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We design succinct encodings of series-parallel, block-cactus and 3-leaf power graphs

while supporting the basic navigational queries such as degree, adjacency and neighbor-
hood optimally in the RAM model with logarithmic word size. One salient feature of our

representation is that it can achieve optimal space even though the exact space lower

bound for these graph classes is not known. For these graph classes, we provide succinct
data structures with optimal query support for the first time in the literature. For series-

parallel multigraphs, our work also extends the works of Uno et al. (Disc. Math. Alg.
and Appl., 2013) and Blelloch and Farzan (CPM, 2010) to produce optimal bounds.
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1. Introduction

In modern algorithm development, we observe two drastically opposing trends. Even

though memory capacities are increasing and their prices are drastically reducing

day-by-day, input data sizes that are being stored are growing at a much faster

pace, and this is due to the ongoing digital transformation of business and society

in general. There are many application areas, e.g., social networks, web mining, and

video streaming systems, where already there exists a tremendous amount of data

and it is only increasing. In these domains, most often, a natural representation of

the underlying data sets is in the form of graphs, and with each passing day, these

graphs are becoming massive. To process such huge graphs and extract useful infor-

mation from them, we need to answer the following two concrete questions among

others: (1) can we store these massive graphs in compressed form using the mini-

mum amount of space? and (2) can we build space-efficient indexes for these huge

graphs so that we can extract useful information about them by executing efficient

query algorithms on the index itself? The field of succinct data structures aims to

exactly answer these questions satisfactorily, and it has been one of the key con-

tributions to the algorithm community in the past two decades, both theoretically

and practically. More specifically, given a class of certain combinatorial objects, say

T , from a universe U , the main objective here is to store any arbitrary member

x ∈ T using the information-theoretic lower bound of log(|U |) bits (in addition to

o(log(|U |)) bits) a along with efficient support of a relevant set of operations on x.

There exists already a large body of work representing various combinatorial

structures succinctly along with fast query support. Succinct data structures for

rooted ordered trees [16, 17, 21, 22], chordal graphs [18], graphs with treewidth at

most k [11], separable graphs [2], interval graphs [1] etc., are some examples of

these data structures. Following similar trend, in this work we provide succinct

data structures for series-parallel multigraphs [24], block-cactus graphs [14] and 3-

leaf power graphs [4]. We defer the definitions of the graph classes to the individual

sections where their succinct data structures are proposed. These graphs are im-

portant because not only are they theoretically appealing to study but they also

show up in important practical application domains; e.g., series-parallel graphs are

used to model electrical networks, cacti are useful in computational biology etc. To

the best of our knowledge, our work provides succinct data structures with optimal

query support for these graph classes for the first time in the literature (although

there exists a succinct data structure for simple series-parallel graphs [2], such a

structure is not known for series-parallel multigraphs).

1.1. Previous work

Series-Parallel (SP) graphs. The information-theoretic lower bound (ITLB) for

encoding a simple SP-graph with n vertices is at least 3.18n+o(n) bits [3] whereas

aThroughout the paper, we use logarithm to the base 2.
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the ITLB for encoding an SP multigraph with m edges is at least 1.84m + o(m)

bits [27]. Since an SP graph is separable, one can obtain a succinct representation of

any SP graph by using the result of Blelloch and Farzan [2] while supporting some

navigation queries efficiently. However, this only works for simple SP graphs [19]

since one cannot store the look-up table for all possible micro-graphs (containing

multi SP graphs with any fixed number of vertices) within the limited space (as

the number of edges is not bounded)b. Also since simple SP graphs are exactly

the class of graphs with treewidth 2, one can use the data structure of Farzan and

Kamali [11] for representing SP graphs but again, this only works for simple SP

graphs. For multigraph case with m edges, Uno et al. [27] present an encoding for

SP multigraphs taking at most 2.53m bits without supporting any navigational

queries efficiently.

Block-Cactus and 3-Leaf Power graphs. The ITLB for encoding a block-cactus

graph and a 3-leaf power graph with n vertices are at least 2.092n+ o(n) [29] and

1.94n+o(n) [7] bits respectively. Note that the class of Block-cactus graphs contains

both cactus and block graph classes. As any cactus graph is planar, and hence

separable, one can again use the result of Blelloch and Farzan [2] to encode them

optimally while supporting the navigation queries efficiently. However, this approach

doesn’t work for block or block-cactus graphs since they are not separable.

1.2. Our Main Contribution

We design succinct data structures for (i) series-parallel multigraphs in Section 3

and (ii) block-cactus graphs in Section 4, and finally (iii) 3-leaf power graphs in

Section 5 to support the following queries. Given a graph G = (V,E) and two

vertices u, v ∈ V , (i) degree(v) returns the number of edges incident to v in G, (ii)

adjacent(u, v) returns true if u and v are adjacent in G, and false otherwise, and

finally (iii) neighborhood(v) returns the set of all (distinct) vertices that are adjacent

to v in G. The following theorem summarizes our main results on these graphs.

Theorem 1. There exists a succinct data structure that supports degree(u) and

adjacent(u, v) queries in O(1) time, and neighborhood(u) query in O(degree(u))

time, for (1) series-parallel multigraphs, (2) block-cactus graphs, and (3) 3-leaf

power graphs.

The reason for considering these three (seemingly unrelated) graph classes is

that any graph in each of these three classes has a corresponding tree-based rep-

resentation - and hence these graphs can be encoded succinctly by encoding the

corresponding tree. In what follows, we briefly discuss a high level idea on how to

succinctly represent the graphs of our interest. Roughly speaking, given a graph G

bNote that one can encode SP multigraphs by encoding the underlying simple graph using Blelloch

and Farzan’s encoding, along with a bit string of size m to represent the multiplicities of the edges.
However, the space usage is not succinct in this case.
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(G could be series-parallel, block-cactus or 3-leaf power), we first convert it into a

labeled tree TG which can be used to decode G. We then represent G by encod-

ing TG using the tree covering (TC) algorithm of Farzan and Munro [12], which

supports various tree navigation queries in O(1) time. However, we cannot obtain

directly the succinct representation of G with efficient navigation queries from the

tree covering of TG. More specifically, the tree covering algorithm first decomposes

the input tree and encodes each decomposed tree separately. Thus, a lot of infor-

mation of G can be lost in each of the decomposed trees. For example, decomposed

trees may not even belong to the graph class that we originally started with in the

first place (and this is in stark contrast to the situation while designing succinct

data structures for trees). Thus, we need to apply non-trivial local changes (catering

to each graph class separately) to these decomposed trees and argue that (i) these

changes convert them again back to the original graph class, without consuming

too much space, and (ii) navigation queries on G can be supported efficiently as

tree queries on TG. As a consequence, one salient feature of our approach is that

for the graphs G we consider in this paper, it is not necessary to know the exact

information-theoretic lower bound, to design succinct data structures for them if

we only know the asymptotic lower bound of the number of non-isomorphic graphs

of G with a given number of vertices. Note that the overall idea of ‘encoding the

graph as a tree-based representation and using the TC algorithm to encode the

tree to support the navigation operations on the graph’ is subsequently used in [6]

to obtain succinct representation for graphs of small clique-width. The other main

contribution of this paper is to construct suitable tree-based encodings and showing

how to adapt the TC representation to support the operations.

2. Preliminaries and Main Techniques

Throughout our paper, we assume familiarity with succinct/compact data struc-

tures (as given in [20]), basic graph theoretic terminology (as given in [9]), and

graph algorithms (as given in [8]). All the graphs in our paper are assumed to be

connected and unlabeled, i.e., we can number the vertices arbitrarily. Moreover, we

assume the usual model of computation, namely a Θ(log n)-bit word RAM model

where n is the size of the input (n is the number of vertices in the case of graphs,

and the number of edges in the case of multigraphs). We start by sketching a mod-

ification to the tree covering algorithm of Farzan and Munro [13].

2.1. Tree covering

The high level idea of the tree covering algorithm is to decompose the tree into

subtrees called mini-trees (in the rest of the paper, we use subtree to denote any

connected subgraph of a given tree), and further decompose the mini-trees into yet

smaller subtrees called micro-trees. The micro-trees are small enough to be stored as

pointers into a compact table. The root of a mini-tree can be shared by several other

mini-trees. To represent the tree, we only have to represent the connections and links
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between the subtrees, apart from the pointers corresponding to the microtrees. We

first summarize the main result of Farzan and Munro [13] in the following theorem:

Theorem 2 ([13]) Given a rooted ordered tree with n nodes and a positive integer

1 ≤ L ≤ n, we can decompose the tree into subtrees to obtain a tree covering

satisfying the following propoerties: (1) each subtree contains at most 2L nodes, (2)

the number of subtrees is, O(n/L), (3) each subtree has at most one outgoing edge,

apart from those from the root of the subtree.

For a subtree obtained using the decomposition of Theorem 2, if there is from a

node v which is not the root of that subtree, then v is called the boundary node

of the subtree, and the edge is called the boundary edge of the subtree. (Note that

from Property (3) in Theorem 2, there can be at most one boundary node in any

subtree.) The subtree may have multiple outgoing edges from its root node (in this

case, we call it a shared root node), and those edges are called root boundary edges.

To obtain a succinct representation, we first apply Theorem 2 with L = log2 n,

to obtain O(n/ log2 n) mini-trees (here and in the rest of the paper, we ignore all

floors and ceilings which do not affect the asymptotic bounds). The tree obtained

by contracting each mini-tree into a vertex is referred to as the tree over mini-

trees. If more than one mini-tree shares a common root, we create a dummy node

in the tree and make the nodes corresponding to the mini-trees as children of the

dummy node. We also set the parent of the dummy node as the node corresponding

to the parent mini-tree. (See Figure 1 for an example.) This tree has O(n/ log2 n)

vertices and therefore can be represented in O(n/ log n) = o(n) bits using a pointer-

based representation. Then, for each mini-tree, we again apply Theorem 2 with

parameter ℓ = 1
4 log n to obtain O(n/ log n) micro-trees in total. The tree obtained

from each mini-tree by contracting each micro-tree into a node, and adding dummy

nodes for micro-trees sharing a common root (as in the case of the tree over mini-

trees) is called the mini-tree over micro-trees. Each mini-tree over micro-trees has

O(L/ℓ) = O(logn) vertices, and can be represented by O(log(L/ℓ)) = O(log log n)-

bit pointers. For each non-root boundary edge of a micro-tree t, we encode from

which vertex of t it comes out and the rank among all children of the vertex. One

can encode the position where the boundary edge is inserted in O(log ℓ) bits. Note

that in our modified tree decomposition, each node in the tree is in exactly one

micro-tree.

For each micro-tree, we define its representative as its root node if it is not

shared with other micro-trees, or the next node of the root node in preorder if it

is shared. Then we mark bits of the balanced parentheses representation [17] of

the entire tree corresponding to the representatives. If we extract the marked bits,

it forms a balanced parentheses (BP) and it represents the mini-tree over micro-

trees. The positions of marked bits are encoded in O(n log log n/ log n) bits because

there are O(n/ log n) marked bits in the BP representation of 2n bits. The BP

representation is partitioned into O(n/ log n) many variable-length blocks, each of

which is of length O(log n). We can decode each block in constant time.
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To support basic tree navigational operations such as parent, i-th child, child

rank, degree, lowest common ancestor (LCA), level ancestor, depth, subtree size,

leaf rank, etc. in constant time, we use the data structure of [21]. Note that we

slightly change the data structure because now each block is of variable length. We

need to store those lengths, but it is done by using the positions of the marked bits.

The total space for all mini-trees over micro-trees is O(n/ℓ · log ℓ) =

O(n log log n/ log n) = o(n) bits. Finally, the micro-trees are stored as two-level

pointers (storing the size, and an offset within all possible trees of that size) into

a precomputed table that contains the representations of all possible micro-trees.

The space for encoding all the micro-trees using this representation can be shown

to be 2n+ o(n) bits.

2.2. Graph Representation Using Tree covering

This section describes the high-level idea to obtain succinct encodings for the graph

classes that we consider. Let C be one of the graph classes among series-parallel

multigraphs, block-cactus graphs, and 3-leaf power graphs. Then the following prop-

erties hold.

• The ITLB for representing any graph G ∈ C is kn + o(kn) bits for some

constant k > 0 [7, 27, 29], where n is the number of vertices (block-cactus,

and 3-leaf power graphs) or edges (series-parallel multigraphs) in G.

• For any connected graph G ∈ C, there exists a labeled tree TG of O(n)

nodes, such that G can be uniquely decoded from TG.

By the above properties, one can represent any graph G ∈ C by encoding the

tree covering of TG (with L = log2 n and ℓ = logn
2k ). Unfortunately, tree covering

on TG does not directly give a succinct encoding of G since the number of all non-

isomorphic graphs in C can be much smaller than the number of all non-isomorphic

labeled trees of the same size (for example, multiple labeled trees can correspond

to the same graph). To solve this problem, we maintain a precomputed table of

all non-isomorphic graphs in C of size at most ℓ, along with their corresponding

trees in canonical representation. By representing each micro-tree as an index of

the corresponding graph in the precomputed table, we can store all the micro-trees

of TG in succinct space. If a micro-tree t does not have a corresponding graph in

C (i.e., there is no corresponding graph in the precomputed table), we first extend

t to Tg where g ∈ C of size at most ℓ by adding some dummy nodes, and encode t

as the index of g, along with the information about dummy nodes. Since we only

add a small number of (at most O(1)) dummy nodes for each micro-tree, all the

additional information can be stored within succinct space. In the following sections,

we describe how to add such dummy nodes for series-parallel, block-cactus, and 3-

leaf power graphs.

Finally, for the case when G ∈ C is not connected, we extend the above idea as

follows. We first encode all the connected components of G separately, and encoding
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the sizes of the connected components using the encoding of [10, 26] using at most

O(
√
n) additional bits. This implies we can still encode G in succinct space even

if G is not connected. In the rest of this paper, we assume that all the graphs are

connected.

3. Series-Parallel Graphs

Series-parallel graphs [24] (SP graphs in short) are undirected multi-graphs which

are defined recursively as follows.

• A single edge is an SP graph. We call its two end points as terminals.

• Given two SP graphs G1 with terminals s1, t1 and G2 with terminals s2, t2,

– their series composition, the graph made by identifying t1 = s2, is an SP

graph with terminals s1, t2; and

– their parallel composition, the graph made by identifying s1 = s2, and

t1 = t2, is an SP graph with terminals s1 and t1.

From this construction, we can obtain the binary tree T representing an SP

graph G = (V,E) as follows. Each leaf of the binary tree T corresponds to an edge

of G. Each internal node v of T has a label S (or P), which represents an SP graph

made by the series (or parallel) composition of the two SP graphs represented by

the two child subtrees of v. We convert it into a multiary SP tree TG by merging

vertically consecutive nodes with identical labels into a single node. More precisely,

while scanning all the nodes in TG in bottom-up, we contract every edge (v, v′) if

v and v′ have the same labels. Then all the internal nodes at the same depth have

the same labels, and the labels alternate between the levels. See Figure 1 for an

example. Note that any two non-isomorphic SP graphs have different SP trees.

Succinct representation. Let n and m be the number of vertices and edges of

G, respectively. Then TG has m leaves, and O(m) nodes. First, we construct the

SP tree TG from an SP graph G = (V,E). If the root of TG is a P node, we add a

dummy parent r labeled S with three children, and make the original root as the

middle child of r. The first and the last children of r correspond to dummy edges.

If the root of TG is an S node, we also add two leaves as the leftmost and rightmost

children of the root, corresponding to dummy edges. We refer to this modified tree

as TG. Let s = O(m) be the number of nodes in TG. Then we apply the tree covering

algorithm with parameters L = log2 s and ℓ = (log s)/4.

It is obvious that each micro-tree without dummy leaf nodes represents an SP

graph. For each graph corresponding to a micro-tree, we use a linear time algo-

rithm [28] to obtain a canonical representation of the micro-tree. Note that if the

graphs corresponding to two micro-trees are isomorphic, then those two micro-

trees have the same canonical representation. We create a table to store all non-

isomorphic SP graphs with at most ℓ vertices, and encode each micro-tree as a

pointer into this table. To reconstruct the original graph from the graphs cor-
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Fig. 1. Example of an SP graph (left), its SP tree representation with tree covering (middle), and

the tree over mini-trees (right). The roots of mini-tree G and K are dummy nodes. Numbers below
S nodes are inorders. Numbers besides internal nodes of the SP tree are the left and right labels.

Leaves of the tree also have the left and right labels, which are vertex labels of the SP graph.

responding to the micro-trees, we need additional information to combine these

graphs. More specifically, assume an SP graph G consists of a series composition of

graphs G1 and G2, whose terminals are s1, t1, and s2, t2 respectively. Then one can

construct two different graphs G and G′ by (i) connecting t1 and t2 or (ii) t1 and

s2. Thus, for each micro tree, we add one extra bit to store this information.

For each S node of TG, we assign an inorder number [25] (we only assign inorder

numbers for S nodes). Inorder numbers in a rooted tree are given during a preorder

traversal from the root. If a node v is visited from one of its children and another

child of v is visited next, we assign one inorder number to v. If a node has k

children, we assign k− 1 inorder numbers to it. (Unary nodes are not assigned any

inorder number.) If a node has more than one inorder number, we use the smallest

value as its representative inorder number. Now we consider two operations (i)

irank(k, i): return the i-th inorder rank of S node k (given as preorder number),

and (ii) iselect(j): given an inorder rank j of an S node, return (k, i) where k is the

preorder number of the node with inorder rank j and i is the number such that k is

the i-th inorder number of the node. The following describes how to support both

queries in O(1) time using o(n) bits of additional space.

One can observe that for each micro-tree (or mini-tree) t of TG, all the inorder

numbers corresponding to the S nodes in t form two intervals I1t = [l1t , r
1
t ] and

I2t = [l2t , r
2
t ]. Note that all the intervals corresponding to the mini-trees or micro-

trees partition the interval [1,S] where S is the largest inorder number in TG. We

construct a dictionary DM that stores the right end points of all the intervals cor-

responding to the mini-trees, where with each element of the dictionary, we store

a pointer to the mini-tree corresponding to that interval as the satellite informa-

tion. The number of elements in this dictionary is O(s/L) with universe size at
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most s, and hence can be represented as an FID [23] using o(s) bits to support

membership, rank and select queries in O(1) time. The satellite information can

also be stored in o(s) bits, to support O(1)-time access. For each mini-tree M , we

also construct a dictionary DM
µ that stores the right end points of all the intervals

corresponding to its micro-trees, where with each element we associate a pointer to

the corresponding micro-tree as the satellite information. The space usage of the

dictionaries corresponding to all the mini-trees adds up to o(s) bits in total.

In addition, for each mini-tree T of TG, we store its corresponding intervals I1T
and I2T using o(s) bits in total. We call the two values l1T and l2T as the offsets

corresponding to T . Also, for each micro-tree t contained in the mini-tree T and

i ∈ {1, 2}, we store {[lit − l1T , r
i
t − l1T ]} if Iit ⊆ I1T , and [lit − l2T , r

i
t − l2T ] otherwise

(i.e., offsets with respect to the mini-tree intervals they belong to). Since all the

endpoints of these intervals are at most L, we can store all such intervals using o(s)

bits in total. The total space usage is o(s) bits.

To compute irank(k, i), we first find the micro-tree t which contains the node

k. Then, we decode the interval corresponding t using the interval stored at t as

well as the offsets corresponding to t, and return the i-th smallest value within the

interval. To compute iselect(k), we first find micro-tree t that contains the answer

by the rank queries on DM and DM
µ . Finally, we compute the answer within the

micro-tree t in O(1) time using the intervals stored with t.

Next, we assign labels to the vertices of the graph. Any vertex in the graph

corresponds to a common terminal of two SP graphs which are combined by series

composition. For each vertex v ∈ G, let Sv be an S node in TG which represents such

series composition. Then we assign one inorder number of Sv as the label of v (note

that any two subgraphs which have a common terminal correspond to the subtree at

the consecutive child nodes of Sv). For example, vertex 5 in the graph corresponds to

the common terminal of the following two subgraphs: (i) the subgraph consisting of

the edge g from 4 to 5, and (ii) the subgraph corresponding to the subtree rooted at

the mini-tree H (consisting of a single P node), which contains the four edges h, j, i

and k. Note that the inorder number 5 is assigned to the S node corresponding to

the mini-tree F , when we traverse from subtree corresponding to (i) to the subtree

corresponding to (ii) (during the preorder traversal of T).

Also, we define a label for each node v of TG, which is an ordered pair (lv, rv)

of the two terminals of the subgraph corresponding to the subtree rooted at that

node. We call lv and rv the left and the right label of the node v. The label (lv, rv)

of a P node v can be computed in O(1) time as follows. (1) If v is the leftmost child

of its parent p, then rv is equal to the smallest inorder number of p, given when p is

visited from v. To obtain lv, we traverse the SP tree TG up from v until we reach an

S node q such that v does not belong to the leftmost subtree of q. We can compute

the node q in O(1) time as follows. If q is in the same micro-tree as v, then we can

find q using a table lookup. Otherwise, if q is in the same mini-tree as v, then we

store q with the root of the micro-tree containing v. Finally, if q is not in the same
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mini-tree, then we explicitly store q with the root of the mini-tree containing v. (2)

If v is the rightmost child of its parent p, then lv is equal to the inorder number of

p, given when p is visited the last time before visiting v. To obtain rv, we traverse

the SP tree TG up from v until we reach an S node p such that v does not belong

to the rightmost subtree of p. We use a similar data structure as in (1) to compute

the answer. (3) In all other cases, lv and rv are the inorder numbers of the parent

p of v, defined immediately before visiting v from p, and immediately after visiting

the next sibling of v from p, respectively.

The label of an S node is the same as its parent P node (we don’t assign a

label to the root S node). The label of a leaf can be determined by the same

algorithm for P or S nodes depending on whether its parent is an S or P node. Note

that, from the above definition, the label of a P node is the same as the label of

any of its child S nodes. For an S node v, suppose v1, v2, . . . , vk be its k children,

and (ℓ1, r1), (ℓ2, r2), . . . , (ℓk, rk) be the left and the right labels. Then it holds that

r1 = ℓ2, r2 = ℓ3, . . . , rk−1 = ℓk, and the label of v is (ℓ1, rk).

We also define b(u) and f(u) for each vertex u of the graph, as follows. Suppose

that during the preorder traversal of the tree, we visit nodes x, p, y in this order

and we assign the inorder number u to p. Then we define b(u) = x and f(u) = y.

If iselect(u) returns the pair (p, j), then x and y are the j-th and the (j + 1)-th

children of node p, respectively. Thus, b(u) and f(u) can be computed in O(1) time.

This completes the description for encoding of SP graphs.

Supporting navigation queries. For SP graphs, we additionally consider multi-

plicity (u, v) queries, which returns the number of edges between u and v.

(1) adjacent(u, v) : Without loss of generality, assume that u < v. We first

find the nodes b(u), f(u), b(v) and f(v). (1) If f(u) = b(v), the subgraph

corresponding to the node f(u) has terminals with labels u and v. Therefore

u and v are adjacent if f(u) is a leaf (this corresponds to the edge (u, v))

or f(u) has a leaf child (f(u) is a P node and it has a leaf child that

corresponds to the edge (u, v)). (2) If depth(b(u)) > depth(b(v)), find the

label of f(u). Let (u, x) be the label of f(u). Then u and v are adjacent

iff x = v, and f(u) is either a leaf or is a P node with a leaf child. (3) If

depth(b(u)) < depth(b(v)), find the labels of b(v). Let (y, v) be the label of

b(v). Then u and v are adjacent iff y = u, and b(v) is either a leaf or is a

P node with a leaf child. In all three cases, the query can be supported in

O(1) time.

(2) multiplicity(u, v) : Again, without loss of generality, assume that u < v.

If adjacent(u, v) = false, then we return 0. If not, we consider the three

cases above, and describe how to support the multiplicity query. For Case

(1), if f(u) is a P node (otherwise, we return 1), we can answer the query

by returning the number of leaf children of f(u) (note that this can be

supported in O(1) time using the tree covering of TG). For Case (2), if
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f(u) is a P node with label (u, v) (if f(u) is a leaf node, we return 1), we

answer the query by returning the number of leaf children of f(u). Case (3)

is analogous to Case (2).

(3) neighborhood(u) : First we find b(u) and f(u). Then we apply the following

procedure to explore all the neighbors of u by executing the two procedure

calls, Explore(b(u),R) and Explore(f(u),L).

Explore(x,D): if x is a leaf with label (u,w) or (w, u), then output w.

If x is an S node, then call Explore(y,D), where y is the leftmost

(rightmost) child of x, if D = L (D = R). If x is a P node, then call

Explore(y,D) for all the children y of x.

The running time of this procedure is proportional to the size of the output.

Note that if we do not want to report the same neighbour multiple times,

we can define a canonical ordering between the children of P nodes such

that all the leaf children appear after the non-leaf children (S nodes), and

only report the first leaf child of the node.

(4) degree(u) : Let µ and M be the micro-tree and mini-tree containing u

respectively. Then the degree of u is the summation of (i) the number of

adjacent vertices in µ, (ii) the number of adjacent vertices not in µ but

in M , and (iii) the number of adjacent vertices not in M , denoted by d1u,

d2u, and d3u respectively. Here an adjacent vertex of u refers to a vertex v

such that (u, v) or (v, u) is the label of some leaf node. If u is not one of

the labels of the boundary node of µ (of M), then d2u = 0 (respectively,

d3u = 0). Now we consider three cases as follows. First, d1u can be computed

in O(1) time using a precomputed table. The value d2u (d3u) can be stored

with the root of micro-tree (mini-tree) whose parent is the boundary node

in µ (M). Note that in the above scheme, we only need to store two values

corresponding to the two labels of the root, for each micro-tree/ mini-tree

root. Thus the space usage for storing these values is o(n) bits.

4. Block/Cactus/Block-Cactus Graphs

A block graph (also known as a clique tree or a Husimi tree [15]) is an undirected

graph in which every block (i.e., maximal biconnected component) is a clique. A

cactus graph (same as almost tree(1) [14]) is a connected graph in which every two

simple cycles have at most one vertex in common (equivalently every block is a

cycle). A block-cactus graph is a graph in which every block is either a cycle or a

complete graph.

Any graph that belongs to one of these three graph classes can be converted

into a tree as follows. Replace each block (either a clique or an induced cycle) with

k vertices by a star graph K1,k by introducing a dummy node that is connected to

the k nodes that correspond to the k vertices of the block. The remaining edges and

vertices of the graph are simply copied into the tree. See Figure 2 for an example.

Note that the number of dummy nodes is always less than the number of non-
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dummy nodes. In the following, we describe a succinct encoding for block-cactus
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Fig. 2. An example of a block-cactus graph (left) and its tree representation (right). Squares are

dummy vertices.

graphs, and note that it is easy to obtain succinct encoding for block graph and

cactus graph using these ideas.

Succinct representation. Let G be the input block-cactus graph, and let TG

be the corresponding tree obtained by replacing each block with a star graph, as

described above. We apply the tree covering algorithm of Theorem 2 on TG with

mini-tree and micro-trees of size L = log2 n and ℓ = (log n)/(2α) for some constant

α ≥ 2.092 respectively.

It is easy to see that each micro/mini-tree obtained by the tree cover algorithm

corresponds to a block-cactus graph, although it may not be a subgraph of the

original graphG. And by storing some additional information with each micro/mini-

tree along with its representation, we can give a bijective map between the vertices

in G and the nodes in TG, which we use in describing the query algorithms.

We first note that when we convert a block (Ck or Kk) into a star graph (K1,k),

the neighbors of the dummy node can be ordered in multiple ways when we consider

the resulting graph as an ordered tree. In particular, if the ordered tree is rooted at

a dummy node corresponding to a cycle, then its children can be ordered in either

the clockwise or anti-clockwise order of the cycle, and also the first child can be any

vertex on the cycle. When the root of micro-tree t is a dummy node corresponding

to a cycle, the cycle corresponding to the dummy node is cut into two or more

pieces, and the one inside t represents a shorter cycle. Then the micro-tree t is

encoded as a canonical representation of the modified subgraph, and it loses the

information of how it was connected to the other part of the graph. To recover this

information, for the micro-tree it is enough to store one vertex in the shorter cycle

that is connected to the outside and the direction (clockwise or anti-clockwise) of

the cycle. The vertex is encoded in O(log ℓ) bits, and the direction in one bit. We
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need the same information for the non-root boundary node of the micro-tree. This

additional information will enable us to reconstruct the cycle in the original graph

from the subgraphs corresponding to the micro-trees. Note that if the dummy node

corresponds to a clique, then we don’t need this information.

Each micro-tree is encoded as a two-level pointer into a precomputed table that

stores the set of all possible block-cactus graphs on at most ℓ vertices. Note that

the number of dummy nodes is O(n/ log n) since we can delete all the dummy nodes

which are not boundary nodes of micro-trees. We also store 1 bit with each of these

O(n/ log n) dummy nodes, indicating whether it corresponds to a clique or a cycle.

Thus each micro-tree is represented optimally, apart from an O(log ℓ)-bit additional

information. Hence the overall space usage is succinct. This completes the descrip-

tion for the succinct encoding of block-cactus graphs.

Supporting navigation queries.

(1) adjacent(u, v) : If there is an edge in TG between the nodes corresponding

to u and v, then u and v are adjacent in the graph (since we only delete

some edges from the original graph; and all the edges added are incident to

some dummy node). Otherwise, u and v are adjacent if they are connected

to the same dummy node x, and either (a) x corresponds to a clique, or

(b) u and v are “adjacent” in the tree – i.e., if they are adjacent siblings or

one of them is the parent of x and the other is either the first or last child

of x. Since all these conditions can be checked in O(1) time using the tree

representation, we can support the query in O(1) time.

(2) neighborhood(u) : The algorithm for this follows essentially from the condi-

tions for checking adjacency. More specifically, to report neighborhood(u),

we first output all the non-dummy nodes adjacent to u in the tree. And if

u is adjacent to any dummy node x, then we also output all the vertices:

(a) that are connected to x if x corresponds to a clique, and (b) that are

“adjacent” to it in the tree if x corresponds to a cycle. This can be done in

time proportional to the output size.

(3) degree(u) : From the algorithm for the neighborhood(u) query, we observe

that the degree of a node can be computed by adding the two quantities:

(1) the number of non-dummy neighbors of u, and (2) the number of nodes

that are adjacent to u through a dummy neighbor. It is easy to compute

(1) and (2) within a micro-tree, in constant time using precomputed tables.

In addition, we may need to add the contributions from outside the micro-

tree, if u is either a boundary node or is adjacent to a boundary node which

is dummy. For each such dummy boundary node, we need to add either 1

or 2 (if the dummy node corresponds to a cycle) or k (if the dummy node

corresponds to a clique of size k). Since there are at most two such boundary

nodes which can be adjacent to u, this can be computed in constant time.

Also, for the roots of the mini (micro) trees, which are non-dummy, we
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store their degrees (within the mini-tree) explicitly. Thus, we can compute

the degree(u) query in O(1) time.

5. 3-Leaf Power Graphs

A graph G with n vertices is a k-leaf power if there exists a tree TG with n leaves

where each leaf node corresponds to a vertex in the graph G, and any two vertices

in G are adjacent if and only if the distance between their corresponding leaves in

the tree is at most k. The tree TG is called a k-leaf root of G (see Figure 3 for an

example). In this section, we consider the succinct representation of k-leaf power

for the special case of k = 3.

Succinct representation. Our representation of 3-leaf power graphs is based on

the following lemma.

Lemma 3 (Brandstädt and Le [4]) For any connected and non-clique 3-leaf

power G of n vertices, one can construct a unique 3-leaf root TG of G of O(n)

nodes.

Note that We can make TG as a rooted tree as follows. Because TG contains

an internal node (otherwise TG consists of just an edge with two nodes, which

corresponds to the clique K2), we regard it as the root of TG. We store the root of

every micro tree of T explicitly using O(n/ℓ · log ℓ) = o(n) bits in total.

Now consider the 3-leaf root TG of G. If G is not a clique, one can construct the

unique representation of TG by Lemma 3. If not, we fix TG as K1,n. For any non-leaf

node p ∈ TG, we order the children of p in the non-decreasing order of the sizes of

the subtrees rooted under them (thus, all the leaf children of p appear before the

non-leaf children of p), to support the navigation queries efficiently. We then apply

the tree covering algorithm on TG with parameters L = log2 n and ℓ = (log n)/(2α)

for any constant α ≥ 1.95. We build a precomputed table of size o(n)-bits which

stores all non-isomorphic non-clique 3-leaf powers of size at most ℓ along with their

3-leaf root constructed from the algorithm of Lemma 3.

We use the following properties of 3-leaf roots: (1) if G is connected, every

internal node of TG has at least one leaf child, and (2) the graphs corresponding to

the micro-trees created by applying the tree cover algorithm to TG are connected.

The proofs are as follows. For (1), assume to the contrary that there is an internal

node v with no leaf children. Then any vertex corresponding to a leaf descendant

of v is not connected to any other vertex corresponding to a leaf node outside of

the subtree rooted at v since the distance between them (in TG) is at least 4. For

(2), consider a micro-tree t with a boundary edge connecting a node v in t and a

node w which is the root of another micro-tree t′. From (1), v has a leaf child u.

If u belongs to t, the graph corresponding to t is connected. If u belongs to t′, the

root of t′ must be v, which contradicts the assumption that (v, w) is a boundary

edge. Note that root boundary edges do not effect the connectivity of the graph
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Fig. 3. An example of a 3-leaf power graph (left) and its 3-leaf root (right).

corresponding to the micro-tree.

Thus each micro-tree t of TG falls into one of the three cases: (i) 3-leaf root

of a non-clique, (ii) single non-leaf node, or (iii) 3-leaf root of a clique. For Case

(i), we encode t as an index into the precomputed table. For Case (ii), we add one

extra entry into the precomputed table, which is used to encode this case. Finally

for Case (iii), note that there are only ℓ-distinct 3-leaf roots corresponding to the

clique of size (ℓ− 1), each of which can be constructed by connecting two non-leaf

nodes of K1,i−1 and K1,(ℓ−i) for any 1 ≤ i ≤ ℓ − 1 (assuming K1,0 corresponds to

the empty graph). Thus, we add Θ(ℓ2) extra entries into the precomputed table

which indicate cliques of size at most ℓ with an additional index 0 ≤ i ≤ ℓ. Overall,

the total space of the encoding is succinct.

Supporting navigation queries. For the navigation queries, we refer to each

vertex u ∈ G by the leaf-rank of the corresponding leaf node lu in TG. Let pu be

the parent node of lu, and let Cu and Du be a set of leaf and non-leaf children of

pu respectively.

(1) adjacent(u, v) : By the definition of 3-leaf root, lu and lv are adjacent if

and only if (i) pv = pu or (ii) pu is a parent node of pv or vice versa. Since

both pu and pv can be computed in O(1) time [13], we can answer the

adjacent(u, v) in O(1) time.

(2) neighborhood(u) : Let su be a parent node of pu. Then j ∈ neighborhood(u)

if and only if lj is a (i) leaf child node of su, (ii) node in Cu, or (iii) leaf

child node of the node in Du. To return all the leaf children of su, we scan

from the leftmost child of su, and return if the child is a leaf node. This

can be done in O(1) time per node by using the O(1)-time tree navigation

queries in [13]. Next, we scan all the children of pu. While scanning the

node u′, if u′ ∈ Cu (this returns all the nodes in the case (ii)), we return u′.
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Otherwise, we return all the leaf-children of u′ (this returns all the nodes

in the case (iii)). Again, all these nodes can be reported in O(1) per node

by the same argument as the above. Thus, we can return neighborhood(u)

in O(|degree(u)|) time.

(3) degree(u) : We count the number of (i) leaf child nodes of su (parent node of

pu), (ii) nodes in Cu, and (iii) leaf children of the nodes in Du separately,

and return the sum of these as the answer of degree(u) query. Now we

describe how to compute (iii) in O(1) time (note that (i) and (ii) also can

be computed in O(1) time analogously). Let t1 (resp. t2) be a micro-tree

(resp. mini-tree) which contains lu. Then we first consider the case that Du

does not contain the boundary node of t1. In this case, we compute the (iii)

in O(1) time using the precomputed table if pu is not a boundary node of t1.

If pu is a boundary node of t1 (resp. t2), we compute the (iii) in O(1) time by

referring to the answer stored at the root of t1 (resp. t2). Note that we can

store all of these answers using at most O(n/L·logL+n/ℓ·log ℓ) = o(n) bits

in total. Next, we consider the case that Du contains the boundary node

of t1. In this case, we additionally store the number of leaf children of the

root node of each micro-tree of TG using at most o(n) bits in total. Then

we can compute the (iii) in O(1) time by computing the (iii) without the

number leaf children of the boundary node of t1, and adding the number of

leaf children of the micro-tree whose root node is the child of the boundary

node of t1.

6. Conclusions

We present in this work succinct representations of series-parallel, block-cactus and

3-leaf power graphs along with supporting basic navigational queries optimally. We

conclude with some possible future directions for further exploration.

• Following the works of [1,11], is it possible to support shortest path queries

efficiently on these graphs while using same space as in this paper?

• Is it possible to design space-efficient algorithms for various combinatorial

problems for these graphs?

• Can we generalize the data structure of Section 5 to construct a succinct

representation of k-leaf power graphs?

• Can we prove a lower bound between the query time and the extra space

i.e., redundancy, for our data structures?
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