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Abstract. In this paper, we compare a recently developed multiple extended object tracking
method with a point-based tracker for maritime applications by evaluating the methods on both
real and simulated LiDAR data. Being able to track other vessels is a key part of maritime
situational awareness, and multi-object tracking is well suited to this task. Traditionally, multi-
object tracking uses the point approximation to simplify the target tracking problem, meaning
that an object is assumed to only generate a single measurement. With recent advances in sensor
technology, this approximation is no longer valid. Multiple extended object tracking instead
makes use of methods that estimates the extent of a target using all available measurements.
However, the target models used in extended object tracking are by necessity more complex.
We compare these two approaches on real and simulated LiDAR data, which was gathered by
tracking smaller vessels. We find that the extended object method has greater performance
on simulated data and experimental data with comparatively little wake clutter. However, on
experimental data with more wake clutter, the point-based method outperforms the extended
object method since it is less sensitive to the disturbance caused by wake clutter. We can
conclude that multiple extended object tracking methods have the potential to be more accurate
for LiDAR data, but since the models are more complex, measurement sources need to be
modeled correctly.

1. Introduction
Situational awareness is a key property of an autonomous system since autonomous operation
requires an understanding of the surrounding environment, of which other vessels are a key
component. To estimate the state of other vessels based on a set of measurements, a key
challenge is to determine which vessel generated which measurement. Handling this uncertainty
in measurement origin is the key challenge in multi-object tracking [1]. With recent advances in
sensor technology, such as LiDAR and radars with higher resolution, a single target can generate
several measurements. This enables algorithms that can determine the size and shape of a vessel,
known as the target extent. This is of particular importance in constrained environments, such as
inland shipping. However, multi-object tracking has traditionally used the point approximation
to simplify the target tracking problem. It consists of two assumptions, the first being that
an object is assumed to only generate a single point measurement and the second that each
measurement is assumed to only be generated by a single object. This approximation does not
allow an estimation of the target extent. In addition, in order to not violate the first assumption
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when using high-resolution sensors, the use of a clustering method is needed such that several
measurements are combined to form a single target detection. This could introduce further errors
by violating the second assumption [2]. Multiple extended object tracking instead makes use of
extended object tracking methods, where the extent of a target is estimated using all available
measurements, enabling estimation of the extent of a target in addition to the kinematic states.
However, this makes the target models more complex [3]. There are several different target
models to choose from but one model, the Gaussian process (GP) model, is particularly suited
to LiDAR data since it can model measurements that originate from the contour of a target.
It is also able to model complex shapes [4]. Both regular multi-object tracking and multiple
extended object tracking methods have been used in a maritime context [5–7], but they have
not been compared directly. In this paper, we compare the two approaches in a scenario where
extended object tracking is relevant, using LiDAR data. The primary research question is if
the tracking performance can be improved by explicitly modeling the target extent, instead
of simplifying the data by using clustering. For comparison, we use a newly developed Poisson
Multi Bernoulli Mixture (PMBM) tracker based on the Gaussian process target model [5], which
can estimate an arbitrary ship shape, and the Joint Integrated Probabilistic Data Association
(JIPDA), which has been used in several other works for tracking ships [6, 7]. To compare the
ability of both methods to estimate the extent, we equip the JIPDA with a simple method for
estimating the target extent, based on the measurement cluster associated with a target.

2. Background
We first give a brief overview of multi-object tracking and the relation between the JIPDA and
the PMBM filter. Then we give a brief overview of extended object tracking.

2.1. Multi-object tracking theory
Multi-object tracking methods are generally probabilistic, and the joint probabilistic data
association (JPDA) is arguably the simplest example. The JIPDA adds the ability to model the
existence probability of a target along with the target state. Both of these have been heavily
used in the multi-object tracking community [1, 6, 7].

The current theory of multi-object tracking is based on Random Finite Sets. The state-
of-the-art is the PMBM filter, which is the direct solution of a multi-object Bayes filter [8].
It tracks both the set of undetected targets via a Poisson point process (PPP) and the set
of detected targets via a multi-Bernoulli mixture (MBM). The multi-Bernoulli mixture can
represent multiple data association hypotheses through the weights of the components of the
mixture. The PMBM framework has also been used in extended object tracking to derive a
multiple extended object filter [9].

It has been shown that the JIPDA is a form of the PMBM provided certain assumptions
are made [6]. The first assumption is that the Poisson component representing unknown
targets is considered stationary in the JIPDA. The second is that the JIPDA performs mixture
reduction to reduce the number of data association hypotheses to a single hypothesis, which is
a weighted representation of all the feasible data association hypotheses. The JIPDA therefore
can be considered a Poisson multi-Bernoulli (PMB) filter. In contrast, the PMBM filter
can theoretically maintain and track all possible hypotheses. However, in practice mixture
components with low weight are pruned, such that only the most likely data association
hypotheses are retained to limit the exponential growth of hypotheses.

2.2. Extended Object Tracking
Extended object tracking methods allow targets to generate more than one measurement, which
enables the ability to estimate the extent of the target in addition to the kinematic parameters.
This requires a model for the extent and how it relates to the measurements. An example of
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such a model is the GP model, which defines the extent as an arbitrary closed shape. This is
achieved by defining a radial function for the shape, where the radii are modeled by the GP.
This model was first presented in [4], where a state space model was defined as

xk =
[
xc
k ϕk (x∗

k) xf
k

]T
(1)

where xc
k is the position of the centroid of the target from which the extent is defined, ϕ is the

target heading, and x∗
k represents any additional kinematic states of the target. In the original

paper, these are the velocity in each direction in 2D and the angular velocity ϕ̇. xf is the
representation of the extent of the target, in the GP model, this is a vector that specifies the
radius of the shape at a specific equidistant angle. We use this same state space model in this
paper.

For this state space, we can define the following description

xk+1 = Fxk + w, w ∼ N (0, Q)

zk = hk(xk) + ηk, ηk ∼ N (0, Rk)
(2)

where zk, hk(xk) and Rk are all augmented vectors or matrices with the size corresponding to
the number of measurements generated by one scan of the target.

For a single measurement, the measurement model can be written in the form

zlk = xc
k + p(θlk)f(θlk) + ηlk

p(θlk) =

[
cos θlk
sin θlk

]
(3)

where zlk is the measurement l at time k, θlk is the corresponding angle of the origin of the
measurement of the target contour and f is a function describing the radius for each angle. In
the GP model, the specific form of this function is given by Gaussian process regression. θlk can

be expressed both in a global frame θlk
(G)

and the local target frame θlk
(L)

as

θlk
(L)

(xc
k, ϕk) = θlk

(G)
(xc

k) − ϕk

θlk
(G)

(xc
k) = ∠ (zk,l − xc

k)
(4)

The detailed derivations are available in the original paper [4], but it should be noted that the
measurement model has two important properties. It has a non-linear dependence on xc and ϕk

and it is an implicit equation due to the dependence of zlk contained in θlk
(G)

(xc
k). This implies

a need for non-linear filtering techniques.

3. Implementation
3.1. Extended Object PMBM
The extended object tracker used is a PMBM tracker using a GP target model (henceforth
referred to as the GP-PMBM tracker) and it was previously presented in [5]. The state space
of a target consists of the kinematic state and the extent state, provided by the GP model.
Furthermore, the state space also contains parameters of a gamma distribution, which models
the Poisson rate of the expected number of measurements for each target. To handle the non-
linearity of the GP model, an iterated extended Kalman Filter (IEKF) is used to improve the
linearization, and a special criterion is used to initialize the optimization to make it more robust.
The birth density is defined using a mixture representation of a PPP intensity, where the mixture
components are spread along the edge of a circle to provide full coverage of the surveillance area.
Gating is used to reduce the number of possible measurement-to-target associations and the
stochastic optimization method [10] is used to find the most likely subset of those associations.
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Figure 1: Visualization of the simulation scenario, along with the extent and
measurements for a single timestep

3.2. JIPDA
The JIPDA implementation used is the same as the one that was used in [6]. This implementation
also includes an interacting multiple-model component and a visibility component. However,
neither of these components are used in order to make the comparison fair, since the extended
object tracker does not have these components. The motion model used is a constant velocity
(CV) model with low process noise. Similarly to what is done in the GP-PMBM, gating is
used for all current targets as a first step to reduce the number of data association hypotheses.
After that, tracks that share measurements are clustered and processed together. If the number
of measurements or targets is low, the hypotheses are enumerated manually. If the number is
higher, Murty’s algorithm is used to find the most likely subset of associations. To initialize
new tracks, measurements that are not gated are used as the initial point of a new track. To
adapt the JIPDA to high-resolution LiDAR data, euclidean clustering is used as a pre-processing
step to merge measurements that are close to each other, so that the assumption that a target
generates a single measurement can be enforced. The clustering is done so that the distance
between each measurement in a cluster is no more than 5 meters, and uses the fclusterdata-
method from the SciPy library [11]. To generate an extent estimate, we keep track of the most
likely measurement cluster for each target, i.e., the measurement associated with the highest
weight prior to mixture reduction for each timestep. Then, as a post-processing step, we use this
measurement cluster to generate a convex hull using the measurements in that cluster, using
the matlab function convhull [12]. This convex hull is then used as an estimate of the extent
of the target.

4. Simulation Study
In this section, we present the result from a Monte Carlo simulation study comparing the
performance of the two methods.

4.1. Simulation Scenario
The scenario consists of four ships approaching from the edge of the surveillance area and
traversing it to the opposite end while performing a turning maneuver. See Fig. 1 for a detailed
view. The scenario lasts for 250 timesteps and vessels appear two at a time at the edge of the
surveillance area at timestep 20 and 40. The target vessels are 6 m long, and 3 m wide and
they have a pointed bow where the full width is achieved 2 m behind it. The measurements are
generated by simulating a LiDAR with a maximum range of 100 m, angular resolution 0.25◦

and a modeled radial accuracy of 0.1 m. Measurements are only generated if they hit a vessel



International Conference on Maritime Autonomous Surface Ships (ICMASS 2023)
Journal of Physics: Conference Series 2618 (2023) 012011

IOP Publishing
doi:10.1088/1742-6596/2618/1/012011

5

and only one measurement is generated per angle. This simulates occlusion since a ship that is
behind another ship from the perspective of the sensor will not generate any measurements. In
addition, clutter is generated using a PPP with rate λc = 20 and a uniform spatial distribution.
The results are averaged over 100 Monte Carlo simulation runs.

4.2. Parameters
The PMBM parameters are chosen as follows: probability of detection PD = 0.9, probability
of survival PS = 0.99, and clutter rate λc = 20. The gating probability, which determines
the size of the gate used to reduce the number of measurement-to-target associations, is set to
PG = 0.99, the pruning parameters are 0.01 for the existence probability, 0.01 for PPP mixture
components, and 0.01 for multi-Bernoulli mixture components. A target is assumed to exist if
the existence probability is higher than r = 0.5. Both target models use σc = 0.2 m as the noise
parameter for the CV model and the GP model uses σϕ = 0.1 rad/s as noise for the constant
angular velocity model. Furthermore, the GP model uses σr = 0.3 m for the measurement noise.
The window length used in the gamma prediction step is 20. For the GP target model, we use 9
test angles to parametrize the extent and the hyperparameters are σf = 0.5 m, σr = 0.5 m, σn =
0.001 m, l = π/4 and the forgetting factor α = 0.01. The maximum amount of IEKF iterations
is 50. The prior value of the gamma distribution is α0 = 1000 and β0 = 100. The covariances of
the birth density are inflated to ensure coverage of the whole circle: the positional component is
20 m, the velocity components are 3 m/s, and for the GP model the heading component is π and
the angular velocity is π/4 rad/s. In the case of the extent, for the GP model the prior is given
by the covariance function. For the JIPDA, the measurement noise strength is σr = 3 m and
the constant birth intensity is 10−6 m−2. The initial covariance of the velocity is 10 m/s. The
threshold for confirming a new track or terminating an old one is 0.999 and 0.001 respectively.

4.3. Performance Evaluation
To compare the performance of the trackers, the generalized optimal sub-pattern assignment
metric (GOSPA) [13] is used. It provides a metric for the performance of a multi-object
tracking algorithm by incorporating localization error, missed targets, and false targets into
a single metric. However, due to the different state spaces of the different target models, the
distance measure is only comparable between the shared states, namely the position and velocity.
Therefore, these states are used to calculate the localization error. The GOSPA cut-off c and
power p were set to 10 and 2, respectively. To compare the extent estimates of the target models
we use the process of associating estimates to targets to calculate an Intersection-Over-Union
(IOU) metric, which is a common metric to compare methods for extent estimation [4, 14].

4.4. Results
The metrics are presented in Table 1. We can note that the results are relatively close in terms of
the overall GOSPA score, but that the contribution from different sources varies between the two
methods. The GP-PMBM tracker shows superior performance with regard to the localization
error, and consequently also the IoU metric. The most likely explanation for this is that the
clustered measurements are centered on the contour of the ship, which does not correspond
to the centroid. The GP-PMBM can account for this disparity due to the assumption that
measurements are generated by the object contour, whereas the JIPDA can not. On the other
hand, the JIPDA has an overall better performance in the birth process, with a lower false alarm
rate. This indicates a struggle on the part of the GP-PMBM tracker in an environment with a
larger amount of clutter measurements, especially the termination of false tracks. Fig. 2 shows
the evolution in time. We can see that the JIPDA, in particular, struggles after timestep 150,
indicating an inability to cope with the occlusions and maneuvers that occur when the targets
meet in the simulation.
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Table 1: Mean value of metrics for the simulated scenario

Method GP-PMBM JIPDA

GOSPA 4.15 4.56
Localization error 3.40 6.72
Missed targets 0.10 0.12
False targets 0.28 0.07
IOU 0.60 0.28
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Figure 2: The evolution throughout the simulation run for selected metrics as an average over
the Monte Carlo runs.

5. Experimental Test Data
In this section, we present results from real LiDAR data gathered from tests in the Trondheim
canal, which utilized the two autonomous ferry platforms milliAmpere and milliAmpere2 [15].

5.1. Test scenario
We present two separate scenarios, one with a single vessel performing maneuvers in front of the
sensor in the canal (see Fig. 3a) and one with two vessels traveling in separate directions in the
canal and passing each other (see Fig. 3b). These scenarios were also used in [5]. The data from
the first scenario were gathered using milliAmpere2 which is equipped with two Ouster OS1 32
LiDARs, the point clouds from the two LiDARs were combined and the returns from land and
static obstacles along the canal were filtered out using manual land masking. The target vessel
was a small motorboat that was 2.8 m long and 1.6 m wide. Furthermore, the point cloud was
transformed to 2D by only retaining the point closest to the sensor in each angular resolution
sector. The second scenario was originally published in [7] (as scenario 13). The target vessels
were two different motorized vessels that were both 7 m long and 3 m wide, see the original
paper for details. Note that for this scenario the ground truth data gathered was only positional
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Figure 3: Visualization of the test scenarios, along with the extent and measurements for three
different timesteps. Note the measurements generated by the wake, as well as the occlusion in
the second scenario.

GPS data without heading.

5.2. Parameters
Most of the parameter values are the same as those in the simulation study. However, for the
GP-PMBM tracker, some parameters are modified. The range used to define the birth density is
reduced to 40 m and 60 m respectively, due to the observed range at which the LiDARs were able
to detect the target vessels. For the second scenario, α0, the initial parameter for the gamma
distribution governing the expected number of measurements, is set to 500 to account for the
lower sensor resolution. The extent priors are set such that the length and width of the prior
are roughly equivalent to the target vessels, but the same prior is used to represent both ships in
the second scenario. In addition, some tweaks are made to attempt to mitigate some observed
effects that are not modeled. To account for wake clutter, the clutter rate is increased to λc = 60
and λc = 100 for the first and second scenario respectively, while the gating probability PG is
set to 0.95 for the same reason. Finally, to account for errors related to sway affecting the pitch
of the LiDAR sensor, measurement noise strength σr is set to 0.5 m. The JIPDA uses the same
parameters as in the simulation study.

5.3. Performance Evaluation
We use the same metrics that were used in the simulation study, with the ground truth data
gathered used to calculate the metrics. For the first scenario, ground truth was measured by
using a dual antenna inertial navigation system, and the extent of the vessel was measured
manually with the LiDAR data to compare the estimated extent with the ground truth. For the
second scenario, because only positional data was available, the heading was inferred from the
velocity vector, which is a significant source of error for the calculation of the IOU metric.

5.4. Results
The first scenario contains only a single vessel, performing some complex maneuvers. The
metrics in Table 2 show superior performance for the GP-PMBM in both the GOSPA score
and the IOU metric. This is due to the difference in localization error, verifying the simulation
results. Looking at the evolution of the run over time in Fig. 4, we can see that the JIPDA
is not coping as well with the maneuvers. This causes peaks in the localization error around
timestep 700 and 900, which is when the maneuvers happen.

The second scenario is more complex, as it contains two targets, with one target being
occluded by the other. The metrics are given in Table 2 and the evolution over time is shown in
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Figure 4: The evolution throughout the single target test run for selected metrics.

Table 2: Mean value of metrics for the real LiDAR data

Test 1 Test 2

Method GP-PMBM JIPDA GP-PMBM JIPDA

GOSPA 1.40 3.95 5.69 4.37
Localization error 1.12 2.21 6.02 4.49
Missed targets 0.03 0.36 0.08 0.05
False targets 0.00 0.00 0.02 0.04
IOU 0.38 0.08 0.18 0.18

Fig. 5. Here the result is the opposite and the GP-PMBM has the worst GOSPA score with a
higher localization error. This is primarily due to the disruptive effect of the wake clutter on the
GP model which was highlighted in the original paper presenting the GP-PMBM tracker [5].
The JIPDA is less sensitive to wake clutter due to the wake measurements being masked by
the use of clustering. However, judging by the peak around 1200, it is nevertheless affected.
However, the relatively low value of the IoU metric for both methods compared to the other
cases shows that the JIPDA’s superior performance is more due to the failure of the GP-PMBM
method, and both methods have potential for improvement.

5.5. Computational time
Since the implementation of these algorithms is in two different programming languages, being
matlab for the GP-PMBM tracker and Python for the JIPDA, a direct comparison between
the computational time of the two algorithms is not possible. Nevertheless, the JIPDA was
orders of magnitude faster than the GP-PMBM. For the simulated data, it was approximately
10 times faster and for the experimental data, it was 100 times faster. These numbers are as
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Figure 5: The evolution throughout the multi-target test run for selected metrics.

expected and there are many reasons for this. One reason is the use of clustering in the JIPDA,
which reduces the number of measurements processed by the filter, in some cases significantly.
The other reason is the use of the Gauss-Newton optimization in the GP-PMBM, which in
effect means that the Kalman filter update step will be run several times. An additional factor
that influences computational time is the number of association hypotheses that are found and
retained in the PMBM filter, which in this case depends on the parameters of the stochastic
optimization algorithm and the pruning parameters. However, if computational time is an issue,
both algorithms could probably be significantly sped up. For instance, multi-object tracking is
a highly parallel problem, and parallelization could be utilized to speed up both methods.

6. Conclusion
This paper has presented a comparison between a point-based method (JIPDA) and an extended
object method (GP-PMBM) on maritime data. The results show that the GP-PMBM method
has superior performance on simulated data and some real data, as shown by the IoU metric
and the GOSPA score. This shows that there is a gain in performance to be had by utilizing
extended object tracking methods. However, on real data with a lot of wake clutter and poorer
resolution, this gain disappears and the JIPDA shows superior performance. This is due to the
fact that the JIPDA is not as affected by the clutter since the clustering can partially mask
it. However, the relatively low value of the IoU metric for both methods shows that neither
method handles the wake clutter well. In conclusion, the extended object tracking method has
the potential to provide more accurate tracking of other vessels, if all the measurement sources
can be modeled correctly. If the sensors will pick up measurements from sources that are not
properly modeled, such as wake clutter, a point-based method along with clustering is more
robust. Therefore, in a situational awareness system for an autonomous inland vessel, a point-
based method might be preferable until all measurement sources can be reliably modeled. An
avenue for further research is therefore to look at improving both methods such that they are
better able to deal with wake clutter, particularly for the GP-PMBM method, since it seems to
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have a higher performance ceiling.
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