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A B S T R A C T   

This paper introduces "pymodconn", a comprehensive python package developed for constructing modular 
sequence-to-sequence control-oriented deep neural networks. These deep neural networks (DNNs) are designed 
to predict the future dynamics of complex time-dependent systems for given known future data, e.g., control 
inputs, using past known system dynamics and control inputs. The strength of DNNs in modeling complex sys-
tems is well known, but developing an optimal deep learning-based model can be a resource-intensive task. This 
package streamlines this process, simplifying model architecture selection and fine-tuning. The key strength of 
pymodconn lies in its high-level modularity, enabling users to design their DNN architectures in a flexible manner 
via a simple text-based configuration file. This flexibility and the comprehensive nature of pymodconn consid-
erably reduce the development efforts and time for applications where precise control over system dynamics is 
necessary.   
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1. Motivation and significance 

A dynamic system is a system in which state variables evolve over 
time based on a fixed set of rules and interactions, often described by 
differential equations. As dynamic systems grow in complexity, effective 
management and control become imperative [1]. Predictive strategies, 
especially model predictive control, have been recognized for their 
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potency in reducing operational costs while accommodating fluctuating 
boundary conditions and internal dynamics [2,3]. Central to the 
deployment of such advanced predictive control methodologies is the 
formulation of a control-oriented dynamic model that can predict how 
different control signals influence the system’s behavior and outcomes. 

Like all models, a control-oriented dynamic model can be broadly 
categorized into three types: white-box, grey-box, and black-box models 
[2]. White-box models, also known as physics-based models, require 
detailed system information. They are grounded in first-principle 
equations to calculate the behavior and response of the system to 
different inputs. Some recent examples of white-box models are CoBo 
[4] for control-oriented building dynamics simulation, WFSim [5] for 
control-oriented wind farm simulation, and control-oriented models for 
chemical batteries [6,7]. Grey-box or reduced-order models find a 
middle ground by using simplified dynamic equations combined with 
datasets for parameter identification. A common method used in this 
category is resistance-capacitance (RC) networks, which represent sys-
tem elements and energy flows in a simplified manner. Examples of that 
include use of RC control-oriented models for building control [8,9] and 
use reduced order models for lithium-ion battery control [10]. Black-box 
models, sometimes referred to as data-driven models, predominantly 
leverage statistical or machine learning techniques to predict system 
responses [11]. Examples like AutoRegressive Integrated Moving 
Average (ARIMA) based control-oriented models for electric vehicle 
energy management [12], Support Vector Machines (SVMs) based 
control-oriented models for diesel engine emission control [13], and 
Deep Neural Networks (DNNs) based control-oriented models for 
building control [14] and control-oriented flow estimation [15] fall 
under this category. 

With the proliferation of data from sensors and monitoring tech-
nologies, DNNs in general have emerged as a powerful tool for pre-
dicting system dynamics, proving particularly effective for complex 
systems. The primary advantages of DNNs include their capacity to learn 

from high-dimensional data and their ability to capture non-linear re-
lationships [16–18]. It has been shown that a DNN with enough hidden 
units can approximate any arbitrary continuous function defined on a 
closed and bounded set [19,20]. Given their capability to process and 
learn from vast and intricate data sets, Control-Oriented deep Neural 
Networks (CONNs) can be tailored to formulate control-oriented dy-
namic models that are both accurate and fast. 

A CONN, as illustrated in Fig. 1, is a deep neural network structured 
to predict the future behavior of complex dynamic systems, using both 
Known Past and Known Future data. Known Past data includes historical 
metrics like weather, system behavior, and control inputs, all used to 
train the CONN to discern the correlations between these variables and 
their influence on the system. Known Future data comprises forecasted 
weather data, schedules and planned control inputs, which represent the 
anticipated conditions and desired actions the system will face in the 
future. The CONN uses this data to predict Unknown Future data, 
meaning system behavior or states that are not yet known. This pre-
diction enables the control system to estimate the influence of the 
control input and adapt its actions to improve performance. 

Despite the strength of DNNs in modeling complex systems, selecting 
a suitable model architecture and fine-tuning the model can be 
cumbersome. Hence improving the process of developing such archi-
tecture is highly desirable. The primary research objective of this 
work is to devise a comprehensive tool or framework that facili-
tates streamlined creation of modular sequence-to-sequence con-
trol-oriented deep neural networks, specifically tailored for 
dynamic system predictions. Addressing this objective, the tool 
"pymodconn" is introduced. It provides a highly modular and user- 
friendly approach to creating CONNs by using a text-based configura-
tion file as input from users. 

While there are various modular DNN development packages, there 
are some gaps that pymodconn aims to address: 

Fig. 1. Abstract depiction of a control-oriented deep neural network (CONN). The CONN uses known past data and planned future control inputs to predict the future 
behavior of a dynamic system, shown here with a hypothetical system and control inputs. 
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• Limitations of Existing Libraries: Several deep learning libraries 
such as AutoKeras [21], KerasCV [22], DeepCTR [23], Caffe [24], 
FastAI [25], and DeepChem [26] have emerged to facilitate the 
modular development of deep neural networks. However, they pre-
sent certain limitations:  
Ø Field Specificity: These libraries, while powerful, are designed 

for other specific application domains. For example:  
■ AutoKeras [21] is designed to simplify the machine-learning 

model-design process but lacks an extensive focus on dy-
namic systems prediction.  

■ KerasCV [22] is tailored for machine vision tasks.  
■ DeepCTR [23] is dedicated to deep-learning based 

click-through rate prediction models.  
■ Caffe [24] is notably geared towards convolutional neural 

networks, for computer vision tasks.  
■ FastAI [25] aims to make deep learning more user-friendly but 

is built atop the PyTorch library  
■ DeepChem [26] is dedicated to applications in drug discovery, 

quantum chemistry and biology. 
Ø Inclination towards Larger Models: Many of the above-

mentioned libraries tend to focus on large and complex models 
only. Even though these models are powerful, they are not always 
the most practical. Pymodconn’s modularity provides capability to 
adjust depth.  

• Open-source nature: Many of the truly modular DNN development 
tools remain inaccessible to the wider community. Both research 
professionals and corporations often develop these tools for in-house 
testing and development, keeping their advanced features under 
wraps. In contrast, pymodconn tries to break this trend. To the best of 
the authors’ knowledge, it is the first open-source package providing 
such comprehensive modular model development capabilities. 

• User-friendly configuration: pymodconn’s design separates config-
uration from code, which improves research flexibility and effi-
ciency. This design allows for batch predictions, GPU task 
distribution, and enhanced result reproducibility contributing to the 
principles of open science. It also supports comprehensive ablation 
analyses, fostering a better understanding of time series prediction 
techniques for control systems. 

2. Software description 

The pymodconn package is built upon the robust Keras library [27], 
utilizing its user-friendly, modular, and efficient structures for devel-
oping and training deep learning models. The use of Keras facilitates 
integration with other machine learning tools, allowing users to create 
customized pipelines for time series prediction, tailored to their specific 
needs. It is based on a sequence-to-sequence architecture [28] and in-
tegrates a broad spectrum of established time series prediction 
mechanisms. 

2.1. Software architecture 

As outlined in the introduction, in the context of the CONN archi-
tecture, two inputs are essential: the Known past data (e.g., known past 
system dynamics + past control inputs) and the Known future data (e.g., 
targeted control inputs + other known future data). The network’s 
objective is to generate an output representing the Unknown future data 
(e.g., future system dynamics). The following section briefly describes 
different components of CONN, how they are connected to each other, 
and how they can improve prediction accuracy. Pseudocode for the 
components described here is given in Appendix B. 

For clarity, all the user-configurable parameters in the configuration 
file are highlighted in red and indicated by dashed lines in the 

subsequent figures related to the model architecture. 

2.1.1. Top-level architecture 
As illustrated in Fig. 2, the CONN’s basic structure consists of an 

Encoder block processing the Known past data, and a Decoder block 
handling the Known future data. The Encoder block processes the Known 
past data, generating two distinct outputs: a sequence of hidden states, 
also called encoder hidden states, and the final encoder state. The 
encoder hidden states encapsulate the temporal structure inherent in the 
past data, while the final encoder state provides a summarized repre-
sentation of this data. Each Decoder block is designed to receive and 
process the outputs from the Encoder block. The encoder hidden states 
serve as a temporal context for each Decoder block, while the final 
encoder state is used to initialize the state of the Decoder block. 

The outputs from the Decoder blocks are subsequently passed 
through an Output type block. This block refines the output, either in the 
form of a point forecast or as a probabilistic (interval) forecast. For point 
forecasts, the Output type block simply passes the output of the Decoder 
forward without modification. However, for probabilistic forecasts, the 
Output type block introduces additional layers to facilitate the generation 
of interval forecasts, providing a measure of uncertainty for the pre-
dictions. The users can choose between two distinct methodologies for 
probabilistic forecasts, both adapted from the DeepTCN model archi-
tecture [29]. In the configuration file, these are activated by the terms 
’nonparametric’ and ’parametric’, respectively. Pseudocode for the 
top-level model generation is shown in Fig. B.1 in Appendix B. 

2.1.2. Encoder block 
The Encoder block is a key building block in the CONN architecture 

(see Fig. 2). It processes the Known past data, which includes the known 
past system states and past control inputs. The outputs of this block are 
essential for setting up the context for the subsequent Decoder blocks, 
enabling them to make informed predictions about the Unknown future 
system states. 

In the Encoder block, the input first encounters a Dense layer, which 
boosts data dimensions to capture intricate patterns. The Dense layer’s 
broad interconnectedness allows for diverse feature learning, optimizing 
model performance. A subsequent Dropout layer curbs overfitting by 
randomly nullifying a portion of weights during each training update. 
The users can then select among three established time series prediction 
architectures: Temporal Convolutional Networks (TCN) [29,30], 
Recurrent Neural Network (RNN) [31–33], and Self Multi-Head Atten-
tion (Self-MHA) mechanisms [34,35]. These can be employed individ-
ually, in combination or altogether, offering flexible configuration for 
ablation analyses. Inclusion of the RNN block in the Encoder generates 
encoder hidden states, representing the temporal structure of the data 
and providing essential temporal context for the RNN blocks in the 
Decoder. Ultimately, the Encoder block yields a condensed, feature-rich 
past data representation, preparing the terrain for the Decoder block to 
accurately project future system dynamics. Details of the MHA block and 
the RNN block are given in subsections 2.1.6 and 2.1.7, respectively. 
Pseudocode for the Encoder generation is shown in Fig. B.2 in Appendix 
B. 

2.1.3. Decoder block 
The Decoder block serves as the bridge between the processed past 

data and the future predictions (see Fig. 2). It takes the outputs of the 
Encoder block, i.e., the sequence of encoded states and the final encoder 
state, along with the Known future data, and estimates the preliminary 
future system dynamics. This crucial component leverages the context 
provided by the Encoder block to ensure that the predictions are 
informed by the temporal patterns identified in the past data. Details of 
different blocks inside the Decoder block are described later in this 
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section. 
The Decoder block follows a structure similar to the Encoder block. It 

initiates the processing of its input with a Dense layer, followed by a 
Dropout layer. After these initial transformations, the processed input 
proceeds to either a TCN block or an RNN block, or both, depending on 
the users’ configuration. Notably, the RNN block in the Decoder uses the 
encoder hidden states, as its initial states. Details of the CIT block are 
given in subSections 2.1.4. Pseudocode for the Decoder generation is 
shown in Fig. B.3 in Appendix B. 

2.1.4. Contextual information transfer block 
Upon exiting the RNN block (or alternatively the TCN block, or 

directly as input to the Decoder block if both RNN and TCN blocks are 
disabled), the data flow enters the Contextual Information Transfer (CIT) 
block. The CIT block acts as a bridge between the Encoder and Decoder, 
facilitating effective past-to-future data information transfer for precise 
predictions. Three distinct configurations exist for the CIT block, as 
shown in Fig. 3. Option 1 uses a straightforward approach, reshaping 
Encoder output to align with future prediction dimensions in a Reshape 
layer. The reshaped output is combined with output from the RNN and/ 
or TCN block, and then processed by a Dense layer. However, this option 
does not consider the sequential nature of the data. Option 2 uses an 
Attention layer instead of a Reshape layer. The attention mechanism 

accentuates key input elements, proving beneficial when handling dy-
namic inputs with abrupt changes. Users can opt for Bahdanau (addi-
tive) [34] or Luong (scaled dot-product) attention [35]. Option 3 
incorporates Transformer elements, featuring self-MHA and cross-MHA 
attention mechanisms. Self-MHA uncovers key temporal patterns in 
Known future data, while cross-MHA integrates self-MHA and encoded 
states outputs, offering temporal context from past data when processing 
Known future data. A subsequent Gated Residual Network block (GRN) 
[36] follows cross-MHA. 

CIT blocks can be stacked multiple times, promoting the learning of 
complex data representations. Stacking facilitates hierarchical learning, 
with simpler patterns recognized in lower layers and complex structures 
understood in higher ones. Pseudocode for the CIT block generation is 
shown in Fig. B.4 in Appendix B. 

2.1.5. States manipulation block 
In the later stage of the Decoder block, the output from the CIT block 

is passed through a combination of TCN and/or RNN blocks. The 
memory retention feature of RNNs is used to recall earlier parts of the 
sequence, assisting in accurate predictions. The initial states of this RNN 
come from a mix of hidden states from the RNN blocks in the Encoder and 
Decoder blocks, manipulated in the States Manipulation block (see Fig. 2). 
Users can manipulate these states in various ways, including outputting 

Fig. 2. The top-level architecture of the CONN, Encoder block, Decoder block and States Manipulation block within the CONN framework.  
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hidden states from either of the two RNN blocks, or processing them 
through combinations of Concatenation, Addition, Normalization and 
Dense layers. Concatenation expands the input dimensionality for the 
subsequent Dense layer, enhancing the learning of complex representa-
tions. Addition merges the information from both states, offering a more 
comprehensive representation. Normalization, in some cases, stabilizes 
the deep learning process by ensuring stable hidden states distribution. 

The Decoder block ends with a Time Distributed Dense layer that re-
shapes the data to align with the dimensions of the future prediction 
window. The Encoder Multi-Head Attention block (as shown in Fig. 2), 
Recurrent Neural Network block (as shown in Fig. 2), Gate Resdiual 

Network block (as shown in Fig. 3) and Add&Normalize + Gate block (as 
shown in Fig. 3) are further described in Appendix A. 

3. Illustrative examples 

There are two methods available for users to utilize pymodconn. The 
first is to clone or download the project directly from the GitHub re-
pository. The second method is to install it via pip, Python’s package 
installer, by executing the following command: “pip install pymod-
conn”. Its v2.0.0 has also been deposited on Zenodo.org as a permanent 
copy [37]. 

Fig. 3. The three architectural options for the CIT block within the CONN model.  
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Examples on how to implement the package are given in Appendix C. 
Fig. 4 shows the schematics of three example models exemplifying the 
modularity and flexibility of pymodconn. Additional documentation can 
be found in the README.md file within the GitHub repository. 

4. Impact 

Pymodconn lowers the technical hurdles to implement cutting-edge 
DNNs, fostering quicker innovation and enhanced productivity. Its 
capability to facilitate rapid development and testing makes it an 
indispensable learning resource for students and professionals delving 
into DNNs for system dynamics and control. With its user-friendly 
approach to crafting and deploying neural networks, pymodconn 
stands to significantly elevate everyday practices. 

This package was recently used by authors to develop a prediction 
model based on Multi-head Attention (MHA) and Transformer compo-
nents to predict indoor air temperature evolution with heating setpoint, 
opening and closing of windows as control inputs for an office building 
[38]. 

Unlike existing libraries, pymodconn offers pre-configured architec-
tures specifically designed for CONN models. Working with other solu-
tions entails a steep learning curve to understand the assembly of 
components/layers for control-oriented tasks, along with the manual 
coding of configurations. This often raises concerns about coding errors 
and the burden of maintaining multiple codebase versions, thereby 
extending the development cycle. In contrast, pymodconn facilitates 
quicker iterations, and a more agile process. 

5. Conclusion 

In this paper, the Python package pymodconn has been presented as a 
comprehensive tool for constructing sequence-to-sequence control-ori-
ented deep neural networks. This unique package offers users the ability 
to design deep neural networks with a broad range of high-performance 
time series prediction architectures. The distinctiveness of pymodconn 

lies in its high-level modularity, facilitated by the separation of config-
uration from code. This approach allows users to adjust architectures 
and parameters through a user-friendly text-based configuration file. 

Despite its modularity and flexibility, there are some limitations in 
pymodconn. The platform is currently tailored exclusively for Tensor-
Flow and Keras, though future updates are planned to incorporate 
PyTorch support. Additionally, its unique approach of decoupling 
configuration from the code can present a daunting learning curve, 
especially for newcomers who might find the multitude of configuration 
options difficult to navigate. There is also a notable absence of built-in 
tools for hyperparameter tuning/model optimization, necessitating the 
reliance on external tools or manual effort. Moreover, in situations 
requiring advanced designs or the introduction of custom layers, users 
might find themselves delving into the package’s source code for ad-
justments. Despite these intricacies, the openness and adaptability of 
pymodconn create new opportunities for future exploration and inno-
vation within the field of control-oriented deep neural networks. 
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Fig. 4. Schematics of example models constructed using pymodconn.  
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Appendix A: Additional components of pymodconn 

Fig. A.1, Fig. A.2 
The following section provides information about additional components of pymodconn, in addition to those presented in Section 2. 

A.1 Encoder Multi-head attention block 

The Encoder MHA block is also inspired by the Transformer model [39]. The first layer, i.e., a self-MHA layer enables the model to discern and 
focus on key temporal patterns within the known past data, effectively creating a summarized representation of important trends and dependencies. 
After this, the data undergoes transformation by a GRN block. The output of the self-MHA can optionally be connected back to the original input of the 
Encoder MHA block via a gated Add + Normalize block, providing a form of residual connection that can help stabilize learning. The Encoder MHA 
block can also be stacked, providing depth and increasing the model’s capacity to learn intricate patterns in the data. The number of blocks is given by 
the users, further highlighting the flexibility of the CONN architecture (see Fig. A.1). Pseudocode for the MHA block generation is shown in Fig. B.5 in 
Appendix B. 

A.2 Recurrent Neural Network block 

The RNN block exploits RNN architectures’ unique capacities for processing sequential data and retaining past inputs. Users can choose the depth 
of this block depth and choose between SimpleRNN [31], Long Short-Term Memory (LSTM) [32], or Gated Recurrent Unit (GRU) [33] architectures 
(see Fig. A.1), with the added choice of bidirectional RNNs to capture overlooked cyclic patterns, providing a more comprehensive understanding of 
recurrent patterns. Each layer includes a residual connection for stable gradient propagation during training. An additional GRN block transforms the 
data after the RNNs, maintaining the stability of the model. Pseudocode for the RNN block generation is shown in Fig. B.6 in Appendix B.

Fig. A.1. Detailed schematic for the Encoder MHA block and the RNN block in the CONN architecture.  

A.3 Add & Normalize + Gate block 

The CIT block, across all configurations, includes residual connections through gated Add & Normalize blocks [40] (see Fig. A.2). These blocks aid 
in managing information flow and stabilizing learning. Residual connections in the Add layer help counter the vanishing gradients issue common in 
deep networks, enabling more robust learning by adjusting predictions based on the unaltered input. The Normalize layer applies layer normalization, 
standardizing inputs to each layer as per training sample. 

A gating mechanism, more specifically a Gated Linear Unit (GLU), is used as an activation function. The GLU was introduced in the Temporal 
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Fusion Transformers (TFT) model [36] as a way to control the flow of information through the network. The GLU enables selective emphasis on certain 
data features. Components of GLU determines the extent to which each feature should be ’allowed through the gate’, offering flexibility and 
adaptability in focusing on the most relevant features, potentially improving predictive performance. 

A.4 Gated Residual Network 

The GRN block within the CONN architecture masterfully manages multiple varying inputs. It employs GLU for selective information retention 
[36] (see Fig. A.2). This is particularly useful in the CONN context, where diverse inputs such as past system states and future control inputs are 
processed. The GRN block also integrates a gating strategy with a residual connection and Dense layer outputs, promoting stable model training.

Fig. A.2. Schematic for the GRN and the gated Add and Normalize block components within the CONN model.  

A.3 Temporal Convolutional Networks 

Within the CONN architecture, TCNs are another pivotal tool for capturing the temporal dependencies of time series data. TCN, with its causal and 
dilated convolutions, and residual connections, effectively handles long sequences without the exploding gradient issues often encountered in 
recurrent networks [29,30,41]. Users have the flexibility to enable or disable the TCN block and modify its hyperparameters via the configuration file. 
Leveraging the Keras-TCN library [41] allows for efficient integration, providing another way for CONN to distil complex temporal patterns and 
enhance forecast quality. 

Appendix B: Pseudocodes 

Fig. B.1, Fig. B.2, Fig. B.3, Fig. B.4, Fig. B.5, Fig. B6 
The following section provides simplified Python-like pseudocode representation of specific classes used in pymodconn. While they capture the 

essence of the main functionalities, note that the actual code is more nuanced, containing additional conditions and checks. This abstraction is 
intended to offer a clear, high-level perspective. 
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Fig. B.1. Pseudocode for Model_gen.  

Fig. B.2. Pseudocode for Encoder_class.   
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Fig. B.3. Pseudocode for Decoder_class.   
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Fig. B.4. Pseudocode for CIT_block.  

Fig. B.5. Pseudocode for MHA_block_class.    
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Fig. B.6. Pseudocode for RNN_block_class and rnn_unit.  

Appendix C: Implementation example 

After installation as described in Section 3, the package can be imported into a Python program. An implementation example is presented in 
Fig. C.1. This script tests the three different example model types shown in Section 3. The details of the script are elaborated in this Appendix section. 

Synthetic time series data is generated using numpy for training and evaluation. Specifically, random input sequences with five known past fea-
tures, three known future features, and two unknown future features are created with 1000 samples, a past observation window of 25 steps, and a 
future prediction window of 10 steps. The data is split into training and test sets using a specified percentage split. 

The get_configs() function from the pymodconn.configs_init module is then used to load the configurations for the model from a .yaml file as a 
dictionary. This facilitates implementation of various network architectures, promotes modularity and enables the reuse of predefined models, thus 
improving efficiency and reducing coding errors. The approach simplifies hyperparameter tuning, a critical aspect of neural network performance, by 
isolating these parameters in a configuration file. This file can be generated by providing config_filename = None in the get_configs(config_filename) 
function or obtained from the GitHub repository of the package (https://github.com/gaurav306/pymodconn/blob/master/pymodconn/configs/de 
fault_config.yaml). With the former approach, a template of the configuration file is created in the directory of the Python program, which can be 
modified by the users. With the latter approach, users can download a template configuration file, along with an assortment of configuration files 
corresponding to various predefined model architectures. The users can use configuration files for predefined model architectures as starting points. 
To avoid errors and ensure correct operation, it is recommended that users do not alter the key names or the data types within the configuration file. 
Maintaining this structure is essential for pymodconn to function correctly. Fig. C.2 shows a part of the configuration file meant to configure com-
ponents of the Encoder block. 

Going back to implementation example, a unique identifier string (ident) is created by appending the current time string to a predefined text. This 
identifier is used to differentiate between multiple runs or cases and for generating unique filenames when saving the model. 

The Model_Gen class is instantiated with the configuration file dictionary and the unique run identifier. The build_model() function is then called to 
create the model object. It is important to note that the model.compile() function in the build_model() method is dependent on the users’ choice of values 
for the parameters. For point-based forecasts, the users can decide not to include model.compile() inside the model_class.build_model() method. This 
gives the users more control over the available compile options, such as loss functions, error metrics, and learning rate schedulers. In contrast, for 
probabilistic forecasts, the model.compile() function is included inside the model_class.build_model() method, as custom loss functions are used for 
probabilistic forecasting. 

The model returned from build_model() can be used similarly to a Keras-based model. The users can run model.fit(), model.train_on_batch(), model. 
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evaluate(), or model.save() as needed. The users can also check the summary of the model using model.summary() and save the plot image using keras. 
utils.vis_utils.plot_model().

Fig. C1. Example implementation of pymodconn.   
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Fig. C2. Example snippet of a configuration file showing how the Encoder block can be configured.  
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