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Dept. of Electronic Systems, Norwegian University of Science and Technology-NTNU, Norway
E-mails: katinkam@stud.ntnu.no, {vinay.gogineni, milica.orlandic, stefan.werner}@ntnu.no

Abstract—Anomaly detection in hyperspectral remote sensing
applications has attracted colossal attention due to its abil-
ity to uncover small distinctive objects dispersed across large
geographical areas in an unsupervised manner. Autoencoders
(AEs) have recently been demonstrated as effective tools for
detecting hyperspectral anomalies. Using pre-processing tech-
niques along with AEs improves accuracy by removing noise
and irrelevant information from the data and also improves
computational efficiency by reducing the dimensionality of the
data or transforming it into a more appropriate representation.
Therefore, this paper proposes to utilize principal component
analysis (PCA) and kernel PCA (KPCA) based pre-processing
methods in conjunction with the autonomous hyperspectral
anomaly detection autoencoder (AUTO-AD). Further, we propose
using multiple kernels in KPCA-based pre-processing to capture
the complexity of the data better. Although KPCA- and MKPCA-
based pre-processing shows excellent results when combined
with hyperspectral anomaly detection algorithms, their high
computational cost becomes crucial in resource-constrained ap-
plications. As a solution, we use random Fourier features (RFF) to
approximate KPCA-based pre-processing. We conduct a series of
experiments on various datasets to demonstrate the performance
of the proposed framework. The experiments reveal that utilizing
KPCA as a pre-processing step lead to better results than state-
of-the-art hyperspectral anomaly detection approaches.

Index Terms—Hyperspectral imaging, anomaly detection, au-
toencoder, kernel principal component analysis, random Fourier
features.

I. INTRODUCTION

Hyperspectral imaging (HSI) is a technique that uses a wide
range of electromagnetic spectrums to analyze each pixel [1].
Thus, it is possible to distinguish objects by taking advantage
of the different absorption wavelengths of light for different
materials. Hyperspectral anomaly detection (HAD) refers to
the identification of pixels or sub-pixels with significantly
different spectral characteristics from their neighboring pixels
[2], [3]. In HSI, a pixel is a vector whose dimension is equal to
the spectral dimension of the HSI. Remote sensing applications
such as search-and-rescue, mine detection, and environmental
monitoring rely heavily on the HAD. Consequently, there has
been an increased interest in HAD as a research field, leading
to the development of several state-of-the-art models using
both traditional and deep learning methods [4].

This work is partly supported by the Research Council of Norway.

In a few traditional methods, such as the Reed-Xiaoli (RX)
detector [5], the background of the HSI is modeled as a
multidimensional Gaussian distribution, and the deviation of
a test vector from this distribution is calculated using the
Mahalanobis distance [6]. However, due to the complexity
of HSI, the Gaussian distribution is not always sufficient to
accurately model the background distribution. Representation-
based methods, such as collaborative representation detection
(CRD) [7], assume that background pixels can be modeled as a
linear combination of the surrounding pixels while anomalies
cannot. Additionally, tensor decomposition-based methods,
such as prior-based tensor approximation (PTA) [8], considers
the 3D structure of the HSI by treating the 3D hypercube as a
third-order tensor. It is, however, difficult to generalize CRD
and PTA to new datasets as both require manual parameter
setting. A common issue with traditional methods is achieving
good feature extraction for different data types.

HAD approaches based on deep learning can overcome
this problem by learning automatically how to extract features
based on a variety of datasets [9], [10]. Autoencoders (AEs),
which reconstruct the original input and use the error as an
anomaly score, have recently been explored in HAD [11]–
[13]. A recently proposed autonomous hyperspectral anomaly
detection network (AUTO-AD) utilizes the same concept of re-
constructing the background for separating the anomalies [14].
Instead of using the hyperspectral image as input, AUTO-AD
uses uniform noise to train the model, which has been shown
to improve the performance of the model. AUTO-AD has
demonstrated promising results in terms of computational cost
and detection accuracy and has outperformed several state-
of-the-art HAD models. The AUTO-AD, however, does not
employ any form of pre-processing, which would potentially
enhance its performance.

In this paper, we propose the use of PCA and KPCA
as pre-processing methods along with AE in the AUTO-
AD model. Using KPCA, the underlying structure of the
data can be efficiently captured, which aids in identifying
anomalies that may not be apparent in the raw data, making
it easier for an AE to identify them [15]. A recent study
has demonstrated that using multiple kernels can improve
hyperspectral data representation, making background and
anomalies more distinct [16]. Therefore, the paper proposes
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Fig. 1: Architecture of the autonomous hyperspectral anomaly
detection (AUTO-AD).

to use multiple kernels in KPCA-based pre-processing, which
results in multi-KPCA (MKPCA) pre-processing. Through
this approach, various combinations of kernels can be used
to capture different aspects of the data, therefore providing
the AUTO-AD model with useful representations that could
improve its performance. However, this advantage comes at
the expense of high computational costs associated with KPCA
when dealing with large datasets, which is even more pro-
nounced in the case of MKPCA. To reduce the computational
cost associated with KPCA and MKPCA, this paper adopts
the principles of random Fourier features (RFF) [17]–[19]. We
demonstrate the performance of the proposed HAD approach
using real-world datasets.

II. AUTONOMOUS HYPERSPECTRAL ANOMALY
DETECTION (AUTO-AD)

The AEs for HAD are based on the principle that anomaly
pixels are less likely to be reconstructed than background
pixels, i.e., the areas corresponding to anomalies result in high
reconstruction error [14]. However, research has shown that
the AE learns how to reconstruct the anomalies after a large
number of iterations. To address this issue, the AUTO-AD uses
an adaptive-weight loss function to suppress the anomalies
further. The architecture of the AE proposed in the AUTO-AD
is shown in Fig. 1. The AE consists of a decoder and encoder,
which are built up using fully convolutional layers, together
with skip connections to complement the encoder with spatial
details.

The encoder consists of 15 convolutional layers, where the
input to the encoder is a hypercube, of the same dimension
as the target HSI, filled with uniform noise U ∈ [0, 0.1]. The
encoder uses convolutional filters to reduce dimensionality in
the spatial and spectral domains. The decoder contains 11
convolutional layers together with up-sampling blocks that
use nearest-neighbour interpolation to increase the spectral
dimensionality. The input to the decoder is a concatenation of
the image code in the encoder and outputs given from the skip
connections. The decoder output contains the reconstructed
background, which is sent as input to the adaptive weight-loss
function.

Let xi,j ∈ RB×1 be the pixel in spatial position (i, j)
in the target HSI X ∈ RH×W×B and x̂i,j ∈ RB×1 is

the corresponding output of the network. Then, the adaptive
weight-loss function is given as

L =

H∑
i=1

W∑
i=j

||(xi,j − x̂i,j)wi,j ||22 (1)

where wi,j is the weight corresponding to the pixel in spatial
position (i, j) in the target HSI, which can be calculated as

wi,j = max(vec(E))− ei,j , (2)

with ei,j = ||xi,j − x̂i,j ||22, vec(·) denotes the vectorization of
the argument matrix, and

E =


e1,1 e1,2 · · · e1,W
e2,1 e2,2 · · · e2,W

...
...

. . .
...

eH,1 eH,2 · · · eH,W

 . (3)

The weights wi,j are initialized to one and will be updated
according to (2) after a given amount of iterations P , which
was set to 100 in the proposed AUTO-AD model. After each
iteration, the loss will be fed backward to update the network
parameters using the optimization algorithm [20]. The training
stops when a particular stopping criterion is satisfied, e.g., after
Lmax iterations or when the average variation in loss is less
than a certain threshold σ within the last I iterations:

1

I

k∑
i=k−I

|Li+1 − Li| < σ. (4)

where k signifies the number of iterations. In [14], I and Lmax

were set to 50 and 1000 iterations, respectively, while σ was
set to 1.5×10−5. With the AUTO-AD algorithm, we obtain a
hyperspectral image containing the reconstructed background
and a 2D detection map. The detection map is created by
calculating the reconstruction loss between the target HSI and
the reconstructed background. Brighter colors in the detection
map indicate areas with higher reconstruction errors, while
darker colors indicate lower reconstruction errors. Therefore,
anomalies in the hyper-spectral image will appear as bright
regions in the detection map.

III. PROPOSED HAD
This section presents the proposed HAD approach that

utilizes PCA or KPCA-based pre-processing method along
with AUTO-AD. Pre-processing can enhance anomaly detec-
tion accuracy by removing noise and redundant information
from the data and may also improve computational efficiency
by reducing the spectral dimension or transforming the data
into a more appropriate representation. In addition, we pro-
pose utilizing multiple kernels in KPCA-based pre-processing
to capture the intricacies of the data effectively. However,
the computationally cost of KPCA and MKPCA-based pre-
processing could pose significant challenges in resource-
limited applications. To address this, we use random Fourier
features (RFF) as an approximation technique for KPCA-based
pre-processing. The proposed HAD approach is illustrated in
Fig. 2.
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Fig. 2: Proposed implementation of AUTO-AD utilizing the
MKPCA-based pre-processing.

A. Kernel Principal Component Analysis (KPCA)

Principal component analysis (PCA) is a mathematical tech-
nique that can be used for dimensionality reduction and feature
selection for linearly separable data [21]. PCA transforms the
data into a set of ξ principal components that are used to
reduce the dimensionality while still containing most of the
variation in the data. However, for nonlinearly separable data,
the use of PCA is limited. In this case, a possible solution
for dimensionality reduction is Kernel PCA. Using kernels,
the data x can be projected onto a higher dimensional feature
space as ϕ(x), where it becomes linearly separable [22]. The
KPCA is similar to PCA, but with an additional step in which
the data x is transformed into a higher dimensional space
using the kernels. In the higher dimensional space, the inner
product between two vectors x and x′ can be computed using
the kernel trick without explicitly transforming the data [15].
A continuous, symmetric, and positive-definite kernel κ(·)
satisfies the Mercer’s condition, which is given by

κ(x,x′) = ϕT(x)ϕ(x′). (5)

Some commonly used kernel functions are the radial basis
function (RBF), Laplacian and sigmoid [15]. The first step
in KPCA is to express the covariance matrix Ĉ as an inner
product between two transformed vectors ϕ(x) and ϕ(x′) as
follows:

Ĉ =
1

N

N∑
i=1

ϕ(xi)ϕ
T(x′

i) (6)

where N = W×H is the number of pixels present in the HSI.
The kernel matrix K = {κi}Ni=1, which is used to compute
the principal components, can be set equal to the covariance
matrix Ĉ in (6). The principal components are found using
the eigenvalue decomposition expressed as

KP = ΛP (7)

where P contains the eigenvectors of K, also referred to
as the principal components, and Λ is a diagonal matrix
with eigenvalues of K on its diagonal. For dimensionality
reduction, only the first ξ principal components containing the

most variance are used to transform the data. Applying KPCA
with ξ principal components to the HSI X results in the new
HSI X̃ ∈ RH×W×ξ, which will be used instead of the original
HSI for calculating the reconstruction loss ei,j . Thus, the new
adaptive weight-loss function is given by

L =

H∑
i=1

W∑
i=j

||(x̃i,j − x̂i,j)wi,j ||22, . (8)

Please note that the dimensionality of x̃i,j and x̂i,j is ξ × 1
in (8).

B. Multi-Kernel PCA (MKPCA)

Multi-kernel learning combines multiple kernel functions to
capture various aspects of the intricate structure of the data,
which can enhance the background and anomaly separability
[16]. Thus, we use MKL to obtain multiple detection maps,
which are then fused together to yield the final detection map
D. To extract the detection maps, KPCA is first applied using
different kernel functions to reduce the dimensionality, and
used to compute the loss function in (8) of the AE separately.
In the proposed MKPCA-based HAD approach, two kernel
functions are utilized, resulting in two detection maps D1 and
D2; these maps are fused using a convex combination to yield
the final detection map D as follows

D = αD1 + (1− α)D2 (9)

where α ∈ [0, 1] is the fusion weight found using grid search.
By employing KPCA, it is possible to capture the complex

underlying structure of the data, which helps identify the
anomalies which may not be apparent in the raw data [22].
However, when N is large, the computation of a kernel matrix
comes with a high computational cost [23].

C. KPCA using Random Fourier Features (RFF-KPCA)

RFF can be used to accelerate the computation of the kernel
function when the amount of data samples, N , is large [17].
The kernel function (5) can be approximated as an inner prod-
uct in the M -dimensional RFF space [18], [19]. This approx-
imation becomes a finite-dimensional linear filtering problem
that avoids the high computation of the kernel function. The
RFF algorithm approximates the feature transformation ϕ(·) ≈
z(·) used to compute the kernel function κ(x,x′), returning a
new kernel function κ(x′) = ϕT(x)ϕ(x) ≈ zT(x)z(x′). The
approximated transformation z(x), is given by

z(x) =

√
1

M
[cos(vT

1x+ b1)... cos(v
T
Mx+ bM )

sin(vT
1x+ b1)... sin(v

T
Mx+ bM )]

(10)

where phase terms {bi}Mi=1 are drawn from a uniform distri-
bution U ∈ [0, 2π]. The RFF vectors {vi}Mi=1 are drawn from
a distribution p(v) such that

κ(x− x′) =

∫
p(v exp(jvT(x− x′) dv (11)

where j2 = −1. The RFF vectors {vi}Mi=1 can for example
be the Gaussian or Laplacian distribution [17].



TABLE I: AUC scores of the proposed HAD approach with PCA, KPCA MKPCA, and RFF-MKPCA pre-processing methods.
Also presented the AUC scores for RX, PTA, CRD, and AUTO-AD.

ABU scene RX PTA CRD Original PCA KPCA MKPCA RFF-MKPCA
Airport 1 0.8221 0.7331 0.9246 0.6941 0.9394 0.9537 0.9441 0.9333
Airport 2 0.8404 0.9096 0.8931 0.6764 0.9378 0.9789 0.9795 0.9287
Airport 3 0.9288 0.5476 0.9456 0.921 0.9411 0.9367 0.9440 0.9243
Airport 4 0.9526 0.9955 0.8664 0.5509 0.9879 0.9943 0.9947 0.9899
Airport Average 0.8860 0.7965 0.9074 0.7106 0.9515 0.9659 0.9656 0.9441
Beach 1 0.9828 0.9638 0.9882 0.9605 0.9730 0.9899 0.9889 0.9856
Beach 2 0.9106 0.8300 0.9257 0.9042 0.9702 0.9014 0.9072 0.9649
Beach 3 0.9998 0.9203 0.9932 0.9276 0.9959 0.9996 0.9999 0.9998
Beach 4 0.9887 0.9660 0.9417 0.9898 0.9704 0.9748 0.9746 0.9494
Beach Average 0.9705 0.9200 0.9622 0.9455 0.9774 0.9664 0.9677 0.9749
Urban 1 0.9907 0.9055 0.9887 0.9833 0.8816 0.9886 0.9914 0.9393
Urban 2 0.9946 0.9770 0.9294 0.9994 0.9962 0.9883 0.9945 0.9106
Urban 3 0.9513 0.8346 0.9414 0.7663 0.9750 0.9790 0.9791 0.9615
Urban 4 0.9887 0.8257 0.9549 0.9965 0.9866 0.9931 0.9923 0.9951
Urban 5 0.9692 0.8258 0.9371 0.9620 0.8834 0.9793 0.9788 0.9168
Urban Average 0.9789 0.8737 0.9503 0.9415 0.9446 0.9857 0.9872 0.9447

IV. EXPERIMENTAL RESULTS

A series of experiments on various datasets are conducted
to demonstrate the performance of the proposed HAD. The
four pre-processing configurations, PCA, KPCA with the RBF
kernel function, MKPCA with the RBF and Sigmoid kernel
function and RFF-MKPCA, where RFF is used to construct
the Gaussian and a Laplacian kernel function, are used. The
experimental results are then compared with the original
AUTO-AD and other state-of-the-art models by using the area
under curve (AUC) metric [24].

A. Datasets

In this paper, thirteen HSI datasets from the public Airport-
Urban-Beach (ABU) [25] are employed to verify the perfor-
mance of the HAD. The image sizes are between 100 × 100
and 150×150 pixels with 102−207 spectral bands. The HSIs
have been manually extracted from images of the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS), except for
the Beach 4 scene taken from the Reflective Optical System
Imaging Spectrometer (ROSIS-03). It is worth to mention that
certain ABU datasets recognized under different names. For
instance, Gulf Port is referred to as Airport 4, Texas Coast I
and II are alternative names for Urban 1 and 2, Los Angeles
3 is another name for Airport 2, Beach 4 is commonly known
as Pavia Center.

B. Parameter Settings

To find the number of principal components ξ for the
pre-processing methods, tests are conducted for values of
ξ between 10 and 200. For KPCA and MKPCA, tests are
conducted using RBF, Laplacian, Sigmoid and Gaussian kernel
functions. For PCA-based pre-processing, the highest detection
score is achieved for ξ = 20. For KPCA, the number of
components ξ = 100 together with the RBF kernel function
are chosen based on the superior detection performance.
MKPCA combining the Sigmoid and RBF kernel functions,
each utilizing ξ = 100 principal components, provides the
highest detection accuracy compared to the combination of
other kernel functions. The RFF method with the dimension

(a) (b) (c) (d) (e)

Fig. 3: Detection map of airport 4 (top) , beach 3 (middle),
and urban 3 (bottom). (a). ground truth, (b). conventional
AUTO-AD , (c). with KPCA, (d). with MKPCA (e). with RFF-
MKPCA.

M = 100, resulting in KPCA with ξ = 100, provides the
highest AUC detection by using Laplacian and Gaussian kernel
functions.

C. Detection Performance

The proposed HAD is compared with other state-of-the-art
HAD, RX [5], CRD [7] and PTA [8], and the original AUTO-
AD model [14]. The parameters for CRD are set according
to the parameters for Airport 4 in [26]. Parameters for PTA
are set according to [8], whereas the RX model requires no
parameter setting. The detection results are given in form of
AUC scores in Table I and detection map plots in Fig. 3. The
AUC scores are given for each dataset, and as an average over
each scene.

By analyzing the average AUC scores of ABU scenes, it
can be inferred that all four pre-processing methods performed
better in terms of detection accuracy than the original AUTO-
AD. As part of the proposed work, the experiments including
the original AUTO-AD on the complete ABU dataset are



performed showing that there is no consistency in the detection
performance for the different datasets, where the results range
from 0.5509 for Airport 4 to 0.9994 for Urban 2. KPCA- and
MKPCA-based pre-processing improve the anomaly detection
accuracy of Airport scenes by 20% over the original AUTO-
AD. In addition, detection results are consistent when these
pre-processing techniques are employed. For Beach scenes,
the highest AUC scores are achieved by the RX model, PCA-
and RFF-MKPCA-based methods. This is expected as the
background in the Beach scenes typically has less varying
background than other scenes. These findings suggest that
the linear methods such as PCA and RFF-MKPCA perform
well when the underlying structure of the HSI is less com-
plex. The detection maps for the original AUTO-AD and the
AUTO-AD models with KPCA-based, MKPCA-based, and
RFF-MKPCA-based pre-processing techniques, along with the
ground truth are shown in Fig. 3. The detection maps are
shown for Airport 4, Beach 3 and Urban 3. Overall, the RFF-
MKPCA-based pre-processing method effectively eliminates
most of the background, but also eliminates some of the
anomalies, leading to high performance on Beach 3 but not on
Airport 1 or Urban 3. This is also inherent in the AUC scores.
Conversely, the original AUTO-AD has difficulty removing
the background, which is a problem in all three datasets and
is reflected in the AUC scores. Both KPCA and MKPCA
have high AUC scores for all three scenes, and the detection
maps correspond well with the scores. For the Urban 3
scene, even though MKPCA does not significantly suppress
the background but rather preserves it to a large extent, the
anomalies are still visible resulting in a high AUC score.

V. CONCLUSIONS

In this paper, we propose to use PCA-, KPCA- and
MKPCA-base pre-processing methods to enhance the perfor-
mance of the autonomous hyperspectral anomaly detection
autoencoder (AUTO-AD). To reduce the computational cost
associated with KPCA, random Fourier features(RFF) is used
to approximate the KPCA-based pre-processing. Experiments
were performed on the airport-urban-beach(ABU) datasets
and compared to the original AUTO-AD and other state-
of-art methods. The results showed that introducing pre-
processing significantly increased the detection performance
of the AUTO-AD, where the MKPCA-and KPCA-based pre-
processing gave the most outstanding results.Additionally, re-
sults showed that PCA-and RFF-MKPCA-based outperformed
other models when the underlying structure of the data was
less complicated. In the future, the focus will be on decreasing
the computational cost while still remaining high detection
scores.
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