
SoftwareX 24 (2023) 101599

Available online 7 December 2023
2352-7110/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

pymodconn: A python package for developing modular
sequence-to-sequence control-oriented deep neural networks

Gaurav Chaudhary a,*, Hicham Johra b, Laurent Georges a, Bjørn Austbø a

a Department of Energy and Process Engineering, NTNU, Trondheim, Norway
b Department of the Built Environment, Aalborg University, Aalborg Øst, Denmark

A R T I C L E I N F O

Keywords:
Control-oriented deep neural networks
System dynamics prediction
Deep neural networks

A B S T R A C T

This paper introduces "pymodconn", a comprehensive python package developed for constructing modular
sequence-to-sequence control-oriented deep neural networks. These deep neural networks (DNNs) are designed
to predict the future dynamics of complex time-dependent systems for given known future data, e.g., control
inputs, using past known system dynamics and control inputs. The strength of DNNs in modeling complex sys
tems is well known, but developing an optimal deep learning-based model can be a resource-intensive task. This
package streamlines this process, simplifying model architecture selection and fine-tuning. The key strength of
pymodconn lies in its high-level modularity, enabling users to design their DNN architectures in a flexible manner
via a simple text-based configuration file. This flexibility and the comprehensive nature of pymodconn consid
erably reduce the development efforts and time for applications where precise control over system dynamics is
necessary.

Code Metadata

C1 Current code version V2.0.0
C2 Permanent link to code/

repository used for this code
version

https://github.com/gaurav306/
pymodconn

C3 Permanent link to reproducible
capsule

https://zenodo.org/record/8150987

C4 Legal code license MIT
C5 Code versioning system used GIT
C6 Software code languages, tools

and services used
Python >= 3.9.16

C7 Compilation requirements,
operating environments and
dependencies

Python>=3.9.16 and packages:
jsonschema==4.17.3, numpy==1.24.3,
PyYAML==6.0, ruamel.base==1.0.0,
tensorflow==2.12.0

C8 If available, link to developer
documentation/manual

https://github.com/gaurav306/py
modconn/blob/master/README.md

C9 Support email for questions gaurav.chaudhary@ntnu.no

Software Metadata

S1 Current software version V2.0.0

(continued on next column)

(continued)

S2 Permanent link executables
of this version

https://github.com/gaurav306/pymodconn

S3 Permanent link to
reproducible capsule

https://zenodo.org/record/8150987

S4 Legal software license MIT
S6 Computing platforms/

Operating Systems
Linux, Windows, macOS

S7 Installation requirements &
dependencies

Python>=3.9.16 and packages:
jsonschema==4.17.3, numpy==1.24.3,
PyYAML==6.0, ruamel.base==1.0.0,
tensorflow==2.12.0

S8 If available, link to developer
documentation/manual

https://github.com/gaurav306/pymodconn/
blob/master/README.md

S9 Support email for questions gaurav.chaudhary@ntnu.no

1. Motivation and significance

A dynamic system is a system in which state variables evolve over
time based on a fixed set of rules and interactions, often described by
differential equations. As dynamic systems grow in complexity, effective
management and control become imperative [1]. Predictive strategies,
especially model predictive control, have been recognized for their

* Corresponding author.
E-mail address: gaurav.chaudhary@ntnu.no (G. Chaudhary).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

https://doi.org/10.1016/j.softx.2023.101599
Received 15 July 2023; Received in revised form 23 October 2023; Accepted 27 November 2023

https://github.com/gaurav306/pymodconn
https://github.com/gaurav306/pymodconn
https://zenodo.org/record/8150987
https://github.com/gaurav306/pymodconn/blob/master/README.md
https://github.com/gaurav306/pymodconn/blob/master/README.md
https://github.com/gaurav306/pymodconn
https://zenodo.org/record/8150987
https://github.com/gaurav306/pymodconn/blob/master/README.md
https://github.com/gaurav306/pymodconn/blob/master/README.md
mailto:gaurav.chaudhary@ntnu.no
www.sciencedirect.com/science/journal/23527110
https://www.elsevier.com/locate/softx
https://doi.org/10.1016/j.softx.2023.101599
https://doi.org/10.1016/j.softx.2023.101599
https://doi.org/10.1016/j.softx.2023.101599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101599&domain=pdf
http://creativecommons.org/licenses/by/4.0/

SoftwareX 24 (2023) 101599

2

potency in reducing operational costs while accommodating fluctuating
boundary conditions and internal dynamics [2,3]. Central to the
deployment of such advanced predictive control methodologies is the
formulation of a control-oriented dynamic model that can predict how
different control signals influence the system’s behavior and outcomes.

Like all models, a control-oriented dynamic model can be broadly
categorized into three types: white-box, grey-box, and black-box models
[2]. White-box models, also known as physics-based models, require
detailed system information. They are grounded in first-principle
equations to calculate the behavior and response of the system to
different inputs. Some recent examples of white-box models are CoBo
[4] for control-oriented building dynamics simulation, WFSim [5] for
control-oriented wind farm simulation, and control-oriented models for
chemical batteries [6,7]. Grey-box or reduced-order models find a
middle ground by using simplified dynamic equations combined with
datasets for parameter identification. A common method used in this
category is resistance-capacitance (RC) networks, which represent sys
tem elements and energy flows in a simplified manner. Examples of that
include use of RC control-oriented models for building control [8,9] and
use reduced order models for lithium-ion battery control [10]. Black-box
models, sometimes referred to as data-driven models, predominantly
leverage statistical or machine learning techniques to predict system
responses [11]. Examples like AutoRegressive Integrated Moving
Average (ARIMA) based control-oriented models for electric vehicle
energy management [12], Support Vector Machines (SVMs) based
control-oriented models for diesel engine emission control [13], and
Deep Neural Networks (DNNs) based control-oriented models for
building control [14] and control-oriented flow estimation [15] fall
under this category.

With the proliferation of data from sensors and monitoring tech
nologies, DNNs in general have emerged as a powerful tool for pre
dicting system dynamics, proving particularly effective for complex
systems. The primary advantages of DNNs include their capacity to learn

from high-dimensional data and their ability to capture non-linear re
lationships [16–18]. It has been shown that a DNN with enough hidden
units can approximate any arbitrary continuous function defined on a
closed and bounded set [19,20]. Given their capability to process and
learn from vast and intricate data sets, Control-Oriented deep Neural
Networks (CONNs) can be tailored to formulate control-oriented dy
namic models that are both accurate and fast.

A CONN, as illustrated in Fig. 1, is a deep neural network structured
to predict the future behavior of complex dynamic systems, using both
Known Past and Known Future data. Known Past data includes historical
metrics like weather, system behavior, and control inputs, all used to
train the CONN to discern the correlations between these variables and
their influence on the system. Known Future data comprises forecasted
weather data, schedules and planned control inputs, which represent the
anticipated conditions and desired actions the system will face in the
future. The CONN uses this data to predict Unknown Future data,
meaning system behavior or states that are not yet known. This pre
diction enables the control system to estimate the influence of the
control input and adapt its actions to improve performance.

Despite the strength of DNNs in modeling complex systems, selecting
a suitable model architecture and fine-tuning the model can be
cumbersome. Hence improving the process of developing such archi
tecture is highly desirable. The primary research objective of this
work is to devise a comprehensive tool or framework that facili
tates streamlined creation of modular sequence-to-sequence con
trol-oriented deep neural networks, specifically tailored for
dynamic system predictions. Addressing this objective, the tool
"pymodconn" is introduced. It provides a highly modular and user-
friendly approach to creating CONNs by using a text-based configura
tion file as input from users.

While there are various modular DNN development packages, there
are some gaps that pymodconn aims to address:

Fig. 1. Abstract depiction of a control-oriented deep neural network (CONN). The CONN uses known past data and planned future control inputs to predict the future
behavior of a dynamic system, shown here with a hypothetical system and control inputs.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

3

• Limitations of Existing Libraries: Several deep learning libraries
such as AutoKeras [21], KerasCV [22], DeepCTR [23], Caffe [24],
FastAI [25], and DeepChem [26] have emerged to facilitate the
modular development of deep neural networks. However, they pre
sent certain limitations:
Ø Field Specificity: These libraries, while powerful, are designed

for other specific application domains. For example:
■ AutoKeras [21] is designed to simplify the machine-learning

model-design process but lacks an extensive focus on dy
namic systems prediction.

■ KerasCV [22] is tailored for machine vision tasks.
■ DeepCTR [23] is dedicated to deep-learning based

click-through rate prediction models.
■ Caffe [24] is notably geared towards convolutional neural

networks, for computer vision tasks.
■ FastAI [25] aims to make deep learning more user-friendly but

is built atop the PyTorch library
■ DeepChem [26] is dedicated to applications in drug discovery,

quantum chemistry and biology.
Ø Inclination towards Larger Models: Many of the above

mentioned libraries tend to focus on large and complex models
only. Even though these models are powerful, they are not always
the most practical. Pymodconn’s modularity provides capability to
adjust depth.

• Open-source nature: Many of the truly modular DNN development
tools remain inaccessible to the wider community. Both research
professionals and corporations often develop these tools for in-house
testing and development, keeping their advanced features under
wraps. In contrast, pymodconn tries to break this trend. To the best of
the authors’ knowledge, it is the first open-source package providing
such comprehensive modular model development capabilities.

• User-friendly configuration: pymodconn’s design separates config
uration from code, which improves research flexibility and effi
ciency. This design allows for batch predictions, GPU task
distribution, and enhanced result reproducibility contributing to the
principles of open science. It also supports comprehensive ablation
analyses, fostering a better understanding of time series prediction
techniques for control systems.

2. Software description

The pymodconn package is built upon the robust Keras library [27],
utilizing its user-friendly, modular, and efficient structures for devel
oping and training deep learning models. The use of Keras facilitates
integration with other machine learning tools, allowing users to create
customized pipelines for time series prediction, tailored to their specific
needs. It is based on a sequence-to-sequence architecture [28] and in
tegrates a broad spectrum of established time series prediction
mechanisms.

2.1. Software architecture

As outlined in the introduction, in the context of the CONN archi
tecture, two inputs are essential: the Known past data (e.g., known past
system dynamics + past control inputs) and the Known future data (e.g.,
targeted control inputs + other known future data). The network’s
objective is to generate an output representing the Unknown future data
(e.g., future system dynamics). The following section briefly describes
different components of CONN, how they are connected to each other,
and how they can improve prediction accuracy. Pseudocode for the
components described here is given in Appendix B.

For clarity, all the user-configurable parameters in the configuration
file are highlighted in red and indicated by dashed lines in the

subsequent figures related to the model architecture.

2.1.1. Top-level architecture
As illustrated in Fig. 2, the CONN’s basic structure consists of an

Encoder block processing the Known past data, and a Decoder block
handling the Known future data. The Encoder block processes the Known
past data, generating two distinct outputs: a sequence of hidden states,
also called encoder hidden states, and the final encoder state. The
encoder hidden states encapsulate the temporal structure inherent in the
past data, while the final encoder state provides a summarized repre
sentation of this data. Each Decoder block is designed to receive and
process the outputs from the Encoder block. The encoder hidden states
serve as a temporal context for each Decoder block, while the final
encoder state is used to initialize the state of the Decoder block.

The outputs from the Decoder blocks are subsequently passed
through an Output type block. This block refines the output, either in the
form of a point forecast or as a probabilistic (interval) forecast. For point
forecasts, the Output type block simply passes the output of the Decoder
forward without modification. However, for probabilistic forecasts, the
Output type block introduces additional layers to facilitate the generation
of interval forecasts, providing a measure of uncertainty for the pre
dictions. The users can choose between two distinct methodologies for
probabilistic forecasts, both adapted from the DeepTCN model archi
tecture [29]. In the configuration file, these are activated by the terms
’nonparametric’ and ’parametric’, respectively. Pseudocode for the
top-level model generation is shown in Fig. B.1 in Appendix B.

2.1.2. Encoder block
The Encoder block is a key building block in the CONN architecture

(see Fig. 2). It processes the Known past data, which includes the known
past system states and past control inputs. The outputs of this block are
essential for setting up the context for the subsequent Decoder blocks,
enabling them to make informed predictions about the Unknown future
system states.

In the Encoder block, the input first encounters a Dense layer, which
boosts data dimensions to capture intricate patterns. The Dense layer’s
broad interconnectedness allows for diverse feature learning, optimizing
model performance. A subsequent Dropout layer curbs overfitting by
randomly nullifying a portion of weights during each training update.
The users can then select among three established time series prediction
architectures: Temporal Convolutional Networks (TCN) [29,30],
Recurrent Neural Network (RNN) [31–33], and Self Multi-Head Atten
tion (Self-MHA) mechanisms [34,35]. These can be employed individ
ually, in combination or altogether, offering flexible configuration for
ablation analyses. Inclusion of the RNN block in the Encoder generates
encoder hidden states, representing the temporal structure of the data
and providing essential temporal context for the RNN blocks in the
Decoder. Ultimately, the Encoder block yields a condensed, feature-rich
past data representation, preparing the terrain for the Decoder block to
accurately project future system dynamics. Details of the MHA block and
the RNN block are given in subsections 2.1.6 and 2.1.7, respectively.
Pseudocode for the Encoder generation is shown in Fig. B.2 in Appendix
B.

2.1.3. Decoder block
The Decoder block serves as the bridge between the processed past

data and the future predictions (see Fig. 2). It takes the outputs of the
Encoder block, i.e., the sequence of encoded states and the final encoder
state, along with the Known future data, and estimates the preliminary
future system dynamics. This crucial component leverages the context
provided by the Encoder block to ensure that the predictions are
informed by the temporal patterns identified in the past data. Details of
different blocks inside the Decoder block are described later in this

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

4

section.
The Decoder block follows a structure similar to the Encoder block. It

initiates the processing of its input with a Dense layer, followed by a
Dropout layer. After these initial transformations, the processed input
proceeds to either a TCN block or an RNN block, or both, depending on
the users’ configuration. Notably, the RNN block in the Decoder uses the
encoder hidden states, as its initial states. Details of the CIT block are
given in subSections 2.1.4. Pseudocode for the Decoder generation is
shown in Fig. B.3 in Appendix B.

2.1.4. Contextual information transfer block
Upon exiting the RNN block (or alternatively the TCN block, or

directly as input to the Decoder block if both RNN and TCN blocks are
disabled), the data flow enters the Contextual Information Transfer (CIT)
block. The CIT block acts as a bridge between the Encoder and Decoder,
facilitating effective past-to-future data information transfer for precise
predictions. Three distinct configurations exist for the CIT block, as
shown in Fig. 3. Option 1 uses a straightforward approach, reshaping
Encoder output to align with future prediction dimensions in a Reshape
layer. The reshaped output is combined with output from the RNN and/
or TCN block, and then processed by a Dense layer. However, this option
does not consider the sequential nature of the data. Option 2 uses an
Attention layer instead of a Reshape layer. The attention mechanism

accentuates key input elements, proving beneficial when handling dy
namic inputs with abrupt changes. Users can opt for Bahdanau (addi
tive) [34] or Luong (scaled dot-product) attention [35]. Option 3
incorporates Transformer elements, featuring self-MHA and cross-MHA
attention mechanisms. Self-MHA uncovers key temporal patterns in
Known future data, while cross-MHA integrates self-MHA and encoded
states outputs, offering temporal context from past data when processing
Known future data. A subsequent Gated Residual Network block (GRN)
[36] follows cross-MHA.

CIT blocks can be stacked multiple times, promoting the learning of
complex data representations. Stacking facilitates hierarchical learning,
with simpler patterns recognized in lower layers and complex structures
understood in higher ones. Pseudocode for the CIT block generation is
shown in Fig. B.4 in Appendix B.

2.1.5. States manipulation block
In the later stage of the Decoder block, the output from the CIT block

is passed through a combination of TCN and/or RNN blocks. The
memory retention feature of RNNs is used to recall earlier parts of the
sequence, assisting in accurate predictions. The initial states of this RNN
come from a mix of hidden states from the RNN blocks in the Encoder and
Decoder blocks, manipulated in the States Manipulation block (see Fig. 2).
Users can manipulate these states in various ways, including outputting

Fig. 2. The top-level architecture of the CONN, Encoder block, Decoder block and States Manipulation block within the CONN framework.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

5

hidden states from either of the two RNN blocks, or processing them
through combinations of Concatenation, Addition, Normalization and
Dense layers. Concatenation expands the input dimensionality for the
subsequent Dense layer, enhancing the learning of complex representa
tions. Addition merges the information from both states, offering a more
comprehensive representation. Normalization, in some cases, stabilizes
the deep learning process by ensuring stable hidden states distribution.

The Decoder block ends with a Time Distributed Dense layer that re
shapes the data to align with the dimensions of the future prediction
window. The Encoder Multi-Head Attention block (as shown in Fig. 2),
Recurrent Neural Network block (as shown in Fig. 2), Gate Resdiual

Network block (as shown in Fig. 3) and Add&Normalize + Gate block (as
shown in Fig. 3) are further described in Appendix A.

3. Illustrative examples

There are two methods available for users to utilize pymodconn. The
first is to clone or download the project directly from the GitHub re
pository. The second method is to install it via pip, Python’s package
installer, by executing the following command: “pip install pymod
conn”. Its v2.0.0 has also been deposited on Zenodo.org as a permanent
copy [37].

Fig. 3. The three architectural options for the CIT block within the CONN model.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

6

Examples on how to implement the package are given in Appendix C.
Fig. 4 shows the schematics of three example models exemplifying the
modularity and flexibility of pymodconn. Additional documentation can
be found in the README.md file within the GitHub repository.

4. Impact

Pymodconn lowers the technical hurdles to implement cutting-edge
DNNs, fostering quicker innovation and enhanced productivity. Its
capability to facilitate rapid development and testing makes it an
indispensable learning resource for students and professionals delving
into DNNs for system dynamics and control. With its user-friendly
approach to crafting and deploying neural networks, pymodconn
stands to significantly elevate everyday practices.

This package was recently used by authors to develop a prediction
model based on Multi-head Attention (MHA) and Transformer compo
nents to predict indoor air temperature evolution with heating setpoint,
opening and closing of windows as control inputs for an office building
[38].

Unlike existing libraries, pymodconn offers pre-configured architec
tures specifically designed for CONN models. Working with other solu
tions entails a steep learning curve to understand the assembly of
components/layers for control-oriented tasks, along with the manual
coding of configurations. This often raises concerns about coding errors
and the burden of maintaining multiple codebase versions, thereby
extending the development cycle. In contrast, pymodconn facilitates
quicker iterations, and a more agile process.

5. Conclusion

In this paper, the Python package pymodconn has been presented as a
comprehensive tool for constructing sequence-to-sequence control-ori
ented deep neural networks. This unique package offers users the ability
to design deep neural networks with a broad range of high-performance
time series prediction architectures. The distinctiveness of pymodconn

lies in its high-level modularity, facilitated by the separation of config
uration from code. This approach allows users to adjust architectures
and parameters through a user-friendly text-based configuration file.

Despite its modularity and flexibility, there are some limitations in
pymodconn. The platform is currently tailored exclusively for Tensor
Flow and Keras, though future updates are planned to incorporate
PyTorch support. Additionally, its unique approach of decoupling
configuration from the code can present a daunting learning curve,
especially for newcomers who might find the multitude of configuration
options difficult to navigate. There is also a notable absence of built-in
tools for hyperparameter tuning/model optimization, necessitating the
reliance on external tools or manual effort. Moreover, in situations
requiring advanced designs or the introduction of custom layers, users
might find themselves delving into the package’s source code for ad
justments. Despite these intricacies, the openness and adaptability of
pymodconn create new opportunities for future exploration and inno
vation within the field of control-oriented deep neural networks.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors acknowledge the support from the strategic research
program ENERSENSE at Norwegian University of Science and Tech
nology (NTNU).

Fig. 4. Schematics of example models constructed using pymodconn.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

7

Appendix A: Additional components of pymodconn

Fig. A.1, Fig. A.2
The following section provides information about additional components of pymodconn, in addition to those presented in Section 2.

A.1 Encoder Multi-head attention block

The Encoder MHA block is also inspired by the Transformer model [39]. The first layer, i.e., a self-MHA layer enables the model to discern and
focus on key temporal patterns within the known past data, effectively creating a summarized representation of important trends and dependencies.
After this, the data undergoes transformation by a GRN block. The output of the self-MHA can optionally be connected back to the original input of the
Encoder MHA block via a gated Add + Normalize block, providing a form of residual connection that can help stabilize learning. The Encoder MHA
block can also be stacked, providing depth and increasing the model’s capacity to learn intricate patterns in the data. The number of blocks is given by
the users, further highlighting the flexibility of the CONN architecture (see Fig. A.1). Pseudocode for the MHA block generation is shown in Fig. B.5 in
Appendix B.

A.2 Recurrent Neural Network block

The RNN block exploits RNN architectures’ unique capacities for processing sequential data and retaining past inputs. Users can choose the depth
of this block depth and choose between SimpleRNN [31], Long Short-Term Memory (LSTM) [32], or Gated Recurrent Unit (GRU) [33] architectures
(see Fig. A.1), with the added choice of bidirectional RNNs to capture overlooked cyclic patterns, providing a more comprehensive understanding of
recurrent patterns. Each layer includes a residual connection for stable gradient propagation during training. An additional GRN block transforms the
data after the RNNs, maintaining the stability of the model. Pseudocode for the RNN block generation is shown in Fig. B.6 in Appendix B.

Fig. A.1. Detailed schematic for the Encoder MHA block and the RNN block in the CONN architecture.

A.3 Add & Normalize + Gate block

The CIT block, across all configurations, includes residual connections through gated Add & Normalize blocks [40] (see Fig. A.2). These blocks aid
in managing information flow and stabilizing learning. Residual connections in the Add layer help counter the vanishing gradients issue common in
deep networks, enabling more robust learning by adjusting predictions based on the unaltered input. The Normalize layer applies layer normalization,
standardizing inputs to each layer as per training sample.

A gating mechanism, more specifically a Gated Linear Unit (GLU), is used as an activation function. The GLU was introduced in the Temporal

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

8

Fusion Transformers (TFT) model [36] as a way to control the flow of information through the network. The GLU enables selective emphasis on certain
data features. Components of GLU determines the extent to which each feature should be ’allowed through the gate’, offering flexibility and
adaptability in focusing on the most relevant features, potentially improving predictive performance.

A.4 Gated Residual Network

The GRN block within the CONN architecture masterfully manages multiple varying inputs. It employs GLU for selective information retention
[36] (see Fig. A.2). This is particularly useful in the CONN context, where diverse inputs such as past system states and future control inputs are
processed. The GRN block also integrates a gating strategy with a residual connection and Dense layer outputs, promoting stable model training.

Fig. A.2. Schematic for the GRN and the gated Add and Normalize block components within the CONN model.

A.3 Temporal Convolutional Networks

Within the CONN architecture, TCNs are another pivotal tool for capturing the temporal dependencies of time series data. TCN, with its causal and
dilated convolutions, and residual connections, effectively handles long sequences without the exploding gradient issues often encountered in
recurrent networks [29,30,41]. Users have the flexibility to enable or disable the TCN block and modify its hyperparameters via the configuration file.
Leveraging the Keras-TCN library [41] allows for efficient integration, providing another way for CONN to distil complex temporal patterns and
enhance forecast quality.

Appendix B: Pseudocodes

Fig. B.1, Fig. B.2, Fig. B.3, Fig. B.4, Fig. B.5, Fig. B6
The following section provides simplified Python-like pseudocode representation of specific classes used in pymodconn. While they capture the

essence of the main functionalities, note that the actual code is more nuanced, containing additional conditions and checks. This abstraction is
intended to offer a clear, high-level perspective.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

9

Fig. B.1. Pseudocode for Model_gen.

Fig. B.2. Pseudocode for Encoder_class.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

10

Fig. B.3. Pseudocode for Decoder_class.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

11

Fig. B.4. Pseudocode for CIT_block.

Fig. B.5. Pseudocode for MHA_block_class.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

12

Fig. B.6. Pseudocode for RNN_block_class and rnn_unit.

Appendix C: Implementation example

After installation as described in Section 3, the package can be imported into a Python program. An implementation example is presented in
Fig. C.1. This script tests the three different example model types shown in Section 3. The details of the script are elaborated in this Appendix section.

Synthetic time series data is generated using numpy for training and evaluation. Specifically, random input sequences with five known past fea
tures, three known future features, and two unknown future features are created with 1000 samples, a past observation window of 25 steps, and a
future prediction window of 10 steps. The data is split into training and test sets using a specified percentage split.

The get_configs() function from the pymodconn.configs_init module is then used to load the configurations for the model from a .yaml file as a
dictionary. This facilitates implementation of various network architectures, promotes modularity and enables the reuse of predefined models, thus
improving efficiency and reducing coding errors. The approach simplifies hyperparameter tuning, a critical aspect of neural network performance, by
isolating these parameters in a configuration file. This file can be generated by providing config_filename = None in the get_configs(config_filename)
function or obtained from the GitHub repository of the package (https://github.com/gaurav306/pymodconn/blob/master/pymodconn/configs/de
fault_config.yaml). With the former approach, a template of the configuration file is created in the directory of the Python program, which can be
modified by the users. With the latter approach, users can download a template configuration file, along with an assortment of configuration files
corresponding to various predefined model architectures. The users can use configuration files for predefined model architectures as starting points.
To avoid errors and ensure correct operation, it is recommended that users do not alter the key names or the data types within the configuration file.
Maintaining this structure is essential for pymodconn to function correctly. Fig. C.2 shows a part of the configuration file meant to configure com
ponents of the Encoder block.

Going back to implementation example, a unique identifier string (ident) is created by appending the current time string to a predefined text. This
identifier is used to differentiate between multiple runs or cases and for generating unique filenames when saving the model.

The Model_Gen class is instantiated with the configuration file dictionary and the unique run identifier. The build_model() function is then called to
create the model object. It is important to note that the model.compile() function in the build_model() method is dependent on the users’ choice of values
for the parameters. For point-based forecasts, the users can decide not to include model.compile() inside the model_class.build_model() method. This
gives the users more control over the available compile options, such as loss functions, error metrics, and learning rate schedulers. In contrast, for
probabilistic forecasts, the model.compile() function is included inside the model_class.build_model() method, as custom loss functions are used for
probabilistic forecasting.

The model returned from build_model() can be used similarly to a Keras-based model. The users can run model.fit(), model.train_on_batch(), model.

G. Chaudhary et al.

https://github.com/gaurav306/pymodconn/blob/master/pymodconn/configs/default_config.yaml
https://github.com/gaurav306/pymodconn/blob/master/pymodconn/configs/default_config.yaml

SoftwareX 24 (2023) 101599

13

evaluate(), or model.save() as needed. The users can also check the summary of the model using model.summary() and save the plot image using keras.
utils.vis_utils.plot_model().

Fig. C1. Example implementation of pymodconn.

G. Chaudhary et al.

SoftwareX 24 (2023) 101599

14

Fig. C2. Example snippet of a configuration file showing how the Encoder block can be configured.

References

[1] Mata É, Peñaloza D, Sandkvist F, Nyberg T. What is stopping low-carbon buildings?
A global review of enablers and barriers. Energy Research and Social Science 2021;
82.

[2] Drgoňa J, Arroyo J, Cupeiro Figueroa I, Blum D, Arendt K, Kim D, Ollé EP, Oravec
J, Wetter M, Vrabie DL, Helsen L. All you need to know about model predictive
control for buildings. Annual Reviews in Control 2020;50:190–232.

[3] Chen Y, Tong Z, Zheng Y, Samuelson H, Norford L. Transfer learning with deep
neural networks for model predictive control of HVAC and natural ventilation in
smart buildings. J Cleaner Prod 2020;254:119866.

[4] Troitzsch S. and Hamacher T. 2020 Control-oriented Thermal Building Modelling.
[5] Boersma S, Doekemeijer B, Vali M, Meyers J, van Wingerden JW. A control-

oriented dynamic wind farm model. WFSim Wind Energy Science 2018;3:75–95.
[6] Riemann BJC, Li J, Adewuyi K, Landers RG, Park J. Control-Oriented Modeling of

Lithium-Ion Batteries Journal of Dynamic Systems. Measurement, and Control
2020:143.

[7] Yao J, Han T. Data-driven lithium-ion batteries capacity estimation based on deep
transfer learning using partial segment of charging/discharging data. Energy 2023;
271:127033.

[8] Yu X, Georges L, Imsland L. Data pre-processing and optimization techniques for
stochastic and deterministic low-order grey-box models of residential buildings.
Energy Build 2021;236:110775.

[9] Arendt K, Jradi M, Shaker HR, Veje CT. Comparative analysis of white-, gray- And
black-box models for thermal simulation of indoor environment. In: Teaching
building case study ASHRAE and IBPSA-USA Building Simulation Conference;
2018. p. 173–80. pp.

[10] de Souza AK, Hileman W, Trimboli MS, Plett GL. A Control-Oriented Reduced-
Order Model for Lithium-Metal Batteries. IEEE Control Systems Letters 2022;7:
1165–70.

[11] Johra H, Schaffer M, Chaudhary G, Kazmi HS, Le Dréau J, Petersen S. What Metrics
Does the Building Energy Performance Community Use to Compare Dynamic
Models?. In: Proceedings of Building Simulation 2023: 18th Conference of
International Building Performance Simulation Association. IBPSA; 2023. 4-6
September 2023.

[12] Guo J, He H, Sun C. ARIMA-based road gradient and vehicle velocity prediction for
hybrid electric vehicle energy management. IEEE Trans Veh Technol 2019;68:
5309–20.

[13] Aliramezani M, Norouzi A, Koch CR. Support vector machine for a diesel engine
performance and NOx emission control-oriented model. IFAC-PapersOnLine 2020;
53:13976–81.

[14] Gokhale G, Claessens B, Develder C. Physics informed neural networks for control
oriented thermal modeling of buildings. Appl Energy 2022;314:118852.

[15] Li S, Li W, Noack BR. Machine-learned control-oriented flow estimation for multi-
actuator multi-sensor systems exemplified for the fluidic pinball. J Fluid Mech
2022;952:A36.

[16] Qi D, Majda AJ. Using machine learning to predict extreme events in complex
systems. Proc Natl Acad Sci 2020;117:52–9.

[17] Rajendra P, Brahmajirao V. Modeling of dynamical systems through deep learning.
Biophys Rev 2020;12:1311–20.

[18] Torres JM, Aguilar RM. Using Deep Learning to Predict Complex Systems: A Case
Study in Wind Farm Generation ed J M Andújar. complex 2018:9327536. 2018.

[19] Hornik K. Approximation capabilities of multilayer feedforward networks. Neural
Netw 1991;4:251–7.

[20] Ruano AE, Crispim EM, Conceiçao EZ, Lúcio MMJ. Prediction of building’s
temperature using neural networks models. Energy Build 2006;38:682–94.

[21] Jin H, Chollet F, Song Q, Hu X. AutoKeras: An AutoML Library for Deep Learning.
J Mach Learn Res 2023;24:1–6.

[22] Wood L., Tan Z., Stenbit I., Bischof J., Zhu S., Chollet F., and others 2022 KerasCV.
[23] Shen W. DeepCTR: easy-to-use,modular and extendible package of deep-learning

based ctr models. GitHub Repository; 2017.
[24] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S,

Darrell T. Caffe: convolutional architecture for fast feature embedding. arXiv
preprint; 2014.

[25] Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Information 2020;
11.

[26] Ramsundar B., Eastman P., Walters P., Pande V., Leswing K. and Wu Z. 2019 Deep
Learning for the Life Sciences (O’Reilly Media).

G. Chaudhary et al.

http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0001
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0001
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0001
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0002
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0002
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0002
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0003
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0003
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0003
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0005
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0005
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0006
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0006
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0006
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0007
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0007
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0007
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0008
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0008
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0008
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0009
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0009
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0009
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0009
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0010
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0010
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0010
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0011
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0011
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0011
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0011
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0011
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0012
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0012
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0012
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0013
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0013
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0013
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0014
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0014
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0015
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0015
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0015
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0016
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0016
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0017
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0017
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0018
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0018
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0019
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0019
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0020
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0020
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0021
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0021
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0023
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0023
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0024
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0024
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0024
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0025
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0025

SoftwareX 24 (2023) 101599

15

[27] Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis
A., Dean J. and Devin M. 2016 Tensorflow: large-scale machine learning on
heterogeneous distributed systems arXiv preprint.

[28] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems; 2014. p. 27.

[29] Chen Y, Kang Y, Chen Y, Wang Z. Probabilistic forecasting with temporal
convolutional neural network. Neurocomputing 2020;399:491–501. %@ 0925-
2312.

[30] Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint; 2018.

[31] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error
propagation. California Univ San Diego La Jolla Inst for Cognitive Science; 1985.

[32] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:
1735–80.

[33] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint; 2014.

[34] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to
align and translate. arXiv preprint; 2014.

[35] Luong MT, Pham H, Manning CD. Effective approaches to attention-based neural
machine translation. arXiv preprint; 2015.

[36] Lim B, Arık SÖ, Loeff N, Pfister T. Temporal fusion transformers for interpretable
multi-horizon time series forecasting. Int J Forecast 2021;37:1748–64. %@ 0169-
2070.

[37] Chaudhary G. 2023 gaurav306/pymodconn: pymodconn : A Python package for
developing modular sequence to sequence control oriented neural networks.

[38] Chaudhary G, Johra H, Georges L, Austbø B. Predicting the performance of hybrid
ventilation in buildings using a multivariate attention-based biLSTM encoder-
decoder neural network. arXiv preprint; 2023.

[39] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł,
Polosukhin I. Attention is all you need. In: Advances in neural information
processing systems; 2017. p. 30.

[40] He K., Zhang X., Ren S. and Sun J. 2016 Deep residual learning for image
recognition pp 770–8.

[41] Remy P. Temporal Convolutional Networks for Keras. GitHub repository 2020.

G. Chaudhary et al.

http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0028
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0028
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0029
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0029
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0029
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0030
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0030
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0031
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0031
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0032
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0032
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0033
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0033
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0034
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0034
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0035
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0035
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0036
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0036
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0036
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0038
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0038
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0038
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0039
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0039
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0039
http://refhub.elsevier.com/S2352-7110(23)00295-9/sbref0041

	pymodconn: A python package for developing modular sequence-to-sequence control-oriented deep neural networks
	1 Motivation and significance
	2 Software description
	2.1 Software architecture
	2.1.1 Top-level architecture
	2.1.2 Encoder block
	2.1.3 Decoder block
	2.1.4 Contextual information transfer block
	2.1.5 States manipulation block

	3 Illustrative examples
	4 Impact
	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A: Additional components of pymodconn
	A.1 Encoder Multi-head attention block
	A.2 Recurrent Neural Network block
	A.3 Add & Normalize ​+ ​Gate block
	A.4 Gated Residual Network
	A.3 Temporal Convolutional Networks

	Appendix B: Pseudocodes
	Appendix C: Implementation example
	References

