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Marine minerals’ role in future holistic mineral resource
managementQ1
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Abstract: Deep marine mineral deposits are mineral deposits that have been formed outside the continental
slope. Currently three main types of deposits are generally recognized: polymetallic manganese nodules, mas-
sive seafloor sulfides and cobalt-rich crusts. The authors argue that marine mineral resource management must
be holistic. Holistic marine mineral management requires a clear understanding of the objectives to be achieved
through mining and to assess and ensure a proper balance between costs, risks, potential gains and losses. For
decades there have been substantial uncertainties regarding the short- and long-term impact of deep-sea mining
on international society and the economy and, more recently, environmental issues have become central to the
debate over mining the deep seabed. If deep-sea mining is to play a constructive role in the green transition
towards more environmentally robust energy production and e-mobility, more ambitious interdisciplinary
research is needed to provide the knowledge needed to devise a holistic approach to management of marine
minerals. This includes completing thorough baseline studies in conjunction with geological exploration and
devising new means of handling financial and technological uncertainties when making investment decisions
and when developing regulatory frameworks.

Deep-sea mining (DSM) covers activities related to
the understanding of, the exploration for and the
exploitation of deep-marine mineral deposits.
Although attempts have been made both in the Sol-
wara 1 project in the Bismarck Sea and in the Atlan-
tis II-project in the Red Sea, exploitation activities
for deep-marine minerals are not currently being car-
ried out commercially but are expected to take place
in the not-so-distant future. Such activities will
include mining on the seafloor, transport to the sea
surface, monitoring of the activities mentioned and
continuous remediation of mined areas as they are
abandoned. Mineral processing is not currently
expected to take place at sea, although size reduction
and some pre-concentration is likely to be considered
as subsea activities (Ochromowicz et al. 2021).

The deep sea is largely underexplored and so are
the ecosystems, the geology, and the prospects of
exploiting the abiotic, and potentially the biotic,
resources present in the deep sea. These resources
must be managed, and we argue that marine mineral

resource management must be holistic. Such holistic
marine mineral management requires a clear under-
standing of the objectives (e.g. employment, finan-
cial gain, supply of Q2a market) to be achieved
through mining and to assess and ensure a proper
balance between costs, risks, potential gains and
losses (Jackson and Christiansen 1993). It has long
been understood that knowledge of the geology
is only one part of the process to discover and
develop mineral deposits in general and specifically
marine mineral deposits. It involves the application
of corporate-oriented modifying factors related to
technical, financial and political decisions, environ-
mental aspects, the development of mining-,
processing- and transportation technologies and
solutions, and the market (Jackson and Christiansen
1993; CRIRSCO 2019). More recently, however,
additional emphasis has been put on the so-called
ESGs, modifying factors that focus on the environ-
ment (E), social aspects (S) and governance (G)
(Rogers and Serafeim 2019; Jowitt et al. 2020;
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Walker 2022). ESGs will play a major role in future
business developments. This article touches upon
some of these modifying factors.

(1) Historical aspects of the demand for deep-sea
minerals. To what extent have governments
considered them to be a viable source of certain
minerals of strategic and economic impor-
tance, and what political approaches have
been proposed to manage marine mineral
wealth?

(2) Geological aspects related to the overarching
mineral resource potential assessment and the
more localized deposit characteristics decisive
for the development of responsible mining and
processing technologies.

(3) Environmental aspects including a description
of the relevant ecosystems. Ecosystem knowl-
edge and the responsible management of eco-
systems are keys in adaptive management.

(4) Financial aspects related to the process of
assessing the economic potential in this new
potential industry, given all the uncertainties.
Uncertainty management is a crucial part of
proper management of abiotic and biotic
resources.

Marine mineral resource managementQ3

Mineral resource management (MRM) is about
exploiting the potential in a mineral deposit while
making sure that none of the framework conditions
that constrain the development are violated. This
includes making sure that the environment is not
harmed unnecessarily. MRM has been defined as
the identification, optimization and realization of
the value of a mineral deposit (Blaauw and Tre-
varthen 1987;Macfarlane 2006). The process of con-
verting some exploration results into a resource and a
reserve is crucial in MRM (CRIRSCO 2019). The
mine plan bounded and constrained by controlling
elements like the environmental management and
monitoring plan (EMMP) (Jones et al. 2019) is
developed and implemented as part of the manage-
ment. The mine plan is an overview stating when
the operation will extract what qualities and tonnages
from where (Camus 2002). This includes the com-
munication of the mine plan with all relevant stake-
holders (Haugen and Ludvigsen 2015). From a
(public) governance perspective rather than from a
mining companies’ perspective, MRM is linked to
issuing exploration and exploitation permits, review-
ing and approval of the mine plans, production, envi-
ronmental follow-up and monitoring, and the
processing of concession applications. For onshore
mining, the modifying factors include environmen-
tal, economic, technological, geological, social and
legal factors. These will be equally important for

deep-sea mining operations. This requires a solid
baseline and an adaptive management system
(Hyman et al. 2021). A comparison between the
management systems for petroleum resources on
the Norwegian continental shelf and the manage-
ment system currently under development for and
by the International Seabed Authority (ISA) for
marine minerals is made in Moses and Brigham
(2021). Norwegian management of the petroleum
resources on its continental shelf (Overland 2018)
has been used as inspiration for the development of
regulatory and legal frameworks for deep-sea miner-
als (e.g. for the Cook Islands) and is one of the man-
agement frameworks studied by ISA (Brekke 2019).
The system is based on openness, data sharing and an
actively involved public administration. Durden
et al. (2017) and Jones et al. (2019) have reviewed
generic management frameworks and suggest con-
ceptual improvements to the existing systems to
adapt them to deep-sea minerals. The work to final-
ize the international regulatory framework for deep-
sea minerals is ongoing (Brekke 2021) and is
expected to be finalized in 2023 after the Republic
of Nauru in 2021 invoked the ‘two-year rule’ in the
UN Convention on the Law of the Sea (Singh
2021). If the management and regulatory systems
are not in place by mid-2023, ISA may be forced
to process exploitation permit applications without
a regulatory framework in place.

From supply security to sustainability: the
changing parameters of holistic
management

The mineral wealth of the deep seabed has been
unknown and inaccessible throughout most of
human history, with economic activity largely con-
fined to the surface and the water column. By the
late eighteenth and nineteenth centuries, technologi-
cal advances increased the strategic and economic
importance of mapping sea lanes, currents, and the
seafloor (Andersen 2020). It was the British HMS
Challenger expedition (1872–76) that first reported
the existence of copious amounts of manganese nod-
ules on the ocean floor. The lead scientists suggested
that possibly other deep-sea regions could be cov-
ered by such nodules (Murray 1891). Subsequent
oceanographic investigations showed that the miner-
als were unevenly distributed across the seafloor. For
instance, sampling conducted during the Norwegian
North-Atlantic Expedition (1876–78, Fig. 1 Q4) did
yield some pumice and mineral agglomerations,
but largely marine clays as indicated in Figure 2.
The expedition scientists concluded that the forma-
tion of manganese oxide nodules described in the
Challenger reports did not seem to occur in these
waters (Schmelck 1882). While the mapping of the

S. L. Ellefmo et al.
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ocean floor continued in the following decades,
deep-sea minerals were treated as mere scientific
curiosities.

The Second World War drastically expanded
knowledge of the deep sea, but also underscored
the dependency of modern industrialized societies
on many minerals. US president Harry S. Truman
was troubled by the world’s rising demand of petro-
leum and other minerals (Fear 2015). To encourage
exploration of the US continental shelf he declared
it to be ‘appertaining to the US’, subject to its juris-
diction and control. The Truman declaration was a
turning point in the development of the international
law of the ocean, setting off a race to gain ownership
and control over marine resources (Proclamation
2667 – Policy of the United States With Respect to
the Natural Resources of the Subsoil and Sea Bed
of the Continental Shelf | The American Presidency
Project 1945). Concerns about resource scarcity
were amplified by the Korean war (1950–53), as a
superpower conflict appeared imminent. During the
crisis, a US government panel on natural resources
outlined an authoritative set of recommendations to
secure the future supply of minerals. A novel and
highly ambitious suggestion was to extract minerals
from the ocean. The Commission suggested the
technological challenges were surmountable, and
that a deep-sea mining industry could be operational
by the mid-1970s (United States. The U. S.

President’sMaterials Policy Commission 1952; Ver-
non 1983).

The tensions of the early Cold War abated with
the death of Stalin, and the advent of nuclear warfare
seemingly reduced the requirements for large
amounts of minerals to fight a new world war.
Even so, the idea of mining nodules from the deep
seabed stirred public imagination during the 1950s
and 1960s. The mineral composition, accumulation
rates and the sheer amount of manganese nodules
became eagerly debated in academic writings, popu-
lar science books and military journals. In the latter,
deep-sea minerals were promoted as a potential sol-
ution to concerns about the supply risk, e.g. for man-
ganese supplied from Indian and African sources. It
was speculated that a variety of other minerals, such
as cobalt, nickel, antimony and even bauxite, could
be extracted from the ocean in the future (Fitzgerald
and Khan 1957; Bonatti and Nayudu 1965; Mero
1965; Rigterink 1965; Sparenberg 2019).

During the 1960s and 1970s, many de-colonizing
and developing countries asserted sovereignty over
mineral endowments, demanded better terms of
trade, and insisted on the right to nationalize foreign-
owned mining assets. The establishment of producer
cartels such as CIPEC (Conseil Intergouvernemental
de Pays Exportateurs de Cuivre) and the IBA (Inter-
national Bauxite Agreement) suggested that OPEC
(Organization of the Petroleum Exporting Countries)

Fig. 1. ‘Outdo the Brits?’: In the wake of the Challenger expedition the Norwegian North Sea expedition used the
combined sail and steamship ‘Vøringen’ to map the seafloor between Svalbard, Jan Mayen and the Faroe Islands. The
expedition’s task was promotion both of science and national prestige, and it aroused controversy by naming the area
‘the Norwegian Sea’ (Wille 1882).

Holistic marine mineral resource management
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and the oil crisis had merely been the opening salvo
in a struggle for global redistribution of economic
and political power based on mineral resource (Lit-
vak and Maule 1980). Third World assertiveness
was perceived by consumer nations as a serious
threat to future availability of minerals. Rising prices
also sparked speculation about falling ore grades in
land-based mining, rising energy costs and eventual
exhaustion of mineral reserves (Meadows 1974).

As mineral supply insecurity rose during the
1970s, deep-sea minerals appeared to offer a spectac-
ular solution. The Commission of the European
Communities considered the risk of supply disrup-
tion as a ‘real and serious threat’ for Europe. But it
was encouraged by UN reports suggesting that sub-
stantial shares of global demand for manganese
(13%) and nickel (26%) soon could be mined on
the ocean floor, and expectations ran high for the
North Sea (Commission 1975). France and Germany
also sought to mitigate their supply risk through
national strategies for deep-sea mining, as did

Japan (UN Department of International Economic
and Social Affairs 1980; Koga 2018). The USminer-
als industry had also felt the threat of expropriation
of their foreign investments, and eagerly eyed the
possibility of mining minerals below the waters out-
side national jurisdiction. As the dominant political
and economic power, and the most likely to access
the resources, the US was at first ambivalent, and
then outright hostile to the international regulation
that was negotiated during the third Law of the Sea
Conference (Bowsher 1983).

The 1980s cast doubts on the future of oceanmin-
ing. The demand and the concerns with supply secur-
ity were still present. The global cobalt supply chains
had been jolted by rebellion in Katanga, and similar
risks were apparent also for other minerals. The Rea-
gan administration’s Cold Warriors believed they
were fighting a ‘resource war’, afraid that their ene-
mies could ‘place their hands on our economic throt-
tles and economic throats’, cutting the supply of
minerals necessary to produce everything from TV

Fig. 2. Mud and clay. The deep seabed as it appeared in 1882. Distribution of deposits, as mapped by the Norwegian
North Atlantic Expedition, 1876–78 (Schmelck 1882).

S. L. Ellefmo et al.
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sets to supersonic jets and submarines (United States.
Congress. House. Committee on Foreign Affairs.
Subcommittee on Africa 1981). Promoters of deep-
sea mining asserted that these minerals could be sup-
plied from nodules, and that from an engineering
perspective both mining and refining systems were
realizable. Access to proven marine minerals was
also touted as a potential weapon against ‘capricious
price inflation’, cartelization or ‘political’ price hikes
of the 1970s (Moore 1984). But the US’ refusal to
sign the Law of the Sea Convention, and its unilat-
eral declaration of an Exclusive Economic Zone
(EEZ) threw the legal order of the deep sea into dis-
array. This uncertainty made nodules less attractive
as an investment object. The other, recently discov-
ered, marine mineral deposit types could seem
more likely to be realized. Cobalt-rich crusts offered
the prospect of a new source of highly concentrated
deposits of a strategic material in shallower waters,
not subject to the legal limitations placed on the
Common Heritage of Mankind in the Law of the
Sea Convention (Johnson and Otto 1986).

By the late 1980s and the early 1990s, the pros-
pects of the deep-sea mining industry plummeted.
Raw material prices were stable or declining, and
the New International Economic Order was politi-
cally dead in the water, thereby removing one of
the risk factors from a consumer perspective. The tri-
umph of western liberal capitalism was inscribed
into the 1994 implementation agreement that finally
gave birth to the International Seabed Authority
(ISA). As long as global markets were awash with
cheap raw materials, even the governments habitu-
ally concerned by import vulnerabilities, such as
Japan, Germany, and the US, gave less attention to
supply security as a problem (Radetzki 2006). As
an expensive solution to the seemingly minor prob-
lem of supply security, expectations about the com-
mencement of deep-sea mining were pushed far into
the twenty-first century (Hoagland 1993).

As economic globalization enabled the growth of
Chinese manufacturing, a new resource boom devel-
oped after 2004. The ‘long boom’ re-ignited con-
cerns about competition for scarce metals; on the
demand side China was able to outcompete western
firms for the output of African producers. On the sup-
ply side, the disruption of Chinese rare earth deliver-
ies to Japan after a clash over the Senkaku/Diaoyu
Islands in 2010 rekindled fears of politically moti-
vated embargoes (Kiggins 2015). As the US realized
that its commercial and military supply chains for
minerals were mutually dependent, it became a polit-
ical priority to locate new sources and reduce its
dependency on critical minerals (National Research
Council 2008). In the circumstances of rising prices
and with political support for exploration, the deep
sea re-surfaced as a viable and attractive source of
critical minerals.

The re-emergence of deep-sea mining in the
2000s during a period of high prices and renewed
clashes over minerals bore a strong resemblance to
its former glory days in the 1970s. But something
had changed in the intervening decades. As the US
Department of Energy noted in 2010, critical materi-
als had become crucial components in the ‘clean
energy economy’, amounting for 20% of global con-
sumption of these minerals (US Department of
Energy 2010). Similarly, the EU Commission had
become increasingly worried about supply risks
after 2008, furthermore it hoped that deep-sea min-
ing could enable ‘blue growth’. In 2012 Brussels
anticipated that as much as 5% of the world’s miner-
als, including cobalt, copper and zinc, could come
from the ocean floor in 2020, rising to 10% by
2030. From virtually nothing it would create a €5 bil-
lion industry by 2022, rising to €10 billion by 2030
(European Commission 2012). To unlock this eco-
nomic potential, the EU invested in several research
projects to investigate the viability of deep-sea min-
ing, while pushing the ISA to finalize its mining code
(JOIN 2016). The ISA also saw a steep rise in interest
from other countries. While it had issued only eight
contracts for exploration by early 2011, the number
had tripled by late 2015 (Dingwall 2020). The new
aspiration of deep-sea mining promoters was that the
blue economy could supply minerals for the green
transition to a de-carbonized and sustainable future.

From an industry and government perspective,
the green shift is potentially a boon for deep-sea min-
ing. While it is still advocated as a solution to supply
risks, cartel formation, price gouging and politically
motivated embargoes (Pelaudeix 2018), the need for
minerals for sustainable energy technologies has
moved to the front and centre. For instance, in
2019 Norway enacted a specific law for deep-sea
minerals on the Norwegian continental shelf, explic-
itly framed to secure a sustainable, socially and eco-
nomically viable management regime (OED 2021).
The hope that this new industry can mitigate the
long-term loss of employment and revenues from
oil and gas is underpinned by current estimates of
vast mineral occurrences. The argument that deep-
sea mining is necessary to solve the global sustain-
ability crisis offers a different, and possibly more
politically acceptable, argument than the previous
emphasis on supply security. Yet the shift to sustain-
ability as the main selling point of the industry is
problematic. Although deep-sea mining was first
seriously considered concurrently with the emer-
gence of the global environmentalist movement dur-
ing the 1970s and 1980s, at that time the scientific
comprehension and political appreciation of deep-
sea ecology was relatively slight. But by the 2010s,
sustainability and biodiversity loss had emerged as
global matters of concern, presenting new questions
and challenges.

Holistic marine mineral resource management
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The ecological justification for deep-sea mining
adds a new element to the political calculus. Accord-
ing to industry advocates, deep-sea mining is a
responsible and necessary step in humanity’s com-
mon quest to save the planet. But this shift also
broadens the scope of the social, technological, and
ecological considerations that come into play, plac-
ing new demands on regulators and miners. The
parameters of holistic mineral management are
expanded (Nilsson et al. 2021). For deep-sea mining
to be seriously considered as a climate crisis mitiga-
tion measure and a means to implement the green
transition, the budding industry will have to address
a new set of modifying factors, thereby complicating
investment decisions for companies and consortia
(see the section ‘Uncertainty quantification and
exploitation in new industries’Q5 ). This requires us to
deepen our knowledge of some of the most remote
and inaccessible areas on the planet. Even today,
150 years after the nodules were first discovered,
our understanding of deep-sea minerals and their nat-
ural environment is highly limited. While the conse-
quences of deep-sea mining operations are not
understood, what has become clear over time is
that social, economic and ecological considerations
also must be brought to bear in the development of
any holistic mineral management strategy purporting
to link deep-sea mining to sustainability (Haugan
et al. 2020; Levin et al. 2020).

Ore deposit knowledge for marine mineral
management

Deep-marine mineral deposits are mineral deposits
that have been formed on the outer side of the conti-
nental slope in the deep oceans (Ecorys 2014) and
are typically results of geological processes adjacent
to the seafloor and in the ocean. Typically, three
main types of deep-marine mineral deposits have

been considered and explored in the world oceans
(Ecorys 2014). These are defined by the mechanisms
causing the formation of mineralizations on or in the
seafloor (Hein et al. 2013), and include polymetallic
manganese nodules (PMN), cobalt-rich manganese
crusts (CRC), and seafloor massive sulfides (SMS).
During the last decade, there has been a raise in
awareness Q6of the occurrences of deep-sea mud
(Kato et al. 2011; Takaya et al. 2018), which is typ-
ically enriched in rare earth elements (REE) and
yttrium, and the marine phosphorite deposit with
potential resources of heavy REE and yttrium
(Hein et al. 2016). However, knowledge about the
properties and extent of deep-sea muds is still lim-
ited, hence this deposit type will not be given
detailed attention in this article.

In the section ‘Mineral resource potential assess-
ment’ of this article, aspects of mineral resource
potential estimation are presented using SMS depos-
its as case examples. Estimates of contained metal in
PMNs and CRC have recently been published in
Mizell et al. (2022).

Polymetallic manganese nodules

Polymetallic nodules are typically found as
potato-shaped concretions (Fig. 3) distributed over
large areas of seafloor sediments. The formation of
PMN occurs typically on the vast deep oceanic
plains, through precipitation of metals on to a
nucleus, such as a shark’s tooth or sand grain.
Three main types of processes are responsible for
the precipitation of manganese nodules: hydroge-
netic, diagenetic and hydrothermal (Glasby et al.
2015). During formation of hydrogenetic nodules,
metals are precipitated directly from the seawater;
diagenetic nodules are the result of remobilization
of elements in the sediment column. Hydrothermal
nodules are formed from the discharge of hydrother-
mal (hot) fluids at the seafloor. Most PMN are

Fig. 3. Left-hand picture shows a manganese nodule from the CCZ. Right-hand picture shows SEM BSE image with
the concentric layering in manganese nodules. Left side of the image is towards the centre of the nodule. Dark areas
are light phases, bright areas are heavier phases. Image: A. Lang, NTNU.

S. L. Ellefmo et al.
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formed through a combination of two or three of
these processes, although the hydrothermal contribu-
tion is less frequent (Hein and Koschinsky 2014).
Typical growth rates and metal contents vary
between the different types of nodules. Although
rarely found, the hydrothermal nodules show by far
the fastest metal supply and precipitation. The diage-
netic component of nodules allows faster formation
of .100 mm Ma−1, in comparison to the hydroge-
netic nodules that typically show growth rates of
1–2 mm Ma−1. Hence the increasing diagenetic
component of the nodule may increase the growth
rates significantly (Hein and Koschinsky 2014),
averaging 10–100 mm Ma−1. Another important
contribution from the diagenetic component is the
increased content of the commercially important ele-
ments, such as Mn, Fe, Cu, and Ni in these nodules.
The hydrogenetic component on the other hand
increases the content of Co and REE, for example.
Hence, PMN of economic interest are mainly formed
through combined hydrogenetic and/or diagenetic
precipitation (Kuhn et al. 2017). Such variation in
precipitation processes generally leads to variations
in the content of valuable metals (Kuhn et al.
2017). Manganese nodules typically show concen-
tric layering (Fig. 3), which is the result of precipita-
tion and accretion around a nucleus. They also
contain alternating layers with intimate intergrowths
of very fine grained Mn- and Fe-oxides and
-hydroxides with potentially economically interest-
ing grades of critical elements (Glasby et al. 2015;
Petersen et al. 2016). The typical content of valuable
metals in PMN is summarized in Table 1, and
includes Ni, Cu, Co as well as Mo, Li, REE and
Ga (Hein et al. 2013). The largest area containing
PMN depositsQ7 known today is the Clarion Clipperton
Zone (CCZ) in the Eastern Pacific Ocean. In the
CCZ, the mixtures of hydrogenetic and diagenetic
endmembers shifts towards a continuously increas-
ing hydrogenetic proportion towards the central
and western CCZ. As a result of increased hydroge-
netic influence in the formation of nodulesQ8 , the cen-
tral and western CCZ nodules show slightly
increased cobalt and REE content. Similarly, charac-
teristics of PMN from other areas are affected by the
influence of the different genetic processes (Kuhn
et al. 2017). There are also manganese nodule occur-
rences known in two other main areas of the Pacific
Ocean (the Peru Basin, SE Pacific and the Cook
Island region, SW Pacific), and in the central Indian
Ocean Basin, and the Baltic Sea (Kuhn et al. 2017)
(Fig. 4Q9 ).

Cobalt-rich manganese crusts

Manganese crusts are formed by precipitation and
accretion by mainly hydrogenetic processes on to
the sediment-free outcrops of seamounts (Glasby T
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et al. 2015). Formation of manganese crust is seen in
areas where the bottom currents are strong enough to
keep sedimentation rates negligibleQ10 . The precipita-
tion and formation of crust takes place on the smooth
rocky surfaces of seamounts (substrate) at water
depths ranging from 400 to 7000 m (Hein and
Koschinsky 2014). Precipitation is very slow and
typical growth rates of the crust range from 1 to 5
mm Ma−1 (Mizell and Hein 2018). There are two
main types of crust formations: (a) hydrothermal
crusts, with less economical potential than (b) the
cobalt-rich crusts, formed through hydrogenetic pro-
cesses (Glasby et al. 2015).

Typical substrates to which crusts are attached
can be basalt (Hein et al. 1999; Maciąg et al.
2019), breccia, phosphorite, limestone, hyaloclastite,
and mudstone (Hein et al. 1999). Typical valuable
constituents of CRCmineralizations are summarized
in Table 1, and include Co, Ti, Ni, Cu, and Mn as
well as Pt, Mo, Zr, Nb and REEs (Hein and Koschin-
sky 2014; Petersen et al. 2016). According to Hein
and Koschinsky (2014), the ferromanganese crusts
with the highest Co contents, are found at water
depths between 800 and 2200 m. This coincides
mostly with the Oxygen Minimum Zone (OMZ).
However, it is not limited to the OMZ, as seen, for
example, in the Atlantic and Indian oceans. Cobalt-
rich crusts typically have a higher potential for eco-
nomic contents of Co and REE than polymetallic
manganese nodules (Hein and Koschinsky 2014).

Seafloor massive sulfides

SMS are mineralizations containing metals, such as
Cu, Zn, Pb, Au, and Ag. SMS deposits are formed
in various tectonic settings that are typically located

on the boundary between oceanic plates (Hanning-
ton et al. 1998; Robb 2005). According to German
et al. (2016 Q11), for example, slow spreading ridges
have the potential to host the largest SMS deposits.
According to Petersen et al. (2019), basalt-hosted
deposits located at mid-ocean ridges are the most
common type of deposits, while more than 30% of
the discoveries are found in relation to subduction
zones, in back-arc spreading centres, arc volcanoes
or rifted arc settings. The economically valuable
metals are deposited through precipitation of sulfide
minerals in relation to hydrothermal black smoker
systems (Hannington et al. 1998). The volcanic,
chimney-like structures are present in any of the dif-
ferent settings related to SMS. These chimneys are
formed through the discharge of high temperature
hydrothermal fluids (typically 200–450°C) to the
surrounding ocean bottom waters. The sudden tem-
perature drop as the hot fluids mix with the seawater,
together with changes in the pressure, leads to pre-
cipitation of minerals from the fluids. However,
potential deposits are likely to comprise the feeder
structures located immediately below the seafloor,
the mound consisting of precipitated minerals and
collapsed chimney structures (Fig. 5). Additionally,
sediments covering the ocean floor in the immediate
vicinity to the chimney or assemblage of chimneys
could be enriched in the valuable metal minerals.
Typically, valuable metals of SMS deposits are Cu,
Zn and Au. Table 2 lists the main metals and their
average contents according to tectonic setting of for-
mation. The ratio between Zn and Cu is defined by
the temperatures of the hydrothermal fluids, Cu
being the element precipitating first, at higher tem-
peratures. This leads to a typical distribution of Cu
and Zn in the deposit, with the Cu-dominated part

Fig. 4. Black crust of several centimetres thickness on top of substrate of volcanic rock. Sample by BGR from
Louisville seamount chain SW Pacific (image after WOW3, World Ocean Review, 2014).

S. L. Ellefmo et al.
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of the deposit closer to the hot feeder structures or
chimneys, and the Zn-dominated parts of the depos-
its more distant from the hot feeder structures or
related to lower temperature chimneys. The black
smoker typically contains abundant (black) sulfides,
while the white smokers rather consist of (white) sul-
fate. Figure 5 shows black and white smoker
specimens.

The characteristics of PMN, CRC and SMS
deposits can be summarized as PMN and CRC
being typical two-dimensional deposits, defined by
lateral distribution (Mizell et al. 2022). The depth
of such deposits is limited, with the distribution of
the nodules on the top of the sediment-covered sea-
floor while covering vast areas at the size of small
continents. PMN deposits are typically measured in

Table 2. Overview of average concentrations of selected metals in SMS deposits related to their tectonic
settings

Setting N Cu (wt%) Zn (wt%) Pb (wt%) Fe (wt%) Au (ppm) Ag (ppm)

Sediment-free MOR 51 4.50 8.30 0.2 27 1.3 94
Ultramafic-hosted MOR 12 13.4 7.2 ,0.1 24.8 6.9 69
Sediment-hosted MOR 3 0.8 2.7 0.4 18.6 0.4 64
Intra-oceanic back arc 36 2.7 17 0.7 15.5 4.9 202
Transitional back-arcs 13 6.8 17.5 1.5 8.8 13.2 326
Intracontinental rifted arc 5 2.8 14.6 9.7 5.5 4.1 1260
Volcanic arcs 17 4.5 9.5 2 9.2 10.2 197

N, number of deposits included in the calculations. Concentrations in wt%, except Au and Ag reported in ppm. Data from (Petersen et al.
2016).

Fig. 5. Picture (a) and (b) show fragments of hydrothermal vent materials in collapsed chimney fragments on the
seafloor; (b) shows grab sampling of a vent fragment using ROV grab. Cut fragments of (c) black smoker and
(d) white smoker end-member specimens; (c) contains lenses and finely disseminated sulfide minerals. Illustration
after Snook et al. (2018).

Holistic marine mineral resource management
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abundance of nodules given as kg m−2. CRC depos-
its on the other hand are also limited towardsQ12 depth,
as the thickness of crusts is typically a few centi-
metres, up to 26 cm on older seamounts (Hein
et al. 2013). SMS-type deposits are the only deposits
that have a significant vertical extension, although
there are still only a few deposits that have been
drilled towards depth, where Solwara 1 has a maxi-
mum vertical extension of c. 30 m below seafloor
(Lipton 2012) and TAG approximately 100 m
below seafloor (Hannington et al. 1998).

Mineral resource potential assessment

Mineral resource potential assessment is about quan-
tifying yet-to-find mineral resources (Singer and
Menzie 2010). How much will you find if you
explore thoroughly? The potential is preferably
given as a range rather than one number. It finds its
use in exploration strategy development, in public
governance and is a key in proper mineral resource
management. The following contribution focuses
on SMS, but the methodologies will in the future
be further developed to take the specificities of the
deposit types presented in the section ‘Ore geologyQ13 ’

into account.
Several attempts have been made to assess the

yet-to-find resources on the ocean floor (Hannington
et al. 2010; Cathles 2011; Singer 2014; Juliani and
Ellefmo 2018; Ellefmo et al. 2019b). All these contri-
butions have focused on SMS. The assessment
results vary significantly in terms of tonnage of
both potential ore and metal which is not a matter
of optimism v. pessimism (Barriga et al. 2013), but
rather due to different regional perspectives and
focus. All assessments spin off by asking five basic
questions.

(1) Where and what represents the permissible
tractsQ14 (favourable areas or the play) for poten-
tial hydrothermal SMS resources?

(2) What are the chances that hydrothermal SMS
resources exist?

(3) If hydrothermal SMS resources exist, how
many accumulations will be found if the
areas are explored thoroughly?

(4) What is the expected size distribution of
accumulations?

(5) What types of metals and what grades will the
accumulations have?

Methodologies to answer these questions include the
3-Part assessment (Singer and Menzie 2010) which
takes a mineral system approach that looks at
(metal- and energy) source, effective migration/
hydrothermal flow, trapping mechanisms and preser-
vation. This is comparable to the petroleum system
approach (Wendebourg 2020). However, the 3-Part
assessment should be combined with mineral

prospectivity modelling approaches (Nykänen
2008) as was attempted in the MAP-project (MAP
2020). Ellefmo et al. (2019b) assessed the marine
mineral resource potential inside the Norwegian
jurisdiction along the Arctic Mid Ocean Ridge
(AMOR), specifically along the Knipovich Ridge
and Mohns Ridge. A large potential with significant
uncertainty was confirmed, spanning the sample
space defined by the results from the different
attempts to assess the yet-to-find resources cited
above. The risk factors were assessed on a regional
or a play ‘level’ and a prospect level. The play
level risk quantifies the probability that the play or
the permissive tract is effective and that there is,
somewhere within the play boundaries, at least one
occurrence that satisfies the minimum tonnage and
grade. The risk on the prospect level says something
about the probability that a specific hydrothermal
manifestation contains massive sulfides that corre-
spond to the given minimum values and that this
will be found if the play is thoroughly explored.
The play probability has been set to 0.9 for uncon-
firmed plays based on the rather restrictive criteria
used in the definition of them and to 1 for plays con-
firmed by a positive identification of an active or
inactive hydrothermal field. The criteria used
included the presence of crossing faults, flat-topped,
conic, and cratered volcanos, axial volcanic ridges
(AVR), fault scarps, detachment faults, oceanic
core complexes and favourable geodynamic condi-
tions. The prospect risk has been set to 0.43 based
on the ratio between the number of black smoker
sites to the total number of hydrothermal manifesta-
tions (Hannington et al. 2013).

Figure 6 shows the Mohns Ridge and Knipovich
Ridge on the boundary between the Norwegian and
the Greenland Sea. A selection of sites of interest,
including Loki’s Castle, is shown in the same figure.

Aggregation of the potential in multiple plays

Since the work for the regional assessment along the
AMOR was finished, exploration cruises have made
discoveries that were not included in the analysis.
Further, Ellefmo et al. (2019b) did not take the dif-
ferent play types into account. Along the AMOR
one could at least differentiate between three play
types:

• plays associated with Oceanic Core Complexes
(OCC);

• plays associated with a sedimentary rock setting;
• plays associated with a sediment-free, or basalt-

hosted setting.

The OCC play is associated with ultramafic rocks
and with deep-reaching oceanic detachment faults
that may facilitate hydrothermal flow (Sharkov
2012). The OCC plays are indicated in the

S. L. Ellefmo et al.
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bathymetric data through the identification of break-
away rides and corrugations and lineations. The sedi-
ment-hosted play is associated with sedimentary
rocks on the ocean floor and hydrothermal flow
along fault structures (Robb 2005). It may contain
both exhalative and replacement sulfide mineraliza-
tions. The Bent Hill site at the northern Juan de
Fuca Ridge in the Pacific is an example of this
deposit type (Bjerkgård et al. 2000). The sediment-
free play is normally associated with axial volcanic
ridges and crossing faults (Tivey 2007). They form
semi-circular mound-shaped structures on the
ocean floor and exhibit internal variations both later-
ally and with depth. Loki’s Castle belongs to this
sediment-free, basalt-hosted play type.

Ellefmo et al. (2019a) investigated an area
around Loki’s Castle (see Fig. 6). Figure 7 is an
enlargement of the area where Loki’s Castle is situ-
ated on the northernmost AVR, AVR1. The area
contains geological settings that can be associated
with all the three play types.

Sites of interest that may form on or in association
with the different plays would have significantly dif-
ferent geochemical, mineralogical and tonnage char-
acteristics (Fouquet et al. 2010; Lusty and Murton
2018). Ellefmo et al.(2019a) modified grades pre-
sented in Hannington (2013), Lusty and Murton
(2018) and Cherkashov (2019) based on the ratio
between surface samples and core drilling at TAG
(Petersen et al. 2000) and Solwara 1 (Lipton 2012).
This is to accommodate for the sampling bias that
is introduced when a grade statement is based on
surface samples only. Their representativeness
for the interior of the mineralization is highly uncer-
tain. These modified grades were combined in a
Monte Carlo simulation framework with the

mineralization/deposit density (sites per km2) and
the tonnage models to produce an aggregated
resource potential assessment of the area (Fig. 7).
The adjusted grades are given in Table 3 and the
play areas and the predicted number of yet-to-find
sites of interest are given in Table 4.

In Table 4, a correlation between prospective area
and deposit density (number of deposits per km2) is
used where the median deposit size is considered
(Singer and Menzie 2008). The highly skewed ton-
nage distribution with a minimum, a median and
a maximum of 1700, 73 000 and 23×106 t, respec-
tively, is thoroughly presented and discussed in
Ellefmo et al. (2019b). A small area will, following
the formalism presented by Singer and Menzie
(2008), have a higher deposit density. Table 4 also
includes information about the number of confirmed
sites in the different play types within the relevant
areas. The areas from the respective plays are shown
in Figure 7, where the prospective area of the
‘sediment-hosted’ play is restricted to the axial valley.

Figure 8 shows the aggregated results of the anal-
ysis in metric tonnes of metals. The results from the
three play analyses (OCC, sediment-hosted and
sediment-free) have been merged into one plot and
summarized in the embedded table. It shows a total
mean potential for all three plays of 273 000 t of
metal (Zu, Cu, Ag, andAu combined). The grade dis-
tributions showing the relative importance of the ele-
ments are given in Table 3. The resource diagram
shows the composition probability curve for the
total in-situ metal potential (metric tonnes) and indi-
cates the relative importance of the three play types
inside the area. Each bar indicates the significance
of each play type for the given probability. The
very large, unlikely scenarios (bottom bars) are

Fig. 6. The more than 1000 km long Mohns Ridge and the Knipovich Ridge along the Arctic Mid Ocean Ridge
(AMOR). The active hydrothermal site Loki’s Castle shown in red (Pedersen et al. 2010). A small selection of other
sites of interest (active confirmed venting or water column indications) in grey. Source: GeoMapApp ver. 3.6.6 and
Interridge Vents Database ver. 3.4 (Beaulieu and Szafranski 2020).
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mostly made up of the OCC and the sediment-
free plays (red and yellow respectively) and occur
when these plays show a significant potential in
the Monte Carlo simulation framework. The

sediment-hosted play shows a relatively small poten-
tial in this analysis, mostly due to the significantly
lower grades (Table 3).

The approach shows that the play associated with
OCC has the largest potential. This is primarily due
to higher expected grades given in Table 3 but is nat-
urally also a function of the larger area relative to the
other two play types (Table 4). Further, it can be
deduced from Figure 8 that a prerequisite for the
area to realize a potential larger than 106 t of metal,
is that the sediment-free and the OCC plays com-
bined and ‘at the same time’ contain a significant
amount of metal. Further it can be concluded that
the play methodology enables a hierarchical
approach where multiple plays are combined with
a robust risking of plays, prospects, and segments.
A preliminary conclusion from this work is that the
splitting of the analysis into three distinct different
play analyses that are aggregated gives a better
understanding of the relevant mineral systems and
thereby a better understanding of the uncertainty
associated with the different inputs and the outcome.
Future work will further elaborate on this notion.

Updating the unknown

Amineral resource potential estimate as presented in
Ellefmo et al. (2019b) and in the previous section
‘Aggregation of the potential in multiple plays’
must be updated as new information is made avail-
able. New information may reduce or increase com-
plexity and hence change the epistemic uncertainty.
Since the work that went into Ellefmo et al.

Fig. 7. The different plays and their respective areas are indicated. The sediment-hosted play area included in the
analysis is restricted to the axial valley coloured in a bluish tone. Figure from Reimers (2017).

Table 3. Adjusted grades of Cu, Zn, Au and Ag per
play

Cu
wt%

Zn
wt%

Au
ppm

Ag
ppm

Sediment-free
MOR

1.3 2.5 0.4 27.6

Ultramafic MOR
(OCC)

4.0 2.1 2.0 19.8

Sediment-hosted
MOR

0.3 0.9 0.1 19.5

Original grades have been adjusted based on the ratios between sur-
face samples and drill core samples from the TAG and the Solwara
1 sites.

Table 4. Area per play and associated number of
undiscovered and confirmed deposits/sites of interest

Area
(km2)

P90 P50 P10 Confirmed
sites

Sediment-free
MOR

324 1 3 9 1

OCCs 1115 2 6 16 0
Sediment
hosted

466 1 4 11 1 (?)

S. L. Ellefmo et al.
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(2019b) was executed, several research cruises have
been completed and new occurrences have been con-
firmed. This would, in effect, update the probability
that the play is effective, setting the play probability
to 1 (confirmed) if some or more thanQ15 the newly dis-
covered occurrences fall within the defined plays. If
they fall outside the plays, the play boundaries or
the play definitions must be updated. Figure 9
shows the central part of the Mohns Ridge (see
Fig. 6 and map inset in Fig. 9 for spatial reference)
with sub-plays and newly confirmed sites of interest
(NPD 2018; Stensland et al. 2019).

Table 5 states the play risk before and after the
discoveries as well as the number of occurrences
within the play areas. This number of known occur-
rences is considered when the play-specific potential
is estimated.

Play 3 and play 5 have been updated due to the
findings of the Fåvne and Aegir active sites. Play 9
is ‘only’ confirmed by water column data and the
play risk is therefore updated to 0.95.

Figure 10 summarizes the results from the analy-
sis for the play analysis before and after risk update.
For the blue points plotted on the orange bisector
line, the potential before and after risk update is iden-
tical. Points plotted above, indicate that the potential
after update is larger than before update. One can see
that the potential in plays 3, 5 and 9 has increased
slightly due to the lower risk.

Figure 11 presents the percentiles of the aggre-
gated resource potential before and after risk update.

The orange dashed line is the first bisector line
where the before and after potentials are identical.
Due to the high uncertainty in the input variables,
the last percentile included in this representation
(the P0.5) is affected the most. The maximum
metal in the ground after update is slightly lower
than before the update, indicating that the potential
estimate has been more or better constrained. In
addition, we can see that the P25 and P50 are
slightly above the first bisector line, indicating a
higher 25 and 50 percentiles. The potential has
increased and the uncertainty in the estimate has
decreased.

The role of ecosystem knowledge in
environmental and resource management

One of the crucial aspects of MRM in the context of
exploration and exploitation of potential mining
areas is environmental assessment. Areas with high
marine mineral resource potential (e.g. PMN, CRC
and SMS deposits) are unique ecosystems harbour-
ing highly diverse and specialized deep-sea commu-
nities (Boschen et al. 2013; Schlacher et al. 2014;
Morgan et al. 2015; Vanreusel et al. 2016). These
ecosystems are considered as hotspots of biodiver-
sity and biota associated with mineral deposits and
have adapted over long timescales to the given and
often extreme environmental conditions. Due to the
limited accessibility of deep-sea habitats, our

Fig. 8. Aggregated play potential for the three play types given in metric tonnes: (1) the sediment-hosted play in
green bars; (2) the sediment-free or basalt-hosted (axial volcanic ridge) play in yellow bars; and (3) the oceanic core
complex play in red bars. Y-axis gives the probability of exceeding the corresponding play potential.

Holistic marine mineral resource management
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knowledge of these ecosystems is still very limited
and the few studies that exist provide only snapshots
in space and time rather than a comprehensive under-
standing of these complex ecosystems. Any anthro-
pogenic activity and physical disturbance have thus
a high potential to harm benthic, pelagic and bentho-
pelagic communities substantially (Pedersen et al.

2010; Christiansen et al. 2020) resulting in long-
lasting damage, habitat degradation and biodiversity
loss (Vonnahme et al. 2020). The biodiversity crisis
caused by climate change, habitat loss/fragmenta-
tion, pollution and (over-) exploitation of marine
resources is one of the major global challenges.
However, marine biodiversity and especially deep-
sea biodiversity is considered as one of the major
knowledge gaps to date. In addition, our knowledge
about distribution ranges, life-history dynamics
(e.g. reproduction, growth, and mortality rates),
adaptive/recovery potential of deep-sea organisms
and the ecosystem services such communities pro-
vide are not well understood yet.

Mineral deposits with substantial exploitation
potential are PMN, CRC and SMS deposits. So far,
mineral deposits are a non-utilized resource, but
the first exploration licences have been issued (e.g.
to Nautilus Minerals Inc. for SMS deposits off the
coast of Papua New Guinea), raising concerns
among deep-sea biologists and environmentalists
due to the risk of substantial loss in biodiversity
and ecosystem services (Van Dover 2011).

As indicated in the section ‘Ore geology’ Q16, vast
areas with PMN are found in the abyssal plains
(.4000 m depth) in the Pacific and Indian Ocean
with a high density and diversity of associated
biota ranging from microbial communities to

Fig. 9. Central Mohns Ridge with favourable areas/plays and confirmed occurrences.

Table 5. Play risk before and after confirmation and
the number of mapped sites of interest inside the play

Play Play risk
before

Play risk
after

Number of
mapped features

3 0.9 1.0 (Fåvne) 1 (2?)
4 1.0 1.0 1
5 0.9 1.0 (Aegir) 1
6 0.9 0.9 0
7 0.9 0.9 0
8 0.9 0.9 0
9 0.9 0.95 (72N,

plume)
(1)

10 0.9 0.9 0

The name of the occurrence responsible for the risk update is in
parentheses. The updated risk of play 9 is fixed at ‘only’ 0.95
since the site has not been positively confirmed with a remotely
operated vehicle (ROV) but rather only in the water column.

Q37
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meio-, macro- and megafauna assemblages in undis-
turbed nodule areas (Gollner et al. 2017, 2021; Von-
nahme et al. 2020). Based on benthic disturbance
experiments simulating mining operations in the
deep sea, some groups like mobile megafauna
show a good recovery potential (Gollner et al.
2017) while the majority of biological processes
and groups, especially sessile epifauna, remain
affected over decades, showing only slow, if any,
recovery rates (Vanreusel et al. 2016; Jones et al.
2017; Vonnahme et al. 2020). Amechanical removal
of nodules results in habitat destruction, thus affect-
ing seafloor integrity. By destroying the biologically
highly active sediment surface layer, the associated
fauna as well as remineralization and bioturbation
processes are severely affected by mechanical dis-
turbance with long-lasting consequences for the
recovery of deep-sea biota (Vonnahme et al. 2020).

Deposits of CRC are found at seamounts (subma-
rine volcanoes) in all oceans at depths between 400
and 4000 m. Fauna and biological activity associated
with CRC are poorly investigated so far. The few
studies that exist indicate that habitats with CRC
deposits are very heterogeneous, with a large variety
and patchy distribution of biota, e.g. crinoid and
octocoral communities (Morgan et al. 2015). Many

organisms associated with CRC are slow-growing
species with long life cycles and thus especially
prone to mechanical disturbance (Schlacher et al.
2014). Due to the distinct role as hotspots in marine
biodiversity, nursery grounds and refuge, seamounts
per se are considered as habitats that are especially
vulnerable to anthropogenic pressure related to deep-
sea bottom fishing and mining. Thus, strict environ-
mental guidelines, biological status assessments and
conservation measures need to be developed before
any CRC exploitation can be considered.

SMS deposits at hydrothermal vent fields are
found at depths between 100 and 4000 m along mid-
ocean ridges that differ in seafloor spreading velocity
and magma supply. Vent communities are character-
ized by a high biodiversity consisting mainly of mol-
luscs (Archaeogastropoda, Bathymodiolus spp.),
arthropods (copepods, shrimps, crabs), and annelids
(e.g. Rifta pachyptila) that colonize different zones
around the vents according to temperature and fluid
gradients (Vrijenhoek 2010; Galkin 2016). Most
SMS communities are gathered around active sites.
Active sites are usually not considered as targets for
mineral extraction due to the acidity and high tem-
perature of spewing fluids, instability of active
mounds and lower mineral potential due to

Fig. 10. The mean unconditional metal potential in the different sub-play before and after risk update. Point number
corresponds to play number in Table 5.

Holistic marine mineral resource management
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immaturity of active deposits. However, inactive
sites with less diverse and abundant fauna andmature
mineral deposits are targeted. To date, our knowledge
on potential anthropogenic impacts related to the
exploitation of inactive sites and subsequent alter-
ations such activities cause for biota at active sites
close by (,10 km) have not been studied yet.

While the East Pacific Ridge (EPR) is character-
ized as a fast-spreading area with high magma sup-
ply, the mid-Atlantic ridge (MAR) is considered as
a slow-spreading area with less magma supply.
The degree of seafloor spreading velocity and
magma supply affect the colonization pattern of
vent communities with shorter distance (,10 km
apart from each other) between vent communities
at EPR and larger distances at MAR sites
(.100 km apart from each other). The distance
between vent communities considerably affects the
stability, dispersal and (re-) colonization rates after
disturbance from natural (e.g. volcanic eruptions,
plate tectonics) and anthropogenic drivers (e.g.
research, mining). Communities from slow-
spreading areas with less frequent eruptive events

and larger distance between vent communities
(including e.g. Loki’s Castle vent field at the ultra-
slow spreading Arctic Mid-Ocean Ridge) are usually
considered as more stable and prone to disturbance
than those from fast-spreading areas that show
higher resilience and faster recovery rates (Pedersen
et al. 2010; Beaulieu et al. 2015; Gollner et al. 2015;
Mullineaux et al. 2018).

SMS deposits are of interest for mining indus-
tries, e.g. along the MAR and the Indian ridge. In
Norwegian waters, the major focus was so far on
the exploration of four active vent sites with SMS
deposits along the Kolbeinsey Ridge, Mohns Ridge
and Knipovich Ridge at the AMOR while most
knowledge on biological status is available for the
Jan Mayen Vent Field and Loki’s Castle where a
unique benthic fauna is documented (Olsen et al.
2016). Active and inactive vent sites harbour differ-
ent biological communities (Boschen et al. 2013).
However, for most vent fields, especially the inactive
ones, comprehensive studies on community struc-
ture and ecological status are missing, thus pointing
at considerable knowledge gaps and the needs for

Fig. 11. Percentiles describing the aggregated potential distribution. Due to the high uncertainty in the input
variables, the last percentile included in this presentation is affected the most. The P0.5 metals in the ground after
update is slightly lower than before the update, indicating that the potential estimate has been more or better
constrained. The P25 and P50 are also affect slightly indicating a larger potential after update, indicating that the
estimate is more constrained (lower uncertainty).
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thorough mapping and ecosystem assessment
(Boschen et al. 2013; Olsen et al. 2016). Vents are
non-permanent structures of different ages ranging
from newly established to old vent systems
(.20 000 years of age). While they are considered
to have a high turnover on geological timescales,
they serve as stable, undisturbed environments in a
biological sense. With age, vents usually become
cold and less active, but the temporal overlap of
old and newly established vent fields is crucial
since the old, less-active vents serve as stepping
stones for the colonization of new vent fields
(Smith et al. 1989; Tandberg et al. 2013). A prereq-
uisite for a successful colonization of new vents is
that suitable habitats need to be reachable within a
given temporal window of the pelagic life-stages of
vent fauna that are advected by currents. To date,
one of the major knowledge gaps in the context of
deep-sea mining is how resilient these communities
are and on which timescales recovery and adaptation
to changes in environmental conditions will happen.
As long as a high degree of uncertainty related to
these fundamental questions exists, concerns about
deep-sea mining activities raised from researchers,
environmentalists and society need to be taken
serious and mitigation measures need to be
implemented.

When considering the exploitation of a potential
deep-sea mining area, it is thus fundamental to per-
form thorough, scientifically sound, and independent
Environmental Impact Assessments (EIA) (Jones
et al. 2019). EIA should be performed in concert
with geological exploration to gain a comprehensive
understanding on the geobiology of a given area,
long before permit issuance can be considered, by
taking regional to large spatiotemporal scales and
the connectivity between systems into account.

Deep-sea mining as a potential future
business venture on the NCS: uncertainty
quantification and exploitation

On 1 July 2019 the Norwegian Seabed Minerals Act
entered into force (NPD 2021b). This Act is intended
by the Norwegian authorities to ‘facilitate explora-
tion for and extraction of mineral deposits on the
Norwegian Continental Shelf in accordance with
societal objectives’ (NPD 2021a). Along with this,
the Norwegian Government has decided to initiate
an opening process for mineral activities on the Nor-
wegian Continental Shelf (NCS) and tasked the Nor-
wegian Petroleum Directorate (NPD) to map the
most commercially interesting mineral deposits
(NPD 2021b). Companies are now strategically posi-
tioning themselves to exploit this resource potential
(Energi24 2021).

From the corporate perspective, deep-sea mining
represents a potential business venture with both a
high potential up- as well as downside. A key take-
away from a recent report (Rystad 2020) evaluating
the potential of deep-sea mining on the NCS is that
marine minerals are ‘in the money’, with a projected
income significantly higher than the estimated cost
of extraction. However, committing resources to
deep-sea mining at this stage entails a great deal of
risk. When assessing investment opportunities and
developing entry strategies, companies are con-
fronted with various sources of uncertainty and risk
factors as many of the determining modifying factors
are highly uncertain at this point. Uncertainties span
from regulatory to market, environmental impact,
and technological uncertainties. Future demand for,
supply and therewith, prices of the relevant metals
are highly uncertain. The regulatory framework is
not established and whether and when technologies
will allow for mining activities on the ocean floor
with a sufficiently low environmental impact is
unknown. This emphasizes the need for an in-depth
focus on mineral resource management.

Establishment of a new deep-sea mining value
chain on the NCS will require substantial investment
in technology and infrastructure. Many of these
investment outlays will have to be made years before
companies might earn potential revenues. These
investment options show similarities with other stra-
tegic investment problems like joint ventures or
research and development. It is well established
that the value of many strategic investments does
not derive so much from direct cash inflows, as it
does from the options to invest in future growth
(Smit and Trigeorgis 2007). However, the invest-
ment and project assessment tools predominantly
used as the basis for corporate investment decision-
making by mining and other commodity companies
are still widely based on static discounted cash flow
(DCF) analysis and net present value calculation.
These traditional methods do not, however, provide
the flexibility for strategic decision-making on new
business ventures in deep-sea mining.

The traditional DCF approach is based on an
implicit assumption that management is passive. In
reality, however, if expected events are not realized,
management can actively revise future decisions to
capitalize on better-than-expected developments or
retreat to limit losses from adverse market develop-
ments or competitive moves (Smit and Trigeorgis
2007). To assess the value of such strategic invest-
ment options, real options tools present an important
complement to the traditional techniques. Compared
to traditional valuation methods, the real options
approach encourages proactive strategic manage-
ment and presents decision makers with a more
proactive response to uncertainty. The real options
approach is more dynamic than traditional

Holistic marine mineral resource management
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approaches. It is capable of incorporating not only
the value of flexibility and growth opportunities
but also of competitive strategies in an uncertain
environment (Smit and Trigeorgis 2007).

Real options analysis applies valuation models
originally developed for financial securities to the
area of corporate investment decisions. Options are
financial derivatives that give buyers the right, but
not the obligation, to buy or sell an underlying
asset at an agreed-upon price and date. Real options
differ from financial options contracts since they
involve real (i.e. physical, ‘underlying’) assets and
are not exchangeable as securities. A real option is
an economically valuable right to make or else aban-
don some choice that is available to the managers of
a company. In other words, a real option gives a
firm’s management the right, but not the obligation
to undertake certain business opportunities or invest-
ments. It is referred to as ‘real’ because it typically
references projects involving a tangible asset (such
as machinery, buildings, or inventory), instead of a
financial instrument. These assets must be managed
as part of the mineral resource management process.

A complexity inherent to real options is that
many different uncertainties can affect their value.
These can be classified into exogenous and endoge-
nous uncertainties. Exogenous uncertainties are
those that are outside the control of the decision
maker. Examples are market prices of, for example,
metals or other commodities which usually can be
hedged with market instruments. Endogenous uncer-
tainties include technological uncertainty that might
be solved through further learning-type investment
(Trigeorgis and Reuer 2017). Other examples are
uncertainty in resources in place or future production
profiles. These are often estimated based on expert
judgements. Early applications of real options valu-
ation and standard models are well suited for exoge-
nous uncertainties. Here the standard financial
economics approaches to option pricing can be
applied. In recent years research extended the model-
ling approaches and analysis to additionally account
for endogenous uncertainties (Smith and Nau 1995;
Smith and McCardle 1998; Brandão et al. 2005;
Oriani and Sobrero 2008).

From a macroeconomic point of view, deep-sea
mining could be viewed as a development option
for economic growth (Baker and Beaudoin 2013).
Norway has long benefitted from its position in oil
and gas. But with this industry under pressure from
environmental concerns, deep-sea mining could con-
tribute to economic development. Rystad (2020)
estimates, in their most constructive scenario, that
this industry could create annual revenues worth
USD 20 billion, together with employment for up
to 21 000 full-time equivalents. These estimates are
related to the NCS. Having a large export potential,
the parallels to the oil and gas industry are evident.

As the industry is in its infancy, creating a leading
local business could be the key to a high revenue
export industry (Rystad 2020).

Without proven technology and pre-existing
infrastructures, investors may, however, prefer to
wait due to the regulatory uncertainty, large capital
costs, and many other uncertainties. Given the
urgency of the energy transition and the need for rad-
ical technological solutions, finding the optimal tim-
ing that assures that future opportunities are realized,
and at the same time stranded assets are avoided,
is crucial.

Despite the belief that marine minerals extraction
could help to enable the green transition, it is crucial
that the industry itself will be sustainable. Paulikas
et al. (2020) concluded that, compared to onshore
mining, offshore mining of nodules would reduce
the environmental footprint by more than 90%. To
date, no such study has been performed for SMS
mining. However, before granting any exploration
and extraction licences to body corporates on the
NCS, the NPD will complete an impact assessment
to understand if it is possible to carry out responsible
mineral activities and simultaneously protect the
ocean environment (Norwegian Ministry of Petro-
leum and Energy 2021). How the governmental
restrictions and licences will be regulated will have
a major impact on the evolution of a deep-sea mining
industry. The decision concerning the opening of the
NCS for licence application is currently planned for
Q2 2023 (GCE Ocean Technology 2021).

Crossing discipline boundaries

Uncertainties abound regarding the potential impact
of deep-sea mining on society, the economy, and the
environment. These range from disruption of cultural
practices in coastal communities, through the future
state of metal markets to the cumulative effects of
disruption to the marine environment. Deep-sea min-
ing not only spans the boundaries between the
marine and terrestrial environments, but also
between nature and culture (Koschinsky et al.
2018). For onshore mining, large amounts of work
and investment are needed to obtain the social
licence to operate since societies are widely spread,
cultural heritage sites are numerous and sacred land
needs to be protected. This may be different offshore,
but here the ecosystems are unique and to a large
extent unknown and their importance for functions
and services is uncertain. An interdisciplinary
approach is needed to identify and describe the prob-
lems, but also to devise potential solutions, and ulti-
mately to decide whether there is a path forward for
deep-sea mining (Koschinsky et al. 2018).

Interdisciplinary work is therefore imperative in
education and in industrial operations to achieve
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responsible mining needed for a future sustainable
development (Binder et al. 2017; Koschinsky et al.
2018). The interdisciplinary approach has been
defined as an integration of knowledge and compe-
tencies from different disciplines that enables to
reachQ17 a higher goal and a distinction between a uni-
disciplinary, a multidisciplinary and a transdisciplin-
ary approach has been made (Peek and Guikema
2021). The latter includes most co-operation and
data and information transfer across discipline and
scientific boundaries and a potential development
of new worldviews, domains and sets of methodolo-
gies. In geoscience, geometallurgy is often labelled
as interdiscipline integrating a vast range of geosci-
ences including mathematical geosciences (van den
Boogaart and Tolosana-Delgado 2018). The inter-
disciplinary approachQ18 (Peek and Guikema 2021)
will enable the involved stakeholders to comprehend
smaller nuances in the understanding and use of con-
cepts like uncertainty, value, and risk. This may, if
managed well and focusing on interaction and posi-
tive dialogue, render it possible to reach goals not
possible if a unidisciplinary approach was used.
van der Bles et al. (2020) emphasize the importance
of communicating uncertainties, of which there are
many in deep-sea mining, spanning from techno-
logical, geological, biological, legal to social
uncertainties.

This article has taken a broad perspective on
deep-sea mining and the overall management of min-
eral resources and the environment. It advocates the
need for a holistic perspective where the vast mineral
deposits on the ocean floor may play a future role in
meeting the demand for metals and minerals to sup-
port the transition towards a greener energy produc-
tion and e-mobility. For marine mineral deposits to
play a role, an interdisciplinary or even a transdisci-
plinary approach is taken where all modifying fac-
tors are included and assessed by including both
natural and social sciences and technological
aspects. These modifying factors have been exempli-
fied in this contribution by factors related to environ-
mental concerns and social aspects, to ore geology
and resource assessment and to risk and financial
aspects. The social aspects are of uttermost impor-
tance. Geological, technical and to some extent eco-
logical risks may be calculated. Social or political
risks are arguably more difficult to assess due to
the subjective aspects of these risks and failing to
understand and to assess them thoroughly may
cause significant costs and may turn over a project
before it has properly started. Successful attempts
to quantify social and political risks have been
made using the Grey-TOPSIS model (Li et al.
2021). Risk is the effect of uncertainty on your objec-
tives and both risks and uncertainties in all relevant
modifying factors must be managed. In the introduc-
tion to this contribution, it is stated that ‘holistic

marine mineral management requires a clear under-
standing of the objectives to be achieved through
mining, to assess the proper balance between costs,
risks, potential gains and losses’. We have touched
upon some of the factors that need to be balanced.
Whether our society will manage to balance these
factors in the future to ensure responsible mining
for sustainable development remains to be seen and
will depend on our ability to communicate across
boundaries.
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