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ABSTRACT

Independent component analysis decomposition of hyper-
spectral signals has characteristics ideal for detecting harmful
algal blooms in coastal waters. In this proceeding, indepen-
dent component analysis is used to process images taken by
the HYPSO-1 satellite at two different locations: Lake Erie
and the Salish Sea. For each location, a set of components are
produced and compared to two common water quality indices.
The results demonstrate that some of the spatial-spectral fea-
tures uncovered by independent component analysis resemble
common water quality indices but also highlight the need for
improved interpretation of the recovered features.

Index Terms— Harmful algal blooms, Aquaculture, Re-
mote sensing, Hyperspectral imaging, unsupervised machine
learning

1. INTRODUCTION

Harmful algal blooms (HABs) are a major environmental
threat to bodies of water all across Earth. In addition to
limiting recreation, fishing, and tourism, they also pose a sig-
nificant threat to the aquaculture industry. They are difficult to
predict and monitor because many different species of algae
can be harmful, including some that are harmful only under
certain conditions. Moreover, the complexity of currents and
tides complicates prediction about how nutrients that feed
the blooms move and mix. HABs have caused significant
economic damage, including a historic 2016 bloom in Chile
that destroyed about a billion USD of fish and shellfish [1].

Nonetheless, it is possible to respond to algal blooms
when they occur near certain aquaculture sites. The simplest
strategy is to change the feeding pattern at a given site so that
the fish stay at a depth below the algal bloom, but this is only
viable for the shallowest blooms and can only be sustained
for a short duration. If the bloom harms through oxygen de-
pletion, then the water can be oxygenated so that the fish can

∗Thanks to the Research Council of Norway and industry partners (Green
Platform, grant no. 328724 and ARIEL, grant no. 333229) as well as Norway
Grants 2014 – 2021 (ELO-Hyp, contract no. 24/2020) for funding.

still breathe. In extreme cases, if there is sufficient advance
warning, the fish can be moved to another site. These meth-
ods are viable for species such as salmon, but are not feasible
to employ on species such as shellfish, which are less mobile.

The unpredictability of algal blooms means that they are
one of the biggest threats to aquaculture industry. Since they
are not only difficult to predict, but can also be catastrophic,
they complicate the insurance of the industry, which could in
turn lead to harmful impact on the industry and local commu-
nities.

Fig. 1. Independent component analysis is applied to two im-
ages from the HYPSO-1 satellite: the Salish Sea, August 30,
2022 (Top), and Lake Erie, August 27, 2022 (bottom). Left is
north.

Because of the threat from algal blooms, several programs
have been established across the world to monitor for algal
blooms. For instance, the Norwegian government adminis-
tered a series of aquaculture-funded buoys along the coast
from about 2000 to 2010 [2]. However, around 2010 the sys-
tem was decommissioned because it was found to cost more
than it contributed to the fish farmers. Thus, the warning sys-
tem in place during the 2019 HABs in Northern Norway was
not sufficiently effective, and lead to high mortality in the
farmed salmon populations and heavy losses for the farming
companies [3].

Hyperspectral remote sensing is a useful technology for
detecting algal blooms near the ocean surface, when there is
little cloud coverage. It combines the spatial coverage of re-



mote sensing together with the spectral resolution necessary
to characterize algal pigments. However, it produces vast
amounts of data which require computational assistance for
humans to analyze. The problem of detecting algal blooms
has several properties which make it difficult for standard
machine learning algorithms, which will be discussed below.
Attempts to avoid these difficulties and extract information
about algal blooms from hyperspectral images include defin-
ing empirically-motivated indices and principal component
analysis [4, 5]. In this proceeding, we propose that indepen-
dent component analysis (ICA) family of algorithms is well-
suited to for detecting algal blooms and show examples of
how it could be done using radiance-calibrated images from
the HYPSO-1 satellite [6].

2. ALGAL BLOOM DETECTION COMPLICATIONS

The detection of algal blooms is a difficult problem for several
reasons.

• Ground Truth is typically challenging to collect for
water bodies because they are dynamic and thus mea-
surements are only valid for a brief time. This presents
a particularly large problem for validating satellite data,
which generally passes a location no more than a few
times a day, and often less.

• Many algal species lead to harmful algal blooms. A
system designed to detect one species might not be able
to detect others.

• Ecosystem interactions can modify the behavior of
algae. For instance, C. leadbeateri, the algae species
which caused the 2019 Norway bloom is not always
harmful, and is typically present at low levels [3].

• The spatial extent and dynamics of algal blooms is
not known a priori. Therefore, it is difficult to know
where and when to perform water sampling.

3. INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) refers to a family of
methods for identifying signals in high-dimensional data sets
[7, 8, 9, 10]. What unites these methods is that they seek sig-
nals characterized by a particular statistical distribution which
characterizes independence. Independence is characterized
by inverting the central limit theorem, which states that the
sum of many signals approaches a Gaussian distribution. In-
verted, this suggests that if a signal is non-Gaussian then it
is not the sum of many signals, and may even have a distinct
physical origin.

ICA methods, combined with hyperspectral remote sens-
ing, are appropriate for meeting the challenge of algal blooms.
First of all, since they are unsupervised, they are not inhibited

Fig. 2. Lake Erie cyanobacteria index (top) and CDOM index
(bottom). The scale goes from blue to yellow.

Fig. 3. Independent components from Lake Erie scene. Green
and yellow indicates additional signal from the component
relative to the mean value, while blue indicates less than the
mean.

by limited ground truth, unlike supervisory machine learning
algorithms with require significant amounts of labelled data.
Second, ICA produces information about the spectra which it
detects, in addition to spatial maps. The found spectra could
then be compared to a repository of known algal spectra to de-
termine which types of algae are present, and what their con-
dition could be. Finally, ICA applied to hyperspectral images
produces a spatial map of where a particular signal occurs, so
once an algal bloom is detected, additional measurements on
the ground can be used for further inspection.

ICA can complement the band-ratio algorithms which are
commonly used as markers for algal blooms. One way to
combine ICA with band-ratio algorithms would be to use a
band-ratio algorithm to detect a property such as chlorophyll,
and then use ICA to look for signatures of additional spectral
peaks within the chlorophyll-rich region. Another way would
be to develop band-ratios for the most common types of al-
gae, and then subsequently apply ICA to identify any blooms
which may have been missed by the first set of algorithms.



Fig. 4. The mixing spectra from the top (blue), middle (or-
ange), and bottom (green) signals in Fig. 3.

Fig. 5. The top of atmosphere (ToA) radiance spectra of pix-
els at various relative radiance values selected from the inde-
pendent components in Fig. 3. The dashed grey line indicates
the mean radiance values from unmasked water pixels.

Mathematically, ICA finds an unmixing matrix W , with
the same number of bands as the original data, that has the
property S = XW , where X is the original dataset and S
contains the recovered non-Gaussian signals, known as in-
dependent components (ICs). The mixing matrix, W+, is
then the pseudo-inverse of the unmixing matrix, such that
SW+ ≈ X , or, more precisely,

XW = SW+W. (1)

Physically, the mixing matrix can be understood as what
spectra that come from the different components, and the
un-mixing matrix is a tool to extract that component from the
background.

4. LAKE ERIE SCENARIO

Because large, well-characterized algal blooms occur yearly
on Lake Erie, it was used as the first test of the ICA algo-
rithms. The bloom is dominated by Microcystis aeruginosa,
which produces hepatotoxin microcystin, a poison. Because

the bloom shut down the water supply to the city of Toledo,
Ohio in 2014, and has been recurring for decades, it has been
considered a model system for studying HABs and how to
monitor them [4, 11].

The signals recovered by ICA were compared to standard
indices to interpret the components. These indices have been
validated through their long-term application to multi-spectral
data, but do not utilize the fine spectral resolution of HYPSO-
1’s sensor. The fluorescence line height (FLH) at 681 nm can
reveal the presence of photosynthesizing phytoplankton.

FLH =

(
R(681)−R(665) (2)

− (R(709)−R(665))× 681− 665

709− 665

)
,

where R indicates the radiance at a particular wavelength.
However, the Microcystis aeruginosa in Lake Erie tend to
cause an inversion at the wavelengths relevant to the FLH be-
cause it fluoresces little and scatters more light above 700 nm.
Thus, the cyanobacteria index (CI), which is commonly used
to monitor the intense algal blooms on Lake Erie [4], is de-
fined as:

CI =− FLH, (3)

which has been shown to indicate the presence of a Micro-
cystis aeruginosa bloom [12]. The second standard index, a
colored dissolved organic matter (CDOM) index, based off an
algorithm developed for Landsat, is calculated from the ratio
of the signal at 560 nm to the signal at 658 nm [13]. Since
these are calculated from the radiance rather than reflectance,
they only give a general image of the variation within the im-
age, and are not calibrated to particular values.

One variant of ICA, FastICA [7], was applied to the water
pixels in the scene. It searched for five components, of which
three (IC 0, IC 2, and IC 4) are spatially plotted in Fig. 3. The
mixing spectra from these components are plotted in Fig. 4.
The ToA radiance spectra from four different points selected
from the Lake Erie scene in Fig. 3 are plotted in Fig. 5. The
components showed spectral signals which appear reminis-
cent of algae (Fig. 6).

All the signals showed a strong peak around 550 nm, but
the components IC 0 and IC 4 show additional signals above
600 nm. A strong peak around 709 nm appears in both IC 0
and IC 4, but is more notable in the latter. Indeed, the area
which they cover shows a signal in the cyanobacteria index.
The component in IC 2 roughly corresponds spatially to the
CDOM index. One other component showed a strong signal
at wavelengths above 750 nm, and was thus likely related to
the the shallowness of water and its proximity to land.

Spatially, the components in IC 0 and IC 4 resemble dif-
ferent portions of the region highlighted by the cyanobacteria
index in Fig. 2. However, ICA divides the region into two



Fig. 6. Spatial variation of an extra peak at 588 nm, plot-
ted as radiance at 588 nm divided by the radiance at 547 nm
(top). Spatial variation in the chlorophyll fluorescence peak
near 700 nm, plotted as the difference radiance difference be-
tween 709 nm and 699 nm. Both features were found through
the use of ICA.

portions, one with a higher reflectance around 600 nm and an-
other with larger signal above 700 nm, which could be indica-
tive of a more intense algal bloom [14]. Although the biologi-
cal origin of this varying signal is not immediately clear, plots
of these features do replicate the spatial pattern of ICA (Fig.
6). Thus, this illustrates how ICA can give additional context
to the output of extensively tested band-ratio algorithms. The
spatial distribution of the second component closely follows
that found by the CDOM band ratio algorithm.

Fig. 7. Salish Sea fluorescence line height and CDOM in-
dices.

5. SALISH SEA SCENARIO

The coasts of the Salish Sea, along the west coast of British
Columbia, Canada, are home to many aquaculture sites.
There are frequent algal blooms in the region, although
blooms as long-lasting or prominent as the bloom on Lake
Erie have not yet been recorded here by HYPSO-1. Thus, it
presents a chance to test whether ICA can detect less promi-
nent blooms. Of the five ICA components which are found,
two appear to be possibly related to algal blooms (Fig. 8),
while the peaks in the other three are more difficult to distin-

Fig. 8. Spatial representation of the two ICA components that
appear similar to the spatial patterns in the fluorescence line
height and CDOM indices.

guish from noise. In the first component, which has a similar
spatial distribution to the FLH, two peaks can be seen, one of
which is near the 685 nm fluorescence peak of chlorophyll.
The second component also shows a smooth, clear peak in
the radiance.

Fig. 9. The ICA spectra which produce spatial patterns sim-
ilar to the FLH (blue) and the CDOM index (orange) in the
Salish Sea scene.

6. DISCUSSION

In this proceeding, we have shown that ICA is able to detect
regions of water bodies with unusual spectra and to report
what those spectra are. However, the interpretation of those
spectra has also been found to be quite difficult in practice.
There are two ways then to improve the capacity of identi-
fying algal blooms with ICA. In the first option, ICA itself
could be altered to take on an even more interpretable func-
tional form. For example, it could be made to search for band
ratios rather than linear transformations. The second option
is to focus on the interpretation of the linear coefficients that
ICA finds. For example, they could be compared to a spectral



database, or a repository of reference spectra could be col-
lected from known algal bloom events.

Even with these improvements ICA faces several chal-
lenges. First of all, signals from different sources can get
mixed together. For example, the increased near infrared
(NIR) signal from shallow water is often present in at least
one of the ICA components, and can interfere with the detec-
tion of algal blooms near the shore. Second, with the standard
ICA, it is not clear whether the mixing or un-mixing weights
should be inspected. Here, we have found that the mixing
weights show the absorption peaks and valleys more clearly,
but it is not clear that this is generally the case.

7. CONCLUSION

In this proceeding, it has been demonstrated that ICA is able
to detect spatial-spectra features in hyperspectral images. It
excels in searching for spectral details which simple band-
ratio algorithms do not detect. However, like principal com-
ponent analysis, it also suffers from the mixing of signals, and
while the mixing weights do provide insight into the detected
signal, additional interpretation is still required. Therefore,
ICA could function as a complement to more standard band-
ratio algorithms in a HAB monitoring program, to look for
sub-portions of the blooms that were found and to search the
scene for any remaining undetected blooms.
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