
Received 29 March 2023, accepted 17 April 2023, date of publication 21 April 2023, date of current version 26 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3269093

maplib: Interactive, Literal RDF Model
Mapping for Industry
MAGNUS BAKKEN
Department of Computer Science, Norwegian University of Science and Technology—NTNU, 2815 Gjøvik, Norway
Prediktor AS, 1630 Fredrikstad, Norway

e-mail: magba@stud.ntnu.no

This work was supported by the Research Council of Norway and Prediktor AS through the Industrial Ph.D. Scheme under Grant 316656.

ABSTRACT Knowledge graphs are important for industrial digitalization. Industrial knowledge graphs are
often mapped from multiple existing large data sources, and creating a mapping requires the time of scarce
subject matter experts (SME). Interactive, literal programming for large scale mapping would allowmapping
engineers to make good use of SME time, and document their work. Currently, there are no open-source
tools supporting such a process. To solve this problem, we implement maplib, which leverages existing
tooling from data science. In data science, there is widespread use of literate programming using frameworks
such as Jupyter notebooks to interactively prepare data and create analyses using in-memory tables called
DataFrames. Maplib is implemented in Rust using Polars DataFrames and has Python bindings, allowing
us to leverage tooling used in data science. Maplib implements the OTTR mapping language, which is
highly suited for industrial use cases. Maplib features a SPARQL engine defined directly on DataFrames,
making querying possible immediately after mapping. We evaluate our approach by comparing mapping
and querying performance with Morph-KGC and SPARQL Anything on the GTFS Madrid benchmark. Our
approach materializes the graph and is ready to query 47×-182× faster, and scales to models that are over
twice as large. Morph-KGC and SPARQL Anything perform better for most, but not all of the queries once
the graph has been constructed. On the end-to-end task of mapping and querying however, which is very
important for interactive mapping, maplib performs better for most queries.

INDEX TERMS Knowledge graph construction, knowledge graph mapping, RDF mapping.

I. INTRODUCTION
Knowledge graphs are digital representations of our knowl-
edge of the world made up of nodes representing concrete or
abstract entities or concepts, as well as edges between them,
representing relationships of different kinds. In industrial
settings, knowledge graphs can integrate heterogeneous data
sources into a unified model of an asset or process. Indus-
trial knowledge graphs are important for industrial digitaliza-
tion [1], [2]. Constructing or mapping industrial knowledge
graphs requires the time of scarce subject matter experts
(SME). Interactive, literal approaches to knowledge graph
construction can be useful in these settings, as the short

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

duration of the feedback loop allows an engineer to make
good use of the SME.

Data analysis and data engineering in Python is very popu-
lar. In combination with interactive Jupyter Notebooks [3],
it is thought to improve the speed with which data pro-
fessionals can explore, process and analyse a data set. Lit-
eral programming was invented by Donald Knuth, and is
a form of programming which follows the form of litera-
ture, the flow of the program follows a line of reasoning
[4]. In literal programming, prose is interspersed with code
and outputs. Jupyter Notebooks are considered a form of
literal programming, and allows the data analysis process to
be inspected and documented as it proceeds [5], [6]. Data
analysis and data engineering in Python very often involves
the Pandas library [7], which has powerful in-memory tables
called DataFrames. Pandas offers a rich and performant set

39990 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6862-458X
https://orcid.org/0000-0002-3945-4363

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

of operations on these DataFrames, and can import from a
myriad of heterogeneous sources with few lines of code [8].
These operations overlap to a large degree with the tasks that
are performed when constructing a knowledge graph.

Open source, interactive, literal knowledge graph construc-
tion tools that allow intermediary results to be inspected and
manipulated do not exist, making it difficult to quickly and
exploratively create knowledge graphs. Integrating with the
DataFrame-based Jupyter Notebook ecosystem could provide
this support with no additional work. While there does exist
an open-source tool for knowledge graph construction and
querying in Python called Morph-KGC [9] which is based
on Pandas, it relies on atomic, non-interactive execution of
knowledge graph construction, and does not actually inte-
grate with DataFrames. This lacking integration is likely
due to the use of end-to-end declarative mappings using
RML, which is a mapping language that defines end-to-
end transformations from sources such as databases or files
to knowledge graphs [10]. RML implementations typically
allow no inspection and no interactivity with intermediary
results [11]. RML also does not support templates, which
are important in industrial settings with a large degree of
modularity [12]. Morph-KGC relies on third-party databases
and performs a data transformation and copying operation in
order to populate these databases with the mapped knowledge
graph [13]. Using DataFrames as a database primitive, one
can actually forego such a transformation step and query the
mapping output directly.

To address these gaps, we introduce maplib. Maplib is
written in Rust, and uses Polars DataFrames [14] as the core
data structure. Polars DataFrames perform better than Pandas
DataFrames due to lazy execution, high parallelism, and its
implementation in Rust [14], [15]. It has Python bindings that
allow DataFrames to be transferred back and forth between
Rust and Python with minimal cost. Maplib implements
OTTR [12], which is a template-based mapping language ori-
ented around API-like functional abstraction. These abstrac-
tions are highly suitable for integration with DataFrames.
The templates-based nature of OTTR also makes it highly
suitable for industrial settings. We adapt a DataFrames-based
SPARQL query engine that we developed earlier [16] for
maplib, and make it possible to query mapped knowledge
graphs immediately after they are constructed, without a
separate transformation/copying step. The SPARQL engine
of maplib is also able to extend the knowledge graph with
the results of the construct query without transformation or
copying, permitting fast enrichment of the knowledge graph.
To evaluate maplib, we compare it with state-of-the-art solu-
tions Morph-KGC [9] and SPARQL Anything [17] on the
Madrid GTFS benchmark [18], which features knowledge
graph construction together with challenging queries.

Our paper is structured as follows. We first introduce
relevant background knowledge in Section II. We con-
sider the motivation, research problem, and requirements in
Section III. We describe existing solutions in relation to our

requirements in Section IV. The solution approach and imple-
mentation is described in Section V. We evaluate maplib
in Section VI, before presenting our conclusions as well as
future work in Section VII.

II. BACKGROUND
This section covers background knowledge important to our
work. We discuss Semantic Web Technologies (SWT) and
knowledge graphs in Section II-A. Major languages used to
construct knowledge graphs are introduced in Section II-B.
We introduce literate programming and how it is being
used in modern data analysis in Section II-C. Finally,
we describe important technologies for modern data anal-
ysis and data engineering that we use in this work in
Section II-D.

A. SEMANTIC WEB TECHNOLOGIES AND
KNOWLEDGE GRAPHS
The Semantic Web started as an initiative to create interop-
erable ways of sharing meaningful information on the Web,
where websites would share information in particular for-
mats, allowing information to be integrated across websites
and used to support new use cases [19]. Out of this work came
powerful ways of representing knowledge, and for querying
and reasoning about that knowledge.

The Resource Description Framework (RDF) is a way of
representing knowledge based on triples containing subjects,
verbs, and objects [20]. Triples either describe some relation-
ship between the subject and the object or associate a piece
of data with the subject. The subjects and objects of such
a collection of triples form the nodes of a graph, while the
verbs form the edges. The non-data nodes are called resources
and may refer to real or imagined entities. Verbs typically
have agreed-upon meanings. In sum, such a graph represents
knowledge about a domain of discourse, and is often referred
to as a knowledge graph.

Higher-order knowledge graphs called ontologies repre-
sent the concepts and terms in the knowledge graph, and are
typically used to represent a particular domain of discourse
in a uniform and coherent way [21]. Knowledge graphs based
on RDF can be queried with SPARQL [22], a query language
which allows users to formulate queries using the concepts
from ontologies. We call such data access Ontology Based
Data Access (OBDA) [23]. Compared to query languages
such as SQL, SPARQL abstracts away more technical details
on how data are stored, and focuses on expressing the con-
ceptual relationships inherent in our information retrieval
task. SPARQL can either be executed on a triple store which
physically stores the RDF triples, or we can have data stay
in an existing database and translate SPARQL queries into
the query language of this database. In the first case, we say
that we are materializing the Knowledge Graph. In the lat-
ter case, we say that we have a Virtual Knowledge Graph
(VKG) [24].

VOLUME 11, 2023 39991

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

B. RDF MAPPING LANGUAGES
A core challenge is to transform data from other formats
into RDF-based knowledge graphs so that it can be e.g.
queried and reasoned about. The Relational database To
RDF Mapping Language (R2RML) is a W3C-recommended
declarative language for describing mappings from relational
databases to RDF [25]. The language describes how to con-
struct the subject IRI for all rows in a table, and how to
construct a number of triples for each row. The language is
designed with two use-cases in mind. The first use case is to
materialize RDF triples based on data in a relational database.
The second use case is to support VKGs. That is, the mapping
should contain the information necessary to be able to answer
SPARQL queries by translating them into SQL queries over
the relational database [26].

RML is a language that extends R2RML to cover other
data sources such as CSV and JSON files [10], iterating over
rows of the CSV or matches of a JSONPath in case of a JSON
file. Multiple implementations of RML exist, such as SDM-
RDFizer [27] and Morph-KGC [9] for Python. R2RML has
also been extended (R2RML-F) with a facility for specifying
functions that should be applied to the input data before it
is used to instantiate triples [28], using a standardized set
of functions called FnO [29]. Since RML includes R2RML,
we will use the term ‘‘RML’’ to refer to them collectively in
the rest of the paper.

The Façade-X mapping language allows users to intro-
duce heterogeneous data sources such as relational databases,
JSON files, and CSV files into SPARQL through the
SPARQL Service construction [17]. An abstraction called a
facade is used to expose such data as RDF, using special
predicates that are used to access, e.g., the columns of a CSV
file or keys in a JSON. This allows end-to-end mappings
to be defined declaratively, using lightly annotated SPARQL
queries.

However, both RML and Façade-X lack facilities for func-
tional abstraction overmappings. Individual componentsmay
be reused, but it is impossible to group and nest such compo-
nents. The issue of reusable components has been addressed
by Ontology Design Patterns (ODP) [30], but has been criti-
cized for being hard to use in practice [31]. In particular, ODP
was criticized for not having user-facing abstractions [31].
The Reasonable Ontology Templates (OTTR) mapping lan-
guage addresses this shortcoming by creating a templating
language that is based on functional templates with argu-
ments [12].

OTTR templates are essentially reusable macros that can
be referenced by users. The head of an OTTR macro consists
of its parameters. In the body, other templates are called using
a combination of these parameters and static terms. Executing
an OTTR template consists of rewriting each template in the
body, replacing each parameter with the argument provided.
The process of substitution is repeated with the templates
in the body until there are only ottr:Triple-templates,
which have three arguments that map one-to-one with the
subject, verb, and object of the RDF triples to be created.

OTTR templates are nested, but cycles are disallowed [31].
We discuss OTTR in greater detail and provide an example in
Section V.

The Terse Syntax for OTTR (stOTTR) is a syntax for speci-
fying OTTR templates in text in a way that seeks to be easy to
use [12]. OTTR differs significantly from RML and Façade-
X in that it makes no attempt to describe the data source or
to allow translation of SPARQL queries to a source database.
OTTR is especially suited for industrial use cases, as these
tend to be built on standardized, modular representations that
are combined in myriad ways to represent, e.g., various types
of equipment and their properties [12], [32], [33].

C. LITERATE PROGRAMMING
Literate programming was invented by Donald Knuth, and
refers to programming that takes a form similar to litera-
ture [4]. The purpose of a literate program is to structure code
for readability, following a train of thought, motivating and
describing the steps with prose. In a step called weaving, the
output of the program is combined with the verbal description
to create an integrated document [4].

Modern literate programming environments such as
Jupyter Notebook have become very popular among data sci-
entists for documenting data processing and analysis, particu-
larly in an exploratory stage [5]. Jupyter Notebooks combine
literate programming with interactivity, allowing data scien-
tists to get rapid feedback at each stage of data processing and
analysis, provided these steps are not long-running.

D. PANDAS, DataFrames, ARROW, POLARS
AND PARQUET
Pandas is a high-performance open-source library for data
manipulation and analysis in Python [7], which has become
a standard tool in data analysis. In a survey of over
23,000 Python developers conducted by the Python Software
Foundation and IDE-vendor JetBrains, 53% of respondents
answered that they used Python for data analysis, and 55%
of respondents used Pandas. Python is among the world’s
most popular programming languages, perhaps the most pop-
ular [6]. It is not clear from the survey how representative it
is for the population of Python developers, but it is safe to
assume that Pandas is an extremely popular data analysis/data
engineering tool.

A central data structure in Pandas is the DataFrame.
DataFrames are in-memory tables of data, consisting of
named columns of data of a homogenous type. In Pan-
das, DataFrames are built on data structures from NumPy,
a Python library for numerical computations [34]. The
Apache Arrow project seeks to standardise such columnar
in-memory representations, making it easy to share them
among processes on the same machine [35]. Agreeing on the
standard, one application can pass an Apache Arrow array to
another by providing the pointer to in-memory data instead
of copying data. Additionally, Apache Arrow Flight enables
transport of columnar data from e.g. databases without having

39992 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

to perform costly row-oriented serialization associated with
ODBC [36].

The open-source Polars library is based on Apache Arrow.
It is built in Rust, but has Python bindings. It provides an
API that is very similar to Pandas DataFrames, but that addi-
tionally supports lazy execution, allowing optimizations to be
applied to the execution plan. Polars DataFrames can easily
be created from Pandas DataFrames and vice versa. Apache
Parquet is a column-oriented file format that is commonly
used in data lakes [37]. Parquet can be read to- and written
from Apache Arrow with very little serialization overhead.

III. PROBLEM
Exploratory data engineering for analytics relies on literate,
interactive programming in the notebook format. At their
best, notebooks enable data engineers to quickly and col-
laboratively prototype pipelines for data processing in the
form of an illustrated story. Jupyter Notebooks face issues
with testability, reproducibility, and modularity that makes
it challenging to use them in production and maintain them
over time [38], [39], [40]. We will assume that notebooks are
rewritten into structured form after the exploration phase is
done in order to meet common quality requirements for pro-
duction code (cf. [38]). The core problem addressed by this
work is to provide such a facility for mapping engineers that
are building industrial knowledge graphs, which can be used
in the exploration phase, and then refactored into structured
form for production deployment and ease of maintenance.

In the rest of this section, we will motivate the problem
of template-based interactive mapping that integrates well
with DataFrames, arguing that such tooling can improve
knowledge graph mapping practices, especially for industry.
Finally, we describe our requirements.

A. MOTIVATION
1) THE VALUE OF INTERACTIVITY AND LITERAL
PROGRAMMING
OBDA is used to make it easier to access data, especially
when those data are located in separate databases, as we are
able to abstract away the technical schemas of the individual
data sets and integrate them in a common RDF model. Map-
ping engineers need to understand these data sets in order to
map them to RDF and integrate them. Attempting to perform
a rudimentary data integration is a way of accomplishing this
task that provides quick feedback on the assumptions of the
mapping engineer.

When integrating enterprise data sets, one can encounter
insufficiently documented, ambiguous data that are hard to
reconcile without extensive domain knowledge [41]. In such
cases, a SME may have to be consulted. Such individuals
are typically in high demand, and it is important to make
effective use of their time. A similar argument also applies
to the target ontology which will be instantiated. In industrial
settings, there are sometimes precise modeling rules to fol-
low when creating a model according to a standard. Correct

instantiation of such ontologies relies on domain knowledge.
Being able to interactively work on constructing a mapping is
helpful, as this provides immediate feedback to the mapping
engineer on how well she has understood and manipulated
the source data sets, and on how appropriate the mapping
is. An interactive mapping environment should enable the
mapping engineer to quickly follow up with the SME to
resolve questions.

The form of the feedback is important in order to be able
to collaborate and communicate the results of the exploratory
data integration. It is ineffective to manually collect the out-
puts of various mapping scripts and programs in a document.
Corrections to the mapping upstream to such outputs lead to
repetitive manual updating of the documentation. A literal
programming environment such as Jupyter Notebooks avoids
this toil, as the script is in a literal form with outputs that
update when the script is rerun. The audience of this literal
program is not just mapping engineers. A literal mapping
will inform the SME on how the data sets of the organization
can be integrated, and make visible the consequences of such
integration through queries or other means of inspection.

2) THE VALUE OF INTEGRATING WITH EXISTING DATA
ENGINEERING TOOLS AND FORMATS
Today, there are very mature data engineering tools that
are very well maintained. Pandas is likely to remain so,
as thousands of engineers and organizations depend on it.
There are multiple advantages to being highly interoperable
with DataFrame-based data engineering tooling that are due
to the broad acceptance of these tools. It is easy to find
documentation, and common issues are well documented on
websites such as Stack Overflow. There is extensive support
for reading and writing data to and from different file formats
and databases. Many of the data preparation tasks that must
be conducted bymapping engineers are already implemented.
There is support for configurable literate outputs in Jupyter
Notebooks. Existing data engineering tooling has high per-
formance enabling interactive processing of large datasets.
Many data engineers will know these tools very well, and
thus face less effort in adopting a mapping engineering tool
as their existing skills can be reused. By integrating with such
tooling, it is possible for developers to focus on solving the
tasks in mapping engineering that are not found in general
data engineering tools. Less effort is required to maintain the
tooling over time, as important functionality that is not unique
to mapping engineering will be maintained separately by a
much larger community.

Increasingly, analytical databases are relying on the
column-basedApacheArrow andApache Parquet formats for
storage, transmission, and computations on data [42], [43],
[44], [45], [46]. We have already discussed how these for-
mats can drastically reduce serialization overhead. Modern
DataFrame-based data engineering tooling has good inter-
operability with these formats. By interoperating well with
DataFrames we can exploit these technological developments

VOLUME 11, 2023 39993

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

in knowledge graph construction, for instance by reducing
the time taken to write and upload a knowledge base into a
triplestore – if and when the triplestore supports such formats.

3) THE VALUE OF ENRICHMENT FOR INDUSTRIAL
INFORMATION MODELS
We can consider the case where an application uses SPARQL
to access a materialized knowledge graph as a read-only
cache to offload a transactional database. Such a situation
occurs often in data-intensive systems, and can be handled
with caches built using batch processing [47]. However, some
SPARQL queries are by their very nature expensive, and may
in any case be more time-consuming than we would like for
our application. In this case, it can be advantageous to mate-
rialize auxiliary RDF properties of interest. Such enrichment
is obviously supported with SPARQL insert.

Access control is a feature that is not standardized and
supported by SPARQL engines. In enterprise settings, it is
important to limit access, for instance in accordance with
geographical location or with the role of the user. Multiple
approaches exist that rely on materializing access control as
part of the knowledge graph, and on subsequently rewriting
SPARQL queries to ensure the user only accesses the appro-
priate part of the graph [48], [49]. SPARQL insert queries
are one way of creating and maintaining such materialized
access control, provided the knowledge graph is sufficiently
standardized.

Industrial knowledge graphs may index real-time data aris-
ing from sensors and actuators in facilities such as factories or
power plants [50]. Applications may read from these values,
producing aggregates, KPIs or other derived data, and we
have argued in previous work that queries over industrial
knowledge graphs can determine the integration of reusable
applications [16]. The output data from these applications
should also be indexed by the industrial knowledge graph,
and an enrichment step is one possible place to add these
nodes.

4) THE VALUE OF TEMPLATES
We have already discussed how industrial standards for rep-
resenting information often are based on components that
are composed in order to represent e.g. particular pieces of
equipment. For instance, the IEC 61850 standard defines
ways of representing information from electrical equipment
in part 7-3 [51] that is reused when representing sensor data
from hydroelectric power plants in IEC 61850-7-410 [52]
and when representing sensor data from wind turbines in IEC
61400-25 [53]. A template-based mapping tool will be able to
reuse these templates and create more uniform models. Uni-
form models are important when knowledge graphs support
industrial application integrations, as they make it easier to
identify places where e.g. a graphical user interface element
or statistical analysis can be reused. This is particularly the
case when seeking to reuse the same application across indus-
trial installations or across companies.

B. REQUIREMENTS
Our solution will have to support interactivemapping through
a scripting language with library-based integration. More-
over, the solution should be interoperable with DataFrames
and Apache Arrow-based data engineering tools. Primarily
this requirement applies on the input side. Coupled with inter-
activity, we should be able to pipe outputs from Arrow-based
into the mapping library effectively, without using disk-based
integration. These tools allow us to define all of the operations
of SPARQL. This further implies that the mapped model can
be immediately queriable, or queriable with very little I/O
overhead if the database is Arrow-based and external.

We will further require the mapping tool to support
SPARQL based inspection of mapped models, enabling
inspection in the exploration phase, and validations and tests
needed for production deployment in later phases. To sup-
port industrial scenarios involving templating, our mapping
library should support templates. Additionally, we should be
able to use this SPARQL support to post-process the model,
enriching it with the outputs of construct-queries. Such sup-
port will also be important for industrial scenarios where the
knowledge graph supports applications.

All of the mentioned functionality should have high per-
formance for large datasets, as this is important for the
mapping to be interactive in a practical way. By choosing
an in-memory Arrow model, we are limited by available
memory. Scaling the solution to work interactively with big
data is outside our scope.

We summarise these requirements below:

R1 Support interactive mapping in a script-based language
R2 Interoperability with established Apache Arrow-based

data engineering tools
R3 SPARQL-based inspection
R4 Templating support
R5 SPARQL-based post-processing with construct
R6 High performance for large datasets

IV. EXISTING SOLUTIONS
There are multiple existing interactive mapping tools
that warrant discussion. SPARQL Anything implements
the Façade-X mappings discussed earlier (Section II-B).
SPARQL Anything enables the Façade-X language to be
used for the Apache Jena ARQ SPARQL engine [54], [55].
SPARQL Anything supports one-off command line interface
(CLI) based mapping as well as an Apache Jena Fuseki-based
server for executing mappings [55], [56]. Using the server-
executable, SPARQL Anything allows an interactive map-
ping process in the sense that users can alternate between
querying source data, inserting data from these sources,
and querying and enriching the resulting knowledge base.
Users of the server must however interact with it using
the SPARQL Endpoint, e.g. using HTTP with JSON or a
SPARQL GUI [57]. Morph-CSV is a Python-based tool for
executing SPARQL queries over CSV files mapped with
RML [58]. The tool is not interactive, as it is run from the CLI.

39994 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

Development on the Morph-CSV project appears to have
stopped, with no new releases since 2020 [59], and the effect
of time has rendered us unable to run the Morph-CSV code
without considerable debugging of dependencies. We have
therefore not considered Morph-CSV any further. Arenas-
Guerrero et al. construct a related tool called Morph-KGC in
Python which allows users to construct a materialized knowl-
edge graph based on an RML mapping [9], which is then
loaded into either RDFLib [60] or Oxigraph [61] for inter-
active querying using Python. Morph-KGC relies on the data
engineering library Pandas to read inputs specified in RML
mappings, but cannot directly read from Pandas DataFrames.
RML mapping rules are potentially interdependent, and par-
allelization of their execution is not trivial. Arenas-Guerrero
et al. introduce a mapping partitioning approach for RML,
which allows for improved execution times and reduced
memory usage [9].

In a recent review of declarative RDF generation tools,
Van Assche et al. find that existing mapping tools execute the
mapping process atomically from source to RDF [11]. This
is for instance the case for the above mapping tools. Atomic
execution is also the case for existing mapping tools imple-
menting OTTR-support. Extensions to OTTR called bOTTR
and tabOTTR enable support for all support structured input
such as CSV files, Excel files, and SQL for OTTR, but
process mappings that read such data atomically [12]. Van
Assche et al. find that many mapping tools have support for
data transformations. These are functions that are applied to
input values to transform them before they are encoded in
triples [11]. The authors cite the need to extract a year from
a date when the target schema requires a birth year, while
the input contains the birth date. There are problems with
the atomic execution of mappings both in the exploratory
phase and when making mappings production ready. In the
exploratory phase, it is useful to observe intermediary results.
For instance, when importing and mapping data from SQL,
one will typically perform multiple iterations of adjusting
the query and the mapping to get the correct end result.
Validating the results of the query is very useful in this
process. If there are data transformations involved, the util-
ity of intermediary results in troubleshooting the mapping
increases. When creating production-ready code, mapping
engineers needmaintainablemapping codewith logging, data
validation as well as tests. Atomic executions however, make
it difficult to accomplish these tasks within the mapping
process. For instance, it is hard to add validations for the
results of SQL queries, to log intermediary statistics such
as the number of SQL results and time taken, and to add
unit tests. Either the scope of the mapping tool must increase
to cover such functionality, or users must move the bound-
aries of atomic execution and rely on the file-based import
of preprocessed CSVs. Alternatively, the mapping language
could be extended with a testing facility, but this would
greatly increase the scope and complexity of the mapping
language.

The review of mapping tools by Van Assche et al. [11]
found at the time that onlyMorph-CSVwas based on Python,
but it has CLI-based integration. Some of the tools described
by Van Assche et al. do have library-based integration, but
these are written in Java and have no Python library with
bindings. The more recent Morph-KGC allows library-based
Python interaction, but is bound by RML requirements to do
integrations as specified in the mapping files. With existing
tooling then, the way to pass a DataFrame to a mapping tool
is to edit the mapping document to point to a CSV-file in the
file system and write the DataFrame to CSV. In case the map-
ping tool is CLI-based, one executes the mapping through
the Python subprocess module [62], which permits calling
local executables. With SPARQL Anything, the mapping is
executed by sending a request to a HTTP-endpoint. In the
case of Morph-KGC, one has to call the materialize-method
that points to a configuration file. Morph-KGC reads this
configuration file, which then points to the RMLmapping file
which then points to the CSV file. RML mapping files are in
any case stored on disk, and one has to leave the notebook
environment to edit them. CSV files are not typed, so even
though one has taken care to properly parse the DataFrame-
columns, they must be parsed again inside the mapping file
- this time with another set of parsing functions that the data
engineer must look up.

In this section, we have thus far discussed mapping back-
ends, but there are also mapping editors that permit interac-
tivity, but none meet all of our requirements. An open-source
R2RML mapping editor described by Sengupta et al. [63]
allowed users to create a mapping using a wizard which
provides feedback at each step. The wizard allows the user to
view the results of SQL queries as well as an interactive view
of the generated triples as the mapping is being created. The
work was published approximately ten years ago at the time
of writing, and we were unable to find the source code for the
editor. More recently, Heyvaert et al. [64] created a mapping
rule visualization tool that was able to provide better visibility
into the input data sets used by RML mappings, as well
as the resulting triples. In contrast to wizard-based editors,
Heyvaert et. al supports non-linear workflows where users
have both source definitions, mappings, and produced triples
available at the same time. There was however no support
for performing and displaying manipulations on the input
data set, as the editor executes the mapping using an end-to-
end RML processor. Additionally, the tool has no support for
inspecting the results by querying. Ontopic Studio is a com-
mercial offering that also provides an interactive GUI-based
way of exploring the data source and the mapped knowledge
graph with SPARQL queries [65]. Their tool is however
specialized for the setting of virtual knowledge graphs, not
materializations.

V. SOLUTION APPROACH AND IMPLEMENTATION
Our solution approach is to perform stateful mapping, where
what we call a mapping state is updated by calling a simple

VOLUME 11, 2023 39995

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

API. In this section, we first describe our chosen mapping
language OTTR in Section V-A.We describe the API through
a simple example in Section V-B. The template expansion
process is described in detail in Section V-C, we discuss
implementation details in Section V-D and we compare our
solution with Morph-KGC in Section V-E.

A. OTTR
Multiple mapping languages could in principle be supported
by the API, but we have chosen the OTTR mapping lan-
guage. We describe how this choice supports our require-
ments below. Whereas RML is designed for tight coupling
with data sources in order to support SPARQL queries to
be executed over source relational databases, stOTTR is
designed with loose coupling through an API in mind. This
design feature makes it much better suited for composition
in a data engineering workflow. Additionally, OTTR sup-
ports our need for reusable templates in industrial mapping
scenarios (cf. [12], [32], [33]). We use the terse syntax for
OTTR, which is called stOTTR [66]. By requiring the use
of OTTR, our implementation will meet R4. OTTR does not
support interdependencies such as joins between mapping
rules. This lacking feature is in fact an advantage over RML
in our context. It is likely that data engineers with experience
in DataFrame-based tools prefer to perform joins using these
DataFrames where they can be worked with and validated
interactively instead of inside an atomically executed map-
ping language where join results can only be inspected by
inspecting the generated knowledge graph. As such, lacking
this feature helps us support R1 of interactive mapping.

Through industrial experience, we have found alignment
problems that are much harder than can be handled with
joins defined in RML. In industry, there are typically distinct
systems managing operational data flows and asset structure.
The naming schemes for individual streams of industrial data
(tags) could be based on loosely followed company internal
standards and be constrained in their amount of characters
allowed by legacy communication protocols such as MOD-
BUS [67], whereas an asset management system has a differ-
ent way of identifying the data stream. Connecting data from
asset management to operational data thus requires advanced
string-matching tools or even lookup tables created from
analog documentation. Pushing interdependent computations
outside of the mapping framework, we simplify our tooling
and create a uniformworkflow for industrial settings. Second,
the lack of interdependencies makes the OTTR mapping
problem trivially parallelizable, which makes it much easier
to improve the performance of the mapping tool, allowing us
to meet R6 with greater ease.

B. API
To initialize a mapping state, a constructor takes named
mapping rules as input, which crucially are not connected
to input data. The API consists of an operation for applying
a mapping rule to a DataFrame of inputs in order to map

triples, an operation for querying the triples in the mapping
state using SPARQL, an operation for adding triples with a
SPARQL construct query, and data output methods. Fig. 1
shows the operations for adding triples, querying them, and
enriching the knowledge base.

FIGURE 1. The maplib API.

The constructor is used to create a mapping state,
and takes a list of stOTTR documents as arguments.
A stOTTR document is a string that typically contains
prefixes and stOTTR templates. An example abbreviated
stOTTR-document together with an instantiation of a Map-
ping object in Python is given in Listing 1.We have based this
example on the example templates for mapping knowledge
about Pizzas in Skjæveland et al. [12], which the authors
use to introduce OTTR and the stOTTR-syntax. We note that
the DataType annotation xsd:AnyURI on the ?c param-
eter is necessary since country occurs only in the object
position and may be a string literal or an IRI. The same
goes for the ingredient parameter ?is, except this datatype
is nested in a list. In OTTR, template rule applications are
called template expansions, which is why the API method
for rule application is called expand. The expand method
takes as input a template identifier (IRI or prefixed) together
with an Apache Arrow-based DataFrame with corresponding
columns as input. Note that Apache Arrow is only a specifi-
cation of how columnar data is represented in-memory, and
that multiple implementations exist.

Listing 1. Example instantiation of mapping-object using an abbreviated
template from [12].

39996 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

Apache Arrow specifies a set of datatypes, including list-
types. We expect the input DataFrame to use these types, and
not to perform string-encoding of input data. If we want to
expand the template with heterogeneous types in one of the
arguments, we must do separate calls to expand. From the
datatype of a column, an implementation should infer the
OTTR datatype (and consequently the RDF datatype) of the
argument if it is not specified in the template signature. Incon-
sistent datatypes should produce an error. This type-inference
also extends to Apache Arrow list-types. In sum, this API
design allows us to support R2 of interoperating with data
engineering tools in a comprehensive way.

We build a very simple dataset below in Listing 3, and
expand the ex:Pizza template. We first define some pre-
fixes in Listing 2.

Listing 2. Example dataset and template expansion.

Listing 3. Example dataset and template expansion.

The output of printing the DataFrame looks approximately
like Table 1. Now, we can inspect the model using a SPARQL
query.

TABLE 1. Abbreviated printout of the DataFrame df.

Listing 4. Querying the mapping state.

The SPARQL query produces results given in Table 2.
Next the model may be enriched using the insert

method. First, we define a construct-query that we want to
enrich the model with, and execute it to see that it produces
the expected results.

TABLE 2. Results of the printout of the inspection query qdf.

Listing 5. Querying the mapping state.

TABLE 3. Abbreviated printout the construct query results res.

This query produces a list of DataFrames as a result with
length one. The contained DataFrame is shown in Table 3.

Since the results are as expected, we enrich the model and
check that it is updated in Listing 6. The results of this query
are shown in Table 4. Note that the insert method accepts
construct-queries in addition to insert-queries, as this allows
us to use the same construct-query to verify and to insert new
triples without modifying the string.

Listing 6. Querying the mapping state.

TABLE 4. Abbreviated printout the construct query results res.

Finally, we may export the mapping state either to an
NTriples-file or to a collection of Parquet-files using the
write_ntriples or write_native_parquetmeth-
ods respectively.

C. TEMPLATE EXPANSION
This section looks closely at the template expansion, and how
it works in our solution approach. OTTR template expansion
can be implemented using a simple recursive function on the

VOLUME 11, 2023 39997

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

instance or row level, which we will discuss as a baseline
algorithm, before we look at the column-based algorithm
being used. Listing 7 shows this baseline recursive function
written in Python notation.We allow ottr:Triple to refer
to the corresponding Template object, even though this is not
proper Python.

Listing 7. Instance-level recursive procedure for expanding OTTR
templates.

expand_row takes a template as the first argument.
A template consists of a signature and a body with a list of
patterns [31]. In Listing 1 the signature was between the[and
]-brackets, while the lines withottr:Triple(...)were
the patterns. The base condition of this recursive function is
when we reach an ottr:Triple-template. In this case,
we can create the result. Otherwise, we perform recursive
calls to expand_row after creating a new list of arguments,
replacing parameters with their arguments.

We consider a call to expand_rowwith the ex:Pizza-
template from Listing 1, without considering the list parame-
ter ?is as it is not covered by Listing 7. The call is shown in
Listing 8. We will allow ex:Pizza to refer to a Template
object for simplicity, even though this is not proper Python
syntax, as we did with ottr:Triple previously.

Listing 8. An example call to the baseline row-based expansion function.

We iterate through the patterns in our template, (excluding
the cross for simplicity), producing new lists of arguments
where parameter variables are replaced by their arguments.
This produces new calls to expand_row, which are shown
in Listing 9.

Listing 9. New calls to expand_row in our example.

The end result is a list of triples as shown in Listing 10.
However, in our case, we are expanding templates in a
column-based fashion. Although we follow the semantics

Listing 10. Result from calling expand_rows.

of OTTR template expansion, there are important differ-
ences. The process of expanding OTTR templates in a
column-oriented way is presented using Python syntax in
Listing 11.

Listing 11. Simplified algorithm for recursive expansion of OTTR
templates in Python.

The expand_colmethod takes four arguments, the tem-
plate to expand, the DataFrame and const_args-dict that
together contain exactly the template parameters, and set of
columns names that are unique. Initially, the const_args-
dict is empty. The function produces a list of Result-
objects, which contains the resulting triples. These have a
normalized form of having a DataFrame with subject and
object columns, together with a constant for the verb in the
dict const_args. The is_unique field tells us if the
DataFrame rows are unique. After we have run the function,
we store the results directly in the triplestore. The storage
operation (not shown) makes note of whether the stored
DataFrame has only unique values or not, but does not check
whether it is actually the case, as this is an expensive opera-
tion.

As in expand_row, the base case is when the template
is ottr:Triple. The normalize_results-function
(implementation not shown) takes a result and produces a
list of normalized results. Normalization is done in order to
simplify the implementation of the triplestore. We normalize
each result into one or more DataFrames with a subject and
object column - converting constants to DataFrame columns.
In case the verb is a column (not a constant) we convert
the result into as many results as there are unique verb IRIs
by partitioning the result DataFrame on the verb-column.

39998 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

In the future, we may allow heterogeneous representations
of verbs in the database with constant subjects or objects.
However, this causes a lot of complexity in query processing
logic which we have chosen to avoid for the time being.
After results are normalized they can be stored directly in the
triplestore by updating a map according to the verb IRI and
object-datatype of the result to be stored.

If the base condition has not been reached, we create as
many DataFrames as there are new templates to instantiate
in the body of the template using the prep_pat_args-
function, selecting and renaming the appropriate columns.
We create new dictionaries of renamed constant arguments
and keep track of which of the new columns are unique.
The par_map function denotes that this operation is done
in parallel and collected in a list. This parallelism comes in
addition to the parallelism inherent in Polars operations. Next,
we execute the expand_col function (also in parallel) for
the prepared tuples of arguments. Finally, we must flatten the
resulting list of lists of results into a list of results, which we
return.

We are now ready to consider an example execution of the
expand_col-method in Listing 12. The df-argument is the
DataFrame from Table 1.

Listing 12. First call to expand_col in our example.

Continuing our example, we prepare the argument-lists
shown in Listing 13.

Listing 13. List of list of arguments created for the ex:Pizza-template.

TABLE 5. Abbreviated printout of the DataFrame df_1.

TABLE 6. Abbreviated printout of the DataFrame df_2.

We display the DataFrames df_1, df_2 and df_3 in
Tables 5, 6 and 7 respectively. These are created in paral-
lel, and data are only copied as necessary. The DataFrame
df_3 is the result of ‘‘exploding’’ the is-column of df,
which is a built-in function in Polars, duplicating other

TABLE 7. Abbreviated printout of the DataFrame df_3.

columns as necessary. This means that the subject-column
(renamed from p) no longer can be guaranteed to be unique,
leading to an empty unique-set. Finally, we call the
expand_col-function in parallel with the arguments above.
We reach the base case of the expand_col-method, and the
object-column is added to df_1 in the normalization process
(normalize_results). The normalization process does
not change the other resulting DataFrames. These resulting
DataFrames are ready to store and query once we ensure that
the DataFrame associated with pizza:hasIngredient
is deduplicated.

D. IMPLEMENTATION DETAILS
We implement the solution in Rust, but create Python
bindings where data are exchanged using Apache Arrow
Interprocess Communication (IPC), meaning data are not
copied [35]. We base our SPARQL engine on an engine used
in our previous work with Apache Arrow-based SPARQL-
processing [16]. It relies on the Polars-library for representing
triples and processing queries, and on the spargebra [68] and
oxrdf [69] libraries for parsing SPARQL expressions and
representing RDF data. The solution is available on GitHub
under the Apache 2.0 License.1

The real column-based expansion procedure keeps track of
the data types of the arguments. We store the triples created
by mapping as a verb and data type-indexed collection of
Polars DataFrames. Associated with each verb-IRI is a map
from data types to Polars DataFrames containing the columns
subject and object of the predicate, where the object has
the given data type. Column-based triple storage has been
successfully adopted by previous approaches to analytic /
read-only SPARQL querying [70], [71].

Before SPARQL processing can begin, we deduplicate the
triplestore. We will however skip deduplication for a verb if it
is already deduplicated or the user has (indirectly) indicated
that the triples associated with the verb are unique. When
processing SPARQL queries, we create a lazy expression
corresponding to the SPARQL algebra-expression [22] of the
query as provided by the spargebra-library [68]. The seman-
tics of SPARQL-algebra can be mapped mostly directly to
Polars operations on DataFrames. We thus rely on optimized
parallel execution by Polars for actual processing. We follow
the best practice advice of Polars and use a global string cache
managed by Polars for Strings (e.g. IRIs), and use instead
categorical integer values in place of them to perform joins.

1https://github.com/magbak/maplib

VOLUME 11, 2023 39999

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

Our SPARQL implementation does not yet support solution
mappings where a single variable has multiple data types.
Such support adds a lot of complexity to query processing
as we need to keep track of whether we are using native
types or whether we are using the native- or the string encod-
ing of a variable. This support will be added in a future
release.

E. COMPARISON WITH EXISTING APPROACHES
The column-oriented graph construction algorithm described
above differs from Morph-KGC in important ways. Morph-
KGC also employs a column-oriented approach to mapping,
and applying RML mappings to DataFrames backed by Pan-
das. However, data is loaded into a SPARQL database by
writing to an in-memory ntriples-file, which is then loaded in
bulk.2 Before the ntriples-file is created, data are also dedu-
plicated. We avoid these expensive operations by re-using the
target representation for mapping as the underlying format
for the SPARQL engine and by allowing the user to specify
uniqueness. In many cases, we copy very little to no data
during template expansions, andmerely change howwe relate
to it. This is for instance the case for the c-column in Listing
1. When data is copied, the sequential nature of the columnar
format likely means copying is very fast. In order to support
RML, Morph-KGC also must support joins as part of the
mapping, but there is no such support for joins in OTTR,
which we implement. We return to this difference and what it
implies in our discussion in Section VI-C.

When SPARQLAnything is used to materialize the knowl-
edge graph, Apache Jena is indirectly used to query the source
data set files and update the graph. From the highly abstract
and configurable Apache Jena source code it is much harder
to tell what this process actually involves, and an expert or
detailed study of the Jena code base is likely required to
determine that with certainty.

VI. EVALUATION
In this section, we evaluate the degree to which our solution
meets R6 of high performance for large datasets. We evaluate
this requirement by comparing our solution to two state-of-
the-art approaches on a demanding benchmark:

• TheMorph-KGC approach ofArenas-Guerrero et al. [9].
• The SPARQL Anything-approach of Asprino et al. [17].

In Section VI-A we describe how we set up and ran the
benchmark. Our results are presented in Section VI-B and
discussed in Section VI-C. Code and instructions for running
the benchmark and our raw results are available on GitHub.3

A. METHODS
We compare performance on the General Transit Feed Spec-
ification (GTFS)4 Madrid benchmark described by [18],

2https://github.com/morph-kgc/morph-kgc/blob/751bf7/src/morph_kgc/
__init__.py

3https://github.com/magbak/maplib_paper_benchmarks
4https://gtfs.org/

which contains a generator of scalable datasets based on
openly accessible data from the public transport system in
Madrid. The GTFS is a standardized format that public trans-
port organizations can use to publish data, initially created
at Google [72]. The GTFS Madrid benchmark contains both
a RML mapping from CSV files and 18 SPARQL queries
over the mapped knowledge graph. We use the same scaling
factors (5, 10, 50, 100, 500) as are used in the benchmark
paper [18].

We compare maplib with Morph-KGC [9] and SPARQL
Anything [17]. In order to benchmark maplib, we created a
stOTTR mapping equivalent to the RML mapping used by
Chaves et al. [18]. We verify that the mapped models are
identical up to small differences in datatypes due to differing
defaults in maplib and Morph-KGC (e.g. xsd:long instead
of xsd:integer), and crucially, that queries produce the
same rows.We eliminated query 10 from consideration, as the
generated data and the query do not agree on data types
(comparing xsd:string with xsd:duration).

SPARQL Anything has a GTFS mapping in a code repos-
itory [73] associated with a recent GTFS benchmark [74],
which is specified as a single SPARQL query annotated
with a service that refers to the GTFS CSV files. However,
running the joint query did not terminate in a reasonable time-
frame (30+minutes and still running). To achieve comparable
performance, we split the joint materialization query into
a materialization query for each GTFS CSV file. SPARQL
Anything exists in a stateless- and as a server-based variant.
The server-based variant is more appropriate for our setting.
Running SPARQL Anything Server, we first run the ten
materialization queries and then the GTFS queries using the
SPARQLWrapper-library in Python.

Our evaluation consisted of materializing the knowledge
graph and executing the GTFS queries in 10 separate exe-
cutions. We set a timeout of ten minutes for knowledge
graph materialization. We recorded wall times for material-
ization and for executing each query, as interactive creation
of the mapping often requires (re-)execution of mapping and
queries. We set a timeout of two minutes for query exe-
cution. The evaluation was run on a high end laptop from
2017 with an Intel i7-7600U CPU@ 2.80GHz, 16GB of ram,
and a high-performance SSD. We used the 0.3.12 release of
maplib which uses Polars 0.26.1, the 2.3.1 release of Morph-
KGC, and the 0.8.1 version of SPARQL Anything Server.
Morph-KGC supports both RDFLib and Oxigraph triplestore
backends. Morph-KGC 2.3.1 uses RDFLib version 6.2.0 and
pyoxigraph 0.3.10. SPARQL Anything 0.8.1 uses Apache
Jena Fuseki 4.2.0.

Morph-KGC requires the RML-file to be located in the file
system, and the parameters to the materialization function to
be specified in a.ini-file. Thus, Morph-KGC will read two
extra files, but these are very small compared to the GTFS
data sets, and we do not expect this difference to be reflected
in our results. Similarly, SPARQL Anything reads ten very
small files with the SPARQL queries necessary to materialize
the GTFS graph.

40000 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

FIGURE 2. Mean materialization times, error bars are one standard
deviation away from the mean.

B. RESULTS
The results from executing the materialization stage are
given in Fig. 2, and the mean materialization times are
given in Table 8. We denote Morph-KGC with a RDFLib
materialization by ‘‘M-KGC(R)’’ and Morph-KGC with an
Oxigraph materialization by ‘‘M-KGC(O)’’. SPARQL Any-
thing is denoted by ‘‘SA’’. Following the convention of
Chaves-Fraga et al. [18], ‘‘TO’’ in a table cell indicates that
the materialization took longer than 10 minutes, and use M
to denote the case where materialization ran out of memory.
X indicates that a scale was skipped due to a smaller scale
having timed out. Morph-KGC also reported a mapping-rule
processing time of four seconds, relating to the partitioning
approach described in Arenas-Guerrero et al. [9].

Mean query execution times (seconds) for each query,
scale, and solution are presented in Table 9. The variability of
execution times is small, and we omit the standard deviations
from the table for readability. In the table, N indicates that
the query is not supported by the implementation in question.
This is only the case for maplib and query 15. X indicates
that the query was not run due to missing materialization.
M indicates that query processing ended in an error of the
kind one gets from Rust when it has run out of memory.
TO indicates that the query used more than the allotted two
minutes to complete.

C. DISCUSSION
The results of our evaluation show a 47×, 60×, and 182×
performance improvement in maplib over SPARQL Any-
thing, Morph-KGC with Oxigraph, and Morph-KGC with
RDFLib respectively. Moreover, our solution is able to mate-
rialize larger data sets than both Morph-KGC and SPARQL

TABLE 8. Table of mean materialization times (seconds) with standard
deviations in parentheses.

Anything, effectively allowing us interactively work with
larger data sets. Maplib materialization time is less than ten
seconds even for the largest successfully completed material-
ization.

Query processing times are on the whole in favor of
SPARQL Anything and Morph-KGC (with Oxigraph) over
maplib. Oxigraph and SPARQL Anything are able to do
considerably better than maplib on many queries in terms
of time and memory (Q3, Q5, Q6, Q7, Q8, Q11, Q12, Q17
and Q18). Morph-KGC with RDFLib times out on a lot of
queries, but achieves comparable performance to the other
query engines on many of the queries where it does not time
out. Maplib is however able to do considerably better than
Oxigraph and SPARQL Anything on queries Q1, Q2, Q9,
Q13, Q14 and Q16. RDFLib is able to do considerably better
than Oxigraph and maplib on Q11 and Q13.

In an interactive knowledge graph construction session, the
engineer likely re-runs both knowledge graph construction
and query evaluation(s) as a whole. The purpose of the query
is precisely to inspect the effect of the mapping change.
Mapping times and query execution times should be consid-
ered in conjunction. Considering materialization times and
query times jointly, it is clear that the materialization time
differences dominate the query performance differences in
all but one query (Q13), leaving maplib with a performance
advantage for the joint problem of materialization and query-
ing. Moreover, the materialization process in maplib is much
more scaleable than those of SPARQL Anything and Morph-
KGC.

Both RML and SPARQL Anything specify the source
CSV files as part of the mapping definition files (Turtle and
SPARQL respectively). stOTTR does not describe input data
files, and we give paths to input files in the Python script.
To run Morph-KGC and SPARQL Anything on different data
sets, we either had to adjust the mapping files or we had to
move a different data set into the data directory. We found
that this process impeded our productivity. This setup is also
likely to complicate development environments where the
same mapping is tested with different inputs. To test the RML
or SPARQL Anything mapping with different data sets, for
instance against a data set that contains an error we want
to handle, we must copy the mapping files into an adjacent
directory or change the source mapping-files to point to
different CSV source files.

While the partitioning approach of Arenas-Guerrero
et al. [9] is impressive, it comes at a performance cost (about

VOLUME 11, 2023 40001

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

TABLE 9. Table of query processing times in seconds.

4 seconds in the benchmark, independent of scale). In a
one-way data engineering setting that materializes triples,

it can be avoided altogether. In the GTFS-Madrid benchmark
for instance, the STOPS.csv-file contains the stop_id-
column. The STOP_TIMES.csv also contains this column,
with a foreign key relationship to stop_id. A static pre-
fix is used by the RML-mapping to construct the IRI for
a stop based on data in STOPS.csv, and stop_id in
STOP_TIMES.csv is used to reference this constructed IRI.
If we can guarantee the foreign key constraint between these
files, and have sufficient information to construct the IRI in
both of them, the IRIs can be computed independently for
both files without the need for a join. This is the approach
we have chosen in our benchmark implementation for maplib
and SPARQL Anything. IRI construction is string concatena-
tion which scales linearly and is easily parallelizable. Joins
however, do not scale linearly. A bad query execution plan
for these joins may have been the cause of the long-running
materialization of SPARQLAnything that we had to break up
(cf. Section VI-A).

If on the other hand, the table containing the foreign key
(STOP_TIMES.csv) does not have sufficient information
to construct the IRI of the referenced table (STOPS.csv),
the join is mandatory. In this case, we can join in the neces-
sary data before we start mapping, and construct the map-
ping such that it contains no join. This strategy comes at
the expense of having to create the IRI twice, but simpli-
fies and improves the parallelism in the mapping process.
Future research into RML parallelization should compare the
above strategy of getting rid of dependencies early with the
approach of Arenas-Guerrero et al. [9].

With an interactive mapping process in Jupyter, users
should be able to compute this amended data set as part of
their general data engineering workflow. If the join is expen-
sive, they can place it at the very start of the workflow or store
the amended dataset and start the workflow by importing
it, effectively eliminating the need to recompute the join in
further mapping iterations.

The choice of Polars over Pandas likely plays a role
in the materialization performance difference between
Morph-KGC and maplib, as this library is known to be
faster [15]. To further understand the difference, we added
time measurements to the process Morph-KGC uses to create
the ntriples-string and load this string into Oxigraph (cf.
Section V-E). In a single sample run for scale 10 that took
48.91 seconds for oxigraph, 0.86 seconds were spent cre-
ating the ntriples string, and a futher 22.75 seconds were
spent bulk-loading the ntriples-string into Oxigraph. The
extra work done by Morph-KGC described above on e.g.
joins, as well as the collection of all produced triples in a
set described in Section V-E likely also play a role. How-
ever, there is also a role to be played by Polars. Comparing
csv-load times, Polars takes approximately 0.06 seconds to
load the CSVs at scale 10, and Pandas takes approximately
0.3 seconds. Similar differences likely exist for operations
that build the IRIs in the mapping and may well add up to
several seconds at scale 10. However, it appears likely that
the fact that maplib does less work is responsible for the

40002 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

majority of the difference between maplib and Morph-KGC
in materialization times, and not that the work done by both
solutions takes less time in maplib.

VII. CONCLUSION AND FUTURE WORK
In this work we have described maplib. Maplib allows users
to perform interactive, literal mapping and enrichment of
knowledge graphs through SPARQL, allowing us to meet
our requirements of supporting interactive mapping in a
script-based language with SPARQL based inspection and
post-processing (R1, R3 and R5). By using OTTR instead
of RML or Façade-X as the mapping language, we allow
greater interactivity and greatly simplify the integration with
DataFrames compared to the state-of-the-art Morph-KGC
and SPARQL Anything libraries, allowing us to meet R2.
Using OTTR also allows for improved and less complicated
parallelism in the mapping process compared toMorph-KGC
and SPARQL Anything. Compared to RML, the cost of
this choice is that our mappings cannot be used to rewrite
SPARQL queries into SQL queries over a source database.
Additionally, OTTR has excellent template support, allowing
us to support R4 for industrial use cases.

Using the Polars-library, we are able to use the same
representation to store mapped triples and query them, with
minimal data transformation and copying. We show that our
solution is able to outperform the state-of-the-art Morph-
KGC and SPARQL Anything libraries by a factor of 47x
in the materialization step and in terms of scalability. Query
execution is less effective with maplib, but these differences
are dominated by the relative difference in materialization
time in all but one query, allowing maplib to exhibit much
shorter feedback loops in exploratory knowledge graph con-
struction than Morph-KGC and SPARQL Anything. These
performance increases allow us to meet R6 of high perfor-
mance for large datasets. The performance improvements
over Morph-KGC and SPARQL Anything are not the results
of any clever algorithms created by the author, but a result of
simplifying the mapping process and providing greater inter-
operability with Apache Arrow-based DataFrames, meaning
we have to do less data transformation work and have greater
access to high performance tooling such as Polars.

Our experience indicates that RML and Façade-X-based
mapping is currently ill-suited for integration in interactive,
literal Python-based workflows commonly used by Data
Engineers. Using it in this way incurs toil on the part of
the user, limits the interactivity and literal feedback from the
mapping process and incurs a performance penalty. Addi-
tionally, the design of RML and Façade-X makes it harder
to make the workflow production ready once the exploration
stage is completed. The OTTR approach is better suited for
this purpose by virtue of the functional, API-based design.

Maplib is currently limited to a single machine, but we are
looking into a distributed, scalable implementation. The same
API can be implemented in a distributed setting, reusing parts
of the implementation. The mapping step is embarrassingly
parallel and can be scaled easily. We have shown the benefit

of Apache Arrow-based integrations over an approach that
requires data transformation. This benefit can be extended
to a distributed setting as Polars DataFrames produced by
maplib can be immediately exported to cloud object storage
as Parquet in a folder structure partitioned by predicate IRI
and data type. Exporting from Arrow to Parquet is very fast.
This ensures distributed support for the expand-method.
Next, a data lakehouse such as Dremio can be configured to
query the data set using SQL. With this in place, a mapping
for a Virtual Knowledge Graph (e.g. Ontop) can be automat-
ically constructed, so that the dataset can be queried using
SPARQL, and support for the query and insert methods
can thus be added.

While the support for interactive SPARQL queries means
we are able to perform validations of mapping output, the
SHACL specification defines a set of validation constraints
that make such validations easier to define [75]. SHACL
constraints are also a natural match for reusable mapping
templates in industry, as they help us ensure that new users of
the templates use them correctly, and in accordance with an
underlying industrial standard [12]. In future work, we there-
fore plan on adding SHACL support. Having access to highly
expressive and performant Polars primitives likely makes it
possible to do so in a performant way.

Similarly, support for reasoning could likely benefit indus-
trial applications. Supporting reasoning could e.g. be useful
to create auxiliary structures that further harmonize and stan-
dardize the model, and thus improve interoperability.We plan
on exploring support for reasoning in future work.

ACKNOWLEDGMENT
The author would like to thank Francisco Martin-Recuerda,
Ph.D. at SINTEF Digital in Oslo, Norway, for making them
aware of the lack of interactive Python-based RDF-mapping
tools in the literature, also would like to thank Martin G.
Skjæveland, Ph.D. with the Centre for Scalable Data Access,
University of Oslo, for helpful advice on the direction and
framing of the work, also would like to thank Dylan Van
Assche with the IDLaboratory, Ghent, Belgium, for his useful
suggestions on benchmarking, and also would like to thank
Professor Ahmet Soylu with Oslo Metropolitan University
for constructive feedback on the work.

REFERENCES
[1] T. Hubauer, S. Lamparter, P. Haase, and D. M. Herzig, ‘‘Use cases

of the industrial knowledge graph at Siemens,’’ in Proc. ISWC
(P&D/Industry/BlueSky), 2018.

[2] S. R. Bader, I. Grangel-Gonzalez, P. Nanjappa, M.-E. Vidal, and
M. Maleshkova, ‘‘A knowledge graph for industry 4.0,’’ in Proc. Seman-
tic Web, 17th Int. Conf. (ESWC). Heraklion, Crete, Greece: Springer,
Jun. 2020, pp. 465–480.

[3] Project Jupyter. Accessed: Jan. 25, 2023. [Online]. Available:
https://jupyter.org/

[4] D. E. Knuth, ‘‘Literate programming,’’ Comput. J., vol. 27, no. 2,
pp. 97–111, 1984.

[5] J. M. Perkel, ‘‘Why Jupyter is data scientists’ computational notebook of
choice,’’ Nature, vol. 563, no. 7732, pp. 145–147, 2018.

[6] TIOBE. TIOBE Index for January 2023. Accessed on: Jan. 18, 2023.
[Online]. Available: https://www.tiobe.com/tiobe-index/

VOLUME 11, 2023 40003

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

[7] W. McKinney, ‘‘Pandas: A foundational Python library for data analysis
and statistics,’’ Python High Perform. Sci. Comput., vol. 14, no. 9, pp. 1–9,
2011.

[8] Pandas. API Reference—Pandas 1.5.3 Documentation. Accessed:
Jan. 25, 2023. [Online]. Available: https://pandas.pydata.org/docs/
reference/index.html#api

[9] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, and O. Cor-
cho, ‘‘Morph-KGC: Scalable knowledge graph materialization with map-
ping partitions,’’ in Proc. Semantic Web, 2022, pp. 1–18.

[10] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and
R. Van deWalle, ‘‘RML: A generic language for integrated RDFmappings
of heterogeneous data,’’ in Proc. 7th Workshop Linked Data Web, 2014.

[11] D. Van Assche, T. Delva, G. Haesendonck, P. Heyvaert, B. De Meester,
and A. Dimou, ‘‘Declarative RDF graph generation from heterogeneous
(semi-)structured data: A systematic literature review,’’ J. Web Semantics,
vol. 75, Jan. 2023, Art. no. 100753.

[12] M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and J. W. Klüwer, ‘‘OTTR:
Formal templates for pattern-based ontology engineering,’’ in Proc. WOP,
2021, pp. 349–377.

[13] J. Arenas-Guerrero. Powerful RDF Knowledge Graph Generation With
[R2]RML Mappings. Accessed: Jan. 25, 2023. [Online]. Available:
https://github.com/morph-kgc/morph-kgc

[14] R. Vink. Polars. Accessed: Jan. 26, 2023. [Online]. Available:
https://www.pola.rs/

[15] Polars: TPCH Benchmarks. Accessed: Jan. 26, 2023. [Online]. Available:
https://www.pola.rs/benchmarks.html

[16] M. Bakken and A. Soylu. (Dec. 2022). Chrontext: Portable
SPARQL Queries Over Contextualised Time Series Data in
Industrial Settings. [Online]. Available: https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=4310978

[17] L. Asprino, E. Daga, A. Gangemi, and P. Mulholland, ‘‘Knowledge graph
construction with a façade: A unified method to access heterogeneous
data sources on the web,’’ ACM Trans. Internet Technol., vol. 23, no. 1,
pp. 1–31, 2022.

[18] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus,
and O. Corcho, ‘‘GTFS-Madrid-bench: A benchmark for virtual knowl-
edge graph access in the transport domain,’’ J. Web Semantics, vol. 65,
Dec. 2020, Art. no. 100596.

[19] T. Berners-Lee, J. Hendler, and O. Lassila, ‘‘The semantic web,’’ Sci.
Amer., vol. 284, no. 5, pp. 34–43, May 2001.

[20] P. Hitzler, M. Krtzsch, and S. Rudolph, Foundations of Semantic Web
Technologies, 1st ed. Boca Raton, FL, USA: Chapman & Hall/CRC, 2009.

[21] L. Ehrlinger and W. Wöß, ‘‘Towards a definition of knowledge graphs,’’
SEMANTiCS Posters, Demos, Success, vol. 48, nos. 1–4, p. 2, 2016.

[22] World Wide Web Consortium. SPARQL 1.1 Query Language. Accessed:
Jan. 18, 2023. [Online]. Available: https://www.w3.org/TR/sparql11-
query/

[23] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and
M. Zakharyaschev, ‘‘Ontology-based data access: A survey,’’ in Proc. 27th
Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 1–9.

[24] G. Xiao, L. Ding, B. Cogrel, and D. Calvanese, ‘‘Virtual knowledge
graphs: An overview of systems and use cases,’’ Data Intell., vol. 1, no. 3,
pp. 201–223, 2019.

[25] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDFMapping Lan-
guage. Accessed: Jan. 18, 2023. [Online]. Available: https://www.w3.org/
TR/r2rml/

[26] S. Auer, L. Feigenbaum, D. Miranker, A. Fogarolli, and J. Sequeda.
(Jun. 2010). Use Cases and Requirements for Mapping Relational
Databases to RDF. Accessed: Jan. 18, 2023. [Online]. Available:
https://www.w3.org/TR/rdb2rdf-ucr

[27] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, andM.-E. Vidal,
‘‘SDM-RDFizer: An RML interpreter for the efficient creation of RDF
knowledge graphs,’’ in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage.
New York, NY, USA: Association for Computing Machinery, Oct. 2020,
pp. 3039–3046.

[28] C. Debruyne and D. O’Sullivan, ‘‘R2RML-F: Towards sharing and execut-
ing domain logic in R2RML mappings,’’ in Proc. LDOW@ WWW, 2016,
pp. 1–5.

[29] B. De Meester, T. Seymoens, A. Dimou, and R. Verborgh,
‘‘Implementation-independent function reuse,’’ Future Gener. Comput.
Syst., vol. 110, pp. 946–959, Sep. 2020.

[30] V. Presutti and A. Gangemi, ‘‘Content ontology design patterns as prac-
tical building blocks for web ontologies,’’ in Conceptual Modeling-ER.
Barcelona, Spain: Springer, 2008, pp. 128–141.

[31] M. G. Skjæveland, H. Forssell, J. W. Klüwer, D. P. Lupp, E. Thorstensen,
and A. Waaler, ‘‘Pattern-based ontology design and instantiation with
reasonable ontology templates,’’ in Proc. WOP@ISWC, 2017, pp. 1–15.

[32] J.W. Klüwer,M. G. Skjæveland, andM.Valen-Sendstad, ‘‘ISO 15926 tem-
plates and the semantic web,’’ in Proc. Position paper for W3C Workshop
Semantic Web Energy Industries; I, Oil Gas, 2008, pp. 1–6.

[33] D. P. Lupp,M. Hodkiewicz, andM. G. Skjæveland, ‘‘Template libraries for
industrial asset maintenance: Amethodology for scalable andmaintainable
ontologies,’’ in Proc. CEUR Workshop. Aachen, Germany: Technical Uni-
versity of Aachen, vol. 2757, 2020, pp. 49–64.

[34] NumPy. Accessed: Jan. 26, 2023. [Online]. Available: https://numpy.org/
[35] The Apache Software Foundation. (2022). Apache Arrow. Accessed:

Feb. 6, 2023. [Online]. Available: https://arrow.apache.org/
[36] W. McKinney. (2019). Introducing Apache Arrow Flight: A Framework

for Fast Data Transport. Accessed: Jan. 25, 2023. [Online]. Available:
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/

[37] The Apache Software Foundation. (2022). Apache Parquet.
Accessed: Jan. 26, 2023. [Online]. Available: https://parquet.apache.org/

[38] D. Johnston. (Nov. 2020). Don’t Put Data Science Notebooks Into
Production. Accessed: Jan. 4, 2023. [Online]. Available: https://www.
Martinfowler.com/articles/productize-data-sci-notebooks.html

[39] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, ‘‘A large-scale
study about quality and reproducibility of jupyter notebooks,’’ in Proc.
IEEE/ACM 16th Int. Conf. Mining Softw. Repositories (MSR), May 2019,
pp. 507–517.

[40] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
‘‘What’s wrong with computational notebooks? Pain points, needs, and
design opportunities,’’ in Proc. CHI Conf. Human Factors Comput. Syst.
New York, NY, USA: Association for Computing Machinery, Apr. 2020,
pp. 1–12.

[41] J. Krogstie, ‘‘Capturing enterprise data integration challenges using a
semiotic data quality framework,’’ Bus. Inf. Syst. Eng., vol. 57, no. 1,
pp. 27–36, Feb. 2015.

[42] Dremio. (2022). Dremio | The Easy and Open Data Lakehouse Platform.
Accessed: Jan. 26, 2023. [Online]. Available: https://www.dremio.com/

[43] The Apache Arrow PMC. Introducing ADBC: Database Access
for Apache Arrow. Accessed: Jan. 26, 2023. [Online]. Available:
https://arrow.apache.org/blog/2023/01/05/introducing-arrow-adbc/

[44] InfluxData. (2022). Welcome to InfluxDB IOx: InfluxData’s New
Storage Engine. Accessed: Jan. 26, 2023. [Online]. Available:
https://www.influxdata.com/blog/influxdb-engine/

[45] DuckDB Foundation. DuckDB—An in-Process SQL OLAP Database
Management System. Accessed: Jan. 26, 2023. [Online]. Available:
https://duckdb.org/

[46] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia, ‘‘Lakehouse: A new
generation of open platforms that unify data warehousing and advanced
analytics,’’ in Proc. Conf. Innov. Data Syst. Res. (CIDR), 2021, p. 17.

[47] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. Sebastopol, CA,
USA: O’Reilly Media, 2017.

[48] F. Abel, ‘‘Enabling advanced and context-dependent access control in
RDF stores,’’ in Proc. Semantic Web. Berlin, Germany: Springer, 2007,
pp. 1–14.

[49] A. Padia, T. Finin, and A. Joshi, ‘‘Attribute-based fine grained access
control for triple stores,’’ in Proc. 3rd Soc. Privacy Semantic Web-Policy
Technol. Workshop Co-Organised 14th Int. Semantic Web Conf. (ISWC),
2015, pp. 1–15.

[50] OPC Foundation. (Nov. 2022). OPC 10000-1 UA Part 1: Overview
and Concepts. Accessed: Dec. 13, 2022. [Online]. Available:
https://opcfoundation.org/developer-tools/documents/view/158

[51] CommunicationNetworks and Systems for PowerUtility Automation—Part
7–3: Basic Communication Structure—Common Data Classes, Interna-
tional Electrotechnical Commission, Geneva, CH, Standard IEC 61850-
7-3:2010+A1:2020, 2020.

[52] CommunicationNetworks and Systems for PowerUtility Automation—Part
7-410: Basic Communication Structure—Hydroelectric Power Plants—
Communication for Monitoring and Control, International Electrotechni-
cal Commission, Geneva, CH, Standard IEC 61850-7-410:2013/A1:2016,
2016.

40004 VOLUME 11, 2023

M. Bakken: maplib: Interactive, Literal RDF Model Mapping for Industry

[53] Wind Turbines—Part 25–2: Communications for Monitoring and Control
of Wind Power Plants—Information Models International Electrotechnical
Commission, Geneva, CH, Standard IEC 61400-25-2:2015, 2015.

[54] The Apache Jena Project. Arq—A SPARQL Processor for Jena.
Accessed: Jan. 26, 2023. [Online]. Available: https://jena.apache.org/
documentation/query/

[55] E. Daga, L. Asprino, and J. Dowdy. SPARQL Anything is a Sys-
tem for Semantic Web Re-Engineering That Allows Users to··· Query
Anything With SPARQL Accessed: Jan. 25, 2023. [Online]. Available:
https://github.com/SPARQL-Anything/sparql.anything

[56] The Apache Jena Project. Apache Jena Fuseki. Accessed: Jan. 26, 2023.
[Online]. Available: https://jena.apache.org/documentation/fuseki2/

[57] World Wide Web Consortium. (2013). SPARQL 1.1 Protocol. [Online].
Available: https://www.w3.org/TR/sparql11-protocol/

[58] D. Chaves-Fraga, E. Ruckhaus, F. Priyatna, M. Vidal, and O. Corcho,
‘‘Enhancing virtual ontology based access over tabular data with Morph-
CSV,’’ Semantic Web, vol. 12, no. 6, pp. 869–902, 2021.

[59] D. Chaves-Fraga, J. Toledo, and L. Pozo. Enhancing Virtual Kg Access
Over Tabular Data With RML and CSVW. Accessed: Jan. 20, 2023.
[Online]. Available: https://github.com/oeg-upm/morph-csv

[60] A. Swartz. RDFLib. Accessed: Jan. 26, 2023. [Online]. Available:
https://github.com/RDFLib/rdflib

[61] T. Tanon. Oxigraph/Oxigraph: SPARQL Graph
Database. Accessed: Jan. 26, 2023. [Online]. Available:
https://github.com/oxigraph/oxigraph/tree/main/lib/oxrdf

[62] Python Software Foundation. Subprocess—Subprocess Management—
Python 3.11.1 Documentation. Accessed: Jan. 26, 2023. [Online]. Avail-
able: https://docs.python.org/3/library/subprocess.html

[63] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler, ‘‘Editing R2RML
mappings made easy,’’ in Proc. 12th Int. Semantic Web Conf. (Posters
Demonstrations Track), vol. 1035, 2013, pp. 101–104.

[64] P. Heyvaert, A. Dimou, B. De Meester, T. Seymoens, A.-L. Herregodts,
R. Verborgh, D. Schuurman, and E. Mannens, ‘‘Specification and imple-
mentation of mapping rule visualization and editing: MapVOWL and the
RMLEditor,’’ J. Web Semantics, vol. 49, pp. 31–50, Mar. 2018.

[65] Ontopic. Ontopic Studio, a Low-Code Solution for Building
Knowledge Graphs. Accessed: Jan. 20, 2023. [Online]. Available:
https://ontopic.ai/en/ontopic-studio/

[66] M. G. Skjæveland and L. H. Karlsen. (Nov. 2022). Terse Syntax for Rea-
sonable Ontology Templates (stOTTR). Accessed: Jan. 20, 2023. [Online].
Available: https://dev.spec.ottr.xyz/stOTTR/

[67] The Modbus Organization. (Apr. 2012). MODBUS Application Proto-
col Specification V1.1b3. Accessed: Jan. 25, 2023. [Online]. Available:
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

[68] T. Tanon. Spargebra. Accessed: Feb. 6, 2023. [Online]. Available:
https://github.com/oxigraph/oxigraph/tree/main/lib/spargebra

[69] OXRDF. Accessed: Feb. 6, 2023. [Online]. Available:
https://github.com/oxigraph/oxigraph/tree/main/lib/oxrdf

[70] D. J. Abadi, ‘‘Query execution in column-oriented database systems,’’
Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA,
2008.

[71] H. Bast and B. Buchhold, ‘‘QLever: A query engine for efficient
SPARQL+Text search,’’ in Proc. ACM Conf. Inf. Knowl. Manage. New
York, NY, USA: Association for Computing Machinery, Nov. 2017,
pp. 647–656.

[72] C. Harrelson. (Sep. 2006). Happy Trails With Google
Transit. Accessed: Mar. 29, 2023. [Online]. Available:
https://googleblog.blogspot.com/2006/09/happy-trails-with-google-
transit.html

[73] L. Asprino. Experiments/GTFS at Main · SPARQL-Anything/Experiments.
Accessed: Jan. 25, 2023. [Online]. Available: https://github.com/SPARQL-
Anything/experiments/tree/main/gtfs

[74] L. Asprino, E. Daga, J. Dowdy, A. Gangemi, and P. Mulholland,
‘‘Materialisation approaches for Façade-based data access with SPARQL,’’
Semantic Web J., vol. 12, 2022. [Online]. Available: http://www.semantic-
web-journal.net/content/materialisation-approaches-fa%C3%A7ade-
based-data-access-sparql

[75] World Wide Web Consortium. (Jul. 2017). Shapes Constraint
Language (SHACL). Accessed: Jan. 18, 2023. [Online]. Available:
https://www.w3.org/TR/shacl/

MAGNUS BAKKEN received the bachelor’s and
master’s degrees in natural language process-
ing from the University of Bergen, in 2011 and
2014, respectively. He is currently pursuing the
Ph.D. degree in computer science with the Nor-
wegian University of Science and Technology.
From 2014 to 2020, he was a software developer.
His research interests include creating knowledge
graphs and using knowledge graphs to support
industrial applications.

VOLUME 11, 2023 40005

