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1. Introduction

The ∞-Laplace Equation

Δ∞u ≡
∑
i,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0

was introduced by G. Aronsson in 1967 (cf. [1]) to produce optimal Lipschitz extensions 
of boundary values. It has been extensively studied. Some of the highlights are

• Viscosity solutions for Δ∞, [3]
• Uniqueness, [9]
• Differentiability, [16], [5] and [6]
• Tug-of-War (connection with stochastic game theory), [15]

We are interested in the two-dimensional equation

( ∂u

∂x1

)2 ∂2u

∂x2
1

+ 2 ∂u

∂x1

∂u

∂x2

∂2u

∂x1∂x2
+

( ∂u

∂x2

)2 ∂2u

∂x2
2

= 0

in so-called convex ring domains G = Ω \K. Here Ω is a bounded convex domain in R2

and K � Ω is a closed convex set. We continue our investigation in [13] of the ∞-potential 
u∞, which is the unique solution in C(G) of the boundary value problem⎧⎪⎪⎨

⎪⎪⎩
Δ∞u = 0 in G

u = 0 on ∂Ω
u = 1 on ∂K.

In [13] we proved that the ascending streamlines, the solutions α = (α1, α2) of

dα(t)
dt

= +∇u∞(α(t)), 0 ≤ t < Tα

with given initial point α(0) ∈ Ω \K, are unique and terminate at ∂K. (The descending 
ones are not!) Streamlines may meet and then continue along a common arc. Uniqueness 
prevents crossing streamlines.
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Along a streamline one would expect that the speed |∇u∞(α)| is constant. Indeed,

d

dt
|∇u∞(α(t))|2 = 2 Δ∞u∞(α(t)) = 0,

but the calculation requires second derivatives. The main difficulty is the lack of second 
derivatives. Although, the second derivatives are known to exist almost everywhere with 
respect to the Lebesgue area, see [10] for this new result, this is of little use since the 
area of a streamline is zero. In [13] it was shown that the above calculation fails: for most 
streamlines the speed is not constant the whole way up to ∂K. (We shall see that the 
speed is constant from the initial point till the streamline meets another streamline.)

We use the approximation with the (unique) solution of the p-Laplace equation

Δpu = div(|∇u|p−2∇u) = 0, p > 2,

in G with the same boundary values as u∞.
We shall use several facts about these p-harmonic functions due to J. Lewis, cf. [12]. It 

is decisive that the level curves {up(x) = c} are convex and that Δup ≤ 0. See Section 2
for more details.

We also need the facts that (i) ∇up → ∇u∞ in L2
loc and (ii) the family {|∇up|} is 

locally equicontinuous. (Notice that we wrote |∇up|, not ∇up.) We extract a proof of 
this from the recent pathbreaking work by H. Koch, Y. R-Y. Zhang and Y. Zhou in [10], 
complementing their results by applying a simple device, due to Lebesgue in [11], to the 
norm |∇up| of the quasiregular mapping

∂up

∂x1
− i

∂up

∂x2
, i2 = −1.

The quasiregularity was obtained by B. Bojarski and T. Iwaniec in [4].
We prove the following basic result in Section 3.

Theorem 1 (Non-decreasing speed). Let α∞ = α∞(t), 0 ≤ t ≤ T , be a streamline of u∞, 
i.e.,

dα∞(t)
dt

= ∇u∞(α∞(t)), 0 ≤ t < T,

and α∞(0) ∈ ∂Ω, α∞(T ) ∈ ∂K. Then the function u∞(α∞(t)) is convex when 0 ≤ t ≤
T . In particular, the speed |∇u∞(α∞(t))|, is a non-decreasing function of t.

Combining this with a result in the opposite direction (cf. Lemma 12 in [13]), we can 
control the meeting points so that these lie on a few specific streamlines, here called 
attracting streamlines.
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Polygons To avoid a complicated description, we begin with a convex polygon as Ω
with N vertices P1, P2, . . . , PN (set PN+1 = P1 for convenience). With Pk = γk(0) as 
initial point there is a unique streamline

γk = γk(t), 0 ≤ t ≤ Tk,

with terminal point γk(Tk) on ∂K. The

attracting streamlines are γ1,γ2, . . . ,γN .

Occasionally, some of them meet and then share a common arc up to ∂K. The collection 
of all the points on the attracting streamlines is called the ∞-ridge and is denoted by Γ, 
i.e.,

Γ =
N⋃

k=1

{γk(t) : 0 ≤ t ≤ Tk}.

It seems to play a similar role for the ∞-Laplace Equation as the (ordinary) ridge does 
for the Eikonal Equation.

Before meeting any other streamline, a streamline α either meets an attracting stream-
line or hits the upper boundary ∂K. We formulate this as a theorem, proved in Section 6.

Theorem 2. Let α be a non-attracting streamline. The speed |∇u∞(α(t))| is constant 
along α from the initial point on ∂Ω until it meets one of the attracting streamlines γk, 
after which the speed is non-decreasing. It cannot meet any other streamline before it 
meets an attracting one.

Thus there are no meeting points in G \Γ, i.e., they all lie on the attracting streamlines 
γ1, γ2, . . . , γN . In other words, there is no branching outside the ∞-ridge Γ.

General domains The polygon has a piecewise smooth boundary and at the vertices 
|∇u∞(Pk)| = 0. Thus the attracting streamlines start at the points of minimal speed. 
Similar results hold when Ω is no longer a polygon, but now we have to assume that the 
following holds:

Assumptions:

1. ∇u∞ is continuous in Ω \K, in particular along ∂Ω.1
2. On ∂Ω, the continuous function |∇u∞| has a finite number of local minimum points, 

say P1, P2, . . . , PN , and a finite number of local maximum points.

1 For example, if ∂Ω is piecewise C2, then the gradient is continuous in Ω \ K, see Section 2.
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Again, the streamlines with the initial points Pk are called attracting streamlines:

γk = γk(t), 0 ≤ t ≤ Tk; γk(0) = Pk.

The ∞-ridge is again

Γ =
N⋃

k=1

{γk(t) : 0 ≤ t ≤ Tk}.

Theorem 2 holds also in this setting. As a consequence, streamlines cannot meet, except 
on Γ. The theorem below is proved in Section 7.

Theorem 3. Let α be a non-attracting streamline. The speed |∇u∞(α(t))| is constant 
along α from the initial point on ∂Ω until it meets one of the attracting streamlines γk. 
It cannot meet any other streamline before it meets an attracting one.

The situation when |∇u∞| is constant on some arc on ∂Ω can happen even for a 
rectangle, but does not cause extra complications.

Proposition 4. If the speed |∇u∞| is constant along a boundary arc ab, then the stream-
lines with initial points on the arc are non-intersecting segments of straight lines. They 
meet no other streamlines in G, except possibly when the initial point is a or b.

This follows from Lemma 12 and Lemma 16. It allows us to relax assumption 2 to 
include boundary arcs with constant local maximum speed:

2*. The local maxima and minima of |∇u∞| on ∂Ω are attained along at most finitely 
many closed subarcs, which may degenerate to points.

The definition of the attracting streamlines must be amended if the speed attains a 
local minimum along a boundary arc ab: it contributes with two attracting streamlines, 
namely the ones with initial points at a and b.

Remark 5. The behavior of the streamlines suggests that the ∞-potential is smooth 
outside the ∞-ridge Γ.

Examples We mention some examples.

Example 1. Let Ω be the square

−1 < x1 < 1, −1 < x2 < 1,

and K the origin. The attracting streamlines are the four half-diagonals, constituting 
the ∞-ridge
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Fig. 1. The streamlines of u∞ when Ω is the square in Example 1.

Γ = {(x1, x2) : x1 = ±x2, |x1| ≤ 1, |x2| ≤ 1}.

All streamlines meet at a diagonal, except the four segments along the coordinate axes. 
See Fig. 1.

Example 2. Let K be the origin and Ω the square in Example 1 which is truncated in the 
following symmetric way: in the south west corner we have removed the triangle with 
corners (−1, −1), (−1 + δ, −1) and (−1, −1 + δ), for some small δ. See Fig. 2. We only 
describe the behavior in the south west quarter of Ω.

The attracting streamlines are those starting in (−1 +δ, −1) and (−1, −1 +δ) (dotted). 
The only streamlines that do not meet any other before reaching origin, are the medians. 
Any other streamline will meet one of the attracting streamlines. The streamline starting 
in the middle of (−1 + δ, −1) and (−1, −1 + δ) will be a straight line to the origin and 
will be joined by the attracting streamlines from both sides before terminating at the 
origin.

2. Preliminaries

Ω is a bounded convex domain in R2 and K � Ω is a compact and convex set, which 
may reduce to a point. We study the equation in the convex ring G = Ω \K. We assume 
the following normalization:

dist(∂Ω,K) = 1.

The boundary value problem
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Ω

(0, 0)

Fig. 2. The truncated square in Example 2 and some possible streamlines.⎧⎪⎪⎨
⎪⎪⎩

Δ∞u = 0 in G,

u = 0 on ∂Ω,

u = 1 on ∂K,

has a unique solution u∞ ∈ C(G) in general. By [5], ∇u∞ is locally Hölder continuous 
in G. We will assume that also ∇u∞ ∈ C(Ω \K). This is fulfilled if for instance ∂Ω has 
a piecewise C2 regular boundary. See Lemma 2 and Theorem 2 in [7], Theorem 7.1 in 
[14] and Theorem 1 in [17].

In [13] it was established that, for a given initial point ξ0 ∈ ∂Ω, the gradient flow
⎧⎨
⎩

dα(t)
dt

= +∇u∞(α(t)), 0 ≤ t < T,

α(0) = ξ0,

has a unique solution α = α(t), which terminates at some point α(T ) on ∂K. (Some 
caution is required if |∇u∞(ξ0)| = 0.) We say that α is a streamline. Although unique, 
two streamlines may meet, join, and continue along a common arc.

We shall employ the p-harmonic approximation
⎧⎪⎪⎨
⎪⎪⎩

Δpup = 0 in G,

up = 0 on ∂Ω,

up = 1 on ∂K,

for p > 2. It is known that up ∈ C(G) and it takes the correct values (in the classical 
sense) at each boundary point. We shall need the following results from [12] (see also 
[8]):

1. The level curves {up = c} are convex, if 0 ≤ c ≤ 1,
2. up ↗ u∞ uniformly in G,
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3. |∇up| 	= 0 in G,
4. up is real analytic in G,
5. Δup ≤ 0.

The streamlines of up do not meet in G. This is due to the regularity of up and the 
Picard-Lindelöf theorem. Properties 1), 3), and 5) are preserved at the limit p = ∞. 
Especially, ∇u∞ 	= 0 in G.

We keep the normalization dist(∂Ω, K) = 1. Then |∇u∞| ≤ 1, but we also need a 
uniform bound for |∇up|. The bound

|∇up| ≤ 1 on ∂Ω, (1)

follows by comparison with the distance function

δ(x) = dist(x, ∂Ω).

In a convex domain, δ is a supersolution of the p-Laplace equation. Since

0 ≤ up(x) ≤ δ(x) on ∂G,

the same inequality also holds in G. In general, |∇up| is unbounded (but |∇u∞| ≤ 1), 
so we have to consider a subdomain, say {up < c}.

Lemma 6. The uniform bound

|∇up(x)| ≤
( 1

1 − c

) 1
p−2 (2)

holds when up(x) ≤ c, 0 < c < 1.

Proof. Let Υp(c) denote the level curve {up = c} and

δp(x) = dist(x,Υp(c)).

Since |∇up| obeys the maximum principle and |∇up| ≤ 1 on ∂Ω by (1), it is enough to 
control |∇up| on Υp(c). We see that

c ≤ up(x) ≤ c + (1 − c) δp(x)
dist(Υp(c), ∂K) (3)

on Υp(c) and on ∂K, i.e., on the boundary of {1 > up > c}. Again, the majorant is a 
supersolution to the p-Laplace equation, and hence (3) holds in {1 > up > c} by the 
comparison principle. It follows that
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|∇up(x)| ≤ 1 − c

dist(Υp(c), ∂K) , (4)

on2 Υp(c).
To get the explicit upper bound in (2), we assume that x0 ∈ ∂K is a point at which the 

distance dist(Υp(c), ∂K) is attained. Let R be the radius of the largest ball BR(x0) ⊂ Ω. 
Then

up(x) ≥ 1 −
(
|x− x0|

R

) p−2
p−1

in BR(x0) \K

by comparison. Here the minorant is p-harmonic in BR(x0) \ {x0}. Now

1 −
(
|x− x0|

R

) p−2
p−1

= c ⇐⇒ |x− x0| = R(1 − c)1+
1

p−2 = rc

and clearly dist(Υp(c), ∂K) ≥ rc. We have by (4)

|∇up(x)| ≤ 1
R(1 − c)

1
p−2

.

To conclude, use R ≥ dist(∂Ω, ∂K) = 1. �
3. Equicontinuity of |∇up|

We shall prove that

lim
p→∞

|∇up| = |∇u∞|

locally uniformly in G. From [10] we can extract the following important properties: If 
D � G, then

¨

D

|∇up −∇u∞|2 dx1dx2 → 0, as p → ∞, (I)

¨

D

|∇(|∇up|2)|2 dx1dx2 ≤ MD < ∞, (J)

for all (large) p.
The constant MD depends on ‖∇up‖L∞(E), where D � E � G, and dist(D, ∂G), but 

not on p.

2 Since up ↗ u∞, dist(Υp(c), ∂K) increases with p. Thus we get an upper bound independent of p. This 
is sufficient for our purpose.
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In [10] the estimates were derived for solutions uε of the auxiliary equation

Δ∞uε + εΔuε = 0

while we use Δpup = 0 written as

Δ∞up + 1
p− 2 |∇up|2Δup = 0.

The advantage of our approach is that the inequality Δup ≤ 0 is available in convex 
domains for p ≥ 2.

The conversion from uε to up requires only obvious changes. Formally, the factor ε in 
front of an integral in [10] should be moved in under the integral sign and then replaced 
by |∇up|2/(p − 2), upon which every uε be replaced by up. This procedure is explained 
in our Appendix.

In order to prove that the family {|∇up|} is locally equicontinuous, we shall use a 
device due to Lebesgue in [11]. A function f ∈ C(BR) ∩W 1,2(BR) is monotone (in the 
sense of Lebesgue) if

osc
∂Br

f = osc
Br

f, 0 < r < R,

where Br are concentric discs. For such a function

(
osc
Br

f
)2

ln R

r
≤ π

¨

BR

|∇f |2 dx1dx2. (5)

The proof is merely an integration in polar coordinates, cf. [11]. We shall apply this 
oscillation lemma on the function f = |∇up|2. It was shown by Bojarski and Iwaniec in 
[4] that the mapping

∂up

∂x1
− i

∂up

∂x2
, i2 = −1,

is quasiregular. That property implies that its norm |∇up| satisfies the maximum prin-
ciple, and, where |∇up| 	= 0, also the minimum principle. Thus |∇up| is monotone. So is 
|∇up|2. From (5) we obtain

(
osc
Br

{|∇up|2}
)2

ln R

r
≤ π

¨

BR

|∇(|∇up|2)|2 dx1dx2.

The uniform bound in (2) and a standard covering argument for compact sets yields the 
following result.
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Theorem 7. (Equicontinuity) Let D � G. Given ε > 0, there is δ = δ(ε, D) such that the 
inequality ∣∣∣|∇up(x)| − |∇up(y)|

∣∣∣ < ε when |x− y| < δ, x, y ∈ D,

holds simultaneously for all p > 2.

By Lemma 6, the gradients are also locally equibounded. Since ∇up → ∇u∞ in 
L2

loc(G) we can use Ascoli’s theorem to conclude that

lim
p→∞

|∇up| = |∇u∞|

locally uniformly. (More accurately, we have to extract a subsequence in Ascoli’s theorem, 
but since the limit |∇u∞| is unique, this precaution is not called for here.)

Caution: The more demanding convergence ∇up → ∇u∞ holds a.e., but perhaps not
locally uniformly.

Let us finally mention that the uniform convergence is not global. For example, in the 
ring 0 < |x| < 1 we have

up(x) = 1 − |x|
p−2
p−1 , u∞ = 1 − |x|.

Now |∇up| is not even bounded near x = 0. Thus the convergence cannot be uniform in 
the whole ring.

4. Convergence of the streamlines

In this section, we study the convergence of the streamlines and prove Theorem 1. It 
is plain that the level curves {up = c} converge to the level curves {u∞ = c}. However, 
the convergence of the streamlines requires a more sophisticated proof. (The problem is 
the identification of the limit as an ∞-streamline.)

Suppose that we have the streamlines αp and α∞ having the same initial point 
αp(0) = α∞(0) = x0. Now

dαp(t)
dt

= ∇up(αp(t)),
dα∞(t)

dt
= ∇u∞(α∞(t))

when 0 < t < Tp, where up(αp(Tp)) = 1. Thus

αp(t2) −αp(t1) =
t2ˆ

t1

∇up(αp(t))dt.

Using the bound
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|∇up| ≤
( 1

1 − c

) 1
p−2

, when up ≤ c,

in Lemma 6 we see that

|αp(t2) −αp(t1)| ≤
( 1

1 − c

) 1
p−2 |t2 − t1| (6)

as long as the curves are below the level up = c, i.e., up(α(t2)) ≤ c. In particular, the 
bound is valid in the domain {u∞ < c}, where c < 1. Thus, the family of curves is locally 
equicontinuous. By Ascoli’s theorem we can extract a sequence pj → ∞ such that

αpj
(t) → α(t)

uniformly in every domain {u∞ < c}. Here α(t) is some curve with initial point α(0) =
x0.

The endpoint of α is on ∂K. Indeed, let tp = tp(c) denote the parameter value at which 
up(αp(tp)) = c. Take any convergent sequence, say tp → t∗. Since |∇up| ≥ up/diam(Ω)
(see Lemma 7 in [13] for an easy proof), it follows that t∗ < ∞. Then

c = lim
p→∞

up(αp(tp)) = u∞(α(t∗)).

Thus t∗ = t∞(c). Then tp(c) → t∞(c) for all c.
By (6)

|α(t2) −α(t1)| ≤ |t2 − t1|.

Rademacher’s theorem for Lipschitz continuous functions implies that α(t) is differen-
tiable at a.e. t.

We claim that α = α∞. Since they start at the same point, the uniqueness of ∞-
streamlines shows that it is enough to verify

dα(t)
dt

= ∇u∞(α(t)).

To this end, we shall employ the convex functions Fp(t) = up(αp(t)). Indeed,

dFp(t)
dt

=
〈
∇up(αp(t)),

dαp(t)
dt

〉
= |∇up(αp(t))|2

and

d2Fp(t)
dt2

= 2 Δ∞up(αp(t)) = − 2
p− 2 Δup(αp(t)) |∇up(αp(t))|2.

By Lewis’s theorem, Δup ≤ 0 in convex ring domains, if p ≥ 2. Thus,
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d2Fp(t)
dt2

≥ 0

and so the function Fp(t) is convex. The convergence

Fp(t) = up(αp(t)) → u∞(α(t)) = F (t)

is at least locally uniform, when p takes the values p1, p2, p3, . . . extracted above. Also 
the limit F (t) is convex, of course.

We have the locally uniform convergence

|∇up(αp(t))|2 → |∇u∞(α(t))|2,

which follows from Theorem 7 by writing

|∇up(αp(t))|− |∇u∞(α(t))| = |∇up(αp(t))|− |∇up(α(t))|+ |∇up(α(t))|− |∇u∞(α(t))|.

Thus,

dFp(t)
dt

= |∇up(αp(t))|2 → |∇u∞(α(t))|2.

It follows that3 F ′(t) = |∇u∞(α(t))|2 for a.e. t. We also have by the chain rule

dF (t)
dt

=
〈
∇u∞(α(t)), dα

dt

〉

a.e., since dαdt exists for a.e. t.
We have arrived at the identity

|∇u∞(α(t))|2 =
〈
∇u∞(α(t)), dα

dt

〉
valid for a.e. t. From

αp(t2) −αp(t1) ≤
t2ˆ

t1

|∇up(αp(t))|dt,

we get

α(t2) −α(t1) ≤
t2ˆ

t1

|∇u∞(α(t))|dt,

3 ´
|∇u∞(α(t))|2φ(t)dt ←

´
F ′

p(t)φ(t)dt = − ́ Fp(t)φ′(t)dt → − ́ F (t)φ′(t)dt.
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and, hence for a.e. t

∣∣∣dα(t)
dt

∣∣∣ ≤ |∇u∞(α(t))|.

We conclude that in the Cauchy-Schwarz inequality

|∇u∞(α(t))|2 =
〈
∇u∞(α(t)), dα

dt

〉
≤ |∇u∞(α(t))|

∣∣∣dα
dt

∣∣∣ ≤ |∇u∞(α(t))|2

we have equality. It follows that

dα

dt
= ∇u∞(α(t))

for a.e. t. In fact, it holds everywhere because now the identity

α(t2) −α(t1) =
t2ˆ

t1

∇u∞(α(t))dt

can be differentiated. This concludes our proof of the fact α = α∞.
We see that the tangent dαdt is continuous. The proof reveals that the convex functions 

Fp → F uniformly and hence F is convex as well. Therefore, its derivative

F ′(t) = |∇u∞(α(t))|2

is non-decreasing. In other words, |∇u∞|2 is non-decreasing along the limit streamline.
This proves Theorem 1.

5. Quadrilaterals and triangles

Curved quadrilaterals and triangles, bounded by arcs of streamlines and level curves, 
are useful building blocks. It is tentatively understood that at least the interior of the 
figures is comprised in G; the level arcs can be on ∂Ω and, occasionally, on ∂K.

Without further assumptions about ∂K, the gradient can be problematic there. Since 
it is enough to establish the assertions of Theorem 2, Theorem 3, and Proposition 4 for 
every subdomain {u∞ < c}, 0 < c < 1, there is no need to evoke ∂K.

Recall that the ∞-streamline

α(t), 0 ≤ t ≤ T,

with initial point α(0) = a ∈ ∂Ω is unique and terminates at α(T ) on ∂K. On its way, 
it may (and usually does) meet other streamlines and has common parts with them. By 
Theorem 1, the speed
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∣∣∣∣dα(t)
dt

∣∣∣∣ = |∇u∞(α(t))|

is non-decreasing. Thus we have the bound4

|∇u∞(α(t1))| ≤ |∇u∞(α(t2))|, 0 ≤ t1 ≤ t2 ≤ T.

Sometimes the result below (cf. Lemma 12 in [13]), valid for curved quadrilaterals and 
triangles, provides us with the reverse inequality, so that we may even conclude that the 
speed is constant along suitable arcs of streamlines.

Lemma 8. Suppose that the streamlines α and β together with the level curves σ (lower 
level) and ω (upper level) form a quadrilateral with vertices a, b, b′ and a′. If α and β
do not meet before reaching ω, then

max
a′b′

|∇u∞(ω)| ≤ max
ab

|∇u∞(σ)|,

i.e., the maximal speed on the upper level is the smaller one.

Suppose now that ξ ∈ ab is a point on the lower level curve σ at which

|∇u∞(ξ)| = max
ab

|∇u∞(σ)| = M.

Let μ be the streamline that passes through ξ. It intersects ω at some point η ∈ a′b′ (it 
may have joined α or β before reaching η). See Fig. 3. The following result holds:

Lemma 9. We have

|∇u∞(μ)| = M on ξη.

Moreover,

max
a′b′

|∇u∞(ω)| = max
ab

|∇u∞(σ)|.

Proof. By Lemma 8

|∇u∞(ξ)| ≥ max
a′b′

|∇u∞(ω)| ≥ |∇u∞(η)|

and the monotonicity of the speed implies

4

|∇u∞(α(T ))| = lim
t→T−

|∇u∞(α(t))|
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ba

b′a′

η

ξ

μ

σ

α β

ω

Fig. 3. The quadrilateral abb′a′.

|∇u∞(ξ)| ≤ |∇u∞(μ(t))| ≤ |∇u∞(η)|

along the arc ξη of μ. Thus we have equality. �
We can also formulate a similar result for curved triangles. Suppose that the stream-

lines α and β together with the level curve σ form a curved triangle with vertices a, b
and c. Assume again that ξ ∈ ab is a point at which

|∇u∞(ξ)| = max
ab

|∇u∞(σ)| = M.

Let μ be the streamline that passes through ξ. It passes through c (but may have joined 
α or β before reaching c). The following result holds:

Corollary 10. For the triangle a b c we have

|∇u∞(μ)| = M on ξc.

Moreover,

|∇u∞(c)| = max
ab

|∇u∞(σ)|.

Proof. Take ωi to be a sequence of level curves approaching c from below. Then apply 
Lemma 9 on the quadrilateral formed by σ, ωi, α and β and let i → ∞. �
The quadrilateral rule We provide a practical rule for preventing meeting points. We 
keep the same notation.
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ω
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y

Fig. 4. Case 1: impossible.

Proposition 11 (Quadrilateral Rule). If |∇u(σ(t))| is strictly monotone on the arcs aξ
and ξb of the level curve σ (one of them may reduce to a point), then no streamlines can 
meet inside the quadrilateral. A streamline with initial point on the arc ab (but not a or 
b) has constant speed |∇u∞| till it meets α, β or reaches ω.

Proof. Let λ = λ(t) be a streamline passing through the point x ∈ ξb, x 	= ξ, on the 
level curve σ. Recall that

M = |∇u∞(ξ)| = max
ab

|∇u∞(σ)|.

We have three cases: 1) If λ meets μ at the point y, then Lemma 9 applied on the 
quadrilateral xbb′ηyx (or Corollary 10 if μ meets β, so that we have a triangle) implies

M = |∇u∞(λ)|

on the whole arc xη of λ (or until μ reaches β). (See Fig. 4.) But then

|∇u∞(ξ)| = |∇u∞(x)|,

which contradicts the strict monotonicity of |∇u(σ(t))|.
2) If λ meets β at y ∈ bb′, then Corollary 10 applied on the triangle xby yields

|∇u∞(λ)| = constant

on the arc xy. (See Fig. 5.)
3) If λ passes through a point y ∈ ηb′ on the upper level ω, y 	= η, y 	= b′, then 

Lemma 9 applied on the quadrilateral xbb′y (or Corollary 10 in case of a curved triangle) 
yields

|∇u∞(λ)| = constant

on the arc xy. (See Fig. 6.)
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Fig. 5. Case 2: possible.
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ω
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y

Fig. 6. Case 3: possible.

Finally, if x is chosen from the left level arc aξ, the proof consists of three similar 
cases again. Thus we have established that λ has constant speed till it first meets α, β, 
or hits ω.

It remains to show that no two streamlines can meet in the quadrilateral. A streamline 
λ passing through the point x at the level curve σ has constant speed

|∇u∞(x)| = |∇u∞(λ)|

till λ meets α, β or hits ω. But two meetings streamlines must have the same speed, 
which requires that they pass through σ at two points with the same speed |∇u∞|. By 
the strict monotonicity of |∇u∞(σ)|, this would require that the points are on different 
arcs aξ and ξb. This is impossible, since no streamlines meet μ. �

The Quadrilateral Rule remains true if the monotonicity of |∇u∞(σ)| is not supposed 
to be strict. If |∇u∞(σ)| is constant on some subarc cd of ab, then the streamlines with 
initial points on cd are non-intersecting straight lines. To see this, we again consider the 
quadrilateral a b b′ a′ bounded by α, β, σ, ω.

Lemma 12. Assume that |∇u∞(σ)| is constant on the arc ab. Then no streamlines can 
meet inside the quadrilateral. Moreover, |∇u∞| is constant in the quadrilateral and all 
streamlines are straight lines.



E. Lindgren, P. Lindqvist / Advances in Mathematics 378 (2021) 107526 19
Proof. By Lemma 9, |∇u∞(ω)| is constant on the upper arc a′b′. In particular, |∇u∞|
must be constant along α and β. Then |∇u∞| must be constant along any arc of a 
streamline passing through the quadrilateral. Every point inside the quadrilateral lies on 
such a streamline. Therefore |∇u∞| is constant in the quadrilateral, which means that it 
solves the Eikonal Equation. Since u∞ is of class C1, we can apply the next proposition 
to conclude that all streamlines are non-intersecting straight lines. �
Proposition 13 (Eikonal Equation). Suppose that v ∈ C1(D) is a solution of the Eikonal 
Equation |∇v| = C in the domain D, where C denotes a constant. Then the streamlines 
of v are non-intersecting segments of straight lines.

Proof. A very appealing direct proof is given in Lemma 1 in [2]. �
For the next result we abandon the strict monotonicity in Proposition 11.

Corollary 14 (Quadrilateral Rule). Assume that |∇u∞(σ)| is monotone on the arc ab. 
Then no streamlines can meet inside the quadrilateral. A streamline with initial point on 
the arc ab (but not a or b) has constant speed till it meets α, β or reaches ω.

Proof. Assume that |∇u∞(σ)| is non-decreasing. Consider the subarc x1x2 on σ so that 
|∇u∞(x1)| ≤ |∇u∞(x2)|, where x1 lies between a and x2. Let αj be the streamline 
passing through xj . We claim that α1 does not meet α2 inside the quadrilateral. Indeed, 
suppose they meet at a point c at the level line ω̃ before reaching ω, where ω̃ intersects 
α and β at a′′ and b′′ respectively. Then Lemma 9 applied to the quadrilaterals a x1 c a′′

and a x2 c a′′ exhibit that the speeds

|∇u∞(α1(t))| = |∇u∞(α2(t))| = |∇u∞(c)|

are constant along the arcs. Again we see that the Eikonal Equation is valid in the 
triangle x1 x2 c. At the point c this leads to a contradiction with Proposition 13. (Thus 
the eventual point c must lie on ω and on ∂K.) �
The triangular rule The above results may be formulated for a curved triangle as in 
Fig. 7 (seen as a degenerate quadrilateral). Again, suppose that the streamlines α and 
β together with the level curve σ form a curved triangle with vertices a, b and c; c is the 
meeting point of α and β. Assume that ξ ∈ ab is a point at which

|∇u∞(ξ)| = max
ab

|∇u∞(σ)| = M.

Let μ be the streamline that passes through ξ. It passes through c (but may have joined 
α or β before reaching c). By simply using the results for quadrilaterals, we may deduce 
the following.
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Fig. 7. The curved triangle abc.

Corollary 15. If |∇u(σ(t))| is strictly monotone on the arcs aξ and ξb of the level curve 
σ (one of them may reduce to a point), then no streamlines can meet inside the triangle. 
A streamline with initial point on the arc ab (but not a or b) has constant speed |∇u∞|
till it meets α or β.

Proof. If two streamlines meet at a point in the triangle we may construct a quadrilateral 
containing that point by letting ω be a level curve above c. Then Proposition 11 yields 
a contradiction. �
Lemma 16. |∇u∞(σ)| cannot be constant on a subarc of ab, except if c ∈ ∂K.

Proof. We can again construct a triangle in which the Eikonal Equation is valid. This 
yields a contradiction, unless we allow a corner to be outside G. �

We can again abandon the strict monotonicity.

Corollary 17 (Triangular Rule). Suppose that |∇u∞(σ)| is monotone on the arc ab of 
the level curve σ. Then no streamlines can meet inside the triangle. A streamline with 
initial point on the arc ab has constant speed till it meets α or β.

Proof. Reason as in the proof of Corollary 15 and apply Corollary 14. �
6. Polygons

Let Ω be a convex polygon with N vertices P1, P2, . . . , PN and set PN+1 = P1. The 
gradient ∇u∞ is continuous up to the boundary ∂Ω and especially at the vertices,

|∇u∞(Pj)| = 0, j = 1, 2, . . . , N.
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From each vertex Pj, there is a unique streamline γj that terminates on K. They are 
the attracting streamlines.

Let Mj denote a point on the edge PjPj+1 at which |∇u∞| attains its maximum, i.e.,

|∇u∞(Mj)| = max
PjPj+1

|∇u∞|.

The point divides the edge PjPj+1 into two line segments PjMj and MjPj+1. Denote 
by μj the streamline starting at the point Mj .

Lemma 18. The normal derivative

∂u∞
∂n

= |∇u∞|

is monotone along the half-edges PjMj and MjPj+1 for j = 1, 2, . . . , N .

Proof. We arrange it so that the polygon is in the upper half-plane x2 > 0 and the edge 
in question is on the x1-axis, say the edge is

a ≤ x1 ≤ b, x2 = 0.

The convex level curves

{u∞ = c}

approach the x1-axis as c → 0. The shortest distance from the level curve to the edge is 
attained at some point, say (x1(c), x2(c)). Choose a sequence cj → 0 so that x1(cj) → ξ

and x2(cj) → 0, where (ξ, 0) is some point, a ≤ ξ ≤ b (in fact, a < ξ < b). If ξ > a, let 
a < ξ1 < ξ2 < ξ and keep j so large that ξ2 < x1(cj). The vertical lines x1 = ξ1 and 
x1 = ξ2 intersect the level curve {u∞ = c} at the points (ξ1, hj

1) and (ξ2, hj
2), i.e.

u∞(ξ1, hj
1) = u∞(ξ2, hj

2) = cj .

The convexity of the level curve implies that hj
1 ≥ hj

2. (The chord between (ξ1, hj
1) and 

(x1(cj), x2(cj)) must lie inside the set {u∞ ≥ c}.) It follows that the difference quotients 
in the normal direction satisfy

u∞(ξ1, hj
1) − u∞(ξ1, 0)
hj

1
≤ u∞(ξ2, hj

2) − u∞(ξ2, 0)
hj

2
,

since both numerators are = cj − 0. As cj → 0, also hj
1 → 0 and hj

2 → 0. By passing to 
the limit we obtain

|∇u∞(ξ1, 0)| ≤ |∇u∞(ξ2, 0)|, ξ1 < ξ2 < ξ
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as desired.
If a < ξ < b we also obtain the reverse inequality for all ξ < ξ1 < ξ2 < b so that we 

may conclude the desired result again. It also follows that (ξ, 0) is the Mj point of this 
edge. This excludes that ξ = a or ξ = b. �

We are now ready to prove our main theorem for polygons.

Proof of Theorem 2. Consider the region bounded by PjPj+1, γj , γj+1 and, if γj does 
not meet γj+1, also by ∂K. This can be either a curved triangle (meeting attracting 
streamlines) or a quadrilateral (the attracting streamlines do not meet). By Lemma 18, 
|∇u∞| is monotone along PjMj and MjPj+1. Therefore, Corollary 14 (in the case of a 
quadrilateral) and Corollary 17 (in the case of a curved triangle) imply that no stream-
lines can meet (on either side of μj) and that they have constant speed until they meet 
γj or γj+1, or hit ∂K. �
7. General domains

In this section we assume that ∇u∞ is continuous in Ω \ K and that |∇u∞| has a 
finite number of local minimum points and maximum points. Denote by P1, . . . , PN (with 
PN+1 = P1 as before) the minimum points. From each Pj, there is a unique streamline 
γj that terminates in K. These streamlines divide G into triangles with corners Pk, Pk

and Qk if γk and γk+1 meet at Qk, and quadrilateras with corners Pk, Pk+1, Sk+1 and 
Sk if γk and γk+1 do not meet but they reach K at the points Sk and Sk+1. Recall the 
∞-ridge,

Γ =
N⋃

k=1

{γk(t), 0 ≤ T ≤ Tk}.

We give the proof of Theorem 3.

Proof of Theorem 3. Consider the region bounded by PjPj+1, γj , γj+1 and perhaps ∂K. 
This can be either a curved triangle or quadrilateral. By construction, |∇u∞| is monotone 
along PjMj and MjPj+1. Therefore, Corollary 14 in the case of a quadrilateral and 
Corollary 17 in the case of a curved triangle imply that no streamlines can meet (on 
either side of μj) and that they are constant until they meet γj or γj+1 or reach ∂K. �
8. Appendix: estimates of derivatives of |∇up|

The fundamental properties
¨

|∇up −∇u∞|2 dx1dx2 → 0, as p → ∞, (I)

D
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¨

D

|∇(|∇up|2)|2 dx1dx2 ≤ MD < ∞, (J)

for all (large) p used in Section 3 follow directly from [10], where the corresponding 
estimates are ingeniously derived for the solution uε of

Δ∞uε + εΔuε = 0.

To transcribe the work to the solution up of the p-Laplace equation

Δ∞up + 1
p− 2 |∇up|2Δup = 0

one has to replace the constant factor ε by the function |∇up|2/(p −2) under the integral 
sign. Below we give just a synopsis of the procedure, referring to the numbering of 
formulas and theorems in [10]. (The reader is supposed to have access to [10].)

Formula (2.5) in [10] becomes

− det(D2up) = |∇|∇up||2 + 1
p− 2(Δup)2.

Formula (2.7) becomes

Ip(φ) =
¨

U

|∇|∇up||2φdx1dx2 + 1
p− 2

¨

U

(Δup)2φdx1dx2

and (2.8)

Ip(φ) = 1
2

¨

U

(
Δup〈∇up,∇φ〉 −

2∑
i,j=1

∂2up

∂xi∂xj

∂up

∂xj

∂φ

∂xi

)
dx1dx2.

Lemma 5.1 is needed only for α = 2 (and since |∇up| 	= 0 we can put κ = 0 in the proof). 
It becomes

¨

U

|∇|∇up|2|2ξ2 dx1dx2 + 1
p− 2

¨

U

|∇up|2(Δup)2ξ2 dx1dx2

≤ C(2)
¨

U

|∇up|4
(
|∇ξ|2 + |ξ||D2ξ|

)
dx1dx2.

This yields Lemma 2.6 and the desired property (J), since |∇up| is locally bounded by 
Lemma 6.

Lemma 5.2 is valid with no changes (replace uε with up), but the proof uses Lemma 
5.1 as above. Then Lemma 5.2 implies the flatness estimate in Lemma 2.7:
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−−
¨

Br(x)

(
|∇up|2 − 〈∇P,∇up〉

)2
dx1dx2 ≤ C

⎛
⎜⎝ −−

¨

B2r(x)

|∇up|4 dx1dx2

⎞
⎟⎠

1
2

×

⎛
⎜⎝ −−

¨

B2r(x)

(
|up − P |2

r2 (|∇P | + |∇up|)2 + |up − P |4
r4

)
dx1dx2

⎞
⎟⎠

1
2

valid for any linear function P . Here the symbol −−̃denotes the average. This estimate 
is needed for the proof of Theorem 1.4, when one has to identify the limit of |∇up|2 in 
L2

loc as |∇u∞|2. Theorem 1.4 contains our desired property (I).
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