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Abstract— This paper considers the realization of discrete-
time linear time-invariant dynamical systems using input-
output data. Starting from a generalized state-space representa-
tion, a state-independent system representation is derived using
the Cayley-Hamilton theorem and characteristic parameters are
introduced to describe the system dynamics in an alternative
way. Given input-output data, we present two formulations
to account for model deviations and to identify characteristic
parameters by minimizing considered error terms in a least
squares sense. The applicability of the proposed subspace
identification method is demonstrated with physical data of
the identification database DaISy.

I. INTRODUCTION

The analysis of process characteristics and the relation-
ships between variables using input-output data holds prime
importance for the innovation, design, monitoring, control
and prediction of process systems. System identification is
concerned with estimating models of dynamical systems
through observed/experimental data (see [1], [2], [3] and
references therein for extensive information). The branch of
subspace identification (SID) addresses the identification of
discrete-time linear time-invariant (LTI) state-space models
offering the benefit of non-iterative, numerical efficient and
general parameterizations [4]. Classical related SID methods
like Canonical Variate Analysis (CVA) [5], Multivariable
Output Error State Space (MOESP) [6] and Numerical
Algorithms for Subspace State Space System Identification
(N4SID) [7] provide asymptotic convergence guarantees
for the learned system model [8]. To address closed-loop
identification, the approaches of innovation estimation [9],
ARX modeling (SSARX) [10] or the idea of constructing a
state predictor [11] were introduced and applied in Predictor-
Based Subspace Identification (PBSID) [12]. A survey of
various SID methods is provided in [13].
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In contrast to the conventional asymptotic methods, there
has been an increasing interest in finite sample size complex-
ity and non-asymptotic analysis from the machine learning
community leading to non-asymptotic SID methods like the
single-trajectory method of Oymak and Ozay [14] or the
multiple-trajectory method of Zheng and Li [15], which de-
rive error-bounds for their respective least squares estimators.
Least squares optimization is also taken up by De Moor
in [16] demonstrating that the realization of autonomous
single-output LTI systems corresponds to the solution of a
multiparameter eigenvalue problem. A main concept therein
is the elimination of the state vector using the Cayley-
Hamilton theorem. In this paper, we adopt the idea of state
vector elimination as described in [17] for multiple-input-
multiple-output LTI models and write the input-to-output
relation of the state-space representation as an equivalent au-
toregressive model. By introducing characteristic parameters
as system descriptive quantities, we propose an ordinary least
squares (OLS) formulation and a total least squares (TLS)
formulation for identifying them. A suggested state-space
realization comprising characteristic parameters completes
characteristic parameters identification (CPI) as a standalone
SID algorithm.

This paper is structured as follows: Section II provides
a description of the problem statement which essentially
involves a generalized subspace identification problem. In
Section III, we derive an alternative, equivalent input-output
expression of the system, introduce characteristic param-
eters, and provide a method for realizing the state-space
representation. Subsequently, Section IV covers two least
squares minimization approaches for identifying character-
istic parameters. In Section V, CPI is benchmarked via
cross-validation against well-known and recent SID methods
using physical data sets of the identification database DaISy.
Conclusions are given in Section VI.

II. PROBLEM FORMULATION

We consider the following n-dimensional state-space rep-
resentation of a deterministic discrete-time LTI system

x(k + 1) = Ax(k) +Bu(k) + e

y(k) = Cx(k) +Du(k) + f
(1)

with the system matrices A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, D ∈ Rp×m, the state vector x ∈ Rn, the input
vector u ∈ Rm, the output vector y ∈ Rp, constant vectors
e ∈ Rn, f ∈ Rp and the time index k ∈ N0. By extending
the standard state-space representation with the vectors e and
f , a static state offset and output offset can be explicitly



considered at the cost of a small increase in the number of
model parameters. Our objective is to identify a model of
this structure from given input-output data {u(k),y(k)}.

III. CHARACTERISTIC PARAMETERS
The goal of this section is to derive an input-output relation

equivalent to that of the system in (1) by introducing char-
acteristic parameters. For this purpose we use the Cayley-
Hamilton theorem and eliminate the influence of the state
vector x in a similar way as in [17]. A state-space realization
of the derived relation including initial state determination is
provided.

Evaluating the state equation and the output equation of
(1) for different time steps, the output of the model at time
index k + i for i ∈ N0 may be written as

y(k + i) = CAix(k) +

i−1∑
j=0

CAi−j−1
(
Bu(k + j) + e

)
+Du(k + i) + f .

(2)
For ease of notation, the Markov parameters

M(i) =

{
D, if i = 0

CAi−1B, if i ≥ 1

and the constants

c(i) =

{
f , if i = 0

CAi−1e, if i ≥ 1

are introduced, so that the expression in (2) can be rewritten
as

y(k+ i) = CAix(k)+

i∑
j=0

(M(i− j)u(k + j) + c(i− j)) .

(3)
From the Cayley-Hamilton theorem it is obtained that

pA(A) = αnA
n+αn−1A

n−1+. . .+α1A+α0In = O (4)

holds, where αn = 1 and α0, α1, . . . , αn−1 ∈ R are the
coefficients of the characteristic polynomial pA. Combining
(3) and (4) yields

n∑
i=0

αiy(k + i) = v +

n∑
i=0

Giu(k + i) (5)

with

v =

n∑
i=0

i∑
j=0

αic(j) and Gi =

n−i∑
j=0

αi+jM(j). (6)

Remark 1: Any similarity transformation x̄ = Tx + b
with a nonsingular matrix T ∈ Rn×n and a constant vector
b ∈ Rn, such that

x̄(k + 1) = Āx̄(k) + B̄u(k) + ē

y(k) = C̄x̄(k) + D̄u(k) + f̄

with
Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D,

ē = Te+
(
I−TAT−1

)
b, f̄ = f −CT−1b

preserves α0, α1, . . . , αn−1, the matrices G0,G1, . . . ,Gn

and the vector v. Hence, αi, Gi and v are independent of
the realization and referred to as characteristic parameters.

Remark 2: Given the characteristic parameters v, αi, Gi

for i ∈ {0, 1, . . . , n}, equation (6) can be used to find a
realization of the form

A =


O I O · · · O

O O I
. . .

...
...

. . . . . . . . . O
O · · · O O I

−α0I · · · −αn−3I −αn−2I −αn−1I

 ,

B =


M(1)
M(2)

...
M(n)

 , e =


0
...
0
v

 ,

C =
[
I O · · · O

]
, D = M(0), f = 0,

where O, I ∈ Rp×p. However, for p > 1 this observable
realization may not be of minimal dimension [18].

Remark 3: Assuming (A,C) is observable and input-
output data {u(k),y(k)} is available for k ∈ {0, 1, . . . , q−1}
with q ≥ n, expression (3) can be used to determine the
initial state x(0), since

yq = Oqx(0) +Mquq + Zq1q

with

yq =


y(0)
y(1)

...
y(q − 1)

 , Oq =


C
CA

...
CAq−1

 ,

Mq =


M(0) O · · · O

M(1) M(0)
. . .

...
...

. . . . . . O
M(q − 1) · · · M(1) M(0)

 ,

uq =


u(0)
u(1)

...
u(q − 1)

 ,

Zq =


c(0) 0 · · · 0

c(1) c(0)
. . .

...
...

. . . . . . 0
c(q − 1) · · · c(1) c(0)


and therefore

x(0) = O†
q (yq −Mquq −Zq1q) ,

where 1q ∈ Rq indicates the vector of ones and O†
q denotes

the Moore–Penrose inverse of Oq which can be calculated
by

O†
q =

(
O⊤

q Oq

)−1 O⊤
q .



IV. IDENTIFYING CHARACTERISTIC
PARAMETERS

There are several ways to identify the values of the
characteristic parameters based on input-output data. For
noisy data, the obtained values may strongly depend on
how the noise is modeled. For the purpose of estimating
the characteristic parameters, two least squares optimization
formulations inspired by [19] are derived.

A. Ordinary Least Squares Formulation
A least squares estimate of the characteristic parameters

can be obtained by minimizing the error related to (5) defined
by

ε(k) = −v +

n∑
i=0

(αiy(k + i)−Giu(k + i)) . (7)

It is important to note that ε(k) = 0 if and only if (5) is
satisfied. This equation can be written in the form of an
autoregressive exogenous (ARX) model as

y(k + n) = v −
n−1∑
i=0

αiy(k + i) +

n∑
j=0

Gju(k + j) + ε(k).

Furthermore, all model parameters can be grouped such that

y(k + n) = R(k)p+ ε(k)

with parameter vector

p =
[
α0 · · · αn−1 v⊤ vec(G0)

⊤ · · · vec(Gn)
⊤]⊤

and regressor

R(k) =
[
−Y(k) U(k)

]
,

comprising

Y(k) =
[
y(k) · · · y(k + n− 1)

]
,

U(k) =
[
I u(k)⊤ ⊗ I · · · u(k + n)⊤ ⊗ I

]
.

(8)

Here, vec(Gi) is the vectorization of the matrix Gi and ⊗
denotes the Kronecker product. It is supposed that input-
output data is available for k ∈ {0, 1, 2, . . . , N−1} for some
constant N ∈ N. If N is sufficiently large and the provided
data is sufficiently rich, the characteristic parameter vector
p may be identified by minimizing the sum of squares error
vector of ε(k) for k ∈ {0, 1, . . . , N − n− 1}. This can be
done by computing the values of p that correspond to the
solution of the optimization problem

min
p,ε̄

∥ε̄∥2, s.t. ȳ = R̄p+ ε̄ (9)

with

ȳ =


y(n)

y(n+ 1)
...

y(N − 1)

 , R̄ =


R(0)
R(1)

...
R(N − n− 1)

 ,

ε̄ =


ε(0)
ε(1)

...
ε(N − n− 1)

 ,

where ∥ · ∥ denotes the Euclidean norm. This is an ordinary
least squares problem with solution

p = R̄†ȳ =
(
R̄⊤R̄

)−1
R̄⊤ȳ and

ε̄ =
(
I− R̄R̄†) ȳ =

(
I− R̄

(
R̄⊤R̄

)−1
R̄⊤

)
ȳ,

assuming that

rank(R̄) = (n+ 1)mp+ n+ p, (10)

so that the solution of the optimization problem is unique
and, therefore, the values of the identified characteristic
parameters are unique.

Remark 4: To satisfy the rank condition (10), the number
of data points must fulfill

N ≥
⌈
(n+ 1)(m+ 1) +

n

p

⌉
,

where ⌈·⌉ denotes the ceiling function.

B. Total Least Squares Formulation

Instead of defining error vectors as in (7), an error can be
associated with each measured output y(k), according to

n∑
i=0

αi (y(k + i)− ϵi(k)) = v +

n∑
i=0

Giu(k + i),

where, for any given k and i ∈ {0, 1, . . . , n}, ϵi(k) is the
error vector associated with y(k + i). This equation can be
written as

E(k)α = Ỹ(k)α−U(k)g,

with

α =


α0

α1

...
αn

 , g =


v

vec(G0)
vec(G1)

...
vec(Gn)

 ,

E(k) =
[
ϵ0(k) ϵ1(k) . . . ϵn(k)

]
,

Ỹ(k) =
[
y(k) y(k + 1) . . . y(k + n)

]
and U(k) as in (8). Similar to (9), the optimal values of g
and α can be determined by minimizing all errors in a least
squares sense. Then, the optimization problem is given by

min
α,g,Ē

∥Ē∥2F, s.t. Ēα = Ȳα− Ūg, (11)

with

Ē =


E(0)
E(1)

...
E(N − n− 1)

 , Ȳ =


Ỹ(0)

Ỹ(1)
...

Ỹ(N − n− 1)

 ,

Ū =


U(0)
U(1)

...
U(N − n− 1)

 .



Here, ∥ · ∥F denotes the Frobenius norm. It is to note that

∥Ē∥2F =

∥∥∥∥Ē(
I− αα⊤

∥α∥2

)∥∥∥∥2
F
+

∥∥∥∥Ēαα⊤

∥α∥2

∥∥∥∥2
F
.

Therefore, minimizing the optimization problem in (11) with
respect to Ē yields

min
α,g

∥∥∥∥(Ȳα− Ūg
) α⊤

∥α∥2

∥∥∥∥2
F

with minimizer

Ē =
(
Ȳα− Ūg

) α⊤
∥α∥2

.

Subsequently minimizing with respect to g leads to

min
α

∥∥∥∥(I− ŪŪ†) Ȳαα⊤

∥α∥2

∥∥∥∥2
F

= min
α

∥∥∥∥(I− Ū
(
Ū⊤Ū

)−1
Ū⊤

)
Ȳ

αα⊤

∥α∥2

∥∥∥∥2
F
,

(12)

assuming that

rank(Ū) = (n+ 1)mp+ p.

The value of g that minimizes (12) is then given by

g = Ū†Ȳα =
(
Ū⊤Ū

)−1
Ū⊤Ȳα. (13)

Changing the optimization variables from α to

β =
α

∥α∥
,

the optimization problem in (12) may be rewritten as

min
β

∥∥∥(I− Ū
(
Ū⊤Ū

)−1
Ū⊤

)
Ȳβ

∥∥∥2 , s.t. ∥β∥ = 1. (14)

This optimization problem can be solved by considering the
singular value decomposition of

(
I− Ū

(
Ū⊤Ū

)−1
Ū⊤

)
Ȳ

denoted by(
I− Ū

(
Ū⊤Ū

)−1
Ū⊤

)
Ȳ = UβΣβV

⊤
β ,

where Uβ and Vβ are orthonormal matrices and Σβ is
a diagonal matrix containing the singular values in de-
scending order. Consequently, the vector β that minimizes
(14) is equal to the last column of Vβ, which corresponds
to the smallest singular value [19]. To satisfy αn = 1,
see (4), the elements of β are numbered from zero to n
(i.e. β = [β0, β1, . . . , βn]

⊤). Then, the optimal values of α
are given by

αi =
βi

βn
(15)

for i ∈ {0, 1, . . . , n}, where it is assumed that βn is nonzero.
Hence, all optimal values of the characteristic parameters can
be obtained using (13) and (15).

Remark 5: As with the OLS formulation, the number of
data points must fulfill

N ≥
⌈
(n+ 1)(m+ 1) +

n

p

⌉
to ensure that the optimization problem (11) of the TLS
formulation has a unique solution.

V. EXPERIMENTAL COMPARISON

In this section the two formulations of CPI are applied to
different types of systems, such as a heating system, a glass
furnace, a tank reactor and an industrial winding process, as
listed in Table I. Consistent with the previous sections, N
denotes the number of data points, m the number of inputs
and p the number of outputs. The first data set originates from

TABLE I
EXAMPLES FROM DAISY

Data set N m p Ref.
Heating system 801 1 1 [20]
Glass furnace (Philips) 1247 3 6 [8]
Stirred tank reactor 7500 1 2 [21]
Industrial winding process 2500 5 2 [22]

a single-input-single-output heating system. The input signal
triggers a halogen lamp mounted a few centimeters above a
thin steel plate. The output is a thermocouple measurement
taken from the back of the plate. Secondly, the data of a glass
furnace is used, where the inputs are the heating and cooling
inlets. The signals of six temperature sensors in a cross
section of the furnace comprise the output. The third data
set emerges from a continuously stirred tank reactor wherein
an exothermic reaction takes place. The concentration is
controlled by regulating the coolant flow. The temperature
and the concentration are monitored. Lastly, the data of a
test setup of an industrial winding process is considered.
The main part of the plant consists of a plastic web that is
unwinded from the first reel, passes over the traction reel
and is finally rewinded on the rewinding reel. Reel one and
three are coupled with a DC-motor that is controlled with two
input currents. The angular speed of each reel are considered
as further inputs, where the tensions in the web between reel
one and two are measured by tension meters. Input-output
data of all these systems is provided by the DaISy database
[23] which is built for verifying and comparing identification
algorithms. The four selected datasets are appropriate for
testing SID algorithms as [24] indicates.

To benchmark CPI against well-known SID methods,
Matlab® implementations of MOESP, CVA, SSARX, PBSID
and the modern non-asymptotic method of Oymak and Ozay
[14] are also applied to the four sample data sets. Source code
of the PBSID algorithm is available in the Predictor-Based
Subspace Identification Toolbox [25] and the asymptotic
methods MOESP and CVA as well as the SSARX algorithm
can be called via the n4sid command. It is worth noting
that the n4sid function of the Matlab® System Identification
Toolbox [26] can indicate a suitable dimension n of the state-
space model to be parameterized. Furthermore, it should be
noted that the method of Oymak and Ozay does not represent
a general SID method, since it has additional requirements to
provide non-asymptotic identification results, such as a zero
initial state and the assumption that the data originates from
LTI systems. These prerequisites may be difficult to fulfill if
physical data is used. Table II describes all considered SID
algorithms. To assess the methods via cross-validation, the



TABLE II
SUBSPACE IDENTIFICATION METHODS

Name Description Ref.
CPI OLS ordinary least squares formulation of CPI this paper
CPI TLS total least squares formulation of CPI this paper
MOESP n4sid with ’N4Weight’ set to ’MOESP’ [6], [26]
CVA n4sid with ’N4Weight’ set to ’CVA’ [5], [26]
SSARX n4sid with ’N4Weight’ set to ’SSARX’ [10], [26]
PBSID predictor-based subspace identification [12], [25]
Oymak non-asymptotic subspace identification [14]

data is split into identification and verification parts. The first
70% of the total number of samples is used for estimation,
while the final 30% is used for evaluating the model quality.
The validation criteria utilized here are the normalized root-
mean-square error (NRMSE) fitness value

vfit = fit (y, ŷ) = max

(
1− ∥y − ŷ∥

∥y − ȳ∥
, 0

)
· 100%

and the variance accounted for (VAF)

vvaf = vaf (y, ŷ) = max

(
1− var(y − ŷ)

var(y)
, 0

)
· 100%,

indicating how well the model output sequence ŷ matches
the original data sequence y, where ȳ denotes the arith-
metic mean and var(y) the variance of y. The higher vfit
and vvaf, the lower the prediction error and the better the
model. The average execution time over ten identification
runs is recorded as an additional performance criterion. The
outputs of the identified state-space models are visualized in
Fig. 1 - 4 and evaluated in Table III - VI. By comparing the

TABLE III
QUALITY OF HEATING SYSTEM MODELS (n = 2)

Method vfit vvaf execution time
CPI OLS 48.00% 92.97% 21ms
CPI TLS 41.26% 91.25% 25ms
MOESP 49.34% 80.25% 157ms
CVA 49.17% 80.05% 143ms
SSARX 13.51% 33.97% 146ms
PBSID 57.87% 86.57% 2ms
Oymak 35.48% 94.03% 78ms
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Fig. 1. True output and model outputs of a heating system

outputs of the identified two-dimensional state-space models
with the real output of the heating system in Fig. 1 and by

computing the quality of the models (see Table III), it can be
seen that all SID methods provide consistent identification
results, although the values of vfit and vvaf of the SSARX
method are noticeably lower. This demonstrates the general
functionality of the SID methods compared here.

TABLE IV
QUALITY OF GLASS FURNACE MODELS (n = 7)

Method vfit vvaf execution time
CPI OLS 47.36% 70.67% 176ms
CPI TLS 45.63% 68.69% 546ms
MOESP 52.24% 75.16% 653ms
CVA 49.90% 72.58% 682ms
SSARX 46.22% 67.52% 684ms
PBSID 26.80% 61.84% 23ms
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Fig. 2. True output and model outputs of a glass furnace

TABLE V
QUALITY OF TANK REACTOR MODELS (n = 7)

Method vfit vvaf execution time
CPI OLS 87.99% 98.41% 726ms
CPI TLS 86.02% 97.97% 1714ms
MOESP 59.39% 92.15% 1119ms
CVA 37.50% 47.41% 1047ms
SSARX 14.71% 25.97% 1048ms
PBSID 87.98% 98.42% 47ms
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Fig. 3. True output and model outputs of a tank reactor

Applying the considered SID methods to the data of a
glass furnace, a tank reactor and a winding process leads
to models whose outputs are illustrated in Fig. 2 - 4. For
a clear visualization, Fig. 2 shows the representative curve
of one of the six temperature sensors inside the furnace.



TABLE VI
QUALITY OF WINDING PROCESS MODELS (n = 5)

Method vfit vvaf execution time
CPI OLS 74.62% 92.76% 224ms
CPI TLS 62.85% 84.60% 332ms
MOESP 74.76% 93.03% 443ms
CVA 75.60% 93.45% 411ms
SSARX 75.56% 93.42% 459ms
PBSID 73.07% 92.05% 12ms

0 100 200 300 400 500 600 700

-2

0

2

T
e
n
s
io

n
 i
n
 k

g

0 100 200 300 400 500 600 700

-2

0

2

4

T
e
n
s
io

n
 i
n
 k

g True CPI OLS CPI TLS MOESP CVA SSARX PBSID

Fig. 4. True output and model outputs of a winding process

The quality characteristics are specified in Table IV - VI.
Since the identified model outputs provided by the method of
Oymak and Ozay and the true outputs differ significantly, the
respective curves are not included in Fig. 2, Fig. 3 and Fig. 4.
This performance may be caused by unmet prerequisites,
which come into effect when using data generated in prac-
tical experiments. The six remaining techniques model the
data more accurately, and the low execution time of PBSID
and CPI OLS, coupled with decent identification results, is
worth emphasizing.

Among the considered subspace methods the overall best
fit of the four datasets is achieved by the CPI OLS for-
mulation, which furthermore requires less execution time
compared to the related TLS formulation. The identification
results of MOESP and CVA are similar to each other. PBSID
is appropriate for time-critical identification tasks, as this
technique exhibits minimum execution times and achieves
nearly as accurate results as the CPI OLS method.

VI. CONCLUSION
In this paper, we have derived a new SID method based on

least squares optimization. By considering additional offsets
within the state-space representation, the presented approach
places comparatively lower demands on the data of the
system to be identified. For describing the system dynamics,
we have introduced characteristic parameters which form
the basis of the state-space realization and derived two
approaches of identifying them in a least squares sense.
Practical experiments with the DaISy database using Matlab®

indicate high performance with comparably low computation
time for the OLS as well as for the TLS formulation. For
future work, it would be interesting to extend the idea of
characteristic parameters identification to closed-loop data,
and investigate whether alternative formulations regarding
Kalman filtering or optimization are appropriate.
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