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1 INTRODUCTION

In many applications, measured data appears in non-linear spaces. In such spaces, common data
analysis operations like the computation of a mean are not directly possible, since for example
there is no addition operation on such data. However, many of these spaces have the advantage
of being Riemannian manifolds, that is, they are smooth manifolds equipped with a Riemannian
metric, i.e., with a locally varying inner product [2, 13, 18]. Such manifolds appear in many applica-
tions. For example, in Interferometric Synthetic Aperture Radar (InSAR) [15], the measured data
are angles, and in diffusion tensor magnetic resonance imaging (DT-MRI) [19, 21, 22], diffusion
at each voxel is described by a symmetric positive definite matrix. The special orthogonal group
of rotations is used in analysis of data from orientation sensors [33]. The sphere is used in vari-
ous applications of directional statistics such as hydrology [16]. The discipline of computational
anatomy [17, 24] extensively uses geometric methods, including Large Deformation Diffeomor-
phic Metric Mapping [35] with applications to medical data analysis [37, 42]. In image analysis,
Grassmann and Stiefel manifolds are used for pose estimation by Turaga et al. [43]. Various mani-
folds with Fisher-Rao-like metrics are also used for shape analysis by, for example, Srivastava et al.
[40], Baran [3], and Rzecki and Baran [38].

Other commonly encountered spaces include spheres or the Stiefel manifold of matrices with
orthonormal columns.

Using tools of differential geometry, many operations can be generalized to manifolds by using
only generic functions like the inner product, its induced norm, geodesics, the exponential, or
the logarithmic map. Closed-form expressions for the generic functions do not always exist, but
efficient implementations to approximate them are still often possible. Recent advances continue
to resolve numerical challenges with efficiently implementing these operations. Our library offers
a wide range of such implementations, which makes performant data analysis for manifold-valued
data more accessible.

One example of an operation that can be realized with these generic functions is the mean,
which can be rephrased as the point in the space that (globally) has the minimum sum of squared
distances from the given data points. This definition can even be generalized to metric spaces
where this minimizer is called the Fréchet mean. Local minimizers may also exist on a Riemannian
manifold; these are the Riemannian centers of mass [25, 28], sometimes also called Karcher means.

A main necessity for a wider adoption of geometric methods is a common, extensible, and effi-
cient collection of operations on a large variety of manifolds. One of the first toolboxes for opti-
mization on manifolds was the Matlab package Manopt [14]. The manifolds within this package
are objects, where a fixed metric is assumed. Implementing a second metric for the same manifold
requires a new Matlab object, or replacing appropriate functions in the object. A manifold can have
an exponential map. Most have at least one retraction implemented. Setting a retraction for the
solver requires then to set that retraction as the retr function in the object. In that sense, this func-
tion can be considered the default retraction that is used in solvers. Several libraries followed, such
as the C++ library ROPTLIB [27], which does provide a short user manual with introductory exam-
ples and an interface overview but lacks comprehensive documentation. The seven major libraries
for differential geometry in Python are Pymanopt [41], Geomstats [36], Geoopt [29], TheanoGeom-
etry [30], Jax Geometry [30], Tensorflow RiemOpt [39], and McTorch [34], each with their own
implementations of a sometimes limited set of Riemannian manifolds. Geomstats implements a
metric interface, such that different metrics on one manifold can be easily distinguished. Some
libraries are more focused on specific tasks. For example, MVIRT [6] provides a variational model
formulation for manifold-valued image processing. This toolbox introduces implementations of a
cyclic proximal point algorithm [4] applied to first- and second-order total variation [5], as well as
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total generalized variation [8]. MVIRT also provides the parallel Douglas–Rachford algorithm [10]
for large-scale, nonsmooth optimization.

The above packages all follow the same basic approach: they generically implement their
statistical or optimization algorithms for an arbitrary Riemannian manifold and provide a
certain set of Riemannian manifolds that implement the necessary properties for these generic
implementations to work. The speed of an algorithm then depends on efficiency of both the
abstract implementation of the algorithm as well as of employed operations on the specific
manifold considered in an application.

Here we present the Julia package Manifolds.jl, together with its accompanying interface
package ManifoldsBase.jl. They provide an easily extensible interface to implement methods on
a generic Riemannian manifold. Moreover, they implement a comprehensive, well-documented
library of efficient operations on common manifolds.

The remainder of this article is organized as follows: Section 2 provides basic definitions of
concepts from differential geometry and illustrates them using the unit sphere. Next, Section 3
describes the general design of Manifolds.jl. Section 4 compares features of this library to what
other libraries offer. A few examples of usage of Manifolds.jl are given in Section 5. Section 6
presents performance benchmarks of Manifolds.jl and other libraries on a set of manifolds for
selected operations. Finally, conclusions are contained in Section 7.

2 MANIFOLDS

In this section, we introduce the necessary terms to work on Riemannian manifolds. We refer
the reader to the textbooks [2, 13, 18, 31]. After introducing manifolds and related terms and
definitions, the concepts are illustrated for the unit sphere in R3 and the manifold of symmetric
positive definite matrices.

2.1 General Definitions

We denote byM a d-dimensional manifold. A manifoldM is defined using an atlasA consisting
of chartsφ : U → Rd that introduce bijections from subsetsU ⊂ M ofM to open subsets ofRd [2].
One way to work on manifolds is to work in charts. Often, however, it is more computationally
convenient or efficient to represent points on a manifold using coordinates of an embedding, in-
stead of using a chart and working with intrinsic methods. Intrinsic here refers to the idea that the
methods and tools used are “well defined regardless of the embedding space” [13, p. 3].

At every point p ∈ M we denote the tangent space by TpM and the tangent vectors by
Xp ,Yp ∈ TpM, where we leave out the index when the point p is clear from context. We denote the
Riemannian metric by 〈·, ·〉p : TpM × TpM → R. The metric also introduces a norm for tangent
vectors X ∈ TpM, which we denote by ‖X ‖p . Note that a smooth manifold can be equipped with
different metrics.

Forp,q ∈ M andX ∈ TpM we denote byγp,X : I →M the geodesic starting inγp,X (0) = p with
γ̇p,X (0) = X , where I is the maximal interval over which the geodesic can be defined [32, Cor. 4.28]
and Op = {X ∈ TpM : γp,X is defined on an interval containing [0, 1]}. A shortest geodesic de-
noted by γp ;q (t ) starts at p at time t = 0, reaches γp ;q (1) = q at t = 1, and is length-minimizing.
Note that the shortest geodesic might not be unique.

We further denote by expp : TpM → M the exponential map. We define the injectivity radius

inj(p) as the supremum over all radii r > 0 such that expp is a diffeomorphism on the open ball

B (p, r ) = {X ∈ TpM : ‖X ‖p < r }. We denote by Up = B (p, inj(p)) and introduceUp = expp (U ) ⊂
M. By definition expp |Up

: Up →Up is a diffeomorphism and hence the inverse of expp |Up
exists,
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called the logarithmic map. Formally the logarithmic map is defined as [13, Def. 10.20]

logp q = arg min
X ∈Op

‖X ‖ subject to expp X = q.

In some cases, the exponential and logarithmic maps can be derived in closed form, but other-
wise they are expensive to evaluate. Therefore, one often uses a retraction retrp : TpM →M that
approximates the exponential map to (at least) first order [13, Def. 3.47]. When the retraction can
be inverted, i.e., from p and q we obtain X , this inverse retraction retr−1

p : q = retrp X �→ X can be
used to approximate the logarithmic map. While the exponential map, and hence also the logarith-
mic map, depend on the metric, a retraction is defined by properties of the retraction along a curve
c (t ) = retrp (tX ) for X ∈ TpM and its derivative c ′(t ) and hence is independent of the metric.

A tangent space can be seen as “the directions to walk in” from a point p. Let q be a second point
on M such that the shortest geodesic is unique. For a tangent vector X ∈ TpM at p we denote
the parallel transport to q along the shortest geodesic (assuming it is unique) by PTq←p X . Again,
since this map might not be given in closed form or might be expensive to compute, it is often
approximated with methods called vector transports.

Computationally, pointsp ∈ M and tangent vectorsX ∈ TpM are usually represented by arrays,
i.e., vectors or matrices. This is realized usually by embedding a manifold into some larger space. A
smooth function i : M → Rm whose differential Di (p) has rank d for every p ∈ M is called an im-
mersion. The space Rm is then called the embedding space ofM, andM is an embedded manifold.

A manifoldM is called a Lie group when we have a group operation ◦ : M ×M →M that is
smooth and whose inverse map p �→ p−1 is also smooth.

2.2 Example: The Two-dimensional Unit Sphere

The unit sphere in the three-dimensional Euclidean space, denoted S2, is an intuitive example of
a Riemannian manifold. Points p ∈ S2 on the unit sphere have unit norm ‖p‖2 = 1. Adding (or
subtracting) two of these points yields a point with a non-unit norm, which therefore does not
belong to S2. However, there is an intuitive way of reinterpreting addition and subtraction that
makes an analogous operation on the sphere possible.

We can interpret the difference y − x between two points x ,y ∈ R3 as a vector starting from x
and pointing to y. Multiplying such a vector by a scalar and adding it to x defines a set of points
on a straight line passing through x and y, i.e., t �→ x + t (y − x ). This line segment joining x
and y is the shortest connecting curve on R3 called a shortest geodesic γx ;y (t ) on R3. On S2, the
shortest geodesic is no longer a line segment but is instead a shortest great arc passing through
pointsp,q ∈ S2. For any two non-opposing points, the intersection of their common plane through
the origin with the sphere yields two geodesics, one shorter than the other. We call this shorter
great arc the shortest geodesic. For two opposing points p,−p ∈ S2, all great arcs that join the two
points are half-circles; they are therefore joined by infinitely many shortest geodesics γp ;−p . We
can measure the distance dS2 (p,q) between the points p and q as the length of a shortest geodesic,
depicted as the blue curve in Figure 1.

To conceptualize tangent vectors, consider the set of vectors orthogonal to a point p ∈ S2, that is

TpS
2 � {X ∈ R3 |〈X ,p〉 = 0}.

We obtain an actual plane tangent to the sphere if we consider all points p + X , X ∈ TpS
2, which

is tangent to the sphere and “touches” the sphere at p (at X = 0). For every X ∈ TpS
2 there exists a

great arc c (t ), which is a geodesic (acceleration free curve when “measuring” in the tangent spaces
it passes through) that runs through c (0) = p with derivative ċ (0) = X . When parametrizing the
great arc with constant speed ‖ċ (t )‖2 = ‖X ‖2 we reach some point c (1) = q ∈ S2 after time t = 1.
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Fig. 1. Unit sphere in R3 with two points p, q. Tangent space at p is labeled TpS
2, geodesic between p and q

is the blue arc γ (p,q), and the vector X is the tangent vector from TpS
2 that points towards q. Y is another

vector fromTpS
2 orthogonal to X . All tangent vectors are blue. Parallel transports of X and Y from p to q are

shown as vector PTq←p X and PTq←p Y , respectively.

This point is q = expp X . As long as the norm of X is less than π , the inverse function mapping

q to X = logp q is unique as well. With a start point p and an initial velocity X , the great arc c (t )

can also be determined if both end points c (0) = p and c (1) = q, p � −q are given. The plane
containing the origin, p, and q is uniquely determined, and its intersection with the sphere S2

forms a circle. The shorter arc segment connecting p and q on this circle is the image of the curve
c (t ). Finally, there exists a unique constant speed parametrization ‖ċ (t )‖2 = const that reaches
q = c (1) after time 1. Then X = ċ (0) = logp q. If q = −p, the intersection plane is not unique, and

any tangent vector X ∈ TpS
2 with ‖X ‖2 = π is a solution of the above construction.

Vectors tangent to the sphere at different points cannot be added or subtracted. First, they need
to be transported to the same point. This is performed using parallel transport. Transport of a
vector X tangent at p to a point q is denoted PTq←p X . This operation results in a new vector
tangent to the sphere at q. Note that transporting a vector X tangent at p between a series of
points – for example from p to q, from q to r , and from r back to p – may not result in the same
vector X .

These operations can be extended to all manifolds as described in Section 2.1.

2.3 Example: Two Metrics on the Symmetric Positive-definite Matrices

A second, more elaborate example is the set of n × n symmetric positive definite (SPD) matrices
P (n). The set consists of all matrices p ∈ Rn×n that are symmetric (p = pT) and positive definite,
that is, for any 0 � x ∈ Rn , it holds that xTpx > 0, which equivalently means that all eigenvalues
of p are strictly positive.

The “directions to walk in” , or to be precise, the tangent space TpP (n) is the set of symmetric

matricesX = XT. Note that for an arbitrary symmetric matrix q = p+tX where t > 0, q might only
be SPD for very small values of t . Similar to the sphere, addition might mean leaving the manifold.

There are several metrics we can introduce on the tangent spaces TpP (n). In the following, we
compare two and their effect on the exponential map, or informally said “how to move into a
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direction X ”. One possible metric is the affine invariant metric, given by [37]

〈X ,Y 〉p,AI = tr(p−1Xp−1Y ).

With this metric, the exponential map is

expp X = p
1
2 Exp(p−

1
2Xp−

1
2 )p

1
2 ,

where Exp is the matrix exponential. The simplest case of n = 1 yields the manifold of positive
numbers, whose inner product simplifies to 〈X ,Y 〉p,AI =

X Y
p2 and whose exponential is expp X =

peX /p . Hence, non-positive numbers can never be reached. The main computational effort for this
metric is the computation of square roots and exponentials.

Another possibility is to use the Bures–Wasserstein metric, which is given by [12]

〈X ,Y 〉p,BW =
1

2
tr(Lp (X )Y ),

where q = Lp (X ) denotes the Lyapunov operator, which solves pq +qp = X . The exponential map
then reads

expp X = p + X + Lp (X )pLp (X ),

where for both operations the computational effort is mainly to compute the Lyapunov operator.

3 STRUCTURE OF THE LIBRARY

Manifolds.jl1 is a registered Julia package. Its most recent version, currently 0.8.61, can be easily
installed typing using Pkg; Pkg.add("Manifolds") in the Julia REPL and activated by typing
using Manifolds afterwards.

The library of manifolds Manifolds.jl is based on the interface ManifoldsBase.jl,2 whose
current version is 0.14.5. This interface defines a common base for Riemannian manifolds in Julia.
It hence serves two purposes. On one hand, it can be used to implement additional manifolds like
the ones in Manifolds.jl. On the other hand, it can be used to define arbitrary functionality on
arbitrary manifolds without depending on or loading the whole library of manifolds.

Both the library and the interface use GitHub Actions to automatically generate their documen-
tation as well as run tests, following the philosophy of continuous integration. These tests are run
on Linux and Mac OS with the latest (Julia 1.9), long-term-support (Julia 1.6), and nightly versions
of Julia. For pull requests (PRs) and for commits on the master branch a format test is run to ensure
that all source code follows the formatting rules using JuliaFormatter.jl3

Using the JuliaRegistrator GitHub application and TagBot GitHub action, new releases are
automatically registered to the registry and new GitHub release entries as well as documentation
page generation is triggered.

Currently, the code coverage, i.e., percentage of code lines executed during testing, is 99.86 %
for ManifoldsBase.jl and 98.93 % for Manifolds.jl, respectively.

3.1 Manifolds and Functions Thereon

A Riemannian manifold in Manifolds.jl is defined by introducing a subtype of
AbstractManifold{F}, where F is the field the manifold is based on: the real numbers R,
complex numbers C, or quaternions H. For example,

1The documentation for Manifolds.jl is available at https://juliamanifolds.github.io/Manifolds.jl/stable/
2The documentation for ManifoldsBase.jl is available at https://juliamanifolds.github.io/ManifoldsBase.jl/stable/
3See https://juliamanifolds.github.io/Manifolds.jl/stable/misc/contributing.html for details.

ACM Transactions on Mathematical Software, Vol. 49, No. 4, Article 33. Publication date: December 2023.

https://juliamanifolds.github.io/Manifolds.jl/stable/
https://juliamanifolds.github.io/ManifoldsBase.jl/stable/
https://juliamanifolds.github.io/Manifolds.jl/stable/misc/contributing.html


Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds 33:7

M1 = Sphere(2)

M2 = Euclidean(2, 3, C)

M3 = SymmetricPositiveDefinite(3)

creates the sphere S2 ⊂ R3 from 2.2, the space of complex-valued 2 × 3 matrices C2×3, and the set
of 3 × 3 symmetric positive definite matrices P (3) from 2.3, respectively.

The interface provides a unified way to work with data defined on arbitrary manifolds, including
those listed above. As a first example, manifold_dimension(M) returns the dimension of the man-
ifold. The two functions is_point(M, p) and is_vector(M, p, X) can be used to check whether
points or tangent vectors are valid. The last two have an optional positional parameter to activate
throwing an error for invalid points or tangent vectors, which is false by default. Hence calling
is_point(M, p, true) returns true if p is a point on M and otherwise throws an error describing
why p is not a point on M.

For functions that return points or tangent vectors, interface functions have both in-place and
allocating versions. By default, the allocating version allocates an output and then calls the in-place
version. For example, for the exponential map, the function exp!(M, q, p, X) stores expp X in the

variable q. When the in-place variant is implemented for a new manifold, the allocating version
exp(M, p, X) is automatically available. Calling exp(M, p, X) first allocates memory and then
calls the in-place function mentioned above. The same holds for geodesic(M, p, X), which re-
turns the function γp,X . To evaluate the geodesic at a certain t one can call geodesic(M, p, X, t).
In both cases, in-place variants are available as well. The same principle of in-place and allocating
variants is also realized for log(M, p, q) and log!(M, X, p, q), which should return a determin-
istic result if the logarithmic map is not unique as for opposite points on the sphere. With the latter,
the former is available with a default implementation as well as shortest_geodesic(M, p, q)

(and its in-place variant) again with t as an optional further parameter, similar to geodesic.
While all these default implementations are available, they can be overwritten if for example
the shortest geodesic γp ;q can be computed more efficiently than by calling expp (t logp q). Fi-

nally, the parallel transport PTq←p X is implemented as parallel_transport_to(M, p, X, q)

and parallel_transport_to!(M, Y, p, X, q) in place of Y, respectively.
When using SymmetricPositiveDefinite(n), the affine-invariant metric is used by default.

3.2 Representation of Points and Vectors

Usually points p ∈ M and tangent vectors X ∈ TpM are not explicitly typed, and only the mani-
folds type is specified for dispatch. Most manifolds implicitly assume that both points and tangent
vectors are instances of AbstractArray or at least have several functions like addition defined.
This enables a great deal of flexibility in types to use for these parameters in a function, such as
the statically sized arrays from StaticArrays.jl, which for small dimensions are stack-allocated.
In two situations the points and tangent vectors are typed. If the representation requires more
than one array, as is the case for the fixed-rank matrices, then a type is used to enforce this. Since
the interface functions are not typed, features like the allocating variant of a function being avail-
able as soon as the in-place one is implemented still work. Another reason for using types is to
distinguish different representations of points and tangent vectors on one manifold. For example,
for the hyperbolic space H n , three representations are implemented: the hyperboloid model, the
Poincaré ball model, and the Poincaré half-space model. These are distinguished by using different
types for points and tangent vectors, such as PoincareBallPoint and PoincareBallTVector for
points and tangent vectors in the Poincaré ball model. Using (plain) arrays onH n is equivalent to
using HyperboloidPoint and HyperboloidTVector.
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3.3 Retractions and Vector Transports

The exponential map expp , the logarithmic map logp , and parallel transport PTq←p are com-

putationally expensive or not given in closed form for some manifolds. For these cases one
can specify subtypes of AbstractRetractionMethod, AbstractInverseRetractionMethod, or
AbstractVectorTransportMethod and create objects of these subtypes, respectively denoted r, s,
and v in the following example. The corresponding functions are called by retract(M, p, X, r),
inverse_retract(M, p, q, s), and vector_transport_to(M, p, X, q, v). These methods also
have in-place variants. On the sphere S2, for example, r = ProjectionRetraction() computes the
retraction given by projecting p + X onto the sphere.

These three methods can be used to implement generic algorithms on manifolds. Since
the exponential map might not be given in closed form, the interface provides the function
default_retraction_method(M) to obtain the retraction that is most often used on a certain man-
ifold. If the exponential map is available (and can be computed efficiently), this method returns
ExponentialRetraction(), which lets retract fall back to using exp. This way algorithms can
easily be modified to use different available retractions. The same scheme applies for inverse re-
tractions and vector transports.

3.4 Features on Manifolds using a Decorator Pattern

As mentioned above, the manifold M3 = SymmetricPositiveDefinite(3) implicitly uses the affine
invariant metric. To change that, the interface ManifoldsBase.jl provides a trait-based decorator
pattern. To decorate the manifold with the Bures-Wasserstein metric, we can declare
M3b = MetricManifold(M3, BuresWassersteinMetric())

This acts like a decorator for the manifold in the following sense: all methods that depend on
the metric, like exp and log mentioned above or inner(M3b, p, X, Y) and norm(M3b, p, X), are
implemented differently for this manifold. Other methods like manifold_dimension or is_point
that do not depend on the metric are “passed down” to M3 automatically.

Traits can be seen as a list of properties “attached” to a manifold. For example, M2 =

Euclidean(2, 3, C) has the property IsDefaultMetric(EuclideanMetric()), that is, using the
manifold itself is completely equivalent to explicitly equipping the manifold with the same metric
M2b = MetricManifold(M2, EuclideanMetric()). This formulation allows a manifold to be im-
plemented with an implicit default metric without needing to directly implement a metric type or
use MetricManifold. But one can still implement a second metric and decorate the manifold with it.

Similarly, a default embedding can be implicitly assumed, for example by implementing
get_embedding(M), embed(M, p) and project(M, p). An embedding of M into a different mani-
fold N can be represented by EmbeddedManifold(M, N) similarly to the metric above. For exam-
ple, for the sphere M1 = Sphere(2) we have that get_embedding(M1) returns Euclidean(3), and
embed(M1, p) is the identity function since points are represented by unit vectors. The projection
project(M1, p) normalizes p to norm 1. Also, for a Lie group, this implicit approach can be re-
alized by implementing compose(M, p, q). The explicit decorator is the GroupManifold(M, op),
where op is the Lie group operation.

As a final example of a decorator, we mention the ValidationManifold. For all default func-
tions mentioned above, this manifold adds checks (is_point and is_vector) to their input and
output values. While this somewhat reduces performance, using M1b = ValidationManifold(M1)

provides an easy way to verify that none of the operations receive invalid inputs or produce invalid
outputs. Here the IsExplicitDecorator property is set; that is, if no new method is implemented
for the validation manifold M1b, the method for M1 is automatically called.

When implementing a new manifold, the properties or traits are set using the function
active_traits. For example, for the sphere this is defined as
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function active_traits(f, ::AbstractSphere, args...)

return merge_traits(IsIsometricEmbeddedManifold(), IsDefaultMetric(

EuclideanMetric()))

end

which finally illustrates that setting IsIsometricEmbeddedManifold() specifies that the metric
from the embedding is used and does not need to be implemented. Here the metric 〈X ,Y 〉p
is computed when calling inner(M1, p, X, Y) as inner(get_embedding(M1), embed(M1, p),
embed(M1, p, X), embed(M1, p, Y)). It does not need its own implementation. Since both
embedding points and embedding tangent vectors are just the identity function for the sphere,
this does not even introduce any overhead. Further, since all the information required for these
dispatches is given by the type of the manifold, this dispatch-logic can be determined at compile
time. It therefore does not yield any runtime overhead.

4 COMPARISON TO OTHER LIBRARIES

Table 1 compares availability of manifolds in Manifolds.jl 0.8.61 to other existing libraries: Geom-
stats 2.5.0 [36], Geoopt 0.5.0 [29], Manopt 7.1 [14], McTorch 1.1 [34], Pymanopt 2.1.1 [41], ROPTLIB
0.8 [27], TheanoGeometry [30], Jax Geometry [30], and TensorFlow RiemOpt 0.1.2 [39]. Availabil-
ity of different operations is compared in Table 2.

Note that the extent of support varies significantly across libraries. For example Manifolds.jl

currently implements five different metrics (affine-invariant, Bures-Wasserstein, Log-Euclidean,
Log-Cholesky, and generalized Bures-Wasserstein) on the manifold of symmetric positive definite
matrices, Geomstats only the first three ones and a Power-Euclidean one, Manopt only the first
two, and Pymanopt only the first.

On the other hand, Manifolds.jl focuses solely on implementing Riemannian manifolds, met-
rics, Lie groups, and functions thereon. Geomstats further provides several statistical tools, and
Manopt and Pymanopt further focus on optimization algorithms, such as a gradient descent
scheme. For optimization on manifolds in Julia, we refer to Manopt.jl [7], which, like Manopt
and Pymanopt, focuses also on nonsmooth optimization algorithms on manifolds. For that reason,
Table 1 compares features provided by the libraries that focus on implementations of manifolds
but not statistics and/or optimization.

All packages but ROPTLIB provide support for several Automatic Differentiation (AD) backends
to compute Euclidean gradients and Hessians of functions defined in the embedding of a manifold
and to convert them to Riemannian variants afterward.

5 EXAMPLES

This section demonstrates a few examples of composing generic operations from Manifolds.jl

with the Julia ecosystem [11]. The first example defines a Bézier spline on a generic mani-
fold to demonstrate how to easily define new functions on manifolds using ManifoldsBase.jl.
Then, Manopt.jl4 [7] is used as an example of a complex optimization library built on top of
Manifolds.jl. Further, it is demonstrated how Manifolds.jl can be easily combined with inde-
pendently developed libraries to implement fast, geometry-aware algorithms.

Note that all examples can be split into two components. First, a manifold and data on the
manifold are constructed. Second, the algorithm is executed on this manifold. Since all methods
are implemented in a generic way, switching to data from another manifold just requires to change
the first part of introducing the manifold and loading/generating corresponding data.

4Current version 0.3.39, available at https://manoptjl.org
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Table 1. Comparison of Manifolds Available in Related Libraries

A manifold is marked as available if at least a retraction is implemented using a generic interface. The fields , ,

are meant in increasing order, indicating that a manifold is not available.
a this manifold is available for arrays with any number of indices. b only the two-dimensional manifold is available.

Each of the examples illustrates one feature original to Manifolds.jl. While all of them are imple-
mented agnostic of a specific manifold at hand, using a recursion by dispatch is unique to Julia. An
optimization problem can be set up in three lines, defining the cost and the gradient as inline func-
tions. The last example illustrates the generic implementation of bases of tangent spaces. These
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Table 2. Comparison of Features Available in Related Libraries

can even be abstract in the sense that no tangent space basis vectors are stored and they are only
allocated if needed.

5.1 Implementing Functions on Manifolds

Functions on manifolds dispatch on the manifold itself, which is included as the first argument.
As an example, we implement a Bézier curve on an arbitrary manifold. Bézier curves are used to
model curves and surfaces in computer graphics. Their shape is determined by so called control
points. The curve starts in the first control point and ends in the last. For more details on their use
on manifolds, see for example [1, 9, 23].

A Bézier curve can be defined using the De Casteljau algorithm. Let us first consider the classical
Euclidean case: given a degree n and n + 1 (control) points x0, . . . ,xn ∈ Rn , the Bézier curve
bn (t ;x0, . . . ,xn ) is defined recursively as

bn (t ;x0, . . . ,xn ) = b1 (t ;bn−1 (t ;x0, . . . ,xn−1),bn−1 (t ;x1, . . . ,xn ))

b1 (t ;x0,x1) = x0 + t (x1 − x0)

A Bézier curve b1 (t ;x0,x1) of order 1 is just a line. To evaluate a Bézier curve b2 (t ;x0,x1,x2)
at a point t , we would need three line evaluations: y0 = b1 (t ;x0,x1), y1 = b1 (t ;x1,x2) and their
connecting line b2 (t ;x0,x1,x2) = b1 (t ;y0,y1). The result is a quadratic curve in Rn .

On a Riemannian manifold M we obtain a Bézier curve by evaluating shortest geodesics
γ (t ;p,q) connecting p,q ∈ M instead of line segments.

The implementation for an arbitrary Riemannian manifold is given by the following code and
returns the Bézier curve evaluated at t .
function bezier(M::AbstractManifold, t, pts::NTuple)

p = bezier(M, t, pts[1:(end - 1)])

q = bezier(M, t, pts[2:end])

return shortest_geodesic(M, p, q, t)

end

function bezier(M::AbstractManifold, t, pts::NTuple{2})

return shortest_geodesic(M, pts[1], pts[2], t)

end

For four points on the sphere given by

p0 =
(
0 −1 0

)T
, p1 =

(
− 1

2 − 1√
2
− 1

2

)T
, p2 =

(
− 1√

2
− 1

2
1
2

)T
, p3 =

(
−1 0 0

)T
,
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Fig. 2. Illustration of the De Casteljau algorithm to evaluate a Bézier curve on the Sphere S2. The initial points

and their shortest geodesics (blue) yield three points (cyan) and two points (green) during the recursion, and

their connecting geodesic the point on the Bézier curve (orange).

and an evaluation of b3 at t = 2
3 all shortest geodesics involved in the evaluation are shown in

Figure 2. This figure has been adapted from [9, Figure 9].

5.2 Optimization using Manopt.jl

Now we consider the generalization of the mean to Riemannian manifolds. The mean of some
(Euclidean) data x1, . . . ,xN ∈ Rn can be computed as

x̂ =
1

N

N∑

k=1

xk .

One can interpret this formula as the solution of the first-order optimality condition of the opti-
mization problem

x̂ = arg min
y∈Rn

N∑

k=1

‖xk − y‖2.

That is, x̂ is the point y that minimizes the sum of squared distances, or equivalently, the variance.
This interpretation can be generalized to manifolds, but usually no closed form for the minimizer
x̂ exists. Still, replacing the squared distance with the squared Riemannian distance, the gradient
can easily be computed to perform a gradient descent algorithm with a suitable line search
strategy, cf. for example [2, Chapter 4]. For given points p1, . . . ,pN ∈ M the cost function and
the gradient read

F (q) =
1

N

N∑

k=1

d2
M (q,pk ) and grad F (q) = − 1

2N

N∑

k=1

logq pk .

This algorithm gradient_descent is implemented in Manopt.jl. Furthermore, a library of cost
functions, gradients, differentials, adjoint differentials, as well as proximal maps is available in the
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package as well. They are implemented on arbitrary manifolds based only on ManifoldsBase.jl

and can hence be used to design an optimization problem even independent of the manifold.
One example that we also require here is the already mentioned gradient of the (exponentiated)
distance function distance(M,p,q)ˆs with respect to q, where s=2 is the default. This function is
called grad_distance(M, p, q, s) in Manopt.jl.

Note that since Manopt.jl is based on the lightweight interface ManifoldsBase.jl, we need to
load Manifolds.jl only to have our manifold of interest available.
using Manopt, Manifolds, LinearAlgebra, Random

Random.seed!(42)

M = Sphere(2)

N = 100

σ = π / 8

# generate random points on M centered at a random point p

p = rand(M)

pts = [exp(M, p, rand(M; vector_at=p, σ=σ)) for i in 1:N]

# define the loss function and its gradient

F(M, q) = sum(p -> distance(M, p, q)ˆ2 / 2N, pts)

gradF(M, q) = sum(p -> grad_distance(M, p, q) / N, pts)

# compute the mean

p_mean = gradient_descent(M, F, gradF, pts[1])

Manifolds.jl itself includes two approaches for computing the weighted mean: gradient de-
scent and on-line repeated geodesic interpolation [26]. Using these methods, implementations of
weighted variance, skewness, kurtosis, and higher moments are also provided.

5.3 Tangent Space PCA

Thanks to the high composability of the Julia ecosystem and the design of the Manifolds.jl li-
brary, it is very easy to compose independent libraries to achieve new functionality. For example,
tangent space principal component analysis (PCA) described by [20] can be split into (1) com-
puting the Riemannian centers of mass and coordinates of tangent vectors using Manifolds.jl

and (2) calculation of PCA vectors using MultivariateStats.jl. Using a d-dimensional manifold,
tangent vectors might be stored in a format different from the d-dimensional vector. The inter-
face ManifoldsBase.jl provides c = get_coordinates(M, p, X, B) to obtain a d-dimensional
representation and X = get_vector(M, p, x, B) to reconstruct the tangent space format. For ex-
ample, tangent vectors from TpS

2 are stored as vectors X orthogonal to p (in R3) and they have
a representation in 2 coordinates. Both these functions require a basis B, which can be a full set
of vectors in a CachedBasis or a memory-efficient type to represent a deterministic function of a
DefaultOrthonormalBasis to not store the basis explicitly. The whole procedure is demonstrated
by the following code.
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using Manifolds, MultivariateStats, LinearAlgebra, Random

M = Sphere(2)

N = 100

σ = π / 8

# generate random points on M

p = rand(M)

pts = [exp(M, p, rand(M; vector_at=p, σ=σ)) for i in 1:N]

# compute their mean

m = mean(M, pts)

# compute logarithmic maps of points at their mean

vectors = map(p -> log(M, m, p), pts)

# choose a deterministic, default orthonormal basis of the tangent space at m

basis = DefaultOrthonormalBasis()

# compute coordinates of tangent vectors in the selected basis

coords = map(X -> get_coordinates(M, m, X, basis), vectors)

# flatten the array of coordinates to a matrix

coords_red = reduce(hcat, coords)

z = zeros(manifold_dimension(M))

# compute the first principal vector assuming zero mean

model = fit(PCA, coords_red; maxoutdim=1, mean=z)

# get the tangent vector corresponding to the first principal vector

X = get_vector(M, m, reconstruct(model, [1.0]), basis)

6 BENCHMARKS

This section presents and discusses benchmarks that compare performance of Manifolds.jl to
other libraries. These are Geomstats [36] with its backends AutoGrad, NumPy, PyTorch, and Ten-
sorFlow; Geoopt [29], which is based on PyTorch; Pymanopt [41]; TensorFlow RiemOpt [39];
Manopt [14] in Matlab; and ROPTLIB [27] as a C++ library. We build three groups of mani-
folds: The Euclidean space Rn , the hyperbolic space H n , and the sphere Sn for the dimensions
n = 2, 3, 4, 8, 16, 32, 210, 215, 220. For these, ROPTLIB only provides an exponential map; the hyper-
bolic manifold is missing for ROPTLIB and Pymanopt.

The second set of manifolds are the special orthogonal group SO(n), the symmetric positive
definite matrices P (n) with the affine invariant metric, and for a high dimensional test the power
manifold (P (n))128×128, where in all three cases we used n = 2, 3, 4, 8, 16, 32. Here again, ROPTLIB
only provides an exponential map for the last two manifolds. The power manifold as well as a
distance on SO(n) is not available in Geomstats and GeoOpt.

6.1 General Setup

A computer running Linux Mint 20 Ulyana with Intel(R) Core(TM) i7-9700KF CPU @ 3.60 GHz
CPU and 32 GB of RAM was used to benchmark all libraries. In particular, no limitations were
imposed on the number of threads.

The benchmarking was performed using points generated randomly by Manifolds.jl. Each
benchmarked operation was performed using 100 pairs of these points 10N times in a loop written
in the language native to the library. The number N was chosen to be large enough to ensure
that the entire benchmarking loop takes at least one tenth of a second to reduce the influence
of system clock inaccuracy. Results of operations were accumulated in an array, which incurs a
small performance penalty but prevents the compiler from optimizing out an otherwise unused
computation. Details of benchmarks specific to particular libraries and the settings used are given
in Appendix B.
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6.2 Discussion

The results for the first experiment are shown in Figure 3. On all three manifolds, Manifolds.jl
performs the fastest for the smaller dimensions n = 2, 3, 4, 8, 16, and for example in the sphere for
n = 3 ROPTLIB performs the exponential map (bottom center bar plot) only a factor of 2 slower.
This is likely due to the more sophisticated memory management and use of specialized linear
algebra packages in Manifolds.jl.

For larger dimensions, e. g., for the manifold M = R210
, Pymanopt computes the logarithmic

map about 1/6 faster. Similarly for n = 32, ROPTLIB computes the exponential map on the sphere
S

n about 33% faster than Manifolds.jl and on Rn about four times faster.
For very high dimensions, RiemOpt with its TensorFlow backend is faster by a factor of up to 20

on most functions, and just for the hyperbolic manifold, our distance function is a factor of 4 faster.
For such large dimensions, RiemOpt benefits from advanced automatic transformations available
in the Tensorflow backend that cannot yet be easily replicated in Julia.

For the second experiment, the results are shown in Figure 4. Compared to ROPTLIB, we see
the same effect: often the Julia package is a factor of at least 2 faster. Only for the exponential map
on P (n) ROPTLIB is a factor of 2 faster, probably again due to different linear algebra library or
memory management.

Concerning RiemOpt, again, only for the very high-dimensional power manifold, this Tensor-
flow based package is usually a factor of approximately 10 faster. This starts already for the case
n = 3, where Manifolds.jl is a factor of 2 slower for exponential and logarithmic maps but a factor
of 5 faster for distance; all other packages are at least a factor of 4–5 slower, while Manopt seems
to be the slowest by several orders of magnitude, probably due to the use of cell arrays in Matlab.

For the highest dimensionn = 32 and the power manifold, both Pymanopt and Manopt reach the
same order of magnitude as Manifolds.jl and Riemopt, where the latter is still a factor of 5 faster.

Manifolds.jl is the fastest package overall – on par with ROPTLIB wherever it provides an
implementation – and only significantly surpassed by Riemopt for some large-scale manifolds of
dimensions of more than 216.

We further compared the accuracy of the methods run in the benchmark. We first
computed reference results using Manifolds.jl with BigFloat as number type and both
GenericLinearAlgebra.jl and GenericSchur.jl for the more precise linear algebra routines. We
then performed the accuracy test against these exact results for all above benchmarked functions
and packages. The full results are given in Appendix A.

Overall, Manifolds.jl lies among the best performing ones here as well. Only for the symmet-
ric positive definite matrices P (n) – more precisely the logarithmic and exponential map thereon
– our library is slightly less accurate than others. The PyTorch backend seems to only reach a
significantly lower accuracy, apparently due to an internal conversion to 32-bit floating point
representation.

7 CONCLUSIONS

Manifolds.jl provides a comprehensive API and set of features for working with points on man-
ifolds. It also offers one of the largest collections of implementations of manifolds. Using this API,
Manopt.jl provides a library of algorithms for optimization on manifolds, and ManifoldDiffEq.jl

offers a variety of solvers for ordinary differential equations. As a result, all manifolds defined with
ManifoldsBase.jl are compatible with both libraries and can directly be used therein.

One prominent advantage of Manifolds.jl over similar packages is that, by using Julia, the
“two-language-barrier” is overcome while keeping the code concise and expressive. Implemen-
tations in Manifolds.jl were demonstrated to be superior in performance to those in libraries
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Fig. 3. Benchmark of distance (left), exponential maps (middle), and logarithmic maps (right) on constant

curvature manifoldsRn (top)Hn (middle), and Sn for different dimensionsn. The different colors correspond

to the different software packages, where for Geomstats additionally the different line styles refer to different

backends.

with interfaces in Python and Matlab, where only for large scale manifolds Riemopt outperforms
Manifolds.jl slightly. The library is approximately twice as fast as ROPTLIB, though that is prob-
ably due to the linear algebra library.

However, this high performance did not require sacrificing clarity of the implementations them-
selves, the ease of use of a dynamic programming language, or computational accuracy.

Future work on Manifolds.jl will improve integration of Julia’s automatic differentiation pack-
ages, add support for GPU acceleration, and expand the set of available manifolds and operations.
Other plans include support for more statistical and machine learning methods.
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Fig. 4. Benchmark of distance (left), exponential maps (middle), and logarithmic maps (right) on the man-

ifolds of rotations (top), manifold of symmetric positive definite matrices (middle), and its power manifold

(bottom). The different colors correspond to the different software packages, where for Geomstats addition-

ally the different line styles refer to different backends.

APPENDICES

A ACCURACY COMPARISONS

Accuracy of computations performed by different libraries is compared in Figures 5 and 6. In all
cases 10 points and tangent vectors were randomly sampled from those used for benchmarking.
Reference results were obtained in Manifolds.jl using computations on arbitrary precision num-
bers (BigFloat) instead of Float64. Packages GenericLinearAlgebra.jl and GenericSchur.jl
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Fig. 5. Mean absolute error of distance (left), exponential maps (middle), and logarithmic maps (right) on

constant curvature manifolds Rn (top)Hn (middle), and Sn for different dimensions n. The different colors

correspond to the different software packages, where for Geomstats additionally the different line styles

refer to different backends.

were used to supply linear algebra routines compatible with BigFloat. Additionally, generic ma-
trix exponential and logarithm were implemented using generic eigen decomposition.

On Rn all libraries exhibit similar accuracy, except for distance calculation on high-dimensional
manifolds. There is, however, little correlation between accuracy and performance.

OnH n geomstats is the least accurate and the slowest. Geoopt appears to return wrong results
of exponential map. Manopt and Manifolds.jl implement a more accurate logarithmic map than
other libraries, which is still fast to compute.
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Fig. 6. Mean absolute error of distance (left), exponential maps (middle), and logarithmic maps (right) on

the manifolds of rotations (top), manifold of symmetric positive definite matrices (middle), and its power

manifold (bottom). The different colors correspond to the different software packages, where for Geomstats

additionally the different line styles refer to different backends.

On Sn geomstats appears to convert intermediate results to a 32-bit floating point type with
PyTorch and Tensorflow backends. Apparent high accuracy of exponential map with autograd
backend in the high-dimensional case is likely an artifact caused by estimating accuracy based on
10 points. Logarithmic map in geoopt was less accurate than in other libraries.

Accuracy of SO(n) was roughly similar across all libraries except for exponential map on SO(2)
in geomstats with Numpy and logarithmic map with Tensorflow.

On P (n) geomstats with Pytorch is the least accurate. Manifolds.jl has in some cases less ac-
curate exponential and logarithmic maps than other libraries. These results roughly translate to
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the power manifold P (n)128×128. Accuracy on P (32)128×128 is not included because calculating ref-
erence results would require large computational resources, while these results would be unlikely
to provide any new insight.

B LIBRARY-SPECIFIC DETAILS FOR THE SPEED AND ACCURACY BENCHMARK

For Manifolds.jl, version 0.8.57 of the library and ManifoldsBase.jl version 0.14.5 was used.

— Sn : Sphere(n)
— Rn : Euclidean(n)
—H n : Hyperbolic(n)
— P (n): SymmetricPositiveDefinite(n)
— P (n)128×128:
PowerManifold(SymmetricPositiveDefinite(n), ArrayPowerRepresentation(),

128, 128)

— SO(n): Rotations(n)

Statically sized arrays from the StaticArrays.jl library were used to represent points and
vectors for Sn , Rn andH n when n ≤ 16, for P (n) when n ∈ {2, 3} and for SO(n) when n ≤ 4. For
P (n)128×128, the array type from HybridArrays.jl5 version 0.4.15 was used with the first two axes
statically sized. All other cases used the standard Array type.

All Python libraries were tested with Python version 3.9.16.final.0 (64 bit).
Geomstats version 2.5.0 was used with Autograd 1.5.0, NumPy 1.24.3, PyTorch 2.0.1, and Ten-

sorflow 2.12.1. The following commands were used to construct manifolds:

— Sn : hypersphere.HypersphereMetric(n)
— Rn : euclidean.EuclideanMetric(n)
—H n : hyperbolic.Hyperbolic(n).metric
— P (n): spd_matrices.SPDMetricAffine(n, 1)

— P (n)128×128:
M = SPDMatrices(3)

M.metric.shape = (3, 3) # fixes an issue in geomstats

MPm = NFoldMetric(M.metric, 128*128)

— SO(n): special_orthogonal.SpecialOrthogonal(n)

All manifolds were taken from the geomstats.geometry path (omitted in the list above).
Geoopt version 0.5.0 was benchmarked. The following commands were used to construct

manifolds:

— Sn : Sphere(torch.ones([n+1,n+1]))
— Rn : Euclidean(1)
—H n : lorentz.math

Manifolds listed above were taken from the geoopt.manifolds path (omitted in the list above).
Other tested manifolds are not available in Geoopt.

Riemopt version 0.1.2 was benchmarked. The following commands were used to construct
manifolds:

— Sn : Sphere()
— Rn : Euclidean()
—H n : Hyperboloid()

5see https://github.com/JuliaArrays/HybridArrays.jl
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— P (n): SPDAffineInvariant()
— P (n)128×128 SPDAffineInvariant()

— SO(n): SpecialOrthogonal()

All manifolds were taken from the tensorflow_riemopt.manifolds path (omitted in the list
above).

Manopt version 7.1.0 (released on September 30, 2022) was used with Matlab version R2023a.
The following commands were used to construct manifolds:

— Sn : spherefactory(n+1)
—Rn : euclideanfactory(n)
—H n : hyperbolicfactory(n+1)
— P (n): sympositivedefinitefactory(n)
— P (n)128×128: powermanifold(sympositivedefinitefactory(n), 128*128)

— SO(n): rotationsfactory(n)

Pymanopt version 2.1.1 was used. The following commands were used to construct manifolds:

— Sn : Sphere(n+1)
—Rn : euclidean.Euclidean(n)
— P (n): PositiveDefinite(n)
— P (n)128×128: PositiveDefinite(n, 128 * 128), 128*128)

— SO(n): rotations.Rotations(n)

Manifolds listed above were taken from the Pymanopt.manifolds path (omitted above).
ROPTLIB version 0.8 (released on August 11, 2020) was used, compiled using GCC version 9.3.0

using the provided makefile. The following commands were used to construct manifolds:

— Sn : Sphere(n+1)
—Rn : Euclidean(n, "double")

— P (n): SPDManifold(n)
— P (n)128×128: ProductManifold prodMani(1, &spdMani, 128 * 128);, where the variable
spdMani was defined as SPDManifold spdMani(n);

— SO(n) is not directly implemented (the manual suggests using a special case of Stiefel instead)
and was thus not tested

Hyperbolic manifold was not available in ROPTLIB. The tested version of ROPTLIB does not pro-
vide logarithmic maps, and distance calculation can only be performed as a norm of a tangent
vector and were excluded as well.
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