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Abstract—We formulate a compact relation between the
probabilistic Receiver Operating Characteristic (ROC) and the
probabilistic Cumulative Match Characteristic (CMC) that pre-
dicts every entry of the probabilistic CMC as a functional on the
probabilistic ROC. This result is shown to be valid for individ-
ual probabilistic ROCs and CMCs of single identities, based on
the assumption that each identity has individual mated and non-
mated Probabilitic Density Functions (PDF). Furthermore, it is
shown that the relation still holds between the global probabilis-
tic CMC of a gallery of identities and the average probabilistic
ROC obtained by averaging the individual probabilistic ROCs of
these identities involved over constant False Match Rates (FMR).
We illustrate that the difference between individual probabilistic
ROCs and the difference between global and average probabilis-
tic ROCs provide an explanation for the discrepancies observed
in the literature. The new formulation of the relation between
probabilistic ROCs and CMCs allows us to prove that the proba-
bilistic CMC plotted as a function of fractional rank, i.e., linearly
compressed to a domain ranging from 0 to 1, will converge to
the average probabilistic ROC when the gallery size increases.
We illustrate our findings by experiments on synthetic and on
face, fingerprint, and iris data.

Index Terms—Biometric verification, closed-set identification,
ROC, CMC.

I. INTRODUCTION

B IOMETRIC recognition systems proposed in the
literature are often evaluated in the application contexts

of biometric verification or biometric identification. The goal
of biometric verification is to verify an identity claim based on
two samples of biometric data, e.g., fingerprints, facial images,
or iris scans. One of these samples, the reference, is usually
stored in advance in a database, called the gallery, during a
process called enrolment. The other sample, produced by the
identity at verification time, is called the probe. The identity
claim is accepted if the two samples are sufficiently similar,
otherwise it is rejected. The goal of biometric identification
is to determine the identity of an individual by comparing a
probe to all the identity-labeled references stored in the gallery.
If the identity of the individual is known to be represented in
the gallery, we speak of closed-set identification. Otherwise,
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we speak of open-set identification and an additional verifica-
tion step is needed to establish whether the found identity is
indeed that of the individual.

Biometric verification and open-set identification are used in
operational applications, respectively for example in biometric
e-gates [1] and immigration search databases [2]. Closed-set
identification is not considered of operational value, because in
operational biometric applications it can usually not be guaran-
teed that the probe is represented in the gallery [3]. It remains,
however, relevant, because it is often used in scientific publi-
cations to quantify the recognition performance of biometric
solutions, see [4], [5], [6], [7] for some recent examples.

This paper presents new relations between the
Receiver Operating Characteristic (ROC), characteris-
ing the performance of biometric verification, and the
Cumulative Match Characteristic (CMC), characterising
the performance of closed-set identification. This is theo-
retically relevant, because it extends the theory presented
in [8], [9], [10] and sheds some light on discrepancies
between theoretical and experimental results reported
in [8], [9], [10], [11], [12], [13], [14].

A relation between the ROC and CMC is plausible to exist,
because both biometric verification and identification share a
comparison module that quantifies the similarity of two sam-
ples of biometric data by a comparison score. This can be
a similarity score, increasing with similarity of the biometric
samples, or a dissimilarity score, decreasing with similarity.
Both are equivalent, therefore our discussions will be in terms
of similarity scores only. The comparison function can be used
as a biometric comparator by thresholding the similarity score.
If it is above a predefined threshold, the comparator decides
for a match, i.e., the biometric samples originate from the same
individual. Otherwise, it decides for a nonmatch.

In biometric verification, the comparator’s decision is used
to accept an identity claim in case of a match. Otherwise
it is rejected. In biometric closed-set identification, similar-
ity scores are computed by comparing a probe with all the
references in the gallery. The identity label of the entry that
produces the highest similarity score is taken as the identity
of the individual.

A similarity score obtained by comparing biometric samples
from the same identity is called, in ISO terminology [15],
a mated similarity score. A similarity score obtained by
comparing samples from different identities is called a non-
mated similarity score. A good verification or identification
performance requires mated similarity scores to be higher than
nonmated similarity scores. However, due to the inevitable
variability of biometric data the ranges of mated and nonmated
similarity scores are likely to overlap, which will lead to com-
parison errors. In particular, a false match occurs if a nonmated
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similarity score is above the threshold and a false nonmatch
occurs if a mated similarity score, is below the threshold.
The corresponding error rates are the false-match rate (FMR),
which is the fraction of false matches of all nonmated com-
parisons in a test, and the false-nonmatch rate (FNMR), which
is the fraction of false nonmatches of all mated comparisons.
The comparison threshold governs the trade-off between the
FMR and the FNMR. Increasing it will result in a decreased
FMR and an increased FNMR. In this paper it is more conve-
nient to consider the true-match rate (TMR), which is fraction
of correct matches obtained from all mated comparisons. It is
the complement of the FNMR. The ROC plots the TMR as
function of the FMR. The faster the ROC approaches 1 from
the origin, the more discriminative the biometric comparison
function is.

The typical error rates used in biometric verification are
the false-acceptance rate (FAR) and the false-rejection rate
(FRR). If failures to acquire can be ignored, a match decision
will lead to acceptance of the identity claim. Then the FAR
equals the FMR and the FRR equals the FNMR. Therefore,
we will use FMR, FNMR, and ROC as performance charac-
teristics for biometric verification. For a review of biometric
testing terminology see [15] and [16].

The CMC is the commonly used performance indicator
for biometric closet-set identification [8]. It is conveniently
explained as follows. After comparison of a probe with all
references in the gallery, the r-best candidate list is defined as
the list of references with the r highest similarity scores. For
a closed-set identification experiment the CMC shows, for r
ranging from 1 to the gallery size, the fraction of mated com-
parisons that are in the r-best candidate list. The CMC for
r = 1 is the rank-1 recognition rate, which is often presented
as a scalar performance indicator for a biometric identifica-
tion system. A disadvantage of the CMC, in comparison with
the ROC, is that it depends on the gallery size. This makes it
meaningless to compare CMCs and rank-1 recognition rates
for different gallery sizes or to present them when the gallery
size is not specified.

The ROC and the CMC as explained above are empirical
measures, obtained through experiments on identity-labeled
biometric datasets. Alternatively, we can set up a probabilistic
model for biometric recognition performance by assuming that
the similarity score is a realisation of a random variable drawn
from one of two probability-density functions (PDFs), i.e., the
mated PDF for mated similarity scores and the nonmated PDF
for nonmated similarity scores. Such a probabilistic model is
useful, because it can be used to analyse and predict properties
of empirical quantities and of the relations between them. In
a probabilistic model the empirical ROC and CMC are seen
as estimates of the underlying probabilistic ROC and CMC.

As our main result in this article:
• We formulate a compact relation between the probabilis-

tic ROC and the probabilistic CMC that, in our opinion, is
more elegant than those presented earlier in [8], [9], [10].
It predicts every entry of the probabilistic CMC of a
gallery of unique indentities as a functional on the prob-
abilistic ROC (Refer Sections IV and V). This result is
shown to be valid for individual probabilistic ROCs and

CMCs of single identities, based on the assumption that
each identity has individual mated and nonmated PDFs.

• Furthermore, it is shown that the relation holds between
the global probabilistic CMC of a gallery of unique
identities and the average probabilistic ROC obtained
by averaging the probabilistic ROCs of the identities in
the gallery over constant FMRs (Sections V and IV).
This average probabilistic ROC may differ from the
global probabilistic ROC that is estimated in evaluation
experiments and can be seen as the result of averaging
individual ROCs over constant thresholds.

• We conclude that the difference between the average
probabilistic ROC and the global ROC provides an expla-
nation for the discrepancies observed in the literature
(Section IV). The new formulation of the relation between
probabilistic ROCs and CMCs allows us to prove that the
probabilistic CMC plotted as a function of fractional rank,
i.e., linearly compressed to a domain ranging from 0 to
1, will converge to the average probabilistic ROC when
the gallery size increases.

• We illustrate our findings by experiments on real biomet-
ric data, namely the FRGC-V2 facial image dataset [17],
the FVC2006 fingerprint dataset [18], and The Hong
Kong Polytechnic University Cross-Spectral Iris Images
Database [19]. Individual ROCs are hard to measure accu-
rately in experiments because of the limited number of
mated similarity scores that can generally be computed
from a dataset. We, therefore, also include experiments
on synthetic data that mimics real biometric data.

The remainder of this paper is organised as follows.
Section II discusses previous work on the relation between
ROC and CMC and the discrepancies that have been observed
between theoretical results and experimental observations.
Section III reviews biometric comparison, verification and
identification from a probabilistic point of view. This section
introduces the mathematical concepts that are needed for what
follows. The main theoretical result of this paper on the rela-
tion between ROC and CMC is presented in Section IV. In
particular, this section proves that the individual probabilistic
CMC for a known identity can be computed as an integral
transformation of the individual probabilistic ROC and that
the global CMC can be computed in a similar way from an
average ROC, with the average taken for fixed false-match
probabilities. Section V uses the main result of Section IV to
prove convergence properties of the probabilistic CMC includ-
ing that with increasing size of the gallery the CMC converges
in shape to an equidistantly sampled version of the probabilis-
tic ROC. In Section VI the theoretical results are validated
by experiments on synthetic and real biometric data. Finally,
Section VII presents conclusions. For legibility, all proofs have
been deferred to appendices.

II. RELATED WORK

In [8, Appendix A.5] the authors develop an expression
to predict the CMC. It is stated in terms of the probability
density functions for mated and nonmated similarity scores
and does not immediately reveal the relation with the ROC.
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They find that their prediction improves if score normalisa-
tion is applied prior to search. This is further analysed and
confirmed in [20]. In [9] the authors extend the expression
developed in [8] by including the probability that a mated simi-
larity score is above a given threshold. Their result is explicitly
based on the assumption that identities involved in the identifi-
cation experiment set share the PDFs for mated and nonmated
similarity scores, respectively. A relation of closed-set identi-
fication performance with the ROC is given in terms of the
expected rank and the area under the ROC. This is rephrased
in our Corollary 2. From their closed-set identification exper-
iments, the authors conclude that the ‘[theoretical prediction]
shows a prominent underestimation of the identification rate’.

In [10] the same prediction of the CMC as in [8] is
presented, but without the restriction on the threshold. The
assumption that all identities share the same PDFs or mated
and nonmated similarity scores, respectively, is not explic-
itly made. A further approximation based on the assumption
that PDF of the mated similarity scores is narrow compared
with that of the nonmated similarity scores leads to a sim-
pler expression. The authors illustrate that their theoretical
predictions underestimate the empirical results through a set
of experiments.

In [11], [12] it is concluded based on experimental data
that it was needed to present both identification and verifica-
tion performance when testing the performance of a biometric
comparison system. This confirms that, although the relation
between CMC and ROC such as presented in [8], [9], and [10]
appears to be mathematically correct, it cannot be used to
predict a CMC from a measured ROC. This is also confirmed
by [13] in which examples from combinations of good exper-
imental CMCs and poor ROCs were presented. In [14] it was
found that splitting the data into ‘goats’, ‘sheep’, and ‘lambs’
according to Doddington’s menagerie [21], resulted in distinct
CMCs for each category, while they share the same ROC.

The findings reported in [8], [9], [10], [11], [12], [13], [14]
are summarised well in [14] by the statement ‘it is clear that
support in the literature for a direct relationship between the
ROC and CMC curves is mixed.’ With this paper we hope
to resolve the observed discrepancies between the CMC are
predicted from the ROC and experimental results.

III. BIOMETRIC COMPARISON, VERIFICATION AND

CLOSED-SET IDENTIFICATION

This section reviews biometric comparison from a proba-
bilistic point of view. We assume that biometric data is random
and hence similarity scores are random variables with distinct
underlying PDFs for the mated and nonmated similarity scores.
We also assume that these PDFs are individual. This will lead
to the introduction of individual probabilistic ROCs and prob-
abilistic CMCs. This is mainly of theoretical importance, as
in most practical evaluations of biometric systems individual
PDFs cannot be estimated reliably due to limited numbers of
mated similarity scores. Therefore, the performance of bio-
metric systems is commonly expressed in terms of the global,
aggregated, ROCs and CMCs, and other performance indi-
cators are derived from those. Moreover, global results are

better predictions of future performance, because future users
are usually unknown.

Let the set x denote a probe, and the set y a reference,
either for verification or closed-set identification. We use a set
notation to be as general as possible. For instance, x and y
may contain different numbers of biometric features or het-
erogeneous features such as from low- and high-resolution
facial images. The only restriction we put on x and y is
that they allow for the computation of a similarity score
s = s(x , y) ∈ S ⊂ R, where S denotes the set of possible
similarity score outcomes and R the set of real numbers. In
our probabilistic approach, probe and reference are random.
Hence, s is a random variable with a PDF depending on who
produced x and y . For x and y produced by identities ω and
ν, respectively, this PDF is denoted by φ(s|ω, ν).

Biometric performance characteristics are defined for a spe-
cific population P where probe identity ω and reference
identity ν are drawn from. We define the mated similarity
score PDF of an arbitrary probe identity ω ∈ P by

φm(s|ω)
def= φ(s|ω,ω), ω ∈ P, (1)

and the nonmated similarity score PDF of the same probe
identity by

φnm(s|ω)
def= 1

|P| − 1

∑

ν∈P,ν �=ω

φ(s|ω, ν), (2)

with |P| size of the population P . This represents the PDF
of the nonmated similarity score of a probe from ω com-
pared with a reference from an unknown random identity. The
global mated and nonmated similarity score PDFs over the
population, representing similarity score PDFs from unknown
random probe and reference identities, are then given by,
respectively,

φm(s) = 1

|P|
∑

ω∈P
φm(s|ω), (3)

φnm(s) = 1

|P|
∑

ω∈P
φnm(s|ω). (4)

The biometric comparator compares s = s(x , y) to a thresh-
old t to determine whether x and y originate from the same
identity or not. The false-match probability pfm(t|ω) and true-
match probability ptm(t|ω) of identity ω at similarity score
threshold t are defined by

pfm(t|ω)
def=
∫

s>t
φnm(s|ω)ds, (5)

ptm(t|ω)
def=
∫

s>t
φm(s|ω)ds, (6)

respectively. The global false-match probability pfm(t) and the
true-match probability ptm(t) are then given by

pfm(t) = 1

|P|
∑

ω∈P
pfm(t|ω), (7)

ptm(t) = 1

|P|
∑

ω∈P
ptm(t|ω), (8)
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respectively. Note that the false- and true-match probabilities
are properties of the similarity score taken as a random vari-
able, while the FMR and TMR are empirical entities measured
from realisations of the random similarity scores and can be
seen as estimates for the false- and true-match probabilities,
respectively.

The probabilistic ROC of a biometric comparison function
is defined as the true-match probability presented as a function
of the false-match probability. For an identity ω we define the
individual probabilistic ROC by

ρ(α|ω)
def= ptm(t|ω)

∣∣∣
pfm(t|ω)=α

, (9)

The symbol α will be used for the false-match probability
as the dependent variable in a probabilistic ROC. The global
probabilistic ROC is defined by

ρ(α)
def= ptm(t)

∣∣∣
pfm(t)=α

. (10)

The empirical ROC that is obtained in an evaluation experi-
ment can be seen as an estimate for the global probabilistic
ROC.

The average probabilistic ROC, obtained by (vertically)
averaging individual probabilistic ROCs over a constant false-
match probability will also be needed in Section IV. It is
defined by

ρ(α)
def= 1

|P|
∑

ω∈P
ρ(α|ω). (11)

Note that in general ρ(α) �= ρ(α). However, the following
property describes an important case for which ρ(α) = ρ(α):

pfm(t|ω) = pfm(t) ⇒ ρ(α) = ρ(α). (12)

The proof is given in Appendix A. Vertical averaging of ROCs
is discussed in [22].

In closed-set identification, a gallery G of size n is a set of
references yi, i = 1, . . . , n, with corresponding identities ωi,
i = 1, . . . , n, i.e.,

G def=
n⋃

i=1

{
ωi, yi

}
, (13)

where each reference originates from a different identity, ran-
domly drawn without replacement from the population P .
The r-best list of a probe x contains the identities of the r
pairs {ωi, yi} ∈ G with the largest similarity scores s(x , yi).
In closed-set identification, the individual probabilistic CMC
denoted by cmc(r|ω; n) quantifies for r = 1, . . . , n the prob-
abilities that ω is in the r-best list of a gallery of size n,
containing {ω, y} and n − 1 randomly drawn pairs {ωj, yj},
with ωj �= ω. The global probabilistic CMC

cmc(r; n) = 1

|P|
∑

ω∈P
cmc(r|ω; n) (14)

then quantifies the probabilities that any probe represented in
a randomly drawn gallery is in the r-best list.

Fig. 1. Plots of β(α; r, n − r) for (r, n) = (4, 40), (10, 40) (40, 400)

(100, 400).

IV. RELATING CMC AND ROC

As our main result, we present a compact relation between
the probabilistic CMC and the probabilistic ROC, both for
individual and global CMCs. For this, we need the β-PDF
β(x; a, b) [23] with parameters a ∈ N and b ∈ N:

β(x; a, b)
def=

{
(a+b−1)!

(a−1)!(b−1)! xa−1(1 − x)b−1, 0 ≤ x ≤ 1,

0, otherwise.
(15)

In Bayesian statistics the β-PDF is used to model probability
parameters such as that of the binomial distribution [23]. Here
it appears naturally in the derivation of our main result. Its
expectation and variance are given in Section V. Examples of
β-PDFs are shown in Figure 1.

The following theorem expresses the probabilistic CMC as
a functional on the probabilistic ROC with the β-PDF as a
kernel. The proof is given in Appendix B.

Theorem 1: Given (a) a gallery G of size n, with one entry
per identity, containing the entry {ω, y} for a probe identity ω

and n − 1 other entries randomly drawn from the population
of identities, and (b) a biometric comparison system for iden-
tity ω is characterised by a probabilistic ROC ρ(α|ω). Then
the individual probabilistic CMC cmc(r|ω; n) and the global
probabilistic CMC cmc(r; n) are given by, respectively,

cmc(r|ω; n) =
{∫ 1

0 ρ(α|ω)β(α; r, n − r)dα, 1 ≤ r < n,

1, r = n.
(16)

cmc(r; n) =
{∫ 1

0 ρ(α)β(α; r, n − r)dα, 1 ≤ r < n,

1, r = n,
(17)

with ρ(α) defined in Equation (11).
Figure 1 plots examples of the kernels β(α; r, n − r) in

Equation (16) and Equation (17) as a function of α for
(r, n) = (4, 40), (10, 40), (40, 400), (100, 400). These kernels
act as local weighing functions on the probabilistic ROC,
which provides more insight in the relation between the prob-
abilistic CMC and ROC. We observe that the two graphs
(r, n) = (4, 40) and (r, n) = (40, 400), with fractional rank
r
n = 1

10 as well as for the two graphs (r, n) = (10, 40) and
(r, n) = (100, 400), with fractional rank r

n = 1
4 , the graphs

remain more or less in the same position, but become narrower
with increasing gallery size n. This convergence behaviour will
be further discussed in Section V.
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Summarising, we conclude that Equation (16) shows, in
a compact form, that the individual probabilistic ROC con-
tains all the information needed to compute an individual
probabilistic CMC. Expression (17) gives a compact rela-
tion between the global probabilistic CMC that is often
estimated as a performance indicator in experiments, and
the average probabilistic ROC ρ(α). The predictions of the
CMCs in [8], [9], [10] are based on applying Equation (33)
(in Appendix) to experimental FMRs and TMRs that are
obtained by averaging over fixed thresholds, which is common
in biometric evaluations. However, this would correspond to
using the global ROC ρ(α) in Equation (17) for prediction of
the CMC, instead of ρ(α). The global ROC ρ(α), as we will
also show in Section VI, may differ from ρ(α) and this, in our
view, explains the discrepancies between predicted and mea-
sured CMCs that have been observed in [8], [9], [10], [11],
[12], [13], [14].

In [8], [20] it was shown that individual score normal-
isation improved the prediction of the CMC. This can be
explained as follows. As a result of individual score normali-
sation, all identities will have similar FMRs. Then, according
to Equation (12), the global ROC will become more similar
to the average ROCs well and the prediction of the CMC will
become better.

V. CONVERGENCE PROPERTIES

We observed in Figure 1 that for a constant fractional rank
the kernels maintain their positions on the α-axis, but become
narrower. This behaviour is easily explained by the expectation
and variance of the β-PDF β(x; r, n − r), which are given by,
respectively,

E{x} = r

n
, (18)

E

{(
x − r

n

)2
}

= 1

n + 1

( r

n

)(
1 − r

n

)
. (19)

Informally speaking, one can say that for increasing n and
a fixed fractional rank r

n , β(α; r, n − r) will converge to
a Dirac impulse function δ(α − r

n ). Therefore, for large n
and fixed r

n , the integral in Equation (16) effectively comes
down to sampling the ρ(α|ω) at α = r

n , which implies that
the shape of the individual CMC as a function of fractional
rank converges to the individual ROC for large galleries.
This is illustrated by Figure 2, which plots cmc(r|ω; n) for
n = 30, 60, 120 as a function of fractional rank r

n for
ρ(α|ω) = (1 − exp(−50α))/(1 − exp(−50)). Formally, we
have the following theorem.

Theorem 2: Given (a) a gallery G of size n, with one entry
per identity, containing the entry {ω, y} for a probe identity
ω and n − 1 other entries randomly drawn from the popu-
lation of identities, and (b) a biometric comparison system
that for identity ω is characterised by a probabilistic ROC
ρ(α|ω). Then the individual probabilistic CMC cmc(r|ω; n)

and the global probabilistic CMC cmc(r; n) are given by,
respectively,

cmc(r|ω; n) =
{

ρ
( r

n |ω)+ O
(

1
n

)
, 1 ≤ r < n,

1, r = n,
(20)

Fig. 2. Plots of ρ(α|ω) as a function of α and cmc(r|ω; n) as a function of
fractional rank r

n for n = 30, 60, 120, illustrating how the individual CMC
converges to the individual ROC.

cmc(r; n) =
{

ρ
( r

n

)+ O
(

1
n

)
, 1 ≤ r < n,

1, r = n.
(21)

In Equation (20) O( 1
n ) is the Landau symbol that bounds the

rate of convergence [24].
The proof is given in Appendix D.
From Theorem 2 it follows that for large galleries the

probabilistic CMC indeed converges at a rate 1/n to the
(average) probabilistic ROC. Note that the last but one line
of Equation (43) in the proof implies that: (a) the rate of con-
vergence is close to 1/n2 for ranks close to 1; (b) the rate of
convergence decreases where the bend in the ROC is sharpest,
because there the second derivative is largest; and (c) the
approximation becomes perfect when the ROC flattens off,
because there the second derivative vanishes. The convergence
behaviour is summarised in the following corollary.

Corollary 1: Given (a) a gallery G of size n, with one entry
per identity, containing the entry {ω, y} for a probe identity ω

and n − 1 other entries randomly drawn from the population
of identities, and (b) a biometric comparison system that for
identity ω is characterised by a probabilistic ROC ρ(α|ω).
Then the individual probabilistic CMC cmc(r|ω; n) and the
global probabilistic CMC cmc(r; n) satisfy, respectively,

lim
n→∞ cmc(r|ω; n) = ρ

( r

n
|ω
)
, (22)

lim
n→∞ cmc(r; n) = ρ

( r

n

)
. (23)

The proof follows on taking the limit n → ∞ in
Equation (22) and Equation (23).

In Figure 2, we observe that the probabilistic CMC approx-
imates the probabilistic ROC from below. This is generally
true for individual and average probabilistic ROCs that are
concave, which is a desired property for an ROC.

The area under the ROC, i.e.,
∫ 1

0 ρ(α|ω)dα or
∫ 1

0 ρ(α)dα,
is often used to quantify the performance of a biometric com-
parison system [25], [26]. The closer it is to 1, the more
discriminative the system is. For a CMC plotted as a func-
tion of fractional rank, a similar property is desirable. The
curve should be close to the point (0, 1) in the ( r

n , cmc)-plane,
which will be achieved if the area under the CMC, defined
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as 1
n

∑n
r=1 cmc(r|ω; n) is close to 1. The following corollary

relates the area under the ROC with the that under the CMC,
showing that for large galleries both requirements are equiv-
alent. The proof is in Appendix E. In a somewhat different
form this result is also presented in [9, Eq. 22].

Corollary 2: Given (a) a gallery G of size n, with one entry
per identity, containing the entry {ω, y} for a probe identity ω

and n − 1 other entries randomly drawn from the population
of identities, and (b) a biometric comparison system that for
identity ω is characterised by a probabilistic ROC ρ(α|ω).
Then the average individual probabilistic CMC cmc(r|ω; n)

and the average global probabilistic CMC cmc(r; n) are given
by, respectively,

1

n

n∑

r=1

cmc(r|ω; n) =
(

1 − 1

n

)∫ 1

0
ρ(α|ω)dα + 1

n
, (24)

1

n

n∑

r=1

cmc(r; n) =
(

1 − 1

n

)∫ 1

0
ρ(α)dα + 1

n
, (25)

Hence,

lim
n→∞

1

n

n∑

r=1

cmc(r|ω; n) =
∫ 1

0
ρ(α|ω)dα, (26)

lim
n→∞

1

n

n∑

r=1

cmc(r; n) =
∫ 1

0
ρ(α)dα. (27)

So far, theoretical relations between the probabilistic ROC
and CMC have been derived. In Section VI these results will
be illustrated by experiments that produce empirical ROCs and
CMCs.

VI. ILLUSTRATIVE EXPERIMENTS

The goal of the experiments is to illustrate the validity
of Theorems 1 and 2. In order to do that, we will estimate
empirical ROCs and CMCs from data, use Equation (16) and
Equation (17) to predict CMCs form them, and compare these
with the empirical CMCs.

We will first present experiments based on synthetically
generated random biometric samples. In this way we gener-
ate sufficient samples to produce accurate ROCs and CMCs.
Second, we will present experiments on real data, namely the
FRGC-V2 facial image dataset [17], using samples from iden-
tities that contributed a larger number of 20 samples, and
the FVC2006 fingerprint dataset [18] and The Hong Kong
Polytechnic University (HKPU) Cross-Spectral Iris Images
Database [19], both using samples from identities that con-
tributed 10 samples.

In the previous sections we worked with probabilistic ROCs
and CMCs, which follow from the underlying probability den-
sity functions of similarity scores. In the current section, we
will work with empirical ROCs and CMCs and, formally, we
should introduce new notation for that. In order to avoid nota-
tional complexity, we will not do that, except for the CMCs
that are predicted from the empirical ROCs, which we will
denote as ĉmc(r|ω; n) and ĉmc(r; n).

The synthetic and the real-data experiments follow the same
approach for the computation of the ROCs and CMCs. Starting

point is a dataset containing features of n identities ω =
1, . . . , n, with m features xω,j, j = 1, . . . , m per identity. For
each identity ω we compute a set Sm,ω = {s(xω,j, xω,l)|(j, l) ∈
{1, . . . , j}2, l < j} with 1

2 m(m − 1) mated similarity scores,
and set Snm,ω = {s(xω,j, xν,l)|ν �= ω, (j, l) ∈ {1, . . . , j}2} with
(n − 1)m2 nonmated similarity scores.

The empirical ROC ρ(α|ω) is computed as a piecewise
linear function connecting points (α(ti), ρ(α(ti))), with

α(ti)
def= |{s|s ∈ Snm,ω, s ≥ ti

}|
(n − 1)m2

, (28)

ρ(α(ti))
def= |{s|s ∈ Sm,ω, s ≥ ti

}|
1
2 m(m − 1)

, (29)

and ti ∈ Sm,ω, ti > ti−1. If for some ti and tj we have that
α(ti) = α(tj), then only the pair (α(ti), ρ(α(ti))) with maxi-
mum ρ(α(ti)) is retained. The global empirical ROC ρ(α) is
computed in a similar (standard) way as the individual empiri-
cal ROCs, but based on aggregated sets of mated and nonmated
similarity scores.

From the empirical ROCs ρ(α|ω), ω = 1, . . . , n, we predict
the individual CMCs ĉmc(r|ω; n) by numerically evaluating
Equation (16). We compute the average individual empiri-
cal ROC ρ(α) by averaging the individual empirical ROCs
ρ(α|ω), ω = 1, . . . , n, and the predicted CMC ĉmc(r; n)

by averaging the individual predicted CMCs ĉmc(r|ω; n),
ω = 1, . . . , n.

We also use the similarity scores to compute individual
empirical CMCs cmc(r|ω; n) for all identities ω. We do this
by mimicking a large number of identifications. For identity
ω and every sample index i, n − 1 nonmated similarity scores
s(xω,i, xν,jν ), ν = 1, . . . , m, ν �= ω, with each jν randomly
drawn from {1, . . . , m} are selected. Then, for m − 1 mated
similarity scores s(xω,i, xω,j), j = 1, . . . , m, j �= i, the set
{s(xω,i, xω,j), {s(xω,i, xν,jν )}ν �=ω} is sorted in descending order
and the ranks of the mated similarity score s(xω,i, xω,j) are
collected in a histogram with bins 1, . . . , n. This mimics iden-
tification in a gallery of size n with a mated enrolled feature
vector xω,i and n − 1 nonmated enrolled feature vectors xν,jν ,
ν = 1, . . . , m, ν �= ω with probes xω,j, j =, . . . , m, j �= i. In
order to increase the accuracy of the individual empirical CMC
this is done mg times for every sample index i of identity ω

by randomly drawing mg sets {s(xω,i, xν,jν )}ν �=ω of nonmated
similarity scores. Each time the rank histogram is updated. Per
identity ω a CMC is computed from the histogram, based on
mgm(m − 1) rankings of similarity scores. The global empir-
ical CMC cmc(r; n) is computed by averaging the individual
CMCs cmc(r|ω; n). The experimental parameters n (gallery
size), m (the number of features per identity), and mg (the
number of randomly drawn galleries per mated gallery entry)
are specified in Table I.

We will present the results in three types of graphs:
1) Figures with individual empirical performance character-
istics, in particular individual empirical ROCs ρ(α|ω), the
corresponding individual predicted CMCs ĉmc(r|ω; n), and
the individual empirical CMCs cmc(r|ω; n); 2) Figures with
global empirical performance characteristics, i.e., the empiri-
cal ROC ρ(α), the average individual empirical ROC ρ(α|ω),
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TABLE I
PARAMETER VALUES FOR THE EXPERIMENTS: GALLERY SIZE n,

#FEATURES/IDENTITY m, #GALLERIES/MATED ENTRY mg

the global predicted CMC ĉmc(r; n), and the global empirical
CMC cmc(r; n); 3) Figures that provide a direct comparison
between cmc(r; n) and ĉmc(r; n). CMCs and ROCs are plot-
ted in one graph in order to illustrate their relation. For that
purpose the CMC is plotted as a function of fractional rank r

n .

A. Synthetic Data

We simulate a simplified biometric feature comparison,
based on Gaussian between- and within-identity variations. Let
x = b+w be a feature vector of an identity, with b ∼ N(0, 	B)

the individual feature mean and w ∼ N(0, 	W) modelling the
within-identity variations. In our synthetic-data experiments
x ∈ R

4 and 	B is a diagonal covariance matrix with diagonal
elements

(
σ 2

1 , . . . , σ 2
4

)
= (0.5, 0.8, 0.85, 0.9). (30)

Furthermore, 	W = I − 	B, such that x ∼ N(0, I).
For each of the n identities in the gallery, we randomly

draw one mean vector bω, ω = 1, . . . , n and m vectors wω,j,
ω = 1, . . . , n, j = 1, . . . , m resulting in m vectors xω,j per
identity. From this synthetic dataset we compute all relevant
similarity scores s(xω,j, xν,l), (ω, j) �= (ν, l).

Individual empirical ROCs, individual predicted CMCs,
individual empirical CMCs, the average individual empiri-
cal ROC, the empirical ROC, and the empirical CMC are
computed for gallery sizes n = 10 and n = 100 and for
2 classifiers: the log-likelihood-ratio classifier optimised for
the data and the cosine-similarity classifier. For each com-
bination of gallery size and classifier a new data set is
randomly generated. The experimental parameters are given in
Table I.

The log-likelihood-ratio classifier computes a similarity
score

s
(
xω,j, xν,l

) = −1

2

D∑

d=1

log
(

1 − σ 4
d

)

− 1

4

D∑

d=1

σ 2
d

1 − σ 2
d

((
xω,j

)
d − (

xν,l
)

d

)2

+ 1

4

D∑

d=1

σ 2
d

1 + σ 2
d

((
xω,j

)
d + (

xν,l
)

d

)2
, (31)

with D = 4 and σ 2
d specified in Equation (30). The cosine-

similarity classifier computes a similarity score

s
(
xω,j, xν,l

) = xT
ω,jxν,l

‖xω,j‖‖xν,l‖ . (32)

Fig. 3. Synthetic-data experiments. Gallery size n = 10, log-likelihood-ratio
classifier.

Figures 3(a), 3(b), and 3(c) show the results for gallery size
n = 10 with the log-likelihood-ratio classifier. Figure 3(a)
shows 3 of the 10 individual empirical ROCs ρ(α|ω) and
the corresponding identity predicted CMCs ĉmc(r|ω; n) and
the individual empirical CMCs cmc(r|ω; n). We see that there
can be quite a spread between the individual empirical ROCs
and that the individual predicted CMCs deviate slightly from
the individual empirical CMCs, but this deviation is reduced
if we consider the global predicted CMC ĉmc(r; n) and the
global empirical CMC cmc(r; n) in Figure 3(b). This figure
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also shows that the empirical ROC ρ(α) and the average
individual empirical ROC ρ(α|ω) are different. Figure 3(c)
directly compares the empirical CMC with the predicted CMC,
showing that the deviation is largest at lower rank values.

Figures 4(a), 4(b), and 4(c), show the results for gallery size
n = 10 with the cosine-similarity classifier. The observations
are mainly similar to those made for gallery size n = 10
with the log-likelihood-ratio classifier. The main difference is
that here the empirical ROC ρ(α) and the average individual
empirical ROC ρ(α|ω) in Figure 4(b) are more similar for the
cosine-similarity classifier.

Figures 5(a), 5(b), and 5(c), show the results for gallery size
n = 100 with the log-likelihood-ratio classifier. Here we can
see that both the individual as well as the global empirical and
predicted CMCs are closer together than in the n = 10 experi-
ments. In fact, from Figure 5(c) we see that the predicted CMC
approximates the empirical quite well. We can also observe
that the empirical and predicted CMCs, plotted as functions
of r/n more closely approximate the average ROCs as in the
n = 10 experiments as was proved in Theorem 2. The empiri-
cal ROC ρ(α) is above the average individual empirical ROC
ρ(α), which is to be expected, because the log-likelihood-
ratio classifier is the optimal classifier and the best recognition
performance is obtained when the same log-likelihood-ratio
threshold is used for all identities as was shown in [27].
The average ROC is obtained by setting the threshold such
that all identities have the same false-match rate, which leads
to a different log-likelihood-ratio threshold for each identity.
This effect was also visible for the n = 10 case, but not for
the entire ROC. We expect this observation because ROCs
obtained with only 10 identities are less accurate than ROCs
obtained with 100 identities. Figures 6(a), 6(b), and 6(c), show
the results for gallery size n = 100 with the cosine-similarity
classifier. Again, the observations are mainly similar to those
made for gallery size n = 100 with the log-likelihood-ratio
classifier. The main difference is again that here the empirical
ROC ρ(α) and the average individual empirical ROC ρ(α|ω)

in Figure 6(b) are more similar for the cosine-similarity clas-
sifier. In fact, they seem to overlap completely. We assume
that this is because in the given constellation of feature vec-
tors x ∼ N(0, I) and the cosine-similarity classifier, we have
the nonmated similarity scores that are equally distributed,
i.e., φnm(s|ω) = φnm(s), then according to Equation (12) the
average ROC coincides with the global ROC.

The above experiments confirm our main result, laid down
in Theorem 1, that the CMC can be predicted from the average
ROC. For the smaller gallery size there are minor deviations
at the lower rank values, that can be ascribed to inaccuracies
of individual ROCs obtained with few samples.

B. Face Recognition Data

As our primary goal is illustrating the relation between the
ROC and the CMC, we choose the FRGC-V2 face dataset [17],
where the performance is not near-ideal. Though one can
use LFW and alike datasets, we note that most of the newer
face recognition systems provide near-ideal performance [28]
on those, deeming them less useful for our purposes. The

Fig. 4. Synthetic-data experiments. Gallery size n = 10, cosine-similarity
classifier.

FRGC-V2 dataset consists of a training split of 222 unique
identities and a testing split of 466 unique identities. We
employ the testing split from which we preselect the 285
identities with at least 20 images. From these identities we
randomly retain 20 images per identity. We further prepro-
cess the images by detecting the face region with a tight
cropping [29]. We extract features xω,j ∈ R

512 and com-
pute all the relevant similarity scores s(xω,j, xν,l), (ω, j) �=
(ν, l), using the pre-trained ElasticFace [30] face recognition
system based on deep learning to extract the feature vectors.
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Fig. 5. Synthetic-data experiments. Gallery size n = 100, log-likelihood-ratio
classifier.

These are compared using the cosine-similarity classifier in
Equation (32). The employed pre-trained models are trained
on the MS1MV2 dataset [28] and validated on various datasets
such as LFW, AgeDb-30, CPLFW, CALFW and CFP-FP for
state-of-the-art performance.

For gallery sizes n = 10 and n = 100, we randomly
selected, respectively, 10 and 100 identities out of the pre-
selected 285. In this way we have the same maximum
numbers of identities and gallery sizes as in the synthetic-data

Fig. 6. Synthetic-data experiments. Gallery size n = 100, cosine-similarity
classifier.

experiments described in Subsection VI-A. The experimental
parameters are specified in Table I.

Figures 7(a), 7(b), and 7(c), show the results for gallery size
n = 10. The results are similar to those obtained with syn-
thetic data and gallery size n = 10. Figure 7(a) shows 3 from
the 10 individual empirical ROCs ρ(α|ω) and the correspond-
ing individual predicted CMCs ĉmc(r|ω; n) and the individual
empirical CMCs cmc(r|ω; n). As was the case with the syn-
thetic data, there is spread between the individual empirical
ROCs. The individual predicted CMCs deviate slightly from
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Fig. 7. Face recognition data experiments. Gallery size n = 10, FRCG-V2
data [17], face recognition system: ElasticFace [30] with a cosine-similarity
classifier.

the individual empirical CMCs, but this deviation is reduced
if we consider the global predicted CMC ĉmc(r; n) and the
global empirical CMC cmc(r; n) in Figure 7(b). This figure
also shows that the empirical ROC ρ(α) and the average
individual empirical ROC ρ(α|ω) are different. Figure 7(c)
directly compares the empirical CMC with the predicted
CMC, showing that the deviation is largest at lower rank
values.

Figures 8(a), 8(b), and 8(c), show the results for gallery
size n = 100. Figure 8(a) shows 3 from the 100 individual

Fig. 8. Face recognition data experiments. Gallery size n = 100, FRCG-V2
data [17], face recognition system: ElasticFace [30] with a cosine-similarity
classifier.

empirical ROCs ρ(α|ω) and the corresponding individual
predicted CMCs ĉmc(r|ω; n) and the individual empirical
CMCs cmc(r|ω; n). There is spread between the individual
empirical ROCs and the individual predicted CMCs deviate
slightly from the individual empirical CMCs, but this deviation
is reduced if we consider the global predicted CMC ĉmc(r; n)

and the global empirical CMC cmc(r; n) in Figure 8(b). This
figure also shows that the empirical ROC ρ(α) and the average
individual empirical ROC ρ(α|ω) are different. Figure 8(c)
directly compares the empirical CMC with the predicted CMC,
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showing that the deviation is largest at lower rank values where
the predicted CMC underestimates the empirical one. This
was not the case for the synthetic data and also not for the
face recognition data experiments with gallery size n = 10.
We expect this for lower values of α as the individual and
average ROCs are much steeper for the face recognition data
experiments than for those on synthetic data. Since only few
data points are available for lower values of α, the concave
ROCs are systematically underestimated when Equation (16)
is applied to the piecewise linear approximation of the ROCs,
leading to underestimation of the predicted CMCs. For gallery
size n = 10, the ROC is less steep, and more data points are
available, therefore the piecewise linear approximation of the
ROC is more accurate.

As was the case with the synthetic-data experiments,
the experiments in this subsection confirm our main result,
laid down in Theorem 1, that the CMC can be predicted
from the average ROC. In steeper parts of the ROC there
are deviations in the prediction that can be ascribed to
the combination of the availability of fewer datapoints and
the piecewise linear approximation of the individual and
average ROCs.

C. Fingerprint Recognition Data

We employ set A of the DB2 subset of the Fingerprint
Verification Competition 2006 [18]. This dataset was captured
using an optical sensor and consists of 150 unique finger-
prints with 12 samples per finger. The fingerprints correspond
to images of size 400x560 represented in 256 gray levels in
uncompressed format with a 569 dpi resolution. We choose a
subset of 100 randomly selected fingerprints with 10 samples
for each fingerprint. For each of the fingerprints, we extract
minutiae using MINDTCT and compare the minutiae using
Bozorth3 [31].

Because only 10 fingerprints per individual are available,
there are only 45 mated comparisons to compute the indi-
vidual empirical ROCs, which will result in empirical ROCs
with a high granularity in the vertical coordinates. This will
make the computation of individual predicted CMCs inaccu-
rate. Therefore, we will only present the global empirical ROC,
the average individual empirical ROC, the predicted global
CMC, and the empirical CMC, for gallery size n = 100.
For this larger gallery size, the inaccuracies in the individual
empirical ROCs and CMCs average out in the global empirical
ROCs and CMCs respectively.

Figure 9(a) shows the empirical ROC, the average individ-
ual ROC, the global predicted CMC ĉmc(r; n) and the global
empirical CMC cmc(r; n), which are all close. This is to
be expected because of the higher recognition performance.
Figure 9(a) directly compares the empirical CMC with the pre-
dicted CMC, showing that at lower rank values the predicted
CMC underestimates the empirical one somewhat, whereas at
higher ranks it overestimates. We expect that, as was also men-
tioned in Section VI-B, that the underestimation at lower rank
values is due to the steepness of this ROC. Note the scale of
the axis, from which we can see that the prediction is close.
Here, there is no underestimation of the CMC at lower rank

Fig. 9. Fingerprint recognition data experiments. Gallery size n =
100, FVC2006 data [18], fingerprint recognition system: MINDTCT with
Bozorth3 [31].

values, which we ascribe to that this ROC is less steep than
those for face and fingerprint recognition.

D. Iris Recognition Data

We use Near-Infra Red (NIR) iris image subset from The
Hong Kong Polytechnic University Cross-Spectral Iris Images
Database [19]. This database consists of total 12,540 iris
images collected from left and right eyes of 209 subjects in
two different spectrums (Visible and NIR) with 15 different
instances. For the sake of our experiments, we consider a sub-
set of images from 100 randomly selected subjects with 10
images from left eye each captured in NIR spectrum. For all
the iris images, we segment and localize iris region follow-
ing which we use Daugman’s rubber sheet model [32], [33].
Further, we extract binarised 1D Log-Gabor codes from iris
images as features and employ the fractional Hamming dis-
tance to compare two iris codes [32]. Formally, the fractional
Hamming distance is a rational number and not a real num-
ber. However, the mated and nonmated probabilities can be
approximated by continuous PDFs, which allows us to apply
our results.

For the same reason as given for the fingerprint data in
Section VI-C we only present the global empirical ROC,
the average individual empirical ROC, the predicted global
CMC, and the empirical CMC, for gallery size n = 100.
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Fig. 10. Iris recognition data experiments. Gallery size n = 100, HKPU
Cross-Spectral Iris data [19]. Iris recognition system: binarised 1D Log-Gabor
codes with fractional Hamming distance [32].

Figure 10(a) shows the empirical ROC, the average individ-
ual ROC, the global predicted CMC ĉmc(r; n) and the global
empirical CMC cmc(r; n). We observe that the empirical ROC
deviates somewhat from the other graphs, which are closer to
each other. We can also see that the recognition performance
is poor, with an equal error rate of about 15%. Figure 10(b)
directly compares the empirical CMC with the predicted CMC,
showing that the prediction is close.

VII. CONCLUSION

We extended earlier experimental and theoretical work [8],
[9], [10], [11], [12], [13], [14] on the relation between the
ROC and the CMC. Our main result is that, in a probabilistic
framework, an individual’s CMC can be predicted from the
individual’s ROC as a functional with a kernel based on the
β-PDF. This result cannot be applied directly to verification
and closed-set identification experiments to provide a relation
between a global CMC and a global ROC for two reasons. The
first is that the experimental ROC is based on counting true
and false matches with similarity scores above fixed thresh-
olds, while the established relation holds for ROCs obtained by
averaging individual ROCs at fixed false-match rates. The sec-
ond reason is that, if one should decide to compute individual
ROCs to predict a CMC from, this would require a large
number of mated similarity scores for each identity in the

gallery, to have the empirical ROC approximate the probabilis-
tic one well enough. This is particularly true for the steeper
parts of the ROC, determined by the tails of the similarity score
distributions. The main result is complemented with conver-
gence properties for increasing gallery size. In particular, we
show that for increasing gallery size, the individual CMCs as
a function of fractional rank, converge to the individual ROCs.
Our results provide explanations for discrepancies related to
the ROC and CMC observed in the literature.

The theory is illustrated by experiments on synthetic
data with Gaussian within- and between-class variations,
and on real data, namely the FRGC-V2 facial image
dataset [17], the FVC2006 fingerprint dataset [18], and The
Hong Kong Polytechnic University Cross-Spectral Iris Images
Database [19]. The experiments confirm the theoretical results.
It must be noted that the real-data experiments show that the
prediction of the CMC from individual ROCs is less accurate
where the ROC is steeper, due to less accurate estimation of
the ROCs in the tails of the similarity score distributions.

Finally, because we found that there is a probability-
theoretical relation between the individual ROCs averaged over
fixed false-match rates and the global CMC, but generally not
between the global ROC and CMC, we cannot conclude that
experimental biometric results only need to be presented as
ROCs and that CMCs would not have added value. However,
we think that presenting ROCs has the advantage over pre-
senting CMCs that an ROC is independent of the gallery size,
and therefore lends itself better for a general comparison of
biometric recognition performance.

APPENDIX A
PROOF OF EQUATION (12)

Lemma 1: Given a biometric comparison system that is
characterized by pfm(t|ω) = pfm(t) then ρ(α) = ρ(α).

Proof:

ρ(α) = ptm(t)|pfm(t)=α

= 1

|P|
∑

ω∈P
ptm(t)|pfm(t)=α

= 1

|P|
∑

ω∈P
ptm(t|ω)|pfm(t|ω)=α

= 1

|P|
∑

ω∈P
ρ(α|ω) = ρ(α).

APPENDIX B
PROOF OF THEOREM 1

Proof: We start with the expression for the CMC

cmc(r|ω; n) =
∫

S

r∑

l=1

(
n − 1
l − 1

)
pl−1

fm (s|ω)

(1 − pfm(s|ω))n−lφm(s|ω)ds, (33)

as derived in [8, p. 51], [10, eq. (16)], and [9, eq. (9)], under
the implicit assumption that all identities in the gallery gave the
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same ROC. To simplify the expression we rewrite the integrand
using the β-PDF in Equation (15) and to include the case that
pfm(s|ω) ≡ 0 and ptm(s|ω) > 0 for s > s0, which will result
is a jump in the ROC at α = 0, we split Equation (33) into
two parts:

cmc(r|ω; n) =
∫

s>s0

1

n

r∑

l=1

β(pfm(s|ω); l, n − l + 1)φm(s|ω)ds

+
∫

s≤s0

1

n

r∑

l=1

β(pfm(s|ω); l, n − l + 1)φm(s|ω)ds.

(34)

Because pfm(s|ω) ≡ 0 for s > s0, and β(0; 1, n) = n, and
β(0; l, n − l + 1) = 0 for 2 ≤ l ≤ n, the first integral evaluates
to ptm(s0|ω) = ρ(0|ω), and

cmc(r|ω; n) = ρ(0|ω) +
∫

s≤s0

1

n

r∑

l=1

β(pfm(s|ω); l, n − l + 1)

φm(s|ω)ds. (35)

We change the integration variable s in Equation (35) into
α = pfm(s|ω), with dα

ds = −φnm(s|ω), see Equation (5) and
rewrite Equation (35) as

cmc(r|ω; n) = ρ(0|ω) +
∫ 1

0
ρ′(α|ω)

1

n

r∑

l=1

β(α; l, n − l + 1)dα. (36)

Partial integration of the last term of Equation (36) yields

cmc(r|ω; n) = ρ(0|ω)

+
[
ρ(α|ω)

1

n

r∑

l=1

β(α; l, n − l + 1)

]1

0

−
∫ 1

0
ρ(α|ω)

1

n

r∑

l=1

β ′(α; l, n − l + 1)dα. (37)

We have that β(0; 1, n) = n and β(0; l, n − l + 1) = 0 for
2 ≤ l ≤ n. Also, β(1; n, 1) = n and β(1; l, n − l + 1) = 0 for
1 ≤ l < n. Therefore,

[
ρ(α|ω)

1

n

r∑

l=1

β(α; l, n − l + 1)

]1

0

=
{

ρ(1|ω) − ρ(0|ω), r = n,

−ρ(0|ω), 1 ≤ r < n.
(38)

The last line of Equation (37) can be simplified by using

1

n

r∑

l=1

β ′(α; l, n − l + 1)

=
{−β(α; r, n − r), 1 ≤ r < n,

0, r = n,
(39)

which is proved in Appendix C. Substitution of Equation (38)
and Equation (39) into Equation (37) and using ρ(1|ω) = 1
yields Equation (16). The result for a global probabilistic
CMC in Equation (17) follows by averaging both sides of
Equation (16) over the probe identity population by using
Equation (11) and Equation (14).

APPENDIX C
PROOF OF EQUATION (39)

Lemma 2: Let n ∈ N and l ∈ N, with 1 ≤ l ≤ n, and let
β(α; l, n − l + 1) denote a β-PDF defined in Equation (15).
Then

1

n

r∑

l=1

β ′(α; l, n − l + 1)

=
{−β(α; r, n − r), 1 ≤ r < n,

0, r = n.
(40)

Proof: By using Equation (15) we have

β ′(α; l, n − l + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

−nβ(α; 1, n − 1), l = 1,

nβ(α; l − 1, n − (l − 1))−
nβ(α; l, n − l), 2 ≤ l < n,

nβ(α; n − 1, 1), l = n.

(41)

Using Equation (41), we can rewrite the left-hand side of
Equation (40) for 1 ≤ r < n into

1

n

r∑

l=1

β ′(α; l, n − l + 1)

= −β(α; 1, n − 1) +
r∑

l=2

(β(α; l − 1, n − (l − 1)) − β(α; l, n − l))

=
r∑

l=2

β(α; l − 1, n − (l − 1)) −
r∑

l=1

β(α; l, n − l)

=
r−1∑

l=1

β(α; l, n − l) −
r∑

l=1

β(α; l, n − l)

= −β(α; r, n − r).

This gives the first row of the right-hand side of Equation (40).
The last row follows from combining 1

n

∑n
l=1 β ′(α; l, n − l +

1) = 1
n

∑n−1
l=1 β ′(α; l, n − l + 1) + 1

nβ ′(α; n, 1), with the first
row of Equation (40) with r = n − 1, and the last row of
Equation (41).

APPENDIX D
PROOF OF THEOREM 2

Proof: We only prove the individual case in Equation (20).
The global case follows by averaging both sides of
Equation (20) over the probe identity population.

We have to prove for
∫ 1

0 ρ(α|ω)β(α; r, n − r)dα in
Equation (16) that

∫ 1
0 ρ(α|ω)β(α; r, n−r)dα = ρ( r

n |ω)+O( 1
n )

for 1 ≤ r < n. By applying Taylor’s Theorem with the
Lagrange form of the remainder term [34] we as an approxi-
mation of ρ(α|ω) around r

n

ρ(α|ω) = ρ
( r

n
|ω
)

+ ρ′( r

n
|ω
)(

α − r

n

)

+ ρ′′(ξ |ω)

2

(
α − r

n

)2
, (42)
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with 0 ≤ ξ ≤ 1. Note that ξ depends on α. On
substitution of Equation (42) into

∫ 1
0 ρ(α|ω)β(α; r, n − r)dα,

the first term of the right-hand side of Equation (42) remains
unchanged, because it is a constant. The second vanishes
because E{α} = r

n , cf. Equation (18), and the remainder term
cannot be computed analytically, but with Equation (19) we
have

∣∣∣∣∣

∫ 1

0

ρ′′(ξ |ω)

2

(
α − r

n

)2
β(α; k, n)dα

∣∣∣∣∣

≤ max
ξ

∣∣∣∣
ρ′′(ξ |ω)

2

∣∣∣∣
∫ 1

0

(
α − r

n

)2
β(α; k, n)dα

= max
ξ

∣∣∣∣
ρ′′(ξ |ω)

2

∣∣∣∣
1

n + 1

( r

n

)(
1 − r

n

)

= O

(
1

n

)
. (43)

This completes the proof.

APPENDIX E
PROOF OF COROLLARY 2

Proof: We will only prove the individual case in
Equation (24). The global case follows by averaging both
sides of Equation (24) over the probe population. Starting from
Equation (16) we find that

1

n

n∑

r=1

cmc(r|ω; n)

=
∫ 1

0
ρ(α|ω)

(
1

n

n−1∑

r=1

β(α; r, n − r)

)
dα + 1

n
.

Corollary 2 holds if
∑n−1

r=1 β(α; r, n − r) = n − 1. Using the
definition Equation (15) and the well-known relation

(a + b)m =
m∑

l=0

m!

l!(m − l)!
albm−l

with a = α and b = 1 − α and m = n − 2, we write

n−1∑

r=1

β(α; r, n − r)

=
n−1∑

r=1

(n − 1)!

(r − 1)!(n − r − 1)!
αr−1(1 − α)n−r−1

=
n−2∑

l=0

(n − 1)!

l!(n − 2 − l)!
αl(1 − α)n−2−l

= (n − 1)

n−2∑

l=0

(n − 2)!

l!(n − 2 − l)!
αl(1 − α)n−2−l

= n − 1,

which completes the proof of Equation (24).
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