 scattering. The dots indicate terms that are
higher order in the fields ψ , ψ† and/or their derivatives, and
include all local terms that are consistent with the sym-
metries, for example, Galilean invariance and the phase
symmetry ψ → eiϕψ. The latter continuous symmetry gives
rise to the conservation of particle number. The coefficients
g, g3, and the coefficients that multiply the higher-order
terms can in principle be determined from the n-body
potentials that describe interatomic interactions [13].
At zero temperature, the expansion parameter of the

dilute Bose gas is the so-called (dimensionless) gas param-
eter

ffiffiffiffiffiffiffiffi
na3

p
, where n is the number density. Bogoliubov [12]

obtained the mean-field result for the energy density,
EðnÞ ¼ 2πn2a

m . The leading correction to Bogoliubov’s result
for the energy density was calculated by Lee, Huang, and
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Yang (LHY) [14,15] for a hard-sphere potential. Later, part
of the next-to-leading order correction was calculated by
Wu [16], by Hugenholz and Pines [17], and by Sawada [18].
A complete next-to-leading result was obtained by Braaten
and Nieto [13] using effective-field theory methods. The
result depends not only on the scattering length a but also on
an energy-independent term in the scattering amplitude for
3 → 3 scattering. The result is

EðnÞ ¼ 2πn2a
m

�
1þ 128

15
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
na3

p

þ
�
32π − 24

ffiffiffi
3

p

3
logðna3Þ þ C

�
na3
�
; ð2Þ

where C is a constant involving the coupling g3. The
dependence of physical results on quantities other than
the s-wave scattering length was already realized by
Hugenholz and Pines. These effects are referred to as
nonuniversal effects and are mimicked by, e.g., the term
g3ðψ†ψÞ3 in Eq. (1). Similarly, the effective range rs of the
two-body potential can be included by adding the operator
1
4
h½∇ðψ†ψÞ�2. The coupling h is related to the effective

range, h ¼ 2πa2rs=m. The leading correction to the results
of LHY due to this term was calculated in Ref. [19] and is
of higher order in the gas parameter than the terms shown
in Eq. (2).
Another example of Bose-Einstein condensate is pion

condensation in QCD at finite isospin density. Consider
two-flavor QCD with two independent chemical potentials
μu and μd. Instead of using the quark chemical potentials,
we can express the Lagrangian in terms of the baryon
and isospin chemical potentials μB ¼ 3

2
ðμu þ μdÞ and

μI ¼ ðμu − μdÞ. Normally, the phase diagram is shown
in the μB–T plane, but by allowing for nonzero μI, we can
add a new axis, and the phases in the μI–T plane have
received particular attention due to the fact that QCD is
free of the sign problem for μB ¼ 0. The system is
therefore amenable to lattice simulations employing
importance-sampling techniques. In a series of papers,
Brandt et al. have mapped out the phase diagram in the
μI–T plane, calculated the equation of state, the isospin
density, quark and pion condensates, and the speed of
sound [20–25]. The EoS has been used to model pion stars
[24], which are compact objects consisting of a pion
condensate with leptons and neutrinos to ensure electric
neutrality and weak equilibrium, first proposed in [26].
Chiral perturbation theory (χPT) [27–30] is a low-energy

effective theory for the pseudo-Goldstone bosons that
appear in QCD as a consequence of spontaneous symmetry
breaking in the vacuum by the quark condensate. χPT at
finite isospin chemical potential was first considered in
Refs. [31,32]. The quark, pion, and axial condensates of
QCD at finite isospin density and T ¼ 0 have been
calculated at next-to-leading order in [33,34]. The results

are generally in good agreement with lattice simulations
with 2þ 1 flavors for small values of the isospin chemical
potential, μI ≪ 4πf, where χPT is expected to be valid. In
this paper, we compare the pressure and the speed of sound
including updated lattice simulations with 2þ 1 flavor, that
recently appeared in Ref. [25].
At first glance, the dilute Bose gas and Bose condensation

in QCD may seem unrelated. However, it is known that a
relativistic Bose condensate for low densities, i.e. near the
onset of Bose condensation,1 behaves as a dilute Bose gas. It
was explicitly shown in Ref. [35] that the pions in the pion
stars mentioned above, to a good approximation are non-
relativistic, i.e. the pion density is very low. In this paper, we
show that at the next-to-leading order, the pion condensate
behaves as a dilute Bose for low densities: We reproduce the
corrections to Bogoliubov’s results in the appropriate limit,
namely for μI just above the physical pion mass. In the final
stages of this work, Ref. [36] appeared with some over-
lapping results, for example recovering the LHY correction
for interacting scalars. We also consider the opposite limit,
namely the ultrarelativistic or high-density regime. In this
regime, higher-order calculations are in fact tractable and we
calculate the pressure to next-to-next-to-leading order in the
low-energy expansion. Finally, we use Son’s construction of
the effective field theory for the phonons to obtain a low-
energy description of the system. The damping rate of the
phonons scales as p5 for small p, a result that was obtained
by Beliaev long ago in the case of a weakly interacting Bose
gas [37].

II. THERMODYNAMICS

In the discussion below, the thermodynamic potential is
a function of a chemical potential μ and a parameter that
we for now denote by α, Ω ¼ Ωðμ; αÞ. In the case of a
dilute Bose gas, the parameter α is identified with the order
parameter v, which is the condensate density. In chiral
perturbation theory, the quark condensate is rotated into a
pion condensate, specified by the rotation angle α,
cf. Eq. (26) below. The Bose-condensed phase is charac-
terized by a nonzero value of α.
The thermodynamic potential can be systematically

expanded in powers of the gas parameter
ffiffiffiffiffiffiffiffi
na3

p
in the

dilute Bose gas or in powers of p=f in a low-energy
expansion in χPT (see explanation in the beginning of
Sec. IV). We can write this expansion as

Ωðμ; αÞ ¼ Ω0ðμ; αÞ þ Ω1ðμ; αÞ þ � � � ; ð3Þ

where the subscript n indicates the nth order contribution in
the expansion. The value of α that minimizes Ωðμ; αÞ is
denoted by α� and is found by solving

1The onset of BEC is exactly at μI ¼ mπ , where mπ is the
physical pion mass.
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∂Ω
∂α

¼ 0: ð4Þ

The pressure P is given by minus the thermodynamic
potential evaluated at its minimum as a function of α

PðμÞ ¼ −Ωðμ; α�Þ: ð5Þ

The charge density nQ associated with μ is given by

nQðμÞ ¼ −
∂Ω
∂μ

����
α¼α�

¼ dP
dμ

; ð6Þ

where we in the last step have used Eq. (4). Finally, the
energy density is given by a Legendre transform of the
pressure,

EðnQÞ ¼ −PðμÞ þ μnQðμÞ: ð7Þ

The solution α� to Eq. (4) can also be written as a series

α� ¼ α0 þ α1 þ � � � : ð8Þ

We can find expressions for α0; α1… by expanding Eq. (4)
around α ¼ α0. We find

∂Ω
∂α

����
α¼α�

¼ ∂Ω0

∂α

����
α¼α0

þ ∂
2Ω0

∂α2

����
α¼α0

α1 þ
∂Ω1

∂α

����
α¼α0

þ � � � ¼ 0: ð9Þ

α0 is simply given by the solution to ∂Ω0

∂α ¼ 0, so the first term
in Eq. (9) vanishes. We can solve then solve Eq. (9) for α1,

α1 ¼ −
∂Ω1

∂α

����
α¼α0

�
∂
2Ω0

∂α2

����
α¼α0

: ð10Þ

Finally, the expansion of the pressure reads

PðμÞ ¼ −Ωðμ; α�Þ

¼ −Ω0ðμ; α0Þ −
∂Ω0

∂α

����
α¼α0

α1 − Ω1ðμ; α0Þ þ � � �

¼ −Ω0ðμ; α0Þ −Ω1ðμ; α0Þ þ � � � : ð11Þ

III. DILUTE BOSE GAS

We now derive the first two terms in the expansion
Eq. (2). The first term is the mean-field result, while the
second arises from a one-loop calculation. The complex
field is written as ψ ¼ vþ ψ̃ , where v ¼ hψi is its expect-
ation value and ψ̃ is a fluctuating quantum field. The
fluctuating field is written as ψ̃ ¼ 1ffiffi

2
p ðψ1 þ iψ2Þ. To second

order in the fluctuations, one finds the different terms of the
Lagrangian Eq. (1)

Lstatic ¼ μNRv2 −
1

4
gv4; ð12Þ

Llinear ¼ vXffiffiffi
2

p
m
ψ1; ð13Þ

Lquadratic ¼ 1

2
ðψ̇1ψ2 − ψ1ψ̇2Þ þ

1

4m
ψ1ð∇2 þ YÞψ1

þ 1

4m
ψ2ð∇2 þ XÞψ2; ð14Þ

where X ¼ 2mðμNR − 1
2
gv2Þ and Y ¼ 2mðμNR − 3

2
gv2Þ.

The propagator matrix is given by the inverse of the
quadratic terms in L. In momentum space, one finds

DðPÞ¼ i
p2
0−E2ðpÞþ iϵ

 
1
2mðp2−XÞ −ip0

ip0
1
2mðp2−YÞ

!
; ð15Þ

where P is the four momentum, P ¼ ðp0;pÞ, p ¼ jpj, and
the spectrum is

EðpÞ ¼ 1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − XÞðp2 − YÞ

q
: ð16Þ

The thermodynamic potential in the mean-field approxi-
mation is as usual given by minus the static part of the
Lagrangian,

Ω0ðμNR; vÞ ¼ −μNRv2 þ
1

4
gv4: ð17Þ

The linear term vanishes at the minimum v0 ¼
ffiffiffiffiffiffiffi
2μNR
g

q
of

the thermodynamic potential Ω0ðμNR; vÞ. At the mini-
mum, Eq. (16) reduces to the Bogoliubov spectrum
Ep ¼ p

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4mμNR

p
. The dispersion relation is gapless

and linear for small momenta p2 ≪ 4mμNR and that of a free
nonrelativistic particle for large momenta p2 ≫ 4mμNR. The
length scale 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mμNR

p
is referred to as the coherence

length. This is the Goldstone mode, which is the result of the
spontaneous breaking of the Uð1Þ phase symmetry men-
tioned above. The NLO pressure is given by the thermo-
dynamic potential evaluated at the classical minimum v0
cf. Eq. (11). This is convenient since X ¼ 0. The NLO
pressure is

PðμNRÞ ¼ −Ω0ðμNR; v0Þ −Ω1ðμNR; v0Þ

¼ μ2NR
g

−
1

2

Z
p
EðpÞ ¼ μ2NR

g
−

1

4m
I0;−1ðM2Þ

¼ μ2NR
g

"
1 −

16ð4mÞ32
ffiffiffiffiffiffiffiffiffiffiffiffi
μNRg2

p
15ð4πÞ2

#
: ð18Þ
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where the integrals Im;nðM2Þ are defined in Eq. (A12),
I0;−1ðM2Þ is defined in Eq. (A15), and M2 ¼ 4mμNR. The
density is then given by

nðμNRÞ ¼
dP
dμ

¼ 2μNR
g

−
1

2
I1;1ðM2Þ

¼ 2μNR
g

"
1 −

4ð4mÞ32
ffiffiffiffiffiffiffiffiffiffiffiffi
μNRg2

p
3ð4πÞ2

#
; ð19Þ

where we have used Eq. (16) in the last line. We can invert
Eq. (19) to obtain the chemical potential in terms of the
number density. To the order we are calculating, we obtain

μNRðnÞ ¼
1

2
gnþ 1

4
gI1;1ð2mgnÞ

¼ 4πna
m

�
1þ 32

3
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
na3

p �
: ð20Þ

The energy density is then

EðnÞ ¼ −PðμNRÞ þ μNRðnÞn;

¼ 1

4
gn2 þ 1

4m
I0;−1ð2mgnÞ; ð21Þ

where we have used the LO relation 2μNR ¼ gn in the
integral, which is correct to the order we are calculating.
Note that the terms involving I1;1ðμNRÞ cancel in the final
result for the energy density. We then obtain the result of
Lee, Huang, and Yang [14,15],

EðnÞ ¼ 2πn2a
m

�
1þ 128

15
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
na3

p �
: ð22Þ

It is amusing to note that all the divergent integrals appearing
in this calculation are finite in dimensional regularization in
the limit d → 3. The reason is simply that the UV diver-
gences are power divergences which are always set to zero.
Using a more conventional three-dimensional cutoff Λ
requires the renormalization of g and μ to obtain the finite
result above [13].
The quantum field theory in Eq. (1) is nonrenormalizable.

This implies that the UV divergences that show up in the
calculations of e.g. the energy density at higher loop orders
cannot be removed by renormalizing the couplings of the
terms involved in the calculation. This is exactly what
happens at NNLO in the low-density expansion. Some of
the relevant two-loop vacuum graphs arising from the
operator ðψ†ψÞ2 have logarithmic divergences proportional
to a4n3. These divergences are canceled by the counterterm
for g3 that multiplies the operator ðψ†ψÞ3 [13].

IV. CHIRAL PERTURBATION THEORY

Chiral perturbation theory is a low-energy effective
theory for QCD that describes the pseudo-Goldstone
bosons [27–30], where the SUð2ÞL × ðSUð2ÞR global
symmetry of QCD (for two flavors) is realized nonlinearly.
The vacuum manifold is SUð2ÞL × SUð2ÞR=SUð2ÞV ≃
SUð2Þ and parametrized as Σ ¼ eiϕaτa=f, where ϕa are
the Goldstone fields, f is the bare pion-decay constant, and
τa are the broken generators.
The chiral Lagrangian has a systematic low-energy

expansion. Each covariant derivative counts as one power
of momentum p and each quark mass term counts as two
powers of p. Using this power-counting scheme, one writes
down all possible terms at each order in the expansion. At
leading order, there are two terms in the chiral Lagrangian.
For two flavors, it reads

L2 ¼
1

4
f2h∇μΣ†∇μΣi þ

1

4
f2hχ†Σþ Σ†χi; ð23Þ

where hAi denotes the trace of a 2 × 2 matrix A and the
covariant derivatives are

∇μΣ ¼ ∂μΣ − i½υμ;Σ�; ð24Þ

∇μΣ† ¼ ∂μΣ† − i½υμ;Σ†�; ð25Þ

where υμ ¼ 1
2
μIτ3δμ0, μI is the isospin chemical potential,

and χ ¼ 2B0diagðmu;mdÞ. The constant B0 is related to the
tree-level values of the light quark condensates in the
vacuum via hd̄di ¼ hūui ¼ −f2B0. In the remainder of
this paper, we work in the isospin limit, mu ¼ md.
The ground state for two-flavor QCD is of the form Σ ¼

eiϕaτa=f for constant fields ϕa. It is convenient to repar-
ametrize the constant fields defining ϕ̂a and α via ϕa ¼
ϕ̂aαf with the constraint ϕ̂2

1 þ ϕ̂2
2 þ ϕ̂2

3 ¼ 1. The ground
state is now denoted by Σα ¼ eiϕ̂aτaα and is properly
normalized, Σ†

αΣα ¼ 1. In the QCD vacuum, the ground
state Σ0 corresponds to ϕa ¼ α ¼ 0, which is simply the
unit matrix, Σ0 ¼ 1. Using the normalization of ϕ̂a and the
properties of the Pauli matrices, we can write the ground
state as

Σα ¼ eiϕ̂aτaα ¼ 1 cos αþ iϕ̂aτa sinα: ð26Þ

The parameter α can be thought of as a rotation angle,
where the QCD vacuum (α ¼ 0) with a quark condensate
is rotated into a state with a nonzero pion condensate. We
can further restrict the values of ϕ̂a by considering the
static HamiltonianHstatic corresponding to the static part of
the Lagrangian Eq. (23). It reads

Hstatic¼−
1

4
f2hχ†ΣþΣ†χiþ 1

16
f2μ2I h½Σ†;τ3�½Σ;τ3�i: ð27Þ
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Substituting Eq. (26) into Eq. (27), we obtain the ground-
state energy density

hHstatici ¼ −f2m2
π;0 cos α −

1

2
f2μ2I ðϕ̂2

1 þ ϕ̂2
2Þsin2α: ð28Þ

Here mπ;0 is the tree-level pion mass, which satisfies
m2

π;0 ¼ B0ðmu þmdÞ. The first term is minimized for
α ¼ 0. i.e. the QCD vacuum, while the second term is
minimized for α ¼ 1

2
π. The second term is minimized for

ϕ̂2
1 þ ϕ̂2

2 ¼ 1 and therefore ϕ̂3 ¼ 0. Without loss of gen-
erality we can choose ϕ̂2 ¼ 1, which we do henceforth.
The ground state can now be compactly written as

Σα ¼ AαΣ0Aα; ð29Þ

with Aα ¼ e
1
2
iτ2α.

We have rotated the ground state according to Eq. (26),
however, it turns out that the naive expression for Σ,
Σ ¼ UΣαU, where U ¼ eiϕaτa=2f, is no longer valid [38].
Instead of using Σ ¼ UΣαU, we must use

Σ ¼ LαΣαR
†
α; ð30Þ

with

Lα ¼ AαUA†
α; Rα ¼ A†

αU†Aα: ð31Þ
The correct expression for Σ then reads

Σ ¼ AαU2Aα: ð32Þ

V. THERMODYNAMICS TO Oðp4Þ
Using the parametrization Eq. (32), we can expand the

LO chiral Lagrangian in powers of the fields ϕa,

L2 ¼ Lð0Þ
2 þ Lð1Þ

2 þ Lð2Þ
2 þ Lð3Þ

2 þ Lð4Þ
2 þ � � � ; ð33Þ

where the superscript indicates the number of fields and
where

Lð0Þ
2 ¼ f2m2

π;0 cos αþ 1

2
f2μ2I sin

2α; ð34Þ

Lð1Þ
2 ¼ −fm2

π;0 sin αϕ2 þ fμ2I sin α cos αϕ2

− fμI sin α∂0ϕ1; ð35Þ

Lð2Þ
2 ¼ 1

2
∂
μϕa∂μϕa þ

1

2
m12ðϕ1∂0ϕ2 − ϕ2∂0ϕ1Þ

−
1

2
m2

aϕ
2
a; ð36Þ

Lð3Þ
2 ¼ m2

π;0 sin α − 4μ2I sin α cos α

6f
ϕ2ϕaϕa

þ μI sin α
f

∂0ϕ1ðϕ2
2 þ ϕ2

3Þ; ð37Þ

Lð4Þ
2 ¼ 1

24f2
ϕaϕa½ðm2

π;0 cos α − 4μ2I cos
2αÞϕ2

1

þðm2
π;0 cos α − 4μ2I cos 2αÞϕ2

2

þðm2
π;0 cos αþ 4μ2I sin

2αÞϕ2
3�

−
μI cos α
3f2

ϕaϕaðϕ1∂0ϕ2 − ϕ2∂0ϕ1Þ

þ 1

6f2
½ϕaϕb∂

μϕa∂μϕb − ϕaϕa∂
μϕb∂μϕb�; ð38Þ

where the masses are

m2
1 ¼ m2

π;0 cos α − μ2I cos
2 α; ð39Þ

m2
2 ¼ m2

π;0 cos α − μ2I cos 2α; ð40Þ

m2
3 ¼ m2

π;0 cos αþ μ2I sin
2 α; ð41Þ

m12 ¼ 2μI cos α: ð42Þ

From the quadratic term, the inverse propagator is

D−1ðPÞ ¼
 
D−1

12 ðPÞ 0

0 P2 −m2
3

!
; ð43Þ

D−1
12 ðPÞ ¼

 
P2 −m2

1 ip0m12

−ip0m12 P2 −m2
2

!
: ð44Þ

The dispersion relations are found by solving
detD−1ðPÞ ¼ 0. One finds

E2
�ðpÞ¼p2þ1

2
ðm2

1þm2
2þm2

12Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2m2

12þðm2
1þm2

2þm2
12Þ2−4m2

1m
2
2

q
; ð45Þ

E2
3ðpÞ ¼ p2 þm2

3: ð46Þ

At LO, the thermodynamic potential is minus the static
Lagrangian Eq. (34),

Ω0ðμI; αÞ ¼ −f2m2
π;0 cos α −

1

2
f2μ2I sin

2α: ð47Þ

The value α0 that extremizes Ω0ðμI; αÞ satisfies
cos α0 ¼ m2

π;0=μ
2
I . Note that the transition from the vacuum

phase (α ¼ 0) to the pion-condensed phase (α > 0) takes
place at μI ¼ mπ;0, i.e. the tree-level value of the physical
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pion mass mπ . The onset of BEC at the physical pion mass
is expected to hold to all orders in the low-energy
expansion. It follows from Eq. (47) that the pressure and
the other thermodynamic quantities are independent of μI
for μI ∈ ½0; mπ;0�, i. e. before the onset of Bose condensa-
tion. This is an example of the Silver-Blaze property [39].
Subtracting the constant pressure in the vacuum, the LO
pressure in the BEC phase,

P0 ¼
1

2
f2μ2I

�
1 −

m2
π;0

μ2I

�2
; μI ≥ mπ;0: ð48Þ

AtOðp4Þ, the chiral Lagrangian at finite chemical potential
is [28]

L4 ¼
1

4
l1h∇μΣ†∇μΣi2 þ 1

4
l2h∇μΣ†∇νΣih∇μΣ†∇νΣi

þ 1

16
ðl3 þ l4Þhχ†Σþ Σ†χi2

þ 1

8
l4h∇μΣ†∇μΣihχ†Σþ Σ†χi þ 1

2
h1hχ†χi; ð49Þ

where l1–l4 and h1 are bare coupling constants. In a next-
to-leading order calculation, there are two contributions to
the thermodynamic potential. The first one is the one-loop
functional determinant of bosonic fluctuations and the
second is the static part of L4. The functional determinant
is regularized using dimensional regularization and con-
tains poles in ϵ, where d ¼ 3 − 2ϵ. These ultraviolet
divergences are removed by renormalizing the constants
li and h1. The relations between the bare couplings and
their renormalized counterparts are

li ¼ lri −
γiΛ−2ϵ

2ð4πÞ2
�
1

ϵ
þ1

�
; hi ¼ hri −

δiΛ−2ϵ

2ð4πÞ2
�
1

ϵ
þ1

�
; ð50Þ

where Λ is the renormalization scale in the MS scheme and
γi and δi are pure numbers,

γ1 ¼
1

3
; γ2 ¼

2

3
; γ3 ¼ −

1

2
; ð51Þ

γ4 ¼ 2; δ1 ¼ 0: ð52Þ

The bare quantities are independent of the scale Λ, which
implies that the renormalized couplings satisfy simple
renormalization group equations. In the two flavor-case,
it is convention to introduce the quantities li via the
solutions to these equations in the limit ϵ → 0

lri ðΛÞ ¼
γi

2ð4πÞ2
�
l̄i þ log

m2
π;0

Λ2

�
: ð53Þ

Up to a prefactor, l̄i equals the running coupling lri
evaluated at the scale Λ ¼ mπ;0. Note that since δ1 ¼ 0,

the coupling hr1 does not depend on Λ. The contact term
1
2
h1hχ†χi yields a constant contribution h1m4

π;0 ¼ hr1m
4
π;0 to

the pressure, which will be ignored in the following. In
Sec. VII, we discuss the chiral limit, i.e. mπ;0 ¼ 0. In this
case, we keep the running couplings lri ðΛÞ.
The contribution from Lstatic

4 to the thermodynamic
potential is

Ωstatic
1 ðμI;αÞ ¼ −ðl1 þ l2Þμ4I sin4α − l4m2

π;0μ
2
I cos αsin

2α

− ðl3 þ l4Þm4
π;0cos

2α; ð54Þ

The one-loop contribution to the thermodynamic potential
follows directly from the inverse propagator. After going to
Euclidean space the result is

Ωloop
1 ðμI; αÞ ¼

1

2

Z
P
log ½ðP2 þm2

1ÞðP2 þm2
2Þ þ p2

0m
2
12�

þ 1

2

Z
P
log ½P2 þm2

3�: ð55Þ

The pressure P at NLO is found by evaluating the
thermodynamic potential at the LO minimum satisfying

cos α0 ¼ m2
π;0

μ2I
, as explained. This simplifies the calculations

somewhat since m2
1 ¼ 0. We therefore need to evaluate

Ploop
1 ðμIÞ ¼ −

1

2

Z
P
log ½P2ðP2 þm2

2Þ þ p2
0m

2
12�

−
1

2

Z
P
log ½P2 þm2

3�

¼ −
1

2

Z
P
log ½P2 þm2

2� −
1

2

Z
P
log ½P2 þm2

3�

þ 1

2

X∞
n¼1

ð−1Þnm2n
12

n

Z
P

p2n
0

P2nðP2 þm2
2Þn

; ð56Þ

where we in the last line have expanded the logarithm of the
first term in powers of z ¼ m2

12=m
2
2. After integrating over

angles in d dimensions, we can write

Ploop
1 ðμIÞ ¼

1

2
I00ðm2

2Þ þ
1

2
I00ðm2

3Þ þ
Γð2 − ϵÞ
2Γ
	
1
2




×
X∞
n¼1

Γ
	
nþ 1

2



Γðnþ 2 − ϵÞ

ð−1Þnm2n
12

n
Inðm2

2Þ: ð57Þ

We single out the two divergent terms with n ¼ 1; 2 and
resum the rest of the series [40]. In the remaining finite
terms (n ≥ 3 in the sum), we can set d ¼ 3. This yields
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Ploop
1 ðμIÞ ¼

1

2
I00ðm2

2Þ þ
1

2
I00ðm2

3Þ −
m2

12

2ðdþ 1Þ I1ðm
2
2Þ

þ 3m4
12

4ðdþ 1Þðdþ 3Þ I2ðm
2
2Þ −

5m6
12

768ð4πÞ2m2
2

× 3F2

�
1; 1; 7

2

4; 5

���� −m2
12

m2
2

�
; ð58Þ

where 3F2 is a hypergeometric function [41], which is
given by

3F2

�
1; 1; 7

2

4; 5

����z
�
¼ 16

5

"
ð3z2 − 10z − 8Þð1 − ffiffiffiffiffiffiffiffiffiffi

1 − z
p Þ

z4

þ z2 þ 4

z3
− 3

z2 − 4zþ 8

z3

× log
1þ ffiffiffiffiffiffiffiffiffiffi

1 − z
p

2

#
: ð59Þ

We briefly discuss hypergeometric functions in the
Appendix. Combining Eqs. (48), (54) and (58) together
with Eqs. (50) and (53), the pressure is

P0þ1ðμIÞ ¼
1

2
f2μ2I

�
1 −

m2
π

μ2I

�
−
1

2
f2

m4
π;0

m2
π

�
1 −

m2
π

μ2I

�
þ m8

π;0

6ð4πÞ2μ4I

�
l̄1 þ 2l̄2 −

3

2
l̄3 −

5

4

þ 3

2
log

m2
π;0μ

2
I

μ4I −m4
π;0

�
þ μ4I
6ð4πÞ2

�
l̄1 þ 2l̄2 þ

3

2
þ 3

2
log

m4
π;0

μ4I −m4
π;0

�
−

5m12
π;0

12ð4πÞ2ðμ4I −m4
π;0Þμ4I

× 3F2

�
1; 1; 7

2

4; 5

���� − 4m4
π;0

μ4I −m4
π;0

�
−

m4
π;0

3ð4πÞ2
�
l̄1 þ 2l̄2 −

3

4
l̄3 þ

9

8

�
; ð60Þ

where we have written the argument of the hypergeometric
function as −m2

12=m
2
2 ¼ −4m4

π;0=ðμ4I −m4
π;0Þ and added a

constant such that the pressure vanishes at μI ¼ mπ (in the
loop corrections, m2

π ¼ m2
π;0 to the order we are calculat-

ing). From the pressure, one can calculate the isospin
density nI and the energy density E using the standard
thermodynamic relations.
We close this section by making a comparison of our

χPT result for the pressure with recent lattice data [25]
using physical quark masses. The pion mass is mπ ¼
135 MeV and the pion decay constant was slightly differ-
ent in the two simulations, fπ ¼ 130�3ffiffi

2
p MeV and

fπ ¼ 136�4ffiffi
2

p MeV, respectively. The simulations are done

with two different lattice spacings, a ≈ 0.22 fm and
a ≈ 0.15 fm. The results were not continuum extrapolated.
To make a reasonable comparison with the data, we

choose mπ ¼ 135 MeV and fπ ¼ 133ffiffi
2

p MeV. At LO, we
identify the parameters mπ;0 and f with the corresponding
physical values. At NLO, we need the relations between the
bare parameters mπ;0 and f and the physical observables
at NLO,

m2
π ¼ m2

π;0

�
1 −

m2
π;0

2ð4πÞ2f2 l̄3
�
; ð61Þ

f2π ¼ f2
�
1þ 2m2

π;0

ð4πÞ2f2 l̄4
�
: ð62Þ

In order to invert these relations to solve for mπ;0 and f, we
need the experimental values of l̄3 and l̄4. We also need the

numerical values for the couplings l̄1 and l̄2 appearing in
Eq. (60). The numerical values for the couplings l̄i are taken
from Ref. [42] and read l̄1 ¼ −0.4� 0.6, l̄2 ¼ 4.3� 0.1,
and l̄3 ¼ 2.9� 2.4, and l̄4 ¼ 4.4� 0.2. This yields mπ;0 ¼
136.50� 1.2 MeV and f ¼ 88.35� 1.9 MeV, respec-
tively. The results for the pressure is shown in Fig. 1.
The LO result is given by the black dashed line and the NLO
result by the red solid curve, where we have used the central
values of the parameters and couplings. Going from LO to

FIG. 1. The normalized pressure as a function of the normalized
isospin chemical potential. The LO level and NLO level results
are the black dashed and red solid lines, respectively. The blue
and green bands are from two simulations with different lattice
spacings [25]. See main text for details.
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NLO in χPT hardly changes the result for the pressure.
The agreement between the prediction between χPT and
lattice simulations is very good up to μI=mπ ≈ 1.5. Of
course, the comparison should be taken with a grain of
salt since our results are for two flavors. A more detailed
comparison with three-flavor χPT will be presented
elsewhere [43].

VI. NONRELATIVISTIC LIMIT

In this section, we consider the nonrelativistic limit of the
final expression for the pressure Eq. (60). In this limit, we
will recover the classic results for thermodynamic quan-
tities for the dilute Bose gas obtained over six decades ago,
which we briefly discussed in Sec. III. It turns out that the
nonrelativistic loop corrections are hidden in the hyper-
geometric function. It will be useful to express the results in
terms of the physical pion mass mπ and the s-wave
scattering length a, both calculated to one-loop and given
in terms of the bare parameters mπ;0 and f, as well as low-
energy constants l̄1, l̄2, and l̄3 [28,44,45]. The expression
we need is

a20 ¼ −
m2

π;0

4ð4πÞf2
�
1 −

4m2
π;0

3ð4πÞ2f2
�
l̄1 þ 2l̄2 þ

3

8

��
; ð63Þ

where the s-wave scattering length is a ¼ −a20=mπ . We first
write the isospin chemical potential μI ¼ mπ þ μNR, where
mπ is the physical pion mass as given by Eq. (61) and μNR is
the usual nonrelativistic chemical potential. Expanding the

pressure in powers of μNR up to order μ
5
2

NR, using Eqs. (61)
and (63), we find

P ¼ mπ

8πa
μ2NR

�
1 −

32

15π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mπμNRa2

q �
: ð64Þ

The isospin density nI is found using Eq. (6)

nI ¼
mπ

4πa
μNR

�
1 −

8

3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mπμNRa2

q �
: ð65Þ

Inverting this equation to find the chemical potential as a
function of nI , we obtain

μNR ¼ 4πnIa
mπ

�
1þ 32

3
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffi
nIa3

q �
: ð66Þ

We can then finally calculate the nonrelativistic energy
density using Eq. (7). This yields

E ¼ mπnI þ
2πn2I a
mπ

�
1þ 128

15
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffi
nIa3

q �
: ð67Þ

The first term in Eq. (67) is the contribution to E associated
with the rest mass mπ of the bosons. This term is absent in
Eq. (2) since it is automatically removed by subtracting the
rest mass energy in the nonrelativistic Lagrangian Eq. (1).
The second term is the Bogoliubov mean-field term with
loop corrections absorbed into the physical scattering
length. The last term is the LHY correction term, where
we have included these loop corrections as they are of
higher orders. Similar results were recently obtained in
Ref. [36] for interacting scalars.

VII. PRESSURE TO Oðp6Þ IN THE
CHIRAL LIMIT

In the chiral limit, the calculations simplify significantly.
The value of α that is a solution to the equation of motion is
α ¼ 1

2
π and the quark condensate is rotated into a pion

condensate for any nonzero value of μI. The propagator
becomes diagonal and the masses reduce to m2

1 ¼ 0,
m2

2 ¼ μ2I , and m2
3 ¼ μ2I . Similarly, the counterterms as well

as the cubic and quartic interaction terms are much simpler
in this limit,

Lð3Þ
2 ¼ μI

f
∂0ϕ1½ϕ2

2 þ ϕ2
3�; ð68Þ

Lð4Þ
2 ¼ 1

6f2
½ϕaϕbð∂μϕaÞð∂μϕbÞ − ϕaϕað∂μϕbÞð∂μϕbÞ�

þ μ2I
6f2

ϕaϕa½ϕ2
2 þ ϕ2

3�; ð69Þ

Lð2Þ
4 ¼ −ðl1 þ l2Þ

2μ4I
f2

½ϕ2
2 þ ϕ2

3� þ l1
2μ2I
f2

∂μϕa∂
μϕa

þ l1
4μ2I
f2

ð∂0ϕ1Þ2 þ l2
2μ2I
f2

ð∂0ϕaÞ2

þ l2
2μ2I
f2

ð∂0ϕ1Þ2 þ l2
2μ2I
f2

∂μϕ1∂
μϕ1: ð70Þ

The pressure at Oðp4Þ follows from Eq. (60) by
taking the limit m2

π;0 → 0 and reinstating lr1 and lr2. This
yields

P0þ1 ¼
1

2
f2μ2I þ μ4I

�
lr1 þ lr2 þ

1

4ð4πÞ2
�
1þ 2 log

Λ2

μ2I

��
;

ð71Þ

where we notice that the term involving the hypergeo-
metric function vanishes.
The Feynman diagrams contributing to the thermo-

dynamic potential at order Oðp6Þ are shown in
Fig. 2. The corresponding contribution to the pressure
reads
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Ploops
2 ¼ μ2I

6f2
½3I21ðm2

2Þþ3I21ðm2
3Þþ2I1ðm2

2ÞI1ðm2
3Þ�

− 1

6f2
½m2

2þm2
3�I1ðm2

2ÞI1ðm2
3Þ−μ2I

f2
½Jðm2

2ÞþJðm2
3Þ�

−ðl1þ l2Þ
2μ4I
f2

½I1ðm2
2ÞþI1ðm2

3Þ�þ l1
2μ2I
f2

½m2
2I1ðm2

2Þ

þm2
3I1ðm2

3Þ�þ l2
2μ2I
f2

�
m2

2

dþ1
I1ðm2

2Þþ
m2

3

dþ1
I1ðm2

3Þ
�
;

ð72Þ

where the integral Jðm2Þ is defined in Eq. (A9). The
corresponding Feynman graphs are shown in Fig. 2. The
integral Jðm2Þ stems from the setting-sun diagram. Note
also that the double-bubble graph with one massless
particle and the massless bubble with counterterm inser-
tions vanish in dimensional regularization since there is
no mass scale in the integrals, thus the corresponding
terms are not included in Eq. (72). Using m2 ¼ m3 ¼ μI
and the expression for Jðm2Þ, Eq. (A11), the contribution
reduces to

Ploops
2 ¼ d − 1

dþ 1

μ2I
f2

I21ðμ2I Þ − l2
4d

dþ 1

μ4I
f2

I1ðμ2I Þ: ð73Þ

Note that the l1-dependence drops out.
The Oðp6Þ Lagrangian contains a larger number of

terms, 57 for SUð2Þ and 94 for SUð3Þ [30,46]. Most of
them vanish in the chiral limit and for two flavors the
NNLO Lagrangian reduces to

L6 ¼ C24hð∇μΣ†∇μΣÞ3i
þ C25h∇ρΣ†∇ρΣ∇μΣ†∇νΣ∇μΣ†∇νΣi
þ C26h∇μΣ†∇νΣ∇ρΣ†∇μΣ∇νΣ†∇ρΣi: ð74Þ

The contribution from the static part of L6 to the pressure is

Pstatic
2 ¼ 2ðC24 þ C25 þ C26Þμ6I : ð75Þ

The relation between the bare couplings Ci and the
renormalized couplings Cr

i is defined as

Ci ¼
Cr
iΛ−4ϵ

f2
−

γð2Þi Λ−4ϵ

4ð4πÞ4f2
�
1

ϵ
þ 1

�
2

þ ðγð1Þi Λ−2ϵð1þ ϵÞ þ γðLÞi ÞΛ−2ϵ

2ð4πÞ2f2
�
1

ϵ
þ 1

�
: ð76Þ

The coefficients needed are

γð1Þ24 ¼ −
1

ð4πÞ2
9

32
; γð1Þ25 ¼ −

1

ð4πÞ2
67

432
; ð77Þ

γð1Þ26 ¼ 1

ð4πÞ2
449

864
; γð2Þ24 ¼ −

137

72
; ð78Þ

γð2Þ25 ¼ 5

36
; γð2Þ26 ¼ 55

72
; ð79Þ

γðLÞ24 ¼−2lr1 −
16

3
lr2−

5

4
lr6; γðLÞ25 ¼ 2lr1 −

1

3
lr2þ

1

2
lr6; ð80Þ

γðLÞ26 ¼ 8

3
lr2 þ

3

4
lr6: ð81Þ

We note that in the sum C ¼ C24 þ C25 þ C26 only lr2
remains, which is needed to cancel the part of the diver-
gences associated with l2 in Eq. (73). Adding Eqs. (73)
and (75), and renormalizing the couplings according to
Eqs. (50) and (76), we obtain P2 ¼ Ploops

2 þ Pstatic
2

P2 ¼ 2Cr
μ6I
f2

−
lr2μ

6
I

2ð4πÞ2f2
�
1 − 6 log

Λ2

μ2I

�

−
μ6I

24ð4πÞ4f2
�
1þ 8 log

Λ2

μ2I
− 12log2

Λ2

μ2I

�
: ð82Þ

The pressure can now be written as

P0þ1þ2… ¼ 1

2
f2μ2I þ a1μ4I þ a2

μ6I
f2

þ � � � : ð83Þ

where a1 can be read off Eq. (71) and a2 from the expression
for P2. This yields

a1 ¼
�
lr1 þ lr2 þ

1

4ð4πÞ2
�
1þ 2 log

Λ2

μ2I

��
; ð84Þ

a2 ¼ 2Cr −
lr2

2ð4πÞ2
�
1 − 6 log

Λ2

μ2I

�

− 1

24ð4πÞ4
�
1þ 8 log

Λ2

μ2I
− 12log2

Λ2

μ2I

�
: ð85Þ

The coefficient a1 is independent of the scale Λ, which
follows from the running of lr1 and lr2, cf. Eq. (53). The
coefficients a2 does also not run, which follows from

FIG. 2. One and two-loop Feynman graphs contributing to the
thermodynamic potential at Oðp6Þ. Dashed lines represent the
massless Goldstone boson and solid lines represent mesons with
masses m2 ¼ m3 ¼ μI . The black dot represents counterterm
insertions from Eq. (70).
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the running of lr2 and Cr, where the latter satisfies the
renormalization group equation in the limit ϵ → 0

Λ
dCr

dΛ
¼ 1

6ð4πÞ4 −
3lr2
ð4πÞ2 : ð86Þ

The independence of ai on Λ guarantees that the pressure P
is independent of the renormalization scale as well. Finally,

we note that the effective expansion parameter is μ2I
ð4πÞ2f2 and

the chiral limit should therefore be a good approximation
for mπ ≪ μI ≪ 4πfπ.

VIII. DISCUSSION

So far in this paper, we have calculated the pressure to
the next-to-leading order in chiral perturbation theory. We
have taken the nonrelativistic limit of our result by writing
μI ¼ mπ þ μNR and shown that we recover Lee, Huang,
and Yang’s classic result for the energy density. In the
ultrarelativistic limit, we have calculated the pressure to the
next-to-next-to-leading order.
Assume now we are interested in the low-energy dynam-

ics of the Goldstone bosons, i.e. in momenta pmuch smaller
than the inverse coherence length in dilute Bose gases or
more generally for momenta where the linear dispersion
relation is a good approximation.2 In this case, Son [47]
derived a low-energy effective theory for the superfluid
phonons. It is given in terms of the pressure P of the system
as a function of the chemical potential (and possibly other
quantities such as the pion mass or the quark mass) making
the substitution μ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂0ϕ − μÞ2 þ ð∂iϕÞð∂iϕÞ

p
, or

Lphonon ¼ Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇μϕ∇μϕ

q
Þ; ð87Þ

where the covariant derivative is ∇μϕ ¼ ∂μϕ − δ0μμI . The
only approximation that was made in the derivation, is that
there are as many powers of the field ϕ as there are
derivatives. Thus the dispersion relation will be linear and
the effective theory will break down once there are non-
negligible corrections to this [47].
The conventional view of Lagrangians such as Eq. (87)

is that Lorentz invariance is explicitly broken by intro-
ducing a chemical potential as the zeroth component of a
gauge field. However, in the case of a broken charge
associated with μ, there is another equivalent view [5,10].
Since Q is broken, the ground state of the system is not an
eigenstate of Q. It is not an eigenstate of the original
Hamiltonian of the system either, but it is an eigenstate of
the grand-canonical Hamiltonian HQ ¼ H − μQ. Since Q
is broken, so are the original time translations generated by

H. However, the new generator of time translations
defined by HQ is unbroken. The ground state of the
system is now time-dependent ∼e−iμQt, which one
expands about. Using a time-dependent ground state,
the system is described by the original Lorentz invariant
Lagrangian. Clearly, the ground state breaks the original
Lorentz invariance (as well as boosts), so instead of
breaking this symmetry explicitly, one may consider it
being broken spontaneously by the ground state. Lorentz
invariance is then realized non-linearly as is the Uð1Þ-
symmetry, where the phase transforms as ϕ → ϕþ a. The
three broken boost generators and the broken internal
Uð1ÞI3 symmetry now appear, seemingly on the same
footing, in the coset construction, each multiplied by a
field. However, as pointed out in e.g. Ref. [8], the four
fields do not represent four truly independent physical
fluctuations. In fact some of them represent gauge
redundancies and are removed by a gauge choice. In
the present case, there is only one physical fluctuation, as
expected.
We will use Son’s prescription to derive an effective low-

energy theory for the massless mode in dense QCD at finite
isospin. This low-energy effective theory interpolates
between the nonrelativistic regime and the ultrarelativistic
regime dependent of the value of the dimensionless ratio
μI=mπ;0. Even at the tree level, the Lagrangian contains

some interesting physics. Making the substitution μI →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂0ϕ − μIÞ2 þ ð∂iϕÞð∂iϕÞ

p
in the LO pressure Eq. (48)

and expanding the Lagrangian in powers of derivatives and
rescaling the field, we obtain

L¼ 1

2
ð∂0ϕÞ2−

1

2
c2sð∇ϕÞ2þc1ð∂0ϕÞ3þ�� � ; ð88Þ

where the speed of sound or phonon speed cs and the
coupling c1 are

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4I −m4

π;0

3m4
π;0 þ μ4I

s
; ð89Þ

c1 ¼
2m4

π;0μI
f

1

ð3m4
π;0 þ μ4I Þ32

: ð90Þ

Note that in the chiral limit, the Lagrangian Eq. (88)
describes a free theory. The phonon speed interpolates
between cs ¼ 1 in the ultrarelativistic limit (hence “speedy
Goldstone bosons” in the title) mπ;0 → 0 and the non-

relativistic limit cs ¼
ffiffiffiffiffiffi
μNR
mπ;0

q
, where the latter agrees with the

Bogoliubov spectrum for small p. Moreover, the phonon
speed cs and the coefficients ci are all subject to renorm-
alization. The leading corrections to the coefficients can be

2This includes the color-flavor locked (CFL) phase of dense
QCD, where the momenta must be much smaller than the
superconducting gap.
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found by expanding the NLO effective Lagrangian using the
NLO pressure. The speed of sound can also be found by
using the thermodynamic relation

c2s ¼
dP
dE

: ð91Þ

In Fig. 3, we show the χPT results for the speed of sound
squared c2s at LO (dashed black line) and NLO (solid red
line) in the low-energy expansion. The red line corresponds
to the central values of the parameters mπ;0, f, and l̄i as
before. The correction to the LO result is small in the entire
region shown. The curves approach unity in the limit
μI → ∞. The lattice data are of from different simulations
using two different lattice spacings (a ≈ 0.22 fm and
a ≈ 0.15 fm), respectively [25]. The bands indicate the
uncertainty of the simulations. The agreement between
the predictions from χPT and the lattice results is good
for μI up to approximately 1.3mπ. At μI around 1.55mπ , the
simulations show a peak for cs and it thereafter decreases.
At asymptotic values of μI, cs is expected to approach the
conformal limit of QCD, c2s ¼ 1

3
. This value is shown as the

horizontal dotted line in the figure. We note that χPT fails to
reproduce the behavior found on the lattice for larger values
of the isospin chemical potential. This is expected since χPT
has the wrong degrees of freedom: In QCD at large isospin,
one expects loosely bound Cooper pairs due to the attractive
color-singlet channel in one-gluon exchange [31,32].3

Let us finally briefly return to the effective Lagrangian
and the damping of phonons. Son’s prescription was
employed in Refs. [48,49] in the CFL phase of QCD,
including scale-breaking effects due to the finite massms of
the s-quark. Including the leading effects, the phonon speed

was found to be cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
− m2

s
9μ2B

q
, where μB is the baryon

chemical potential. Without these effects, the phonons
propagate with the speed cs ¼ 1=

ffiffiffi
3

p
, which is the con-

formal limit of QCD. The three-point interaction in Eq. (88)
is of the same form as in the CFL phase, albeit with a
different coupling [48]. Since the LO damping rate is
calculated from the one-loop diagram arising from this
term, the leading momentum dependence turns out to be
the same. In Ref. [48], their damping rate was calculated in
the CFL phase and it goes like p5, for small p. This is
exactly the same momentum dependence as the classic
result by Beliav [37] calculated 65 years ago for the dilute
Bose gas in the limit p → 0, which therefore is recovered.
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APPENDIX: INTEGRALS

We use dimensional regularization to regulate ultraviolet
divergences. The integrals in Euclidean space are defined as

Z
P
¼
Z

∞

−∞

dp0

2π

Z
p
; ðA1Þ

where

Z
p
¼
�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ðA2Þ

with P ¼ ðp0;pÞ, d ¼ 3 − 2ϵ, p ¼ jpj, and Λ is the
renormalization scale associated with the MS scheme.
The following class of one-loop integrals appears

Inðm2Þ ¼
Z
P

1

ðP2 þm2Þn ; ðA3Þ

I00ðm2Þ ¼ −
Z
P
log ½P2 þm2�; ðA4Þ

where n is a non-negative integer and the prime
denotes differentiation with respect to n. Evaluating the
integrals yields

FIG. 3. Speed of sound squared c2s as a function of the
normalized isospin chemical potential. See. main text for details.

3At large μI , quarks are interacting weakly due to asymptotic
freedom. Since the dominant interaction is attractive, the Fermi
surface is rendered unstable which leads to the formation of
Cooper pairs.

PION CONDENSATION IN QCD AT FINITE ISOSPIN … PHYS. REV. D 109, 034022 (2024)

034022-11



Inðm2Þ ¼ eγEϵ
m4−2n

ð4πÞ2
�
Λ
m

�
2ϵ Γðn − 2þ ϵÞ

ΓðnÞ : ðA5Þ

I00ðm2Þ is divergent and Inðm2Þ is divergent for n ¼ 1, 2.
Expanding them to order ϵ, we find

I00ðm2Þ ¼ m4

2ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
þ 3

2
þOðϵÞ

�
; ðA6Þ

I1ðm2Þ ¼ −
m2

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
þ 1þ π2 þ 12

12
ϵþOðϵ2Þ

�
;

ðA7Þ

I2ðm2Þ ¼ 1

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
þOðϵÞ

�
: ðA8Þ

We also need to evaluate the setting-sun type integral
appearing in the NNLO calculation of the pressure in the
chiral limit,

Jðm2Þ ¼
Z
PQ

p2
0

P2ðQ2 þm2Þ½ðPþQÞ2 þm2�

¼
Z
P

p2
0

P2
ΠðPÞ; ðA9Þ

where we have defined the self-energy

ΠðPÞ ¼
Z
Q

1

ðQ2 þm2Þ½ðPþQÞ2 þm2� : ðA10Þ

Using Feynman parameters and averaging over angles, we
obtain

Jðm2Þ ¼ 1

dþ 1
I21ðm2Þ: ðA11Þ

In the theory of dilute Bose gases, the following integrals
appear [13]

Im;nðM2Þ ¼
Z
p

p2m

pnðp2 þM2Þn2 : ðA12Þ

They satisfy the recursion relation

dIm;n

dM2
¼ −

1

2
nImþ1;nþ2ðM2Þ; ðA13Þ

which follows directly from the definition Eq. (A12).
Evaluating the integrals in dimensional regularization,
we find

Im;nðM2Þ ¼ eγEϵ
M3þ2m−2n

ð4πÞ32
�
Λ
M

�
2ϵ

×
Γð3

2
− n

2
þm − ϵÞΓðn −m − 3

2
þ ϵÞ

Γ
	
n
2



Γ
	
3
2
− ϵ

 : ðA14Þ

We specifically need

I0;−1ðM2Þ ¼ 16

15

M5

ð4πÞ2 ½1þOðϵÞ�; ðA15Þ

I1;1ðM2Þ ¼ 16M3

3ð4πÞ2 ½1þOðϵÞ�: ðA16Þ

Note that both integrals are finite in d ¼ 3.
In the nonrelativistic limit, a generalized hypergeometric

function 3F2 appears. Hypergeometric functions function
of type pFq are analytic functions of a single variable zwith
pþ q parameters. The generalized hypergeometric func-
tion has a power series representation in z

pFq

�
α1; α2;…αp

β1; β2;…βq

����z
�
¼
X∞
n¼0

ðα1Þnðα2Þn…ðαpÞn
ðβ1Þnðβ2Þn…ðβqÞnn!

zn;

ðA17Þ

where ðaÞb is the Pochhammer symbol

ðaÞb ¼
Γðaþ bÞ
ΓðaÞ : ðA18Þ
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