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Abstract
Purpose As concept-based reasoning for improving model interpretability becomes promising, the question of how to
define good concepts becomes more pertinent. In domains like medical, it is not always feasible to access instances clearly
representing good concepts. In this work, we propose an approach to use organically mined concepts from unlabeled data to
explain classifier predictions.
Methods A Concept Mapping Module (CMM) is central to this approach. Given a capsule endoscopy image predicted as
abnormal, the CMM’s main task is to identify which concept explains the abnormality. It consists of two parts, namely a
convolutional encoder and a similarity block. The encoder maps the incoming image into the latent vector, while the similarity
block retrieves the closest aligning concept as explanation.
Results Abnormal images can be explained in terms of five pathology-related concepts retrieved from the latent space given
by inflammation (mild and severe), vascularity, ulcer and polyp. Other non-pathological concepts found include anatomy,
debris, intestinal fluid and capsule modality.
Conclusions This method outlines an approach through which concept-based explanations can be generated. Exploiting the
latent space of styleGAN to look for variations and using task-relevant variations for defining concepts is a powerful way
through which an initial concept dictionary can be created which can subsequently be iteratively refined with much less time
and resource.

Keywords Interpretability · Biomedical imaging · Capsule endoscopy · Deep learning

Introduction

Whenmachine learningmodels are utilized for critical appli-
cations such as severity grading in ulcerative colitis in a
patient, the clinician may want to understand what aspects
within the endoscopic image led the machine to decide so.
Although through the use of feature attribution methods [1]
it may be possible to highlight which parts of the image
show abnormality, clinicians may prefer to reason among
each other in terms such as: increased mucosal “inflamma-
tion” causes a given severity. Not only clinicians, but humans
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in general understand through “concepts” that are high-level
ideas easily interpretable and translatable within the domain.
For example, the concept “fins”: the presence implies a fish
and vice versa. It has been found that patients prefer easily
understandable explanations catering to their specific case
and it improves a patient’s trust in the model. Similarly, doc-
tors may find visual information such as the explanations
produced by LIME [2] difficult to interpret. They usually
prefer clinical context around explanations [3] such as expla-
nations that provide biomedical links for the decisions. In
this regard, concept-based explanations are at the level that
is natural to and easily understandable by the end users. Fur-
ther, explanations are more relatable and actionable when
presented in terms of concepts of the domain. Recent work
promotes techniques to enable interpretation of decisions
beyond low-level features (as pixels) so that outputs can be
understood in terms of human-understandable concepts [4].
This requires the concepts, in terms of which the outputs are
to be attributed, to be sufficiently well defined. For example,
labeling all images with blue eyes as belonging to the “blue-
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eye” concept and so on. Once defined, concepts can be learnt
through examples during training and attributed to during
inference [4]. Usually, the activation of one of the layers of a
binary classifier trained on concept and non-concept exam-
ples is used to calculate a concept activation vector (CAV)
and it can indicate whether an incoming sample belongs to a
concept or not [4]. As many binary classifiers as the number
of concepts are required in this case as each CAV specializes
in one concept. If such exemplar samples are not directly
obtainable through visual inspection, prior information from
experts must be used to collect such samples and calculate
CAVs [5]. However, such manual curation of concepts is not
so trivial [6]. Consider the label scarce domain of wireless
capsule endoscopywith availability of large but un-annotated
dataset. Here, the curation of concepts would not only be
time-consuming, but can be done only by a medical expert.
Similarly, consider the concept of faulty versus robust heavy
machinery design which can only be reliably identified by
a machine engineer. This is a bottleneck to concept-based
learning for many domains includingmedical, where domain
knowledge is essential to concept definition. This leads to the
question investigated in this work: for domains where con-
cept definition is an arduous exercise, how could we mine
the concepts underlying the data without explicit supervision
and generate useful explanations? Further, the unique chal-
lenges of capsule endoscopy make it an interesting domain
to inquire this. Finding pathologies in capsule endoscopy can
be challenging due to distortions such as illumination vari-
ation, rotational and motion blur as well as occlusions due
to floating gastrointestinal content. Considering that some
pathologies such as lesions and ulcers can be small scale,
identifying pathologies against a dynamic canvas of gastroin-
testinal variations can be challenging.

The aim of disentanglement learning is that the factors
underlying the data can be captured independently [7]. In
this regard, the latent space of generative models has been
shown to exhibit a degree of disentanglement between latent
dimensions. These dimensions correspond to visual concepts
such as absence or presence of inflammation in endoscopic
image and can be selectively integrated in the learning frame-
work for enhancing interpretability. In fact, mapping of latent
dimensions to human concepts is not new and has been dis-
cussed in the context of image editing [8] as well as language
understanding [9]. In this work, we show how certain latent
dimensions of style-based generative adversarial networks
(StyleGANs) [10] directly translate as task-relevant concepts
and propose a simple framework for generating concept-
based explanations for a classifier.

Methodology

We train StyleGAN2 [10] on wireless capsule endoscopy
images and perform semantic factorization [11] in the latent
space W ∈ R512 to obtain 512 candidate concepts. Not
all candidate concepts are task-relevant, for example, in
abnormality classification, concepts pertaining to pathology
(inflammation, ulcer, polyp) are required as opposed to those
of anatomy (small or large intestine) or image clarity (clear
or blurred due to capsule motion). However, once the data
are decomposed into candidate concepts, the pertinent con-
cepts can be easily identified with involvement frommedical
experts by simply asking them to look at the images gener-
ated for each candidate concept and indicate those consistent
with the task. The task-relevant concepts thus form a concept
dictionary D. Further, a classifier C outputs label y ∈ {0, 1}
for input xi ∈ R

n indicating whether the image is normal or
abnormal. A concept mapping module (CMM) then explains
C by identifying the underlying concept for xi from D.

The CMM consists of (a) an encoder g : Rn → R
512 that

takes as input xi and outputs a vector ŵi ∈ W (b) similarity
block Sim(.) that retrieves closest aligning concept wi from
D (Fig. 3). Encoder g is trained to predict ŵi such that the
properties of the latent space remain preserved as the samples
are embedded. This is done using the cost function L =
αLNCE + βLMSE + γLK L . LK L minimizes the Kullback–
Leibler divergence between the actual p(w|x) and predicted
p̂(ŵ|x) latent variable distributions (Eq. 1)

LK L = K L(p||p̂) =
∑

x

p(w|x)logp(w|x)
p̂(ŵ|x) (1)

However, simply ensuring that the two distributions converge
is not enough to ensure that the newly embedded ŵi s span
the latent space according to its geometrical properties. For
example, input images could be mapped to the average latent
w in the space regardless of the semantic content.

Furthermore, since the latent dimensions/concepts in W
are orthogonal (disentangled) from each other, the inverse
mapping from xi to ŵi through g must be such that editing
along ŵi does not change aspects in the image corresponding
to [w j ] j !=i , i.e., alignment with one concept automatically
encourages orthogonality with others. Therefore, we use
LNCE to enforce these constraints. Assuming concepts to
be independent (orthogonal in latent space) and that each
image arises from a single task-relevant concept, instances
with the same concept within a batch must align strongly
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Fig. 1 Using the latent space of a pretrained StyleGAN (gray), the CMM (blue) predicts the relevant concept for input xi

with the same w in the latent space, similarly instances from
different concepts must lead to mutual orthogonality in the
latent space. This leads to LNCE which is a cross entropy
loss over cosine similarities between [w] vectors in a batch,
which simplifies to the InfoNCE objective given by:

LNCE = −E log

⎡

⎣

exp s(ŵi ,w+)
τ

exp s(ŵi ,w+)
τ

+ ∑

j∈[neg] exp
s(ŵi ,[w j ])

τ

⎤

⎦

(2)

where s is the cosine similarity score,w+, wneg the positives
and negatives for ŵi and τ is the temperature parameter.
Finally, LMSE = |wi − ŵi |2 is the mean squared error over
the actual and predicted wi . Once the encoder is trained, it
can be used to retrieve the human-interpretable concept from
D. This is done by first predicting ŵi for the test samples,
followed by a cosine similarity check against the concepts
in D to find the concept with maximal alignment with ŵ.
Figure1 shows our approach.

Training details

StyelGAN2 has been trained on unlabeled WCE images.
A total of 200,000 images from three sources have been
used for training. Apart from datasets PS-DeVCEM [12]
and OSF-Kvasir [13], images from the capsule examina-
tions of patients with varying activity of ulcerative colitis
(as well as other pathologies) with PillCam Colon2 Capsule,
Medtronic, have been used [14]. Binary classifier C uses pre-
trainedweights [12] for classification. C predicts for both real
images from the datasets described above as well as gener-
ated images. Concept explanations for both types of images
(real and generated) can be generated by the CMM. g of
CMM is a Resnet-50 [15] encoder. We use StyleGAN2 with
hyperparameters as in [10] and omit progressive growing in
the interest of reducing computational complexity. In this
experiment, the scaling factors are α = 0.6, β = γ = 0.2.
However, these valuesmay require additional tuning depend-
ing on the application domain.
Sampling the positives and negatives for LNCE : AsLNCE

optimizes ŵ such that similarity with positives w+ is max-

imized and that with the negatives wneg is minimized. In a
batch of size B, for input xi with concept wi , the positives
correspond to other imageswith the same concept. For exam-
ple, for an image with concept polyp, all other polyp images
in the batch qualify as positives, while the remaining images
qualify as the negatives. In this work, B=64, we sample one
positive from the batch for each wi and all negative samples
within the batch are used for computing LNCE .

Concepts for capsule endoscopy

The concept exploration was performed with the help of a
gastroeneterologist with 28 years of experience, whereby
four task-related concepts were identified (shown in Fig. 2),
which are inflammation (mild and severe), vascularity changes,
ulcer and polyp. Since the images are essentially generated, a
more thorough study conducting complete evaluation of data
and its clinical plausibility can be found in [14]. The medical
concepts in this paper were utilized only after establishing
strong clinical plausibility in prior work.

Also, not all dimensions within the latent space W cor-
respond to useful or task-relevant concepts. As such, in
a pathology classification, concepts relating to normalcy
such as anatomical variations, image variations arising from
different capsule cameras or absence or presence of gastroin-
testinal content are not required and hence are not included in
concept dictionaryD. However, if the problem were slightly
different as clean Vs occluded image classification, organ
classification or capsule modality classification, these con-
cepts would become task-relevant. Figure 3 shows images
from some of these concepts.

Results

Through the use of a concept mapper as described, the latent
spaces of pretrained StyleGANs can be utilized to retrieve
relevant concepts as explanations. While there are works
indicating that dimensions in latent space are potent for
concept curation, we formally define an approach through
which concept-based explanations can be retrieved from
latent space. Further, using latent dimensions as the start-
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Fig. 2 Figure shows example images for five task-related concepts discovered by proposed approach. As described previously, the concept is named
(bottom row) in collaboration with a gastroeneterologist (28 years of experience) by showing him/her images corresponding to each candidate
concept from the dataset

Fig. 3 Figure shows images for some candidate concepts that were not selected for pathology classification problem discussed in the main paper

ing point for concept curation saves both time and resources
compared to starting from raw data and domain experts. The
results thus far strongly motivate further exploration for fur-
ther refining explanations, multiclass classifiers as well as
other domains.

Limitations

The explanations can be in terms of only those concepts that
are present already within the latent space; in other words,
new concepts cannot be added on the fly for explaining
images that do not lie in the latent distribution. Therefore,
the method is limited to images x for which a w exists not
too far from the training distribution. An interesting future
work in this direction is the incorporation of an uncertainty
metric alongwith explanations that provide ameasure of how
much can a given explanation be trusted.
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