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A systematic non-equilibrium thermodynamics approach for assessing 
transport mechanisms in membrane distillation 
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H I G H L I G H T S  

• A systematic NET approach for analysis of transport mechanisms in MD is presented. 
• Commonly employed membrane distillation formulae shown to be special cases of the NET approach. 
• Temperature difference is the true driving force in direct-contact membrane distillation. 
• Influence of membrane surface wetting state elucidated. 
• Incorporation of sorption effects in nano-scale pores demonstrated  
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A B S T R A C T   

Membrane distillation (MD) is a promising technique for purifying volatile liquids at temperatures below their 
boiling points. This study presents a systematic non-equilibrium thermodynamics (NET) approach for analysis of 
transport mechanisms in direct-contact membrane distillation (DCMD). By incorporating the transport properties 
of the membrane, membrane interfaces, and temperature polarization layers, a unified framework is established 
to assess mass and heat transfer, including coupling effects in the composite membrane system. Explicit ex-
pressions for the transport properties are derived, and a numerical solution procedure is used to obtain tem-
perature and partial pressure profiles through the system. The NET approach reveals that the temperature 
difference across the membrane is the true driving force of mass transfer, which after suitable approximations is 
equivalent to the saturation pressure difference. The commonly employed formula for distillate flux in MD 
literature was found to agree with the comprehensive NET approach within 3% when predicting the water flux 
through a DuraPore GVHP membrane. Incorporating a correction factor that accounts for kinetic heat-mass 
coupling effects improves the agreement to 0.5%. The simplified model disregards interfacial transport phe-
nomena and mass-heat coupling. These effects are shown to be insignificant for the DuraPore GVHP membrane. 
However, it is crucial to account for temperature polarization to obtain agreement with experimental results. The 
resistance of the vapor-liquid interface is shown to be more important if the membrane has a Cassie-Baxter 
wetting state than a Wenzel wetting state, and this can enhance the water flux. When the pore-sizes approach 
the nanometer scale, we show that direct interactions between the molecules and the pore walls must be 
accounted for due to sorption effects. In applications where nanometer scale pores are important, such as in 
systems where the membrane must maintain a large pressure difference, it may be important to take such cor-
rections into consideration. The presented NET approach provides a comprehensive toolkit for assessing and 
analyzing transport properties in membrane systems, which can be used to better understand how the properties 
of MD systems can be tailored to enhance performance.   

* Corresponding author. 
E-mail address: signe.kjelstrup@ntnu.no (S. Kjelstrup).  

Contents lists available at ScienceDirect 

Desalination 

journal homepage: www.elsevier.com/locate/desal 

https://doi.org/10.1016/j.desal.2023.116927 
Received 11 June 2023; Received in revised form 11 August 2023; Accepted 15 August 2023   

mailto:signe.kjelstrup@ntnu.no
www.sciencedirect.com/science/journal/00119164
https://www.elsevier.com/locate/desal
https://doi.org/10.1016/j.desal.2023.116927
https://doi.org/10.1016/j.desal.2023.116927
https://doi.org/10.1016/j.desal.2023.116927
http://creativecommons.org/licenses/by/4.0/


Desalination 567 (2023) 116927

2

1. Introduction 

Membrane distillation (MD) is used as an umbrella term for processes 
that utilize membranes as transport media to facilitate distillation of 
volatile components at operating temperatures generally below the 
boiling point of either component at the given conditions. Research into 
the advancement of such processes is timely, given the steadily 
increasing problems of energy dissipation by waste heat, assessed in e.g. 
[1], and the general scarcity of potable water, which has been a major 
concern for decades [2]. Membrane distillation can help solve both 
problems at the same time, by utilizing the waste heat or thermal energy 
to produce potable water. 

The general MD processes and their applications are described in 
detail by Khayet and Matsuura [3], and in several recent reviews [4–6]. 
These reviews document a bustling research activity and advances in 
relevant techniques and technologies. The theoretical models describing 
the physical mechanisms of transport, however, are routinely over-
simplified. For instance, interfacial transport phenomena are usually 
neglected, even though works such as that of Villaluenga and Kjelstrup 
highlight the importance of the interfacial thermal resistance [7]. 
Addition of resistances is also typically justified by an electrical resis-
tance analogy, which is how relations such as the Bosanquet formula are 
often interpreted [3]. This analogy is not so straightforward when 
transport phenomena are coupled, and addition rules should be thor-
oughly justified on the grounds of physical conservation laws [8]. The 
common approximations used in the MD literature may therefore miss 
out on key mechanisms that may help direct research towards 
improvement of membrane materials and modules. 

In order to help rectify this issue, we present in this work a detailed 
non-equilibrium thermodynamics approach to the problem and provide 
a robust addition rule for the resistances of the coupled heterogeneous 
system. By use of this approach, the approximations commonly applied 
in the literature can be properly justified from numerical computation 
and can also provide a range of validity for such approximations. When 
considering systems that are beyond this range of validity, such an 
approach may help to shed light on mechanisms that can be exploited for 
the improvement of the MD processes. The purpose of this work is to 
provide a method that can be used to assess details that are neglected in 
commonly used models, such as the effects of interfacial transport 
phenomena, the effects of pore size variance and other non-linear 
effects. 

In previous works on MD, such as that of Schofield et al. [9], it was 
concluded that the properties of the membrane itself are not as impor-
tant as the design of the process modules. However, more recent 
experimental work by Kuipers et al. [10] on a non-isobaric variant of the 
direct-contact membrane distillation (DCMD) process stresses the need 
for membranes that can withstand high transmembrane pressure dif-
ferences without allowing liquid to leak through and still maintain high 
distillation performance, as pointed out by various authors [11–15]. The 
simulation work by Rauter et al. [16] demonstrated the importance of 
the wetting state of the liquid-membrane interface. This work highlights 
a largely unexplored avenue of MD research and development, and a 
model that includes interfacial transport phenomena like the one 
developed in this work, helps to shed light on the effects of and mech-
anisms with which the interfacial wetting state influences the perfor-
mance of the MD process. As the need for more specialized membranes 
with more extreme properties rises to meet the demands of processes 
such as non-isobaric DCMD, the tools provided in this work can be used 
to properly assess the effects of superhydrophobic membrane surfaces or 
nanoscale pore sizes on transport phenomena as well as efficiency. 

We begin in Section 2 by introducing the transport properties that 
are identified through well-defined experiments on the heterogeneous 
membrane system sketched in Fig. 1. We next show how these properties 
relate to the generalized resistances Rtot

ij , which satisfy a convenient 
addition rule due to conservation of energy and mass. This addition rule 
allows us to decompose the resistances into contributions from the 
subsystems to the total system. In Section 3, we show how to exploit the 
properties of the generalized resistances to construct the transport 
properties of the heterogeneous system from the local transport prop-
erties of each individual subsystem, which relate to the structural and 
chemical properties of the membrane. Results are presented in Section 4 
and concluding remarks are provided in Section 5. 

2. The overall transport process 

Although the methodology employed here is general and can be 
applied to any variant of MD, we will focus specifically on DCMD. We 
consider first the prototypical DCMD system illustrated in Fig. 1, where 
we control the state of the liquid phases in domains Γ1 and Γ2. The 
purpose of Sections 2–3 is to systematically develop a complete model 
for the governing equations for transport of energy and matter through 

Fig. 1. Illustration of the DCMD membrane system, partitioned into the bulk liquid regions Γ1 and Γ2, the polarization layers Γp
1 and Γp

2, the liquid-membrane 
interfaces Γs

1 and Γs
2, and the bulk membrane Γm. The liquid phases are characterized by the molality m, the pressure p, and the temperature T. In response to 

differences in these quantities, there will be fluxes of energy and mass, Ju and Jw, into and out of the membrane system. Also indicated is the measurable heat flux J′q, 
which depends on the other two fluxes. An example temperature profile has been included, with the positions of the temperatures Ts,l

i and Ts,m
i in the boundary 

regions shown. The regions are not drawn to scale and are presented as such for ease of illustration. 
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this system with a basis in non-equilibrium thermodynamics. We start by 
summarizing the governing assumptions. 

The membrane is filled with a vapor-air mixture. We neglect the net 
transport of air through the membrane, on account of low solubility in 
the adjoining liquid phases. This precludes any viscous flow of gaseous 
mixture through the membrane. Experiments are usually carried out 
under steady-state conditions, so the model is also formulated at these 
conditions. There is no net accumulation of energy or mass anywhere in 
the system, and the laws of energy and mass conservation give a con-
stant energy flux, Ju, and water flux, Jw [17]. The reason for this choice 
of flux variables is that their spatial invariance provides a simple addi-
tion rule for the resistivities along the axis of transport. The excess en-
tropy production σtot of the system can be written on discrete form [8]: 

σtot = JuΔ1,2
1
T
− JwΔ1,2

μw

T
, (1)  

where μ is the chemical potential and subscript w denotes water, T is the 
absolute temperature, and Δn,kf is shorthand for the difference fk − fn for 
any scalar quantity f . This bilinear form of the entropy production 
identifies the driving forces Δ1,2(1/T) and − Δ1,2(μw/T) as conjugate to 
the fluxes Ju and Jw, respectively. The driving forces are expressed to 
linear order in these fluxes as 

Δ1,2
1
T
= Rtot

uuJu + Rtot
umJw,

− Δ1,2
μw

T
= Rtot

muJu + Rtot
mmJw.

(2) 

Onsager’s famous theorem states that, Rtot
um = Rtot

mu, where Rtot
ij are the 

overall resistances per unit area. The terms resistivity and conductivity 
refer to intensive material properties, whereas the terms resistance and 
conductance refer to extensive properties that depend on geometrical 
properties such as thickness. We will use the convention that resistivities 
and conductivities are represented by lowercase symbols, and re-
sistances and conductances are represented by uppercase symbols. 

To obtain a more practical set of equations, we rewrite the chemical 
driving force in terms of differences in pressure, p, and composition 
[17], and rewrite Eq. 2 to 

J′o
q = − ΛtotΔ1,2T + q*oJw,

Jw = − DT Δ1,2T − Lp
[
Δ1,2p − ΠΔ1,2m

]
,

(3)  

where J′o
q is the flux of measurable heat from the membrane system into 

Γ2, Λtot is the overall thermal conductance, q*o is the heat of transfer, DT 
is the thermo-osmotic coefficient, m is the molality, Π is the molal os-
motic pressure coefficient and the coefficient Lp relates to how the water 
flux depends on the pressure difference across the membrane. The 
measurable transport properties in Eq. 3 are defined as 

Λtot = −

( J′o
q

Δ1,2T

)

Jw=0
=

1
T1T2Rtot

uu
,

q*o =

(J′o
q

Jw

)

Δ1,2T=0
= −

Rtot
um

Rtot
uu

− Hw,2 = Q*
tot − Hw,2,

Lp = −

(
Jw

Δ1,2p

)

Δ1,2T=0
=

Vw

T1

(

Rtot
mm −

Rtot
umRtot

mu

Rtot
uu

)− 1

,

DT = −

(
Jw

Δ1,2T

)

Δ1,2μT,w=0
=

q*oLp

VwT2
,

(4)  

where Q*
tot is the energy of transfer, Vw is the partial molar volume of 

liquid water, and Hw,2 is the partial molar enthalpy of the liquid water in 
Γ2. The molal osmotic pressure coefficient is 

Π =

(
Δ1,2p
Δ1,2m

)

Jw=0,Δ1,2T=0
=

νRT1MwΓs

Vw
. (5)  

where R is the universal gas constant, Mw the molar mass of water, and 
Γs and ν are respectively the thermodynamic factor and the van’t Hoff 
factor of the dissolved salt. In a gaseous medium, it is more common to 
express the mass transfer resistance in terms of a diffusivity D. Since we 
will be dealing with a gaseous phase in the bulk membrane, it will be 
convenient to relate the permeability to an effective diffusivity, Dtot, as 
follows 

Dtot =
R2T2Lpδ

Vwpw
(6)  

where pw is the partial pressure of water in the gas phase, and δ is the 
membrane thickness. We will show how such a relation comes naturally 
from our approach. 

Many of the quantities in the above equations are measurable 
quantities. The thermal conductance, Λtot, is obtained by measuring the 
outgoing heat flux resulting from a temperature difference when the net 
migration of water stops. The heat of transfer, q*o, is obtained by 
measuring the outgoing heat flux when there is no temperature differ-
ence. The thermo-osmotic coefficient DT can be measured directly by 
measuring the net flux of water across the system due to a temperature 
difference when Δ1,2p = ΠΔ1,2m (or, trivially, when they are both zero), 
and Lp is measured by recording the water flux when either applying a 
pressure difference when there is no difference in temperature and 
composition, or measured as LpΠ by recording the osmotic flux that 
results from the composition difference at isothermal and isobaric con-
ditions. 

We have chosen the force-flux formulation with constant fluxes Ju 

and Jw, because the total resistances Rtot
ij can be decomposed into addi-

tive contributions, one from each subdomain Γp
1, Γs

1, Γp
2, Γs

2, and Γm. 
Following again the procedure explained in Ref. [8] for each subdomain, 
we then obtain 

Rtot
ij = Rp,1

ij +Rs,1
ij +Rp,2

ij +Rs,2
ij + δr̄m

ij (7)  

where Rs,1
ij and Rs,2

ij are the interfacial resistances across the subdomains 

Γs
1 and Γs

2; Rp,1
ij and Rp,2

ij the resistances across the polarization layers Γp
1 

and Γp
2; r̄m

ij is the average resistivity of the bulk membrane, Γm, and δ is 
the thickness of the membrane. This simple addition rule applies to the 
resistances in Eq. (2) because of the spatial invariance of Ju and Jw. The 
measurable transport properties of Eq. (3) can thus be related to the set 
of total overall resistances in Eq. (2). We proceed to formulate the re-
sistivities of each subsystem separately. We note that the local re-
sistivities are always on the form 

rx
uu =

1
T2λx

rx
um = rx

mu = −
Q*

x

T2λx

rx
mm =

R2T
pwDx

+
Q*

x
2

T2λx

(8)  

where λx, Q*
x, and Dx are the thermal conductivity, energy of transfer, 

and the diffusivity of the transport regime denoted x. The quantities λx 

and Dx are in principle measurable, as is the heat of transfer q*
x = Q*

x −

Hw. When these quantities are obtained, the Onsager resistivities rx
ij that 

are needed in Eq. (7) are identified using Eq. (8). It is also useful to invert 
the flux-force relations so that the fluxes are expressed as linear com-
binations of the driving forces. This requires an inversion of the re-
sistivity matrix, which gives the conductivity matrix with elements 
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ℓx
uu = T2λx + Q*

x
2pwDx

R2T

ℓx
um = ℓx

mu = Q*
x
pwDx

R2T

ℓx
mm =

pwDx

R2T

(9)  

3. Constructing the transport coefficients 

3.1. The membrane bulk resistivities 

In this section, we build a model for the bulk membrane in order to 
relate the local resistivities rm

ij to the structural and chemical properties 
of the membrane. To construct the model for the bulk membrane, we 
consider transport through one single cylindrical pore in Section 3.1.1. 
This gives the resistivities rc

ij of a single pore. We next use the cylindrical 
single pore model to construct the membrane bulk resistivities rm

ij in 
Section 3.1.2. 

3.1.1. Transport in a single pore 
In this section, we seek the transport coefficients of a single pore that 

are needed to construct the transport coefficients of the membrane bulk 
cross section in Section 3.1.2. The pore diffusion coefficient is often 
calculated from the bulk interdiffusion coefficient Dh and the Knudsen 
diffusivity DK by means of the Bosanquet formula [3] 

1
Dc

=
1

Dh
+

1
DK

(10)  

which was first introduced by Bosanquet [18], justified by kinetic theory 
[19], and thoroughly tested with molecular dynamics simulations by 
Krishna et al. [20]. Given that the membrane thickness δ is much larger 
than the average pore radius ā, we find it reasonable to use the argu-
ments leading up to Eq. (10) in the limit of an infinitely long pore to 
what will henceforth be referred to as the generalized Bosanquet formula 

rc
ij = rK

ij + rh
ij, (11)  

where the superscripts K and h refer to the limits Kn→∞ and Kn→0, 
respectively, where Kn is the Knudsen number. The energy-mass trans-
port coefficients in the limit Kn→∞ in a hydrophobic cylinder were 
discussed in detail in Ref. [21]. We denote the quantities DK, λK and Q*

K 
the diffusivity, thermal conductivity and energy of transfer in the limit 
Kn→∞, which is thoroughly discussed in Ref. [21]. The equivalent 
quantities in the limit Kn→0, Dh, λh and Q*

h, are the transport properties 
of the bulk water-air mixture. We give explicit expressions for all these 
quantities in Appendix C. Based on the addition rule in Eq. (11), we can 
identify the following quantities for the cylindrical pore (subscript c) 

λc =
λKλh

λK + λh
,

Q*
c =

λKq*
h + λhq*

K

λK + λh
+ Hw,g,

Dc =

(
1

Dh
+

1
DK

+
pw

T(λK + λh)

(q*
h − q*

K

RT

)2
)− 1

,

(12)  

which, as the notation implies, are the effective thermal conductivity λc, 
energy of transfer Q*

c and diffusion coefficient Dc of the pore with the 
combined transport modes. The local energy of transfer in the gas phase 
includes the partial molar enthalpy Hw,g of water in the gas phase. We 
see in particular that the expression for the diffusion coefficient differs 
from the original Bosanquet formula in Eq. (10) by the addition of an 
extra mass transfer resistance related to the heat-mass coupling of the 
two transport modes. This term is negligible in both limits, but provides 
a significant but small correction in the transition regime. 

3.1.2. Transport across the bulk membrane 
We model the membrane cross section as a solid material perforated 

by cylindrical pores. A given surface element of the membrane covers 
several such pores in addition to solid material. This is a crucial point: In 
order to add flux contributions from each individual pore, the flux-force 
relations on the form of Eq. (2) must be inverted. The surface-averaged 
conductivities ℓm

ij of a given portion of the membrane surface area A are 
obtained by adding the conductivities of all pores in the cross section, 
along with the conductivity of the solid material, and dividing by the 
surface area A. This gives the bulk conductivities 

ℓm
ij =

1
A
∑

k
πa2

kℓc
ij,k +

As

A
ℓs

ij, (13)  

where As is the total area of the solid material, ℓs
ij the conductivity of the 

solid material, and the sum is taken over all pores covered by the area. 
We assume that the solid material is impermeable to mass transfer, such 
that ℓs

um = ℓs
mu = 0, ℓs

mm = 0, and ℓs
uu = T2λs with λs being the effective 

thermal conductivity of the solid matrix. Given that the area, A, covers a 
representative sample of pores, we can replace the sum over pores by the 
total number Np of pores times the integral over the pore size distribu-
tion F(a)
∑

k
πa2

kℓc
ij,k = πNp

∫

Γp

daℓc
ij(a)a

2F(a) = πNp

〈
a2ℓc

ij

〉
. (14) 

The average pore cross-sectional area is Ap = Npπ〈a2〉, where a is the 
pore radius. We define the correction factors K σ,ij such that 

∑

k
πa2

kℓc
ij,k = Apℓc

ij(ā)

〈
a2ℓc

ij

〉

〈a2〉ℓc
ij(ā)

= Apℓc
ij(ā)K σ,ij, (15)  

where ̄a is the mean pore radius. The surface porosity is ϕs = Ap/A. Then 
since Ap + As = A, we have As/A = 1 − ϕs. We obtain the bulk con-
ductivities 

ℓm
uu = ϕs

[

T2λc(ā) + Q*
c

2
(ā)

pw

R2T
Dc(ā)

]

K σ,uu + (1 − ϕs)T2λs,

ℓm
um = ℓb

mu = ϕsQ
*
c(ā)

pwDc(ā)
R2T

K σ,um,

ℓm
mm =

ϕspwDc(ā)
R2T

K σ,mm.

(16)  

We can now obtain the local resistivities of the membrane bulk by 
inverting the matrix of conductivities. The total resistances of the 
membrane bulk are then obtained by integrating the local resistivities, 
which in general vary along the path of integration due to gradients in 
temperature and composition. In order to account for the fact that real 
pores are not straight cylinders, we introduce the tortuosity factor τp 

such that the effective average path length is τpδ. This factor has been 
firmly established in the literature [3]. The membrane bulk quantities 
are then the bulk thermal conductivity 

λm =
ϕs

τp
K σ,uuλc(ā)+ (1 − ϕs)λs +

ϕsQ*
c

2
(ā)pwDc(ā)

τpR2T3

(

K σ,uu −
K

2
σ,um

K σ,mm

)

(17)  

the bulk energy of transfer 

Q*
m = Q*

c(ā)
K σ,um

K σ,mm
(18)  

and the bulk diffusion coefficient 

Dm =
ϕsDc(ā)

τp
K σ,mm. (19) 

The local resistivities depend on the actual thermodynamic state of 
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the local representative elementary volume. The averaging procedure 
over the bulk membrane must typically be performed numerically with 
an initial guess of the values of the thermodynamic state variables across 
the system, and then iterated to the desired accuracy. We describe the 
systematic approach to this in Appendix B. From this point on, we 
operate in the theory with an adequate initial guess: if the resistivities 
are constant through the membrane, then it follows from the conser-
vation laws that the gradients in the inverse temperature and the ratio μ/
T are constant. Evaluating the resistivities at the arithmetic mean values 
of these state variables is roughly equivalent to evaluating them at the 
arithmetic mean temperature T̄ and geometric mean partial pressure p̂. 
Assuming that the vapor is saturated inside the membrane, the latter is 
approximately equal to the water saturation pressure evaluated at the 
mean temperature, psat

w (T̄). By these assumptions, the profiles of lnpw and 
T are nearly odd functions over the domain, and thus the first order 
corrections to evaluating the coefficients at these values vanish, making 
this a good initial guess. To compute the resistivities, we use 

r̄m
uu =

1
T̄2λm

,

¯rm
um = ¯rm

mu = −
Q*

m

T̄2λm
,

¯rm
mm =

R2T̄
psat

w (T̄)Dm
+

Q*
m

2

T̄2λm
,

(20)  

where Dm, Q*
m and λm are evaluated at T̄ and psat

w (T̄). 

3.2. The liquid-membrane interfaces 

The interface between the liquid phase and the bulk membrane is 
complicated, because the surface of a polymeric membrane is rough on 
the length scale of the pore size. The surface roughness is often the origin 
of the membrane hydrophobic qualities, see Wenzel [22] and Cassie and 
Baxter [23]. The transport properties of the pure water liquid-vapor 
interface were thoroughly investigated in Refs. [24, 25], referring to 
the following discrete formulation 

Δl,g
1
T
= Rgl

qqJq′
g + Rgl

qμJw

−
1
TlΔl,gμw

(
Tl) = Rgl

μqJ′g
q + Rgl

μμJw

(21)  

where J′g
q is the measurable heat flux from the interface into the vapor 

phase. All resistances are positive and decay exponentially with tem-
perature, and we present a numerical fit in Appendix C. Transforming to 
the set containing the energy flux Ju gives the following expressions for 
the resistivities that satisfy the addition rule in Eq. (7) 

Rgl
uu = Rgl

qq,

Rgl
um = Rgl

mu = Rgl
qμ − Hw,gRgl

qq,

Rgl
mm = Rgl

μμ − 2Hw,gRgl
qμ + H2

w,gRgl
qq.

(22) 

The available surface area of the vapor-liquid interface depends on 
the wetting state of the membrane surface. We distinguish between two 
states: the Wenzel (W) and the Cassie-Baxter (CB) state. In the former, 
the liquid penetrates into the pore entrances, forming curved interfaces 
due to the solid-liquid contact angle θ. The total area of the vapor-liquid 
interfaces is then equal to ϕs times the membrane area, times a curvature 
correction factor assuming that the surface takes the shape of a spherical 
partition [26] 

fW =
2

1 + sin(θ)
, (23)  

while the total area of the fluid-solid contact is 1 − ϕs times the total 
area. In the Cassie-Baxter state, the liquid rests on protruding asperities 

on the surface, and the fluid-solid contact area fraction can be estimated 
as [26] 

αCB =
1 + cos(θ)
1 + cos(θe)

, (24)  

where θe is the “intrinsic” contact angle between the liquid and a smooth 
surface of the same material. If we approximate the vapor-liquid inter-
face in the CB state to be planar, the area of exposed vapor-liquid 
interface is 1 − αCB. We see that it is possible to obtain large effective 
evaporation areas in both states – in the W state due to strong surface 
curvature, and in the CB state due to a smaller proportion of direct 
liquid-solid contact. Neglecting surface curvature effects on the re-
sistivities of the vapor-liquid interface [27], the W state interface re-
sistivities are 

RW
uu =

(
ϕsfW

Rgl
uu

+
1 − ϕs

Rls
qq

)− 1

,

RW
um = − RW

uuQ*
gl,

RW
mm =

Rgl
mm

ϕsfW
+

RW
uu − Rgl

uu

ϕsfW
Q*

gl
2
,

(25)  

where Q*
gl = − rgl

um/rgl
uu is the energy of transfer across the vapor-liquid 

interface, and Rls
qq is the thermal resistance of the liquid-solid contact. 

The liquid-solid contact typically makes the thermal resistance of the 
interface smaller than that of the vapor-liquid interface by itself. The CB 
state gives slightly different conductivities. Neglecting any additional 
resistance due to diffusion processes tangentially to the membrane 
surface, we obtain 

RCB
uu =

(
1 − αCB

Rgl
uu

+
αCB

Rls
qq

)− 1

,

RCB
um = − RCB

uu Q*
gl,

RCB
mm =

Rgl
mm

1 − αCB
+

RCB
uu − Rgl

uu

1 − αCB
Q*

gl
2
.

(26) 

Depending on the wetting state of the surface, either Eq. (25) or Eq. 
(26) are inserted into Eq. (7) to determine Rs,1

ij and Rs,2
ij . In summary, we 

have 

Rs,k
ij =

⎧
⎨

⎩

RW
ij surfacek inWenzel state.

RCB
ij surfacek in Cassie − Baxter state.

(27)  

3.3. Temperature polarization 

Separating the bulk liquid and the membrane-liquid interface is a 
stagnant diffusion layer where the thermal resistance of the bulk liquid 
must be taken into account. We characterize this region as a layer of 
stagnant liquid with an effective thickness δpol, and neglect any 
composition gradients in this layer. The thermal resistance of this layer 
is then 

Rp
qq = δpolrw

qq, (28)  

where rw
qq is the thermal resistivity of water. This is more commonly 

expressed in terms of the dimensionless Nusselt number Nu. This relates 
to our effective layer thickness as follows: 

δpol =
Lh

Nu
(29)  

where Lh is the characteristic length scale involved in the calculation of 
Nu itself, typically the hydraulic diameter of the flow channel. In gen-
eral, the Nusselt number in a typical flow channel parallel to a mem-
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brane surface is correlated to the Reynolds number Re and the Prandtl 
number Pr in the following way [28] 

Nu ∝ f RePr1/3, (30)  

where f is the friction factor, which depends on the hydraulic diameter 
and the membrane surface roughness. When f is known for the partic-
ular flow channel and membrane, the temperature dependence of the 
layer thickness can be obtained via the dependence of f , Re and Pr on the 
kinematic viscosity and the thermal diffusivity of the liquid. 

The practical consequence of temperature polarization is that the 
temperatures of the two vapor-liquid interfaces differ from the tem-
peratures of the adjacent bulk liquids 

Ts,l
1 = T1 −

δpol
1 Ju

λw
1

, Ts,l
2 = T2 +

δpol
2 Ju

λw
2

, (31)  

where Ts,l
1 and Ts,l

2 are the liquid temperatures close to the vapor-liquid 
interfaces, as indicated in Fig. 1; λw

1 and λw
2 is the thermal conductivity 

of water evaluated on the two sides at the average temperature of each 
respective polarization layer. In practice, this is typically seen as 
reducing the effective temperature difference by a factor Θ, known as 
the temperature polarization coefficient (TPC). We define it here by the 
relation 

Ts,l
2 − Ts,l

1 =

[

1+
Ju

Δ1,2T

(
δpol

1

λw
1
+

δpol
2

λw
2

)]

Δ1,2T = ΘΔ1,2T. (32) 

The effective thickness δpol depends on the liquid flow conditions 
near the membrane, and is the parameter that explains the correlation 
between Θ and the Nusselt number, thoroughly assessed by Khayet et al. 
in [29]. Promoting turbulent flow gives a smaller δpol, bringing Θ closer 
to unity. Since the Nusselt number depends on the local viscosity and 
thermal diffusivity, this treatment of temperature polarization will in 
general give different thermal resistances in the two polarization layers 
due primarily to the temperature dependence of the local viscosity and 
thermal diffusivity, thus affecting the temperatures of the two liquid- 
membrane surfaces differently. Due to the exponential dependence of 
the equilibrium vapor pressure on the interfacial temperature, this 
phenomenon can have a significant impact on the distillation process. 

3.4. Overall transport coefficients 

Most of the MD processes described in the literature are limited by 
the resistances of the membrane bulk. That is, the resistances of the 
membrane bulk are much larger than those of the liquid-membrane 
interfaces, such that the transport properties of the system are to a 
good approximation given entirely by the transport properties of the 
membrane bulk plus the effects of temperature polarization [3]. For this 
reason, we choose to present the contributions from the liquid- 
membrane interfaces here in the form of correction factors to the 
membrane bulk coefficients. We develop in Appendix A a correction 
factor formalism that expresses the transport coefficients of the mem-
brane system as those of the bulk membrane times correction factors 
that take the resistances of the interface regions Γs

i into account. In terms 
of the factors derived in Appendix A, we present the apparent diffusion 
coefficient 

Deff
m = Dm

(
B mm +Q*

mB um
)

(33)  

and the energy of transfer 

Q*,eff
m = Q*

m +
R2T̄3λm

p̂*
wDm

(

Q*
m +

B um

B mm

)− 1

(34)  

and the thermal conductance 

Λeff
m =

λm

δ
B uu +

p̂wDeff
m

R2T̄3δ

[
Q*

m
2
B uu + Q*

mB mu

B mm + Q*
mB um

− Q*
tot

2
]

(35)  

where the B ij are defined in Appendix A, and we point out, importantly, 
that B mu ∕= B um. The permeability Lp is related to Deff

m as 

Lp =
Vw p̂wDeff

m

R2T̄2δ
. (36) 

We rewrite the heat of transfer as 

q*
tot = Q*

tot − Hw,l = Q*
tot − Hw,g +ΔvapHw = q*

m +ΔvapHw, (37)  

where subscripts l and g refer to the liquid and gas phases. We have 
written the total heat of transfer as a sum of two terms, where one of 
them is the enthalpy of vaporization, ΔvapHw. The other term, q*

m = Q*
tot −

Hw,g, is a combination of the heat of transfer on the vapor side of the 
interfaces and in the membrane bulk. The thermo-osmotic coefficient 
can then be expressed as 

Deff
T =

p̂wDeff
m

R2T̄3δ

(
q*

m +ΔvapHw
)
, (38)  

which is the most important quantity for MD applications. We remark 
that the observed thermal conductance Λtot and the observed thermo- 
osmotic coefficient DT as defined in Eq. (4) are obtained considering 
the total temperature difference Δ1,2T across the system, while the 
quantities defined in this section pertain only to the membrane system 
excluding the polarization layers, with the driving force Ts,l

2 − Ts,l
1 =

ΘΔ1,2T. The observed quantities are therefore adjusted by the TPC as 
follows 

DT = ΘDeff
T , Λtot = ΘΛeff

m . (39)  

3.5. Summary of theory 

We can now use the following procedure for constructing the 
transport coefficients of the membrane system: When the thermal con-
ductivity, heat of transfer, and diffusivity in the limits Kn→0 and Kn→∞ 
are known, the coefficients for a single pore can be calculated by Eq. 
(12). Given the pore size distribution, porosity, tortuosity, and solid 
thermal conductivity, the bulk membrane parameters are obtained by 
Eqs. (17), (18), and (19), where the statistical correction factors are 
defined in Eq. (15). These parameters are then corrected for interfacial 
contributions by calculating the correction terms summarized in 
Appendix A and inserting them into Eqs. (35), (34), and (33). The final 
link to the observable coefficients in Eq. (4) is then provided by Eqs. (36) 
and (38), with adjustments for temperature polarization given by Eq. 
(39). 

The outlined procedure gives the first approximations to the 
observed transport coefficients of the membrane system. In order to 
account for nonlinear effects that occur at more extreme conditions, the 
local values of the bulk transport coefficients must be calculated by the 
iterative method outlined in Appendix B in order to provide more ac-
curate values for the total resistances of the membrane bulk. 

4. Results and discussion 

In Section 3, we provided a systematic method for describing the 
transport coefficients defined in Eq. (4) from knowledge of the pore size 
distribution, porosity, tortuosity, contact angle, and knowledge of the 
transport properties of the vapor-liquid interface and the wetting state of 
the surface. In order to facilitate correspondence with most of the MD 
literature, we provided in Section 3.4 the transport coefficients of the 
system in the form of membrane bulk properties times correction factors 
defined in Appendix A to account for interfacial contributions. In the 
following, we will refer to the full model represented by Eq. (38) as the 
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non-equilibrium thermodynamics (NET) approach. The more commonly 
used Eq. (43) will be referred to as the simplified model. 

In Section 4.1, we will demonstrate that the simplified model is a 
special case of the NET approach with appropriate approximations. We 
proceed to use this correspondence to compare the methods for the 
Millipore DuraPore GVHP membrane in Section 4.2. Here, we justify the 
simplified model on quantitative grounds, and propose a simple 
correction factor that corrects for most of the discrepancies with respect 
to the NET approach. We discuss two cases in Sections 4.3 and 4.4 where 
the predictions from the NET approach diverge from the simplified 
model. 

4.1. Correspondence to membrane distillation literature 

We will next discuss the link that explains the difference between Eq. 
(38) and the ubiquitous notion that the primary driving force of the 
process of MD is the difference in the vapor saturation pressure across 
the system due to the difference in temperature. It is well established 
that two features are routinely neglected: the interfacial contributions to 
the total resistances, and the kinetic heat-mass coupling. The latter gives 
rise to the assumption that 

⃒
⃒q*

m
⃒
⃒≪ ΔvapHw. If we also neglect interfacial 

effects and effects of the pore size distribution, then Deff
m ≈ ϕsDc(ā)/τp. 

The thermo-osmotic coefficient is then 

Deff
T ≈

ϕs p̂wDc(ā)
R2T̄3τpδ

ΔvapHw. (40) 

From the Gibbs-Duhem relation for liquid water in equilibrium with 
its vapor, one obtains the Clausius-Clapeyron equation 
(

∂psat
w

∂T

)

m
=

psat
w ΔvapHw

RT2 . (41) 

Assuming that the vapor is saturated, such that p̂w = psat
w (T̄), then 

Deff
T ≈

ϕsDc(ā)
RT̄τpδ

(
∂psat

w

∂T

)

m

⃒
⃒
⃒
⃒

T=T̄
. (42) 

The water flux is proportional to DT times the difference in temper-
ature between the two liquid-vapor interfaces. We may again 
approximate 

Jw∝ − Deff
T

(
Ts,l

2 − Ts,l
1
)
≈ −

ϕsDc(ā)
RT̄τpδ

Δpsat
w . (43) 

This expression, which can be read as the gas permeance of the 
membrane times the difference in the water saturation pressure is 
commonly encountered in the MD literature [3], where the saturation 
pressure difference is usually quoted as the main driving force. The true 
thermal driving force is the temperature difference, which is more 
general because it does not depend on the properties of the vapor-liquid 
equilibrium, and includes heat-mass coupling effects that had to be 
neglected in order to arrive at Eq. (43). When interfacial contributions 
are negligible and the pore radius is much larger than the interaction 
range between the molecules and the pore walls, specified in Ref. [21], 
q*

m is negative with a maximum absolute value RT/2, which accounts for 
roughly 6–7% of the sum q*

m + ΔvapHw. This means that neglecting q*
m is 

reasonable as long as the statistical uncertainty in the measurements is 
greater than 6–7%. Interpretation of more accurate experiments, espe-
cially with smaller pores, should include q*

m by using the full expression 
in Eq. (38). 

4.2. Case study: the DuraPore GVHP membrane 

We will next compare results from the NET approach and the 
simplified model for the well-studied case of the Millipore DuraPore 
GVHP membrane. 

Khayet et al. assumed a log-normal pore size distribution and ob-

tained a mean pore radius of 133 nm and geometric standard deviation 
of 1.12 by means of the wet/dry flow method [30]. In the same study, 
they also obtained a mean pore tortuosity equal to 2.14, and the thick-
ness of the membrane was 117.7 μm. The porosity of the membrane was 
found to be 70.1% and its bulk thermal conductivity 41 mW/m [31]. 
García-Payo et al. also determined the advancing contact angle to be 
111◦ [32]. We determine that this angle is too small for the surface to be 
in the Cassie-Baxter mode, as this would give a solid-liquid contact area 
greater than 1 − ϕs, which is nonphysical with the present assumptions. 
We therefore assume that the wetting state of the surface is of the 
Wenzel kind. 

In Fig. 2, we show the predicted water fluxes with distilled water on 
both sides of the GVHP membrane using the parameters listed in the 
preceding paragraph, as functions of the temperature difference at 
different mean temperatures. The NET approach is represented by solid 
lines, and the values predicted by the simplified model are represented 
by the dashed lines. The simplified model systematically overpredicts 
the flux compared to the full model, in the range considered here by up 
to 3%. We will next investigate the correction terms systematically. 

Numerical evaluation of the total energy of transfer in Eq. (34) in-
dicates that the second term accounts for a relative correction on the 
order 10− 7, such that for all practical purposes Q*

tot = Q*
m. Furthermore, 

a deviation of K σ,um/K σ,mm from unity is on the order of 10− 5, so by Eq. 
(18) it is reasonable to take Q*

m = Q*
p(ā). In summary, the total energy of 

transfer of the membrane system is for all practical purposes equal to the 
energy of transfer in the average pore. Thus, 

q*
m =

λK(ā)q*
h + λhq*

K(ā)
λK(ā) + λh

(44)  

which is negative with an absolute value up to 3% of the total q*
m +

ΔvapHw in the GVHP membrane, so that neglecting q*
m accounts for most 

of the overprediction by the simplified equation. Since q*
m is larger in 

absolute value in smaller pores, the error made by using the simplified 
model will be greater in smaller pores. In pores where the radius is 
comparable to the range of the intermolecular interaction between in-
dividual water molecules and the pore walls, q*

m can take much larger 
values and also change sign. For a detailed exposition, see [21]. Based on 
this analysis, a straightforward improvement of Eq. (43) can be obtained 

Fig. 2. Predicted water flux through a GVHP membrane in a DCMD configu-
ration, with pure water on both sides, as a function of the temperature differ-
ence Ts,l

2 − Ts,l
1 across the system at different mean temperatures T̄. The solid 

lines are predictions by the NET approach; the dashed lines represent the 
simplified model prevalent in MD literature (Eq. (43)). The dash-dotted lines 
represent the model with a corrected heat of transfer according to Eq. (45). 
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by using the correction factor 1 + q*
m/ΔvapHw as follows 

Jw ≈ −
ϕsDc(ā)
RT̄τpδ

(

1+
q*

m

ΔvapHw

)

Δpsat
w , (45)  

which captures some of the discrepancy between the NET approach and 
the simplified model, especially for membranes with small pores. 

The interfacial resistances are in this case given by those of the 
Wenzel mode (Eq. (25)). Given our assumption that molecules that pass 
through the liquid-vapor interface thermalize shortly with the pore 
walls, the thermal conductance of the interface is dominated by the 
greatest of that of the liquid-vapor interface and that of the liquid-solid 
contact. 

Calculations then indicate that in the present case, the interfacial 
thermal resistance is 5 orders of magnitude smaller than that of the 
membrane bulk, which justifies neglecting any temperature jumps at the 
interfaces. This also means that the effect of the interface must be due to 
its contribution to the mass transfer resistance of the system, which is 
contained in the correction factor B mm + Q*

mB um to the apparent 
diffusion coefficient. Furthermore, since the correction due to the effect 
of the pore size distribution is also a common factor to the apparent 
diffusion coefficient, it is convenient to see these two corrections in 
combination. Both the interfacial term and the correction factor K σ,mm 

are plotted in Fig. 3 as functions of the mean temperature of the GVHP 
system, along with the product of the two corrections to give the net 
effect of both contributions. As it must, the correction factor B mm +

Q*
mB um is smaller than unity, because the interfaces can only increase 

the mass transfer resistance of the system. On the other hand, variation 
in pore size tends to decrease the mass transfer resistance of the mem-
brane, thus increasing the apparent diffusion coefficient by a factor 
greater than unity. Both corrections account for less than 1%, and their 
combination even less. This justifies neglecting both effects, as they in 
combination account for at most a 0.5% net correction. 

The remainder of the deviation between the NET approach and the 
simplified model comes from nonlinear effects that originate in the 
dependence of the local resistivities on the local thermodynamic vari-
ables. We call these effects nonlinear in the sense that they give the 
appearance that the flux deviates from a straight line as a function of the 
temperature difference. The most important among these effects is in a 
subtle way already captured by Eq. (43) in the step where the temper-
ature derivative of the saturation pressure times the temperature 

difference is taken to be equal to the difference in the saturation pres-
sure. Since the saturation pressure depends exponentially on the local 
temperature, Eq. (43) is already beyond the linear approximation Jw ∝ 
Ts,l

2 − Ts,l
1 , which is precisely the motivation behind the recommendation 

by Khayet and Matsuura to use psat
w

(
Ts,l

2

)
− psat

w

(
Ts,l

1

)
instead of Ts,l

2 − Ts,l
1 

as the effective driving force when the temperature difference is large 
[3]. 

The apparent nonlinearity that occurs at large temperature differ-
ences can be understood by observing the temperature dependence of 
the bulk transport coefficients. In Fig. 4, we have plotted the calculated 
profiles for the temperature, water partial pressure, and local saturation 
pressure across the GVHP membrane in an extreme case with a tem-
perature difference of 71 K and a 1 mol/kg NaCl solution on the feed 
side. The temperature profile deviates only slightly from a straight line 
due to the dependence of the local thermal conductivity on the local 
temperature, and also due to the heat carried locally by the steady state 
mass flux through the pores, which is exchanged with the pore walls as 
the molecules thermalize. The mass transfer resistance of the membrane 
varies significantly through the membrane because of its dependence on 
the local temperature and water vapor concentration. The resulting 
bottlenecks are not taken into account by merely evaluating the trans-
port coefficients at the mean temperature and geometric mean con-
centration, leading to a significant difference between the first 
approximation and the transport coefficients obtained by numerical 
integration from the local level. 

We can also observe in Fig. 4 that the local saturation pressure, 
represented by the dashed line, is very different from the local partial 
pressure through the membrane. The mass transfer conductivity is 
proportional to the local concentration of water molecules, and an initial 
guess to the steady state profile is that the product of this conductivity 
and the chemical potential gradient, proportional to the gradient in the 
logarithm of the concentration, is constant. This means that we should 
expect that the steady state concentration gradient is roughly constant, 
giving a linear partial pressure profile. The saturation pressure, on the 
other hand, depends exponentially on the local temperature. The result 
is that the vapor inside the membrane pores is supersaturated to varying 
degrees with respect to equilibrium with a flat surface of liquid water. 
This is probably stabilized by the confinement of the gas mixture inside 

Fig. 3. Correction factor to the apparent diffusion coefficient due to the pore 
size distribution, K σ,mm, correction factor due to interfacial resistances, B mm +

Q*
mB um, and their product, as function of the mean temperature of the Dura-

Pore GVHP membrane system. 

Fig. 4. Profiles predicted by the NET approach of temperature T, water vapor 
pressure pw, and pure water saturation pressure psat

w through a GVHP membrane 
in DCMD configuration with liquid temperatures 292.9 K and 363.9 K, with 
distilled water on the cold side and 1 mol/kg aqueous NaCl solution on the hot 
side. The polarization layer thicknesses are roughly 74 m on the cold side and 
64 m on the hot side. 
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the porous structures, which provides an energy barrier for the transi-
tion to liquid phase [33,34]. While this increase in water concentration 
tends to increase the mass transfer conductivity of the pore with respect 
to water vapor, it also contributes to an increase in the overall pressure 
of the gas mixture, leading to increased mass transfer resistance in larger 
pores due to an increased rate of intermolecular scattering. 

We conclude the case study by comparing predicted values to water 
fluxes reported in the literature. In general, both the NET-approach and 
the simplified model overpredict the net mass flux of water compared to 
experiments. The reason for this is temperature polarization, explained 
in Section 3.3. Extensive work on this phenomenon was carried out by 
Khayet et al. [11], where the temperature polarization coefficient (TPC), 
Θ, was correlated to the flow conditions in the bulk liquids. They re-
ported a TPC for the GVHP system between 0.6 and 0.5 at laminar flow 
conditions, and between 0.96 and 0.93 for turbulent flow conditions. For 
example, their GVHP case with liquid temperatures 292.9 K and 363.9 K 
resulted in a flux 13.52 g m− 2 s− 1, whereas the NET approach and the 
simplified model with no temperature polarization predict 21.53 and 
22.39 g m− 2 s− 1, respectively. Adjusting the simplified model by 
factoring in the correction of Eq. (45) gives a better agreement with the 
NET approach at 22.00 g m− 2 s− 1. To incorporate temperature polari-
zation, we will apply the NET approach. 

We use the polarization layer thickness δpol
1 as an adjustment 

parameter, and use the correlation in Eq. (30) to determine δpol
2 . For 

laminar flow, f ∝ Re− 1/2 [28], and we obtain from standard expressions 
for Re and Pr, assuming that the flow channel geometry and flow rates 
are the same on both sides 

δpol
2

δpol
1

=

(
αw,2

̅̅̅̅̅̅̅̅νw,2
√

αw,1
̅̅̅̅̅̅̅̅νw,1

√

)1/3

, (46)  

where αw,i is the average thermal diffusivity and νw,i the average kine-
matic viscosity of the liquid in the polarization layers. In this particular 
case, we obtain the experimentally reported flux when δpol

1 ≈ 74 μm and 
δpol

2 ≈ 64 μm, which is illustrated to scale in Fig. 4. The resulting TPC is 
roughly 0.79. 

This case study demonstrates that the approximations leading to Eq. 
(43) are adequate for the GVHP system, and the two approaches give 
roughly the same results after the recommended refinements to the 
simplified model. This explains why Eq. (43) is so successful – the effects 
that are neglected are not important in the systems that have historically 
been considered in the MD literature. Neglecting q*

m gives a consistent 
2–3% overprediction, which is typically not sufficient to be distin-
guishable from experimental noise. We will next, however, make pre-
dictions where the two approaches give very different result and the 
NET approach provides additional insight. 

4.3. Case: liquid-vapor interface separated from membrane 

Consider the Cassie-Baxter wetting state, and let the contact angle 
θ→π. In this limit, the liquid-solid contact vanishes, and we have a 
liquid-vapor interface that is completely separated from the membrane 
surface. This situation was investigated for a single component system 
with molecular simulations by Rauter et al. [16], and can also be 
considered to be a special case of the vapor-gap MD configuration in the 
limit as the thickness of the air gap goes to zero, and the interfacial re-
sistances are those of a plane liquid-vapor interface. This is an inter-
esting case because the magnitude of the interfacial thermal resistance is 
comparable to that of the membrane. We will henceforth refer to this 
case as the CB state. 

As can be seen in Fig. 5, when the thermal resistance of the interface 
is dominated by that of the vapor-liquid interface, we obtain significant 

temperature jumps. The thermal resistance of the interface depends 
exponentially on the temperature of the interface, which is typically 
found to be roughly equal to that of the liquid phase close to the inter-
face [24]. The temperature jump is therefore more pronounced on the 
cold side, because the interfacial resistance is larger there than on the 
hot side. This leads to the tendency that the vapor is unsaturated on the 
cold side and supersaturated on the hot side. The average temperature in 
the membrane is higher than in the Wenzel case shown in Fig. 4. The 
mass transfer resistance of the membrane tends to decrease with tem-
perature due to increased particle momentum, but also tends to increase 
due to the higher particle concentration leading to more frequent scat-
tering. Due to these competing effects, the pore diffusion coefficient 
attains a maximum value at roughly 328 K for membranes that were 
initially in equilibrium with humid air at room temperature. 

In the CB state version of our GVHP case study, the water flux is 
predicted to be 13.86 g m− 2 s− 1, which is a 3% increase compared to the 
W case. The primary reason for the flux enhancement is that the higher 
thermal resistance across the interfaces leads to an increase in the 
overall thermal resistance of the system, thus lowering the energy flux 
through the system. The thermal resistance of the polarization layers 
being roughly the same in both cases, this leads to a reduction in the 
temperature drop across these layers. The TPC has in this case increased 
from 0.79 to 0.84. We show in Fig. 6 how the predicted CB state flux and 
TPC compare to the W state flux and TPC as functions of the temperature 
difference at different mean temperatures. The TPC is clearly larger in 
the CB state in all cases, and there is a clear tendency for the TPC to 
decrease with temperature, due to the increase in the membrane thermal 
resistance. The difference in TPC between the W and CB states is greater 
at lower temperatures, where the thermal resistance of the liquid-vapor 
interface is higher. When the temperature difference is very small, we 
see that the water flux changes sign due to the osmotic flux that is driven 
by the difference in salt concentration. The accompanying heat of 
transfer gives a substantial heat flux from distillate to feed, leading to 
cases where a TPC greater than unity is possible. 

An interesting finding by Rauter et al. is that the CB state tends to 
enhance the mass flux up to a certain point dictated by the mass transfer 

Fig. 5. Predicted profiles of temperature T, water vapor pressure pw, and pure 
water saturation pressure psat

w through a model GVHP membrane in DCMD 
configuration with liquid temperatures 292.9 K and 363.9 K, with distilled 
water on the cold side and 1 mol/kg aqueous NaCl solution on the hot side, with 
the vapor-liquid interfaces separated from the membrane by a negligible dis-
tance (CB state). The polarization layer thicknesses are roughly 74 μm on the 
cold side and 64 μm on the hot side. 
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resistance of the porous medium [16]. Since the mass transfer resistance 
in the GVHP system is dominated by that of the bulk membrane, the 
decrease in interfacial mass transfer resistance that accompanies a 
transition to the CB state has negligible effect on the flux in this 
particular system. 

4.4. Case: nanometer scale pores 

When the pore-sizes approach the nanometer scale, we can no longer 
neglect the effect of direct interactions between the molecules and the 
pore walls. Although we do not have the parameter values ε and σ, 
corresponding to the interaction energy and range in the model detailed 
in [21], we can estimate some values based on the investigation by 
Rauter et al. [16]. In the latter work, the wetting parameter α was 
adjusted to reproduce liquid-solid contact angles. For the fluid-wall 
interaction, they used the Lennard-Jones/spline model with interac-
tion energy εw/kB = 741 K and a molecular diameter σw = 3.25 Å. With 
a wetting parameter α = 0.5, which is expected to give a slightly larger 
contact angle than the 103◦ that was obtained with α = 0.6, matching 
the total barrier energy and minimizing the difference between the first 
approximations to the radial distribution functions exp( − βφ(r) ) gives 
the values ε = 2εw/5 and σ = 0.52σw. These values allow us to calculate 
the corrections to the Knudsen limit for this hypothetical system. 

Based on these parameter values, we show in Fig. 7 the predicted 
dependence of Dc and q*

m on the pore radius a at temperature 298 K. The 

dashed lines indicate the values that are not corrected for the fluid-wall 
interaction. The heat of transfer contribution q*

m dips towards the 
Knudsen value of − RT/2 before increasing in nanometer scale pores due 
to sorption effects. The Knudsen model (dashed curve) overpredicts the 
pore diffusion coefficient in small pores. The net effect is that DT is ex-
pected to be significantly smaller in nanometer pores than would be 
predicted without the sorption corrections. In applications where 
nanometer scale pores are important, such as in systems where the 
membrane must maintain a large pressure difference, it may be impor-
tant to take such corrections into consideration. 

5. Conclusions 

Membrane distillation (MD) is used as an umbrella term for processes 
that utilize membranes as transport media to facilitate distillation of 
volatile components at operating temperatures generally below the 
boiling point of either component at the given conditions. To enhance 
the understanding of transport mechanisms at play in MD systems, we 
have presented a systematic non-equilibrium thermodynamics (NET) 
procedure to describe the observed macroscopic transport properties of 
the membrane system from knowledge of the structural and chemical 
properties of the membrane. The method integrates the transport 
properties of the membrane, the interfaces, and temperature polariza-
tion in a manner justified by fundamental conservation laws. This pro-
vides a coherent and unified approach to assess all the transport 
phenomena in combination, including mass transfer, heat transfer, and 
coupling effects between the two. The NET approach reveals that the 
temperature difference across the membrane is the true driving force of 
mass transfer, which after suitable approximations is equivalent to the 
saturation pressure difference. 

To demonstrate the approach and its applicability, we discuss case 
studies that showcase both correspondence to models used in MD 
literature, and cases where commonly used models fall short. Through a 
series of approximations, e.g. that the resistance to transport is domi-
nated by the bulk membrane, we arrived at Eq. (43), which is a 
commonly used formula for the distillate flux. It was demonstrated that 
this formula systematically overpredicts the flux compared to results 
from the NET approach, primarily due to neglecting the kinetic heat- 
mass coupling effects and due to the dependence of the local mass 
transfer resistance on the local thermodynamic state. The former is more 

Fig. 6. Top: Predicted water flux through a GVHP membrane in a DCMD 
configuration, with pure water on the distillate side and a 1 mol/kg NaCl feed 
solution, as a function of the temperature difference Δ1,2T across the system at 
different mean temperatures T̄. The polarization layer thickness is 74 μm at 
292.9 K, and its variation with temperature is given by Eq. (46). Solid lines 
indicate predicted values in the case that the vapor-liquid interfaces are sepa-
rated from the membrane (CB state), while the dashed lines indicate the 
reference Wenzel state with contact angle 111◦C. Bottom: The temperature 
polarization coefficient (TPC) corresponding to the cases in the top figure. 

Fig. 7. The pore diffusion coefficient Dc and membrane gas heat of transfer q*
m 

as function of the pore radius a, corrected for the hydrophobic fluid-wall 
interaction (solid lines), compared to predictions not corrected for the inter-
action (dashed lines), at temperature 298 K. 
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important in small pores, and can account for up to 6% overprediction in 
the Knudsen limit. In the GVHP membrane in particular, correcting the 
simplified model for the kinetic heat of transfer brought the over-
prediction of 3% down to 0.5%. To obtain a better agreement with the 
NET approach, we recommend using the correction factor in Eq. (45) to 
account for the commonly neglected kinetic heat-mass coupling. 

To better understand the role of interfacial transport phenomena, we 
have investigated the hypothetical case where the liquid-vapor interface 
is completely separated from the membrane surface as a representation 
of a Cassie-Baxter wetting state. The thermal resistance of the vapor- 
liquid interface is then comparable to that of the bulk membrane, so 
that the thermal resistance of the system is significantly increased. This 
leads to a enhancement of the mass flux by up to 3% due to the lowered 
energy flux, which reduces the effect of temperature polarization and 
provides a larger temperature difference between the two liquid-vapor 
interfaces. 

The development of the formula in Eq. (11) for the addition of 
transport resistivities at the pore level gives a straightforward way to 
implement the transport coefficients for hydrophobic nanoscale pores. 
This is especially relevant for pressure-retarded MD processes where 
small pores are required to prevent liquid penetration at elevated 
pressures. Predictions from the NET approach indicate that the mass 
transfer resistance of nanoscale pores can be much smaller than that 
predicted by the Knudsen model, which is an important factor to 
consider when designing pressure-retarded systems. The systematic NET 
approach allows the construction of a complete model for transport 
phenomena through a membrane system where nanoscale effects can 
also be taken into account. 

In conclusion, the systematic NET approach presented in this work 
offers a coherent and unified framework for understanding and assessing 

the transport phenomena in MD processes, which can be used to tailor 
their properties for enhanced performance. 
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Appendix A. Correction factor formulation 

In this section, we derive a formulation of the flux-force relations for the composite membrane system that is based primarily on the transport 
coefficients of the bulk membrane and introduce correction terms that take interfacial contributions into account. We observe that 
(

1
Ts,m

1
−

1
Ts,l

1

)

+

(
1

Ts,l
2
−

1
Ts,m

2

)

=

(
1

Ts,l
2
−

1
Ts,l

1

)

−

(
1

Ts,m
2

−
1

Ts,m
1
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. (A.1) 

Furthermore, we have 

Ju = Lms
uu Δms

1
T
− Lms

umΔms
μw

T
,

Jw = Lms
muΔms

1
T
− Lms

mmΔms
μw

T
,

(A.2)  

where the superscript ms on the conductances denotes the conductances of the composite system Γs
1 ⊕ Γm ⊕ Γs

2 indicated in Fig. 1, and the differences 
Δmsf = f s,l

2 − f s,l
1 for the arbitrary variable f . Then, inserting the flux-force relations for each of the two interface regions Γs

1 and Γs
2 into Eq. (A.1), 

inserting Eq. (A.2) for the fluxes, and rearranging, we obtain 
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(A.4) 

If coupling effects are neglected, then B um = 0, B mu = 0, and B ii = 1 −
(
Rs,1

ii + Rs,2
ii
)/

Rms
ii , which recovers the simple electrical resistance analogy 

for heat and mass transfer. If the interfacial resistances are negligible compared to the resistances of the bulk membrane, then the driving forces across 
the composite system Γs

1 ⊕ Γm ⊕ Γs
2 are the same across the bulk membrane Γm by itself, which is a typical situation assumed in the literature. Having 
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expressed the bulk driving forces as thermodynamically consistent linear combinations of the total driving forces over Γs
1 ⊕ Γm ⊕ Γs

2, we rewrite the 
bulk flux-force equations in terms of the driving forces 

Ju =
ℓ̄m

uuB uu + ℓ̄m
umB mu

δ
Δms

1
T
−

ℓ̄m
umB mm + ℓ̄m

uuB um

δ
Δms

μw

T

Jw =
ℓ̄m

muB uu +
¯ℓm
mmB mu

δ
Δms

1
T
−

¯ℓm
mmB mm + ℓ̄m

muB um

δ
Δms

μw

T
.

(51) 

From these expressions, one may derive the transport quantities that pertain to the system Γs
1 ⊕ Γm ⊕ Γs

2, in terms of the bulk properties and the B ij 

terms. 

Appendix B. Iterative method for nonlinear effects 

While the first approximations to the overall conductivities of the membrane system do incorporate some of the nonlinear effects present in the 
system due to the differing thermodynamic states of the two interfaces, the approximation is obtained by assuming constant values of the bulk re-
sistivities throughout the bulk membrane. Since the resistivities do depend on the local thermodynamic state of the representative elementary volume 
element at a particular location along the axis of transport, we can expect nonlinear effects to occur also across the bulk of the membrane. In order to 
assess these effects, we demonstrate the iterative method for improving the accuracy of the predicted thermo-osmotic coefficient, as well as the 
temperature and pressure profiles in the bulk membrane. We define the coefficients 

A uu,i = Rs,i
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(B.1)  

such that, for instance 
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We can then solve for state variables inside the membrane close to the interface 
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where 

A
′
uu,1 = A uu,1 − Hw,lA um,1

A
′
mu,1 = A mu,1 + Hw,g(Ts,m
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(
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(B.4)  

and the other interface obeys similar relations with the subscripts 1 replaced by 2. Computing the temperature Ts,m
1 inside the membrane then allows 

computation of the exponential factor that determines the departure of the actual vapor pressure near the interface from that of vapor in equilibrium 

with the interface, denoted psat
w,1

(
Ts,l

1 ,m1

)
. These values are then the first approximations to the actual boundary values of pw and T inside the bulk of 

the membrane. To compute the actual profiles, we can take into account the dependence of the local resistivities on the local values of pw and T by 
using the flux-force relations 

∂xT = − T2rb
uuJu − T2rb

umJw

− R∂xlnpw =
[
rb

mu + Hw,grb
uu

]
Ju +

[
rb

mm + Hw,grb
um

]
Jw

(B.5)  

where the first approximations to the steady-state values of Ju and Jw are obtained through the first approximations to Ltot
ij . Solving these equations 

gives a first approximation to the actual profiles of T and pw throughout the membrane. This can be used to obtain a better approximation of the total 
bulk resistances through numerical integration, which again a better approximation for Ltot

ij and more accurate values of Ju and Jw. This algorithm is 
repeated until an acceptable degree of accuracy is achieved. 
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Appendix C. Numerical expressions for transport properties 

In order to use the theory presented, we require explicit expressions for the transport properties in terms of the state variables and the structural 
and chemical properties of the membrane system. To construct the bulk resistances, we need the pore resistances obtained by inserting Eq. (12) into 
Eq. (8). The transport properties of the pore are obtained from the generalized Bosanquet formula (Eq. (11)) when the resistivities in the limits Kn→0 
and Kn→∞ are known. We provide in the following the expressions for the transport properties in these two limits. In the limit Kn→∞, we have 

DK =
8a
3

̅̅̅̅̅̅̅̅̅̅̅̅
RT

2πMw

√

K μμ,

λK =
2pDK

T

[

xwK qq + (1 − xw)

̅̅̅̅̅̅̅
Mw

Ma

√ ]

,

Q*
K = Hw,g −

RT
2

K qμ

K μμ
= Hw,g + q*

K,

(C.1)  

where a is the cylinder radius, Mw is the water molar mass, Ma the averaged molar mass of air, xw and Hw,g the mole fraction and molar enthalpy of 
water vapor, and the coefficients K ij are correction factors accounting for the particle-wall interaction, where further details can be found in Ref. [21]. 

The limit Kn→0 is simply the case of a bulk mixture of water vapor and air. We require the interdiffusion coefficient, the heat of transfer, and the 
thermal conductivity. The interdiffusion coefficient can be expressed with the correlation (in units m2/s) [35]. 

Dh = 1.895⋅10− 5T2.072

p
. (C.2) 

We calculate the energy of transfer with the approximate formula derived in Appendix D 

Q*
h = Hw,g −

0.072(1 − xw)RT
x2

w + 1.228(1 − xw)
= Hw,g + q*

h. (C.3) 

The thermal conductivity of humid air can be expressed by the semi-empirical formula based on expressions for gas mixtures in kinetic theory [36]. 

λh =
λwxw

xw + αwa(1 − xw)
+

λa(1 − xw)

1 + xw(αaw − 1)
(C.4)  

where αwa and αaw are used as fitting parameters based on mixture data given correlations for the thermal conductivities λw and λa of pure water vapor 
and dry air, respectively. Based on data from [37], we obtain the values αwa = 1.167 and αaw = 0.886. 

The values of the interface resistances Rgl
ij were tabulated as functions of temperature. To 1% accuracy, we find that the values in Ref. [24] satisfy 

ln

(
Rgl

ij

Rgl
ij,0

)

= a1
T
T0

+ a2

(
T
T0

)2

, (C.5)  

where T refers to the liquid temperature and T0 = 300 K. The least-squares fit values of the coefficients can be found in Table C.1. The reference values 
are Rgl

qq,0 = 1.7076⋅10− 7 m2 W− 1 K− 1, Rgl
qμ,0 = 1.1085⋅10− 4 m2 s mol− 1 K− 1 and Rgl

μμ,0 = 9.3350⋅10− 2 J s m2 K− 1 mol− 2.  
Table C.1 
Parameters for the interpolation formula in Eq. (C.5) for 
the resistivities of the plane vapor-liquid interface, fitted 
to data tabulated in [24].   

a1 a2 

Rgl
qq  11.252  − 11.815 

Rgl
qμ  11.935  − 11.432 

Rgl
μμ  12.701  − 10.974  

The coupling coefficients as well as the interfacial resistances are routinely neglected in the MD literature [3], while the bulk diffusion coefficient 
Dm and the bulk thermal conductivity λm have been studied in detail. The thermal conductivity is furthermore taken to be some combination of the 
thermal conductivity of humid air and that of the solid membrane material, of which a thorough assessment can be found in [31]. 

As for the liquid-solid thermal resistance Rls
qq: A molecular dynamics investigation by Xue et al. [38] revealed that for a non-wetting liquid-solid 

interaction, the thermal resistance depends exponentially on the wetting parameter commonly applied with Lennard-Jones potentials. An experi-
mentally verified correlation between the contact angle and the thermal conductance was proposed by Shenogina et al. [39], and in terms of our 
notation, it reads 

1
Rls

qq
= T2B(1+ cos(θe) ), (C.6)  

with the factor B = 85 MW m− 2 K− 1. This means that Rls
qq is on the order of 10− 13 m2 W− 1 K− 1, which is 5–6 orders of magnitude smaller than that of 

the vapor-liquid interface. This demonstrates that the degree of liquid-solid contact is important when considering the question of whether or not the 
interfacial thermal resistance may be neglected. 

K.R. Kristiansen et al.                                                                                                                                                                                                                          



Desalination 567 (2023) 116927

14

Appendix D. Heat of transfer in the bulk gas mixture 

The best-studied quantity relating to heat-mass coupling in gas mixtures by the kinetic theory community is the thermal diffusion factor αT , which 
can be expressed in terms of the heat of transfer q*

h as αT = q*
h/RT(1 − xw). It was demonstrated by Laranjeira [40] that α− 1

T is proportional to the mole 
fractions of the mixture components. In accordance with the work by Mason and Smith [41], we may express the composition dependence as 

1
αT

=
xw

αv
T
+

1 − xw

αa
T

, (D.1)  

where the quantities αv
T and αa

T can be approximated with a lorentzian and a quasi-lorentzian model, respectively. In more recent work by Mason, 
Kihara’s method was applied to obtain explicit expressions [42] 

αv
T =

1
xw

[

2 −
(

∂lnDh

∂lnT

)

p

]

, αa
T =

3xwηwRT
2MwpDh

αv
T , (D.2)  

where ηw is the dynamic shear viscosity of pure water vapor. We see that the sign is determined by the temperature dependence of the interdiffusion 
coefficient. Since Dh in Eq. (C.2) varies with temperature to a power greater than 2, αT < 0, as expected by kinetic arguments based on water being the 
lighter component in the mixture. The viscosity of water vapor was measured by several workers, and compiled together in [43], from which a power 
law fit gives the correlation (in units Pa s) 

ηw = 1.935⋅10− 8T1.097. (D.3) 

We note that Tηw ∝ T2.097, which is very close to the temperature dependence of pDh. The ratio Tηw/pDh makes up the temperature dependence of αa
T 

which is then close to negligible. We find a simple formula 

q*
h

RT
=

− 0.072(1 − xw)

x2
w + 1.415⋅T − 1/40(1 − xw)

, (D.4)  

which vanishes for pure water vapor, and q*
h ranges between − 130 and − 180 J mol− 1 at infinite dilution in air between 273 K and 373 K. 
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