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Abstract

In recent years the advancements in deep learning and the availability

and quality of high-resolution aerial images have pushed the limits of what

is possible when it comes to the accuracy and reliability of automatic build-

ing detection. This thesis proposes a novel approach to building detection

using oblique aerial images, which offer a more comprehensive view of the

environments compared to nadir (top-down) images.

The proposed method involves the automatic generation of a training data-

set and the training of a deep learning model. This model is then used to

detect buildings on images from multiple perspectives before the predictions

are combined to offer more accurate and reliable building footprints.

An experimental study evaluates the model’s ability to detect buildings

and examines its performance on oblique aerial images compared to nadir

aerial images. Moreover, an area analysis is conducted to assess the accuracy

of the proposed method to combine the predictions from multiple images.

The results demonstrate that oblique aerial images provide more features,

enabling better recognition of building structures and improving building de-

tection. The process of combining the segmentation results from several im-

ages also proved to be accurate. However, occlusion remains a significant

challenge in oblique aerial imagery and improvements are needed to better

deal with scenarios where the building structures are not visible in some of the

images. Furthermore, it emphasizes the importance of high-quality training

data and the need for more diverse datasets to enhance the model’s robustness

and generalizability.
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Sammendrag

I de senere årene har fremskritt innen dyp læring og tilgjengeligheten og

kvaliteten p̊a høyoppløselige flyfoto presset grensene for hva som er mulig

n̊ar det gjelder nøyaktighet og p̊alitelighet i automatisk bygningsdeteksjon.

Denne avhandlingen foresl̊ar en ny tilnærming for å detektere bygninger ved

hjelp av skr̊a luftbilder, som gir en mer omfattende framstilling av omgivelsene

sammenlignet med nadir (vertikale) bilder.

Den foresl̊atte metoden innebærer automatisk generering av et trenings-

datasett og trening av en dyp læringsmodell. Denne modellen brukes deretter

til å oppdage bygninger p̊a bilder fra flere perspektiver før prediksjonene kom-

bineres for å oppn̊a mer nøyaktige og p̊alitelige bygningsomriss.

En eksperimentell studie evaluerer modellens evne til å oppdage bygninger

og vurderer hvordan den presterer p̊a skr̊a flyfoto sammenlignet med ver-

tikale bilder. Videre utføres en omr̊adeanalyse for å vurderehvor nøyaktig den

foresl̊atte metoden klarer å kombinere prediksjoner fra flere bilder.

Resultatene viser at skr̊a flyfoto inneholder flere kjennetegn og trekk som

gjør det lettere å gjenkjenne bygningsstrukturer og forbedre deteksjonen av

bygninger. Prosessen med å kombinere segmenteringsresultatene fra flere

bilder viste seg ogs̊a å være nøyaktig. Imidlertid er okklusjon en betyde-

lig utfordring p̊a skr̊a flyfoto, og det er behov for forbedringer for å bedre

h̊andtere tilfeller der bygningsstrukturene ikke er synlige i enkelte bilder. Det

legges ogs̊a vekt p̊a betydningen av høykvalitets treningsdata og behovet for

mer varierte datasett for å styrke modellens robusthet og generaliserbarhet.
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1 Introduction

This content presented in this thesis is written as a contribution to the research

project KartAI. Their main goal is to make the the process of sending and processing

building permit applications more effective. This will be achieved by using artificial

intelligence to improve the quality of the norwegian cadastre and map databases.

A central part of this project is to use machine learning to detect and delineate

buildings in aerial images and compare the findings with existing building data.

While the KartAI project has achieved promising results so far, there is still room

for improvement. Until now only nadir photos has been used and this thesis will

explore the possibility of utilizing oblique aerial imagery to improve the building

detection.

Building detection and building extraction are two closely related terms in the field

of computer vision and remote sensing. Building detection refers to the process

of identifying and locating buildings within an image or a set of images. Build-

ing extraction goes a step further and involves outlining or delineating the exact

boundaries of the detected buildings, resulting in precise building footprints. In this

thesis these terms will be used interchangeably as the process involves extracting

building footprints, but the ultimate goal is to detect buildings or rather buildings

that deviate from the existing building data.

1.1 Motivation

Achieving the best possible accuracy and reliability of the building detection is of

utmost importance for this project. While the AI models for detecting buildings

keeps getting better, there is still need for manual work to verify the detections and

update the databases. Reducing the number of incorrect detections (false positives),

would be of great value because it would result in less manual labour. On the other

hand, if there are too many undetected buildings (false negatives), the errors in the

databases would not be detected, and the project would not fulfill its purpose.

Looking at some examples of wrong suggestions, it becomes evident that in some

cases it can be difficult even for the human eye to recognize buildings on a nadir

photo. In these cases the real problem is that the nadir images lacks the semantic

features required to recognize a building. This thesis will try to deal with this

problem by using oblique aerial images. There are two ideas for why this potentially
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could improve the building detection:

• The oblique images can reveal more features, like vertical extent and facade

details, which may give the machine learning model a better basis to detect

buildings and to avoid false predictions on object that is similar to buildings

from a birds-eye perspective.

• Combining the predictions from several perspectives gives a redundancy, which

means that even if the machine learning model fails to recognize a building

from one perspective, the final result can still be correct if it is easier to detect

from some other perspectives.

Figure 1 gives an example of two detected buildings from the KartAI project, clearly

demonstrating the advantages of the oblique perspective. From the orthophotos it

difficult to confirm or deny these detections, but looking at the oblique images it is

obvious that the first detection is incorrect.

(a) Detections (b) Orthophoto (c) Oblique images

Figure 1: Examples where oblique photos are helpful to confirm or deny building sug-

gestions

1.2 Challenges and research questions

Using oblique images does however bring some challenges, compared to using ortho-

photos. Orthophotos are photos that has been geometrically corrected and trans-

formed into a planar representation so that the scale is uniform and it follows a

2



given map projection. This is easy to work with because the real world coordinate

for each pixel is implicit and it allows for precise distance, area and angle calcula-

tions. With oblique images it gets more complicated because the scale is not uniform

and the real world coordinates also depends on the height and the vertical extent of

the objects. The oblique perspective also presents a drawback in terms of increased

occlusion caused by terrain, vegetation, or tall buildings. However, this limitation

can be mitigated by the advantage of having multiple perspectives, which allows us

to overcome some of the occlusion challenges.

The goal of this thesis is to do an experiment to put these ideas to a test and see if

we can get more accurate and reliable building detections with the help of oblique

images compared to only using nadir images. This will be done by using semantic

segmentation to detect buildings on oblique aerial images from several perspectives

and find a method to project and combine these predictions to extract the building

footprints. The objective of the research is to answer to following questions:

• How does the segmentation model perform on oblique images compared to

nadir images?

• To what extent can the transformation from image pixels to real-world co-

ordinates provide accurate georeferenced building footprint of the detected

buildings on oblique images?

• What are key challenges when it comes to building detection on oblique aerial

images and how can these challenges be addressed to enhance performance?

1.3 Structure of thesis

This thesis is structured into several chapters to provide a comprehensive exploration

of the proposed approach for building detection using oblique aerial images:

1. Introduction: Introduces the context and motivation behind the research,

highlighting the importance of building detection in various applications

and the limitations of traditional methods relying solely on nadir images.

Moreover, it outlines the objective of the research and presents the research

questions that will be addressed. Finally, the chapter presents the overall

structure of the thesis.
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2. Background knowledge and related work: Presents the background and

related work on building detection from oblique aerial images. It covers the

history and applications of oblique imagery, the collinearity equations for geor-

eferencing, and reviews existing research on building extraction methods. The

chapter lays the foundation for the subsequent experimental analysis.

3. Method: Outlines the proposed approach for building detection from nadir

and oblique aerial images. The methodology consists of two main parts. In

the first part, a new dataset is created which is then used to train semantic

segmentation models for building detection on both nadir and oblique images.

The second part presents the purposed method for analyzing an area by using

the trained segmentation models on images from multiple perspectives and

combining the results to extract the building footprints.

4. Data: Describes the data used in the experimental study, including oblique

aerial images, 3D building models, and the digital surface model (DSM). Ad-

ditionally, it presents the training dataset, created from these sources to train

the segmentation models.

5. Experimental study: Describes the training of the segmentation model,

including hyperparameter selection, data augmentation, and training time. It

examines the model’s ability to detect buildings on oblique compared to nadir

aerial images. Finally, it presents the results of an area analysis, showcasing

the effectiveness of combining predictions from multiple images for improved

and reliable building detections.

6. Conclusion and futher research: Concludes the thesis by summarizing

the key findings, discussing the contributions of the research, and offering

suggestions for future improvements and avenues for further research in the

field of building detection using oblique aerial images.
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2 Background knowledge and related work

The following chapter provides an overview of historical background, the theoret-

ical foundation and existing research relevant to the topic of building detection on

oblique aerial images. It starts with a brief presentation of the history of oblique

aerial images, highlights its distinctions from vertical imagery and explores its vari-

ous applications. Next, the chapter delves into the process of georeferencing and

determining the spatial extent of objects captured in the images. The collinearity

equations gives mathematical framework for linking the image space to real-world

geographic coordinates by considering the geometry of the camera system. Finally

the chapter focuses on the task of building detection and segmentation from remote

sensing images, outlining the significance and challenges associated with this task.

By thoroughly reviewing existing research on the topic, the aim is to provide an un-

derstanding of the current state-of-the-art, laying the foundation for the subsequent

experimental analysis presented in the following chapters.

2.1 Oblique aerial images

An oblique aerial image is a type of aerial photograph taken from an angle rather

than directly from above (nadir view). In contrast to vertical or nadir imagery,

which captures the earth’s surface directly beneath the aircraft, oblique images are

captured with the camera tilted, providing views of the landscape from an oblique

perspective.

Figure 2: Example of an oblique aerial image.
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Oblique images has been a known and used concept since the beginning of aerial

imagery. The first recorded aerial photo in the US was an oblique shot from a

balloon in 1860. These early oblique images were often used for reconnaissance and

military purposes. In the last part of the 20th century, the oblique aerial imagery

faced competition from other technologies such as vertical aerial photography and

satellite imagery. They were often preferred for mapping and surveying due to its

ability to produce accurate, planimetric maps.

In the last 20 years the use of oblique aerial images has significantly increased. This is

a result of the progress made in photogrammetry and computer vision algorithms,

the increasing market availability and the advantages they provide compared to

vertical imagery. These advantages includes visibility of vertical structures, multiple

views, higher redundancy and reliability, more detailed 3D information and a lot of

hidden potential (Verykokou and Ioannidis, 2018a).

Oblique aerial imagery has been a topic of research for various applications, includ-

ing but not limited to texture mapping, 3D building reconstruction, dense image

matching, 3D scene classification and facade detection, partitioning and reconstruc-

tion (Verykokou and Ioannidis, 2018b).

There has also been some research on extraction of building footprints from oblique

aerial images, which coincide with the objective of this thesis (Nex et al., 2013;

Frommholz et al., 2016). The methods found in previous research all have in com-

mon that the buildings are not directly detected in the images. Instead a dense

image matching algorithm is used to generate dense point clouds. The buildings are

then detected based on geometric features like edges and the verticality of building

facades. In contrast, the method proposed in this thesis uses deep learning to detect

buildings based on the semantic features in the images.

2.2 Collinearity equation

The only way to really make use of a detected building in an aerial image, is if it

can be expressed in real world coordinates. As mentioned in 1.2, this gets more

complicated with oblique images than with orthophotos. However, assuming we

have accurate information about the cameras interior and exterior parameters, this

can be solved by using the collinearity equations.
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Figure 3: Camera geometry and parameters

Source: Li-Chee-Ming and Armenakis, 2012

The interior orientation refers to the focal length (f), the distance between the cam-

era lens and the camera sensor, and the principle point (x0, y0) which is the location

on the image sensor where the optical axis intersects. These values are constant and

specific for each camera. The exterior parameters refers to the geographic location

(X0, Y0, Z0) and orientation (yaw(κ), pitch(ω), roll(ϕ)) of the camera perspective

centre when each image is taken.

The collinearity equations are based on the fact that the perspective cen-

ter, photo image point and the object point must lie on a straight line

(schenkIntroductionPhotogrammetry). This concept results in a set of two

equations that can express the image coordinates (x, y) as a function of 12 paramet-

ers: The object coordinates (X, Y, Z) and the nine camera parameters mentioned

above.

x(X, Y, Z) = x0 − f
(X −X0)r11 + (Y − Y0)r12 + (Z − Z0)r13
(X −X0)r31 + (Y − Y0)r32 + (Z − Z0)r33

(1a)

y(X, Y, Z) = y0 − f
(X −X0)r21 + (Y − Y0)r22 + (Z − Z0)r23
(X −X0)r31 + (Y − Y0)r32 + (Z − Z0)r33

(1b)

where the ri,j represent the corresponding entry in the rotation matrix:
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R =

 cosϕ cosκ cosω sinκ+ sinω sinϕ cosκ sinω sinκ− cosω sinϕ cosκ

− cosϕ sinκ cosω cosκ− sinω sinϕ sinκ sinω cosκ+ cosω sinϕ sinκ

sinϕ − sinω cosϕ cosω cosϕ

 (2)

Equation 1a and 1b describes the transformation from world coordinates to image

coordinates. In order to do the opposite, transform image coordinates to world

coordinates, the equations can be solved for X and Y :

X(x, y, Z) = x0 + (Z − Z0)
r1x+ a4y − a7f

a3x+ a6y − a9f
(3a)

Y (x, y, Z) = y0 + (Z − Z0)
r2x+ a5y − a8f

a3x+ a6y − a9f
(3b)

Note that with only the image coordinates (x, y), the equations would only describe

a straight line from the camera perspective centre on which the object must lie.

Thus, to determine the coordinate the height value (Z) is also needed.

Figure 4: Illustration of the collinearity model.
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2.3 Building extraction from remote sensing images

Building extraction from remote sensing images refers to the process of identify-

ing building and non-building pixels in remote sensing images. This task plays a

crucial role in various fields, such as urban planning, disaster management, and

environmental monitoring. The ability to accurately identify buildings from aer-

ial or satellite imagery provides valuable insights for decision-making processes and

contributes to efficient resource allocation.

There are many reasons for why building extraction is a challenging task. Buildings

can be complex, with a diversity of sizes, shapes and architectural details. Sim-

ilar features can look very different in terms of colors or spectral properties when

observed at different times and in different locations(H. Chen et al., 2022). Sur-

rounding objects introduces potential sources of interference and occlusion and the

contrast between the roof and the surrounding ground surfaces may be low, espe-

cially in urban ares with a lot of asphalt (Wei et al., 2004). Other factors that makes

it more complicated is variation in scale, shadows and man-made features that can

easily be confused with buildings, such as trucks, terraces, tents and containers.

Due to these challenges there has been much research and many methods proposed to

solve the problem of building detection. Traditional methods for building detection,

such as watershed (Serra, 1982), active contours (Kass et al., 1988) and Markov

random field (Kato, 2012), all have the drawback that they heavily depends on

handcrafted feature selection, which are difficult to optimize (Yang et al., 2018).

In recent years there have been an increased use of AI, specifically deep learning,

in the field of remote sensing. The rapid development of better technologies and

algorithms, combined with better sensors and more powerful computers has opened

a new world of possibilities. Unlike in traditional machine learning methods, where

the process of feature extraction is performed manually by the data scientist, deep

learning methods can extract features automatically. Convolutional Neural Net-

works (CNN) uses convolution to extract features. The images are broken down

into smaller, simpler features, represented by filters. These filters are optimized

through automated learning and applied to different regions of the input to extract

the relevant information. Long et al. (2015) adapted the CNN model to a Fully

Convolutional Network (FCN) to enable the task of semantic segmentation, that

is making a dense pixel-wise segmentation map of an image, where each pixel is

categorized into a class or object. Newer methods has gradually achieved better
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segmentation results by modifying the structure of the FCN. For example, U-Net

(Ronneberger et al., 2015) has played a crucial role by finding a way to capture

both local and global contextual information. However, the increase in receptive

field while retaining local information requires a lot of computational and memory

overhead, making it unsuitable for processing remote sensing data, given its large

volume and resolution (K. Chen et al., 2021).

To overcome these limitations, there has recently been a shift towards attention-

based models with transformers. Transformers can learn long-range dependencies,

making them suitable for pixel-wise segmentation in remote sensing images. H. Chen

et al. (2022) demonstrates this by implementing an efficient transformer method for

remote sensing image change detection and achieve state-of-the-art results, com-

pared to other methods.

Despite these advancements, standard transformation models are still computation-

ally expansive and memory-intensive. To increase efficiency, Carion et al. (2020)

introduced DETR, a hybrid CNN-transformer, but the result was slow convergence

and bad performance on small objects. Deformable DETR (Zhu et al., 2021) ad-

dresses this by focusing on key sampling points using deformable convolution, out-

performing DETR in detecting small objects.

K. Chen et al. (2021) builds on this concept and presents a method that is optim-

ized for building extraction by utilizing the fact that buildings usually only occupy

a small part of aerial images. They call the method Sparse Token Transformers

(STT), and the idea is to represent buildings as a set of ”sparse” feature vectors and

only consider the key vectors for self-attention. This allows the model to acquire

a large perceptive field with contextual information while also greatly reducing the

computational complexity.
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3 Methodology

The project aims to detect and delineate buildings using a combination of nadir

and oblique aerial images. The proposed approach involves two parts and relies on

deep learning techniques. The first part is to create a new dataset which is then

used to train semantic segmentation models to recognize buildings on nadir and

oblique aerial images. The second part is to analyze an area by using the semantic

segmentation model on images from several perspectives and combine the results

to extract the footprint of the buildings. An overview of the complete process is

illustrated in figure 5.

3D building data Aerial images

Project building

geometries on images

Part 1:

Training data

Train segment-

ation models

Segmentation models

Prepare images

Part 2:

Set of images

covering each

part of the area

from several

perspectives

Detect/segment

buildings

Calculating

real-world

coordinates

Height data

Merge results

Building footprints

Figure 5: Overview of method
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The method depends on three types of input data:

• Aerial Images including the exterior and interior parameters of the camera.

• 3D building data which are used as ground truth to label aerial images to

create training data for the segmentation models. To be able make accurate

annotations on oblique images, this should preferably be accurate 3D models

including detailed roof structures.

• Height data is required to transform the image coordinates to real world

coordinates. To make accurate transformations, this should preferably be a

Digital Surface Model (DSM) with a resolution of at least 1 m.

In part 1, the first step is to create training data by using the collinearity equations

to project 3D building geometries onto the aerial images. This data is then used to

train a segmentation model. Because the oblique and nadir images are inherently

different, they are treated separately. This implies that two separate dataset is

created and used to train two separate segmentation models.

In part 2, the area is first divided in smaller parts, and each part is extracted

from aerial images from different perspectives. The previously trained segmentation

models are then used to detect buildings in these images before the collinearity

equations once again are used, this time to transform image coordinates of the

detected buildings to real world coordinates. Finally, the results from each image

can be merged into one mask. In the following chapter, each step of the method will

be explored in detail, providing comprehensive explanations of the process involved

in creating training data, training the segmentation models, and analyzing the area

from multiple perspectives.
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3.1 Building detection

The first part of the process is to create training data and train a semantic segment-

ation model to detect buildings on both nadir and oblique aerial images. Because

the oblique and nadir images are inherently different, they are treated separately.

This implies that two separate dataset is created and used to train two separate

segmentation models.

3.1.1 Create training data

The method and tools for creating training data for building detection on oblique

imagery was developed as part of a preliminary study. The aerial images are first

divided in tiles of 512x512 pixels before the collinearity equations are used to project

3D building models on the images as explained in 2.2. After projecting the geomet-

ries to the image plane, the polygons are rasterized on a canvas, and the masks are

saved as PNG files. For this project only one class is used, which means each pixel

is either classified as a building or background.

When creating the training data there are some considerations that are important.

Firstly, it is important that the samples are diverse. The images should contain

buildings of various types, sizes and shapes. They should also include a variety

of environments and non-building objects. These variations is important to make

the segmentation model more robust and detect buildings in general and not only

specific types of buildings in specific surroundings. A good way to achieve this is

to get images from more than one region and make sure you cover both urban and

rural environments.

The dataset is split in three partitions: training data, validation data and test data.

Each partition serves its own purpose. The training data should be the majority of

the images ( 80%) and is what the model uses during training. The model learns

by adjusting its internal parameters based on patterns in the training data. The

validation data is a smaller partition ( 10%), which is used during training to assess

the model performance on unseen data. This helps in the process of fine-tuning

the model parameters and to prevent overfitting. The test data ( 10%) is used to

evaluate the model after the development process is complete, to provide an unbiased

estimate of how well the model is able to generalize and perform on unseen data.

When dividing the dataset in partitions, a simple and common solution would be to
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create one large dataset and randomly pick samples for each partition. However, it

is important that the three partitions are independent. If the images in the training

data covers the same objects as in the validation or test data, one wouldn’t be able

to assess how well the the model have learnt general features or merely memorized

specific features for those particular objects. When it comes to aerial images there

is often a overlap between images and for oblique images you cover the same area

from different angles. In this case it would be better to use images from different

locations for the different partitions.

3.1.2 Training the segmentation model

When training a segmentation model, the first step is to choose a model architecture.

The STT, presented in 2.3, is a suitable model for building detection, but it is also

possible to experiment with other models. The original implementation of the STT

model is found on ”Hugging Face”1, an AI community where people can deploy and

share pre-trained machine learning models and datasets.

The STT repository includes two models, pretrained on the WHU (Ji et al., 2019)

and the INRIA (Maggiori et al., 2017) dataset respectively. It may be possible to use

these models directly, but because they are only trained on nadir images, the result

are not very good on oblique images. In addition the WHU and INRIA dataset

have a spatial resolution of 0.7 and 0.3m respectively and will probably not perform

optimally with other resolutions. It is however useful to use one of these models as a

starting point instead of starting the training from scratch. The technique of using

the weights and parameters from a model trained for a similar task is referred to

as transfer learning and is very useful to reduce training time and achieving better

results with limited training data.

Data augmentation is another useful technique which involves applying various

transformations or modifications to existing data samples. These transformations

can include image rotations, translations, scaling, flips, or adding noise, among oth-

ers. The purpose of data augmentation is to increase the diversity and variability

of the training data, which helps the model generalize better and improve its per-

formance.

1https://huggingface.co/KyanChen/BuildingExtraction
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3.2 Area analysis

When analyzing an area, the idea is to first prepare sets of images that cover each

part of the area from different angles. Then the segmentation model from part 1

will be used to detect buildings on each image before the predictions will be merged

into one orthographic mask by determining the real-world coordinates of each pixel

of the 5 masks and aggregating the confidence scores.

3.2.1 Prepare images

The first step is to divide the area to be analyzed by defining tiles of 50x50 meters, as

illustrated in figure 6. Each tile will then be analyzed one by one. To identify which

photos that are covering each tile, the coordinates of the tile corners is transformed

to image coordinates using the collinearity equations as explained in 2.2. To do this

a height value is also needed for each of the four corners. If all the image coordinates

are within the bounds of the photo the tile is present in the photo.

Figure 6: Example of a test area divided in tiles of 50x50 meter.

Because aerial imagery generally have a considerable overlap between the photos,

the tile will be covered by multiple photos from each direction. While retaining

all images would maximize data, it could lead to an imbalance because of different

number of observations from each perspective. To avoid this, a weighting system

or averaging method could be used, but the benefit would probably not be worth

the extra complexity and computational time. Hence, a single image from each

direction is selected by determining the photo where the tile area is closest to the

center, based on the minimal sum of the image coordinates of the tile corners.
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Finally the tiles are obtained from the selected photos. Because the spatial resolution

is around 10 cm, 50 meters will correspond to approximately 500 pixels. However,

due to the oblique perspective, the tiles will have irregular and inconsistent sizes

and shapes. To meet the requirements of the segmentation model, images with a

resolution of 512x512 are necessary. Resizing the images by interpolation is one

way to address this requirement, but it can distort the images and potentially affect

the performance of the segmentation model. To avoid distortion, a squared area is

selected that includes the complete tile along with some surrounding area. If the

selected area is too large, the image is resampled to achieve the required resolution

of 512x512 pixels.

3.2.2 Segmentation

When the test area is split into smaller tiles and each tile is represented by 5 images

from north, south, west, east and above, the data is ready for analysis. Each image

is analyzed by the segmentation models and the result is a 512x512 mask where each

pixel has a score between 0 and 1, indicating how confident the model is that the

given pixel represents a building. Pixels with a value closer to 1 means the model

has high confidence that the pixel depicts a building. Figure 7 shows an example of

images and corresponding segmentation masks from different perspectives.

Figure 7: Images from different perspectives and corresponding predictions from the

segmentation model.
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3.2.3 Calculating real-world coordinates for the AI predicted buildings

In part 1, the collinearity equation was used to project 3D geometry of buildings

on oblique images. The following section will describe the opposite process, that is

finding the real-world coordinates of the buildings detected on the oblique images.

As mentioned in 2.2, the collinearity equations only describes a straight line from

the image sensor and through the camera perspective centre. To know where this

line intersects with the object on the image, we also need to know the height value

(Z) for each pixel. The height values are obtained from a Digital Surface Model

(DSM) with a spatial resolution of 1m, as illustrated in Figure 8.

Figure 8: Digital Surface Model for the area.

To determine the height value for each pixel in the oblique image, the DSM must

first be transformed to image coordinates. Taking the real world xy-coordinate of

each pixel along with the given height value, the collinearity equations (1) is used

to assign each height value to a coordinate in the oblique image. Figure 9a shows

the set of heigh values after discarding all points outside an area with detected

buildings, as they are not needed. Following this step, linear interpolation is used

to estimate the height values for all the remaining building pixels (figure 9b). Upon

reviewing the results, it becomes apparent that the upper parts of the buildings

have some conflicting height values. This is because both the height value from the

roof and the ground behind it, is both projected to the same area in the oblique

images as illustrated in figure 4. To solve this problem, every point that has 5 or

more neighbors within 10px ∗ image size
500

≈ 1m and has a lower height value than the

average in this neighborhood are discarded. Figure 9c displays the final result after

this filtering process.
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(a) Height values in image

coordinates.

(b) Interpolated height

values.

(c) Final height values

As all pixels identified as a building now have a height value, it is now possible

to unambiguously determine the real world coordinate by using the collinearity

equations solved for X and Y (equation 3).

3.2.4 Merge results

When each pixels is transformed to real-world coordinates, the prediction score is

added to an orthographic raster for each image, as shown in figure 10. The raster

has a resolution of 500x500 pixels, where each pixel represents a square of 10x10

cm. When transforming the pixel coordinates to real world coordinates there will

be some pixels that will have the same real world coordinate. For example will an

area representing a wall, be collapsed to a line in the orthographic projection. To

aggregate these values to a single score between 0 and 1, the maximum value is

chosen.

(a) Nadir (b) South (c) West (d) East (e) North

Figure 10: Ortographic mask based on the nadir image and 4 oblique images.

Finally the score for all five images are summarized. The resulting mask, displayed

in figure 11a, is somewhat noisy, mostly because of some wrong transformations

caused by inaccurate height values. There are also points that hasn’t got any ”ob-

servations”. To account for this, the result is smoothed by using a gaussian filter (see

figure 11b). Finally a binary mask is made by selecting a threshold value. Figure
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11c shows a binary mask with a threshold of 1.5. Intuitively this value could mean

that for example two images are 75% confident that there is a building or one image

is 100% confident and another is 50%.

(a) Summarized ortographic

mask.

(b) Smoothed with gaussian

filter.

(c) Binary mask

When the result has been merged to a single orthographic raster, it can easily be

compiled into one large raster covering the whole test area as shown in figure 12.

(a) (b)

Figure 12: Compiled result based nadir and oblique images (a) and only nadir images

(b)
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4 Data

To test the proposed method, an experimental study is conducted with data from

the southern part of Norway. This chapter will describe the raw input data, that is

the aerial images, 3d building data and height data. It will also describe the training

dataset that is created and used to train the segmentation models.

4.1 Oblique aerial images

There are two sets of aerial images used in this project. The first set was captured

in 2021, covering Grimstad city, and the second set was captured in 2022, covering

Lindesnes. Both set of images were commissioned by Kartverket Agder and delivered

by Terratec AS.

The camera system used was UltraCam Osprey Prime II for Grimstad and UltraCam

Osprey 4.1 for Lindesnes. Both systems consists of one nadir camera and four oblique

cameras with an eccentric angle of 45 degrees. The resolution of the different cameras

is displayed in the table below (1).

Table 1: Resolution of cameras.

Nadir Oblique

UltraCam Osprey Prime II 13470 x 8670 10300 x 7700

UltraCam Osprey 4.1 20544 x 14016 12840 x 8760

Aerotriangulation through bundle block adjustment was already applied by Terratec

and the estimated exterior parameters were delivered as metadata along with the

images. The interior parameters are found in the calibration reports for each camera

system. The metadata was delivered on a different format for the two image sets.

The first set was delivered with the SOSI-format (not to be confused with the SOSI

Standard), which is a plaintext format for representing geodata. To parse these files

to a python dict, a small python library named ”sosi” (Dillon, 2017) was utilized.

The second image set was delivered with the more well-known shapefile structure.

This includes a .shp-file containing geometries describing the covered area for each

image, a .shx file that indexes the geometry and a .dbf file that stores attributes

including the cameras exterior parameters. To read these files a python library

named ”PyShp” (Gillies et al., 2022) was used.
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4.2 3D building models

The images are annotated using 3D building models provided by Norkart AS, which

are based on the norwegian common map database (FKB). FKB is a collection of

primary geodata collected and managed by multiple parties within each municipality

in Norway. The FKB data includes building geometries such as outlines, height, roof

attachments, and ridge lines. This data is used to create detailed roof structures,

and the wall surfaces are generated from the roof edge until they meet the terrain

or a lower roof surface.

Figure 13: Example of the 3D building models used as ground truth (screenshot from

www.norgei3d.no)

An specific issue with these 3D models is that they include terraces which are labelled

as roof surfaces. The terraces are also surrounded by autogenerated railings labelled

as wall surfaces. As terraces are not considered to be a part of buildings, this would

introduce significant errors in the segmentation. To overcome this problem, some

custom logic has been developed to recognize and remove these terraces and railings.

This is done by examining the building polygons, looking for certain patterns and

characteristics observed to match the terraces and the autogenerated railings. Below

is a list of such characteristics.

• All autogenerated railings have an height of 75 cm.

• All terrace polygons are flat (all vertices have the same height).

• All terraces intersects (shares a vertex) with at least one autogenerated railing.

• All terraces have edges without a proper wall beneath.
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4.3 Digital Surface Model (DSM)

Height data is necessary in the second phase to do the transformation from image

coordinates to world coordinates. A digital surface model (DSM) is a type of digital

elevation model that represents the earth’s surface, including both natural features

like terrain, vegetation, and built structures like buildings and infrastructure. This

model is acquired from geonorge2, an open service for a national digital height model,

serving a surface model with a resolution of up to 1 meter.

4.4 Training dataset

To create the training data a total of 125 images was used from Lindesnes, of which

25 are nadir and 100 are oblique images. From Grimstad there are only 1 nadir and

14 oblique images. After the images are divided in tiles of 512x512 and labeled as

described 3.1.1, the resulting dataset contains 181 nadir and 1830 oblique samples

from Grimstad and 5634 nadir and 12216 oblique sample from Lindesnes.

It is important to acknowledge that the dataset is automatically generated based

on known building geometry, leading to potential errors. Two sources of error are

outdated or incorrect data and labeling buildings even when they are occluded. The

latter is even more prominent on oblique images because of more occlusions.

Figure 14 shows that the characteristics of the images are quite different for the two

areas. The images from Grimstad has a denser population, a lot of asphalt, some

sea and not much vegetation. The images from Lindesnes has a lot of vegetation

and fewer buildings per image. There is also a noticeable difference when it comes

to the colors due to different light conditions.

2https://kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-overflatemodell-

25832-wcs/a456f3c2-96f6-42f0-9960-e9888fc0c2de
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(a) (b)

Figure 14: Example of photos from Grimstad (a) and Lindesnes (b)

As explained in 3.1.1, the dataset is divided in three partitions. The size of the

dataset and the distribution between the partitions can be found in table 2.

Table 2: Size of the two datasets and their partition distribution.

Nadir Oblique

# % # %

Train 5815 83.9 14046 83.5

Val 506 7.3 1491 8.9

Test 612 8.8 1279 7.6

Total 6933 16816

As also mentioned, it is important that the partitions are independent of each other.

In this case the images are taken from several perspectives, and there is considerable

overlap between each series of images, so there will be several images covering the

same area and the same buildings. For this reason two designated areas are chosen

for test and validation data. The validation data is based on an area in the southern

part of Grimstad city, while the test data are from Marnadal, a small town north in

Lindesnes municipality. Both areas are depicted in figure 15.
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(a) (b)

Figure 15: Validation area from Grimstad (a) and test area from Lindesnes (b)
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5 Experimental study

In this chapter, the proposed method outlined in Chapter 3 was applied to the data

described in Chapter 4. The chapter will explain the process of the experimental

study and the following results will be presented and discussed.

The first part of the chapter will initially address the training of the segmenta-

tion model, focusing on the selection of hyperparameters, data augmentation, and

training time. Furthermore, the model’s ability to detect buildings will be eval-

uated. Examples will be highlighted and discussed to shed light on the model’s

challenges and to examine its performance on oblique aerial images compared to

nadir aerial images. The last part of the chapter will present the results of an area

analysis, investigating how accurate and effective the proposed method is in combin-

ing predictions from multiple images to achieve improved and more reliable building

detections.

The objective of this study is to evaluate the accuracy and reliability of the proposed

approach for building detection using oblique aerial images, while also providing

valuable insights into its limitations and challenges, and suggesting potential im-

provements and avenues for future research.

5.1 Training the segmentation model

For this study the STT model is used as described in 3.1.2. The model which

is pretrained on the INRIA dataset is used as a basis, and two separate models

are further trained separately on the oblique and nadir dataset (4.4). The only

hyperparameters changed from the original implementation is the learning rate,

which is reduced from 10−3 to 5∗10−4, and the mean values and standard deviation

(STD) used to normalize the data, which are calculated based on the training set.

The data augmentation used is the same as in the original implementation. This

includes color distortion, random cropping, mirroring and vertical flip. The training

is performed on 2 GPUs of type Nvidia GeForce GTX 1080. The training time for

the two models is found in table 3.
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Table 3: Training time

Epochs
Training speed Total training time

[min/epoch] [min]

Nadir 15 5 75

Oblique 14 12.5 175

5.2 Result of building detection

To evaluate the segmentation models, Intersection over Union (IoU) is used as metric

to measure the overlap between the predicted building mask and the ground truth.

IoU is defined as follows:

IoU =
Area of intersection

Areaofunion

=
True positives

True positives+ False postives+ False negatives

(4)

To evaluate the performance of the segmentation model, it is tested before and after

further training on three different set of test data: The nadir and oblique version of

the Lindesnes+Grimstad dataset and a few samples from the INRIA dataset. Table

4 gives an overview of the IoU score for each model on different dataset.

Table 4: IoU scores before and after training on different test data.

Test data
Pretrained

Nadir Oblique

Name Perspective GSD [m/pixel] model model

Lindesnes Nadir 0.1 0.671 0.840 -

Lindesnes Oblique 0.1 0.547 - 0.831

Lindesnes Nadir 0.3 0.73 - -

INRIA Nadir 0.3 0.8064 0.5581 0.5324

Initially, the pretrained STT model performs a lot worse on our created dataset,

than on the INRIA test samples. This suggests that the segmentation model lacks

robustness and generality in making accurate predictions across diverse sets of aerial

images. These results aligns with the challenges related to building detection, as

discussed in 2.3. It also demonstrates the need to train the segmentation model on

more representative data. The most obvious difference between the two dataset is

the spatial resolution. While our dataset has a resolution of 0.1 meter, the STT
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model is trained on the INRIA dataset with a resolution of 0.3 m. This means

that the model is used to see images covering an larger area and with less low level

details. To see how much this affect the performance the model was also tested with

a resampled version of the Lindesnes dataset with the same spatial resolution as the

INRIA dataset. As expected this gave much better results, but there is still a IoU

drop of around 7. This is probably due to other variations between the datasets like

different building types, surroundings and the spectral characteristics of the images.

After training, we see that the tables are flipped and our models performs very good

on the Lindesnes test data and terrible on the INRIA dataset. Again this confirms

that making a robust and general building detection model is hard. To achieve good

results we either need to train on similar images as we want to predict on, or we

would need training data of much higher quality with a more diverse selection of

samples.

We also see that after training we still get slightly better result on nadir images

compared to oblique images. One might expect better result on oblique images,

considering that the visibility of vertical structures should make it easier to distin-

guish buildings from non-buildings. On the other hand, Conversely, oblique images

have more occlusions leading to more errors in the dataset, as discussed in 4.4. This

might impact the training to some extent and will likely result in a lower IoU score

due to errors in the test data.

Example results

The following section will present various examples of the segmentation results to

gain a better understanding of how the segmentation models perform on both nadir

and oblique images. The goal is to explore the advantages and challenges associated

with utilizing oblique aerial images for building detection. Moreover, the focus is on

identifying instances where the models struggle and discuss possible explanations

for these shortcomings.

Figure 16 depicts some good results. The overlay includes three colors to visualize

how the predictions are compared to the ground truth labels. GREEN means the

prediction match the label (true positive), RED means labels that hasn’t been detec-

ted (false negative) and BLUE means predictions that doesn’t match with the label

(false positive). Note that the test data is not perfect and the red pixels in figure

16a is an example of an inaccuracy in the dataset labels, including the balconies as
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part of the building.

(a) (b) (c) (d)

Figure 16: Good segmentation results on nadir (a-b) and oblique (c-d) images.

Figure 17 displays some instances that illustrate the limitations of using nadir images

for building detection. In (a-b), the model struggles to distinguish terraces and mis-

classifies them as part of the building. Similarly, (c) shows a truck being erroneously

identified as a building, while (d) depicts a garage that goes unrecognized.

(a) (b) (c) (d)

Figure 17: Examples illustrating the lack of distinguishing features on nadir images.

From a top-down perspective, terraces, trucks, and simple building like garages

often appear as regular-shaped polygons without any other distinguishing features.

Figure 18 displays the same ares from a oblique perspectives, demonstrating how

this reveals more features and makes it much easier to distinguishing these objects.
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(a) (b) (c) (d)

Figure 18: Viewing the same areas from an oblique perspective reveals more features

and enables more reliable detection of buildings.

Detecting small buildings below 50m2 is a key focus of the KartAI project. These

buildings are often exempt from the application requirement and thus remain unre-

gistered. Figure 19 demonstrates the model’s capability in detecting small buildings

on nadir images. However, it also reveals some inconsistencies. For instance, both

(a) and (b) show small buildings that were not detected, while in nearly identical

images (c) and (d), the buildings are correctly identified. (e) and (f) shows that

the same inconsistency can be found in the oblique images. This disparity can be

attributed to the model’s indecisiveness, as predictions near the 50% threshold can

lead to varying results.

(a) (b) (c) (d)

(e) (f)

Figure 19: Examples demonstrating the inconsistent performance on small buildings

One of the reasons behind the model’s struggle with small buildings could be related

29



to shortcomings in the training data. An interesting aspect to consider is that

known building data is utilized as ground truth to train the building detection

model, which in turn is used to identify errors in the same building data upon

which it was originally trained. This recursive approach is not ideal for machine

learning, which relies on accurate and reliable training data to learn patterns and

make precise predictions. However, it is generally assumed that the building data

used as ground truth is of such high quality that the model is expected not to be

significantly impacted by the few errors present in the training data. Because, as

mentioned earlier, many small buildings are not included in official registries, this

can still pose a challenge, especially for smaller structures.
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5.3 Result of the area analysis

The following section will present the results of an area analysis, where building foot-

prints are extracted using several images captured from various angles, as explained

in 3.2. The previous section explored the performance of the building segmentation

models on a single image, and the results demonstrated the advantages of oblique

images and their potential to improve the reliability of automatic building detec-

tion. While the following section also includes examples to support these results,

the primary focus is to evaluate the proposed method for analyzing an area by

combining the segmentation results of several images.

To evaluate the accuracy and reliability of this method, the combined results will

be compared to the segmentation results from the more traditional approach of only

using nadir images. The building data presented in 4.2 will be used as a ground

truth. The result will be evaluated by calculating the IoU, accuracy and recall with

respect to the ground truth and by a visual inspection of the segmentation results

and some relevant examples.

The area that will be analyzed is an area in Marnardal in Lindesnes municipality. It

is the same area that is used to create the test dataset (4.4) which is used to analyze

the segmentation model in the previous section. The area has a size of 650x800

meter and contains 158 registered buildings. It is divided in 208 tiles of 50x50m and

each tile is analyzed one by one before the result is compiled to a large raster and

compared to the ground truth. Figure 20 shows the result for both the combined

results and the nadir results.
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(a) Combined result (b) Nadir result

Figure 20: Segmentation results. The colors represent true positives (green), false pos-

itives (blue) and false negatives (red).

By counting the number of correctly detected buildings (true positives), wrongly

predicted buildings (false positives) and undetected buildings (false negatives), we

can calculate the recall and precision of each method. The recall is a measurement

of sensitivity and tells us how many of the buildings are detected, while precision

tells us how many of the predictions that are correct. The metrics are defined as

follows:

Recall =
True Positives

True Positives+ False Negative
(5)

Precision =
True Positives

True Positives+ False Positives
(6)

The Intersection over Union (IoU) will also be used as a metric to measure the ac-

curacy of the segmentation masks. By summing up the number of pixels classified

as true positives, false positives and false negatives, the IoU can be calculated by

using equation 4. Table 5 shows the number of counted buildings and all the cal-

culated metrics. Note that while the recall and precision is based on the number

of buildings, the IoU is based on the area (number of pixels) of the segmentation

masks.
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Table 5: Analysis results

Detected buildings
Recall Precision IoU

TP FN FP

Combined 150 13 1 0.92 0.99 0.774

Nadir 152 11 6 0.93 0.96 0.684

While the results show that the results based only on nadir had marginally better

recall rate, all other metrics indicates that the combined results is both more accur-

ate and reliable. The most surprising result was that the IoU on the nadir images

was so low compared to the reported IoU on the test dataset which even covers the

same area. The reason for this, though, is assumed to be caused by relief displace-

ment. The dataset used to train and evaluate the segmentation model is based on

3D projections of the building geometries, which implies that the relief displacement

is accounted for and walls are correctly classified as building. The ground truth used

in this analysis on the other hand, is based on the an orthographic projection of the

building which will not be accurate unless the image is taken directly from above.

Figure 21-23 divides the area in three parts and shows a more detailed overview

comparing the two analyses. Colors are used to represent all the combinations for

how the two analyses have correct/incorrect detections or fail to detect buildings.

The meaning of the colors is described in table 6.

Table 6: Explanation of the colors used in the overview in figure 21-23

Combinations
Description

Combined Nadir Truth

+ + + Correct detection of both analyses

- - + Not detected by neither of the analyses

+ + - Incorrect detection by both analysis

+ - + Detected only by the combined analysis

- + + Detected only by the nadir analysis

+ - - Incorrect detection by the combined analysis

- + - Incorrect detection by the nadir analysis
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Figure 21: Analysis result (Part 1)
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Figure 22: Analysis result (Part 2)
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Figure 23: Analysis result (Part 3)

36



Example results

In this section, a series of examples will be explored to demonstrate and evaluate the

proposed method for combining predictions from multiple images. These illustrative

examples aim to highlight the strengths and limitations of the method and identify

potential areas for improvement.

Figure 24 shows a good example of where the proposed method for combining pre-

dictions work very well. The figure shows that the nadir model doesn’t even notice

the garage, while all the oblique predictions agree that it is a building and gives

an accurate outline of the building footprint. It also gives a better result on the

building to the left, where the nadir model understandably leaves out a small part

that is hard to distinguish from the ground.

+

Figure 24: A garage not detected on the nadir image.
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Figure 25 gives an example where the nadir models incorrectly classifies a lawn as

a building. Once again the prediction make sense from a top-down perspective. All

you see is a green rectangle which could be a roof and a steep edge and a shadow on

one side, which is very typical for buildings. From an oblique perspective, however,

it is easy to see that it is not a building. This examples shows a challenge with the

purposed method where there is room for improvement. Right next to the lawn there

is a small building, which is noticed in three of four oblique images, but the overall

confidence is below the threshold value. This challenge will be further discussed in

the next example.

+

Figure 25: A lawn misclassified as building on nadir image.

The next and final example will address one of the major challenges associated with

oblique aerial images: occlusion. In figure 26, there is a building surrounded by tall

trees, visible only from one out of five perspectives. On the nadir image it is hidden

in the shadows, while on the other oblique aerial images it is occluded by trees. The

segmentation model is highly confident in detecting the building from the one angle.
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However, even if the model is 100% certain that it is a building, the confidence score

from this one image will not bring the total score above the threshold. This issue

here is that the five observations are equally weighted. As humans, we possess the

ability to recognize that the feature visible in this single image is not present in the

others. Consequently, we would base our decision solely on this specific image. If

this behavior could be replicated it would significantly increase the reliability of the

building detection from oblique aerial images. One possible approach could be to

train a segmentation model to classify pixels representing trees or very dark shadows

and avoid considering these observations when combining the results. Another ap-

proach could be to train a model to process multiple images as inputs and ascertain

whether they depict the same object observed from distinct perspectives.

+

Figure 26: An occluded building visible only in one image.
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6 Conclusion and further research

In this research, a proposed method for building detection using oblique aerial im-

ages was presented and evaluated. The method combined predictions from multiple

images captured from different angles to achieve more accurate and reliable build-

ing detections. The approach was compared to traditional building detection using

nadir images alone. The experimental study provided valuable insights into the

strengths and limitations of the proposed method.

When evaluating the segmentation models performance on single images, the per-

formance on nadir images was slightly better than oblique images in terms of In-

tersection over Union (IoU). However, the visual inspection of the segmentation

results showed that the oblique images provided more distinguishing features, and

demonstrated more reliable predictions, especially on objects with few features from

a top-down perspective, such as terraces, trucks and simple building structures.

The proposed method of analyzing an area by combining segmentation results from

multiple images proved to result in accurate building footprints. In addition, the

number of false positives was drastically reduced compared to the nadir result. The

result also revealed that occlusion remains a significant challenge and some improve-

ments are needed to handle such situations effectively.

The study also revealed the importance of training data quality and representa-

tion. The segmentation model’s performance was highly dependent on the similarity

between the training data and the target dataset. Training the model on images

with a resolution similar to the target data improved its performance significantly.

Additionally, the research demonstrated some challenges of detecting small build-

ings. Some of the explanation for this is assumed to be that many small buildings

are not included in official registries and consequently not present in the training

data.

The study opens several avenues for further research to improve the suggested ap-

proach and general advancements in the field of building detection using oblique

aerial images:

• Weighting of Observations: Explore methods to detect occluded objects

in the images and weight or exclude observations accordingly. This approach

aims to improve the reliability of predictions by only considering relevant in-

formation.
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• Refine Dataset: The training data could be further refined by leveraging

the trained model to identify potential outliers or mislabeled samples in the

dataset. By using the model to predict building detections on the training

data, instances with low confidence scores or instances that are consistently

misclassified can be flagged as potential outliers. These flagged samples can

then be manually inspected and either corrected or removed from the training

dataset. This iterative process of model-assisted data cleaning can help im-

prove the overall quality and accuracy of the training data, leading to better

performance of the building detection model.

• Robustness Across Datasets: Exploring methods to improve the model’s

robustness and generalization across diverse datasets could lead to more ef-

fective building detection in various geographical regions and environments.

• Incorporating Additional Data Sources: Leveraging other data sources,

such as lidar data or semantic maps, in combination with oblique aerial images

could enhance building detection accuracy and provide more comprehensive

information.

• Two-step approach: A two-step approach, where an initial more simple ana-

lysis can locate potential building candidates. Subsequently, additional data

sources such as lidar data and semantic maps, combined with higher-resolution

imagery, can be utilized for more accurate and detailed analysis to confirm or

deny these suggestions and further refine the building footprints. This two-step

process helps optimize computational resources and focuses efforts on relevant

areas.

In conclusion, this thesis proposed a comprehensive method for building detection

using oblique aerial images, demonstrating the benefits of multi-perspective analysis

for improved accuracy and reliability. While promising results were achieved, ad-

dressing challenges like occlusions and enhancing model robustness across datasets

remains essential.
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