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Abstract: Many methods have been developed to aid in achieving the maximum power point (MPP)
generated by PV fields in order to improve photovoltaic (PV) production. The optimized steepest
gradient technique (OSGM), which is used to extract the maximum power produced by a PV field
coupled to a multicell series converter, is one such promising methodology. The OSGM uses the
power function’s first and second derivatives to find the optimal voltage (Vpv) and converge to the
voltage (Vre f ) that secures the MPP. The mathematical model was developed in Matlab/Simulink, and
the MPPT algorithm’s performance was evaluated in terms of reaction time, oscillations, overshoots,
and stability. The OSGM has a faster response time, fewer oscillations around the MPP, and minimal
energy loss. Furthermore, the numerical calculation of the gradient and Hessian of the power function
enables accurate modeling, improving the system’s precision. These findings imply that the OSGM
strategy may be a more efficient way of obtaining MPP for PV fields. Future research can look into the
suitability of this method for different types of PV systems, as well as ways to improve the algorithm’s
performance for specific applications.

Keywords: photovoltaic (PV); maximum power point (MPP); optimized steepest gradient method
(OSGM); multicellular converter; response time

1. Introduction

Over three-quarters of the world’s energy consumption is derived from fossil fuels.
However, these energy sources—gas, oil, and coal, which will run out in the coming
decades—are now known to cause air pollution and an increase in the greenhouse effect,
resulting in global warming. Organizations are pushing for the development of greener
energy sources in response to rising global demand. Alternative energy sources for power
include solar, wind, and hydroelectric sources. Furthermore, distribution networks cannot
serve the entire global population; whether in the mountains or on an island, in the least
populated areas or in the middle of the desert, difficult-to-access or very isolated sites
cannot always be connected to the grid due to technical constraints or a lack of economic
viability. Renewable energy sources, which may be scaled for residential use, are ideal for
providing power in remote or micro-grid locations. They are frequently paired with batter-
ies, which store excess energy output or compensate for transient power shortages during
peak consumption periods. The worldwide need for energy is continuously expanding,
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and as traditional energy sources, such as gas, oil, and coal, deplete, the need for cleaner
and renewable energy sources will grow [1–3]. Solar energy is one of the most effective and
least polluting renewable energy sources available. PV systems, which convert solar energy
into electrical energy, are extensively employed in a variety of applications, ranging from
modest household systems to large-scale power plants [4–8]. However, the non-linearity
of the photovoltaic generator results in a low energy conversion rate, which is a major
disadvantage of the PV system. To address this issue, researchers are working on maxi-
mum power point tracking (MPPT) algorithms that aid in maintaining maximum power
output despite fluctuations in sunshine and temperature. MPPT algorithms are critical for
increasing the amount of energy generated by solar systems [9–15]. MPPT algorithms are
classified into two types: dependent and independent. Dependent algorithms make use of
parameter databases to maximize the power of the photovoltaic system [16]. These methods
make use of intelligent controllers, such as artificial neural networks (ANNs) [17], adaptive
neuro-fuzzy inference systems (ANFISs) [18,19], and fuzzy logic controllers (FLCs). FLC
is the easiest to construct among these controllers, but it has several drawbacks, such as
rule definition, algorithm complexity, and reaction time to reach the maximum power
point [20–23]. On the other hand, independent MPPT algorithms do not require knowledge
of the PV system model and can be implemented without any prior knowledge of the
system. These algorithms are based on mathematical models and are often classified as
perturb and observe (P&O), incremental conductance (INC), or hill climbing (HC) methods.
These algorithms use the voltage and current measurements to estimate the PV system’s
maximum power point.

Recent energy research intends to build better MPPT algorithms to improve the
performance of solar systems [24–26]. These algorithms provide faster reaction, fewer
oscillations around the maximum power point, and reduced energy loss. The development
of these algorithms is critical in order to fulfill the rising demand for energy while lowering
prices and creating a sustainable environment. MPPT (maximum power point tracking)
is a technique for optimizing the power output of a photovoltaic (PV) system under
different conditions by continually adjusting the operating point of the PV panels to the
maximum power point (MPP). This allows the system to harvest the greatest amount of
electricity from the solar panels, enhancing the system’s total efficiency. MPPT algorithms
are divided into two types: open-loop and closed-loop approaches. Open-loop approaches,
such as the perturb and observe (P&O) method, are based on the observation of the
solar panel’s output current and voltage and alter the operating point correspondingly.
Closed-loop approaches, such as the incremental conductance (IC) method, employ a
feedback loop to change the operating point continuously until the maximum power
point is attained [23,27,28]. The study in [29] compares several MPPT approaches, such as
perturb and observe, incremental conductance, and fractional open circuit voltage. The
authors rate each technique’s performance based on parameters such as convergence time,
steady-state oscillation, and tracking efficiency. Ref. [30] presents a thorough examination
of two common MPPT strategies, perturb and observe and incremental conductance,
covering their fundamental concepts, benefits, and drawbacks. The authors also address
current advancements and changes to these strategies. The authors in [31] provide a
detailed discussion of several MPPT strategies, including old methods, such as perturb and
observe, incremental conductance, and hill climbing, as well as modern techniques like
artificial neural networks and fuzzy logic. Each approach is evaluated by the authors based
on variables such as convergence speed, steady-state oscillation, and efficacy in dealing
with partial shading. The work in [32] reviews many MPPT strategies for PV systems,
such as perturb and observe, incremental conductance, and other advanced techniques,
such as model reference adaptive control and sliding mode control. Each approach is
evaluated by the authors based on variables such as convergence speed, steady-state
oscillation, and efficacy in dealing with partial shading. In [33], the authors offered an
MPPT technique based on an artificial neural network (ANN) for solar applications. The
suggested technique estimates the ideal duty cycle that maximizes PV output power using
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a neural network model. A dataset of PV power and voltage values recorded under various
climatic circumstances is used to train the ANN model.

The study [34] describes an MPPT control technique for solar systems based on an
adaptive neuro-fuzzy inference system (ANFIS). The ANFIS model is trained to predict the
ideal voltage for maximizing PV output power. To increase the performance of the ANFIS
controller, the suggested technique additionally employs an updated antlion optimizer
(ALO) algorithm. In the study [35], an enhanced maximum power point tracking (EMPPT)
method for solar systems is proposed. To estimate the best voltage that maximizes PV
output power, the suggested technique employs an artificial bee colony (ABC) optimization
algorithm. To increase the performance of the EMPPT controller, the ABC algorithm is inte-
grated with a neural network. The hybrid fuzzy logic and artificial neural network based
maximum power point tracking for photovoltaic systems is proposed in [36] to predict the
ideal duty cycle that maximizes the PV output power. To increase the performance of the
MPPT controller, the fuzzy logic controller is paired with an ANN. The study [37] offers
a novel MPPT approach for solar power systems based on the cuckoo search algorithm
(CSA) and ANFIS in the study. The suggested technique estimates the best voltage that
maximizes the PV output power using the CSA algorithm. To increase the performance of
the MPPT controller, the CSA algorithm is integrated with an ANFIS model.

This paper describes how to use the optimized steepest gradient technique (OSGM) in
conjunction with a multicellular series converter to maximize the power output of a photo-
voltaic (PV) field. The OSGM is an independent approach for tracking the maximum power
point (MPP) that allows for precise and efficient PV system operation. Unlike other MPPT
methods that utilize a constant or variable step to update the voltage or duty cycle, the
OSGM uses an optimized step value based on the power function’s second-order approxi-
mation with regard to the voltage Vpv to update the voltage value to achieve the reference
voltage (Vref). The suggested OSGM technique is evaluated using MATLAB/SIMULINK
simulation under varied solar radiation conditions. The findings reveal that the OSGM
algorithm is more effective and precise than other approaches for obtaining MPP. The
reaction time is faster, and there are fewer oscillations around the MPP, which result in less
energy waste. Furthermore, the numerical calculation of the gradient and Hessian of the
power function allows for accurate modeling, which improves system precision.

The MPPT approach is critical for sustaining maximum power production regardless
of changes in sunshine and temperature. The OSGM approach provides a viable alternative
for improving the energy quality delivered by solar fields. This strategy is especially
appropriate for isolated or micro-grid places when distribution networks are unable to
offer energy to the full world population, owing to technical constraints or a lack of
economic feasibility.

The following is the paper’s structure: Section 1 discusses the related work. Section 2
shows the proposed system’s presentation and modeling. Section 3 discusses the proposed
MPPT algorithm (OSGM), and Section 4 offers the research work’s conclusion.

2. Presentation and Modeling of the Proposed System

As shown in Figure 1, the proposed system comprises a SHELL SP75 PV generator
coupled to a DC load via a multicellular series converter made up of three cells. This
converter increases the quality of energy sent to the load, whereas a boost converter extracts
the highest power. A multicellular inverter is required between the boost converter and
the load for AC loads, resulting in a two-stage power conversion process. If the energy
generated by the solar system exceeds the demand of the load, the extra energy is sent back
into the electrical network and consumed by grid users.
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Figure 1. The proposed structure.

2.1. Mathematical Model of the Photovoltaic System

The single-diode photovoltaic cell model was used for this study because it is a widely
used and simple model that accurately reflects the behavior of a solar cell under varied
operational conditions. The following equations reflect the conventional I-V characteristic
of a solar array:

V = Voc + Isc ∗ Rs − I ∗ Rsh (1)

I = Iph − I0 ∗ (e(V+I∗Rsh)/(n∗Vt)) (2)

The widely used and basic single-diode model of the solar cell was used for this study
because it properly captures the cell’s behavior under varied operating situations. The
conventional I-V characteristic equation of a solar array includes the following variables:
V for the terminal voltage of the cell, I for the current through the cell, Voc for the open
circuit voltage, Isc for the short circuit current, Rs for the series resistance, Rsh for the
shunt resistance, Iph for the photocurrent, I0 for the reverse saturation current, n for the
ideality factor, and Vt for the thermal voltage. By utilizing this model, important parameters
(as shown in Table 1) affecting the photovoltaic cell’s performance, such as temperature,
radiation, load resistance, and internal resistance of the cell, can be represented. This model
can provide predictions of the solar cell’s performance under different conditions and can
optimize the system performance by adjusting various parameters.

Table 1. The main parameters of PV.

Module Parameters Values

Power at MPP: Pmax Pmax = 75 W
Open circuit voltage: Voc Voc = 21.7 V
Short current circuit: Isc Isc = 4.8 A

Voltage at MPP: Vmpp Vmpp = 17 V
Current at MPP: Impp Impp = 4.4 A

2.2. Mathematical Model of Boost Converter

The boost converter shown in Figure 2 is a popular form of converter made up of two
energy storage components, the inductor L and the capacitor C. The inductor stores energy
in a magnetic field during switch closure, and when the switch opens, it distributes energy
to the load. The capacitor contributes to smoothing the output voltage and reducing ripple.
The switch state changes between on and off states in response to the control signal u. The
on state is in the time interval of tε[0, DT], while the off state is in tε[DT, (1− D)T], where
D is the duty cycle. The duty cycle represents the ratio of time that the switch is closed to
the entire switching period [38].
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Figure 2. Boost structure.

• Switch On (u = 1)

Vpv = L
dIL
dt

(3)

0 = C
dVdc

dt
+ Idc (4)

• Switch Off (u = 0)

Vpv = L
dIL
dt

+ Vdc (5)

IL = C
dVdc

dt
+ Idc (6)

The two above-mentioned models of the converter, the continuous conduction mode
(CCM) and the discontinuous conduction mode (DCM), can be gathered and represented
in a single set of equations that describes the behavior of the converter under different
operating conditions:

Vpv = L
dIL
dt

+ (1− u) ∗Vdc (7)

IL ∗ (1− u) = C
dVdc

dt
+ Idc (8)

By substituting variable u with its average value D (duty cycle) over a period T = 1/ f ,
where D is defined as the ratio of the time the switch is on (TON) to the total period (T), we
can obtain the average model of the converter:

Vpvm =
1
L

dILm
dt

+ (1− D) ∗Vdcm (9)

ILm ∗ (1− D) =
1
C

dVdcm
dt

+ Idcm (10)

The relationship between the average input voltage (Vpvm) and the average output
voltage (Vdcm) is represented by the average inductor current (ILm) and the average output
current (Idcm). This relationship is important in understanding the performance of the sys-
tem and making adjustments to optimize it. It can also be used to predict the behavior of the
system under different conditions and to design new systems with improved performance:

Vdcm =
1

1− D
Vpvm (11)

2.3. Multi-Cell Converter

The multicellular converter array is made up of a number of separate capacitor cells,
each with two complementary switches [39]. Accurate voltage specifications for each
cell’s terminals are necessary to ensure appropriate functioning. The eight alternative
modes of operation for a three-cell converter are depicted in Figure 3. It is critical to
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recognize that the multicellular converter array is used in a variety of electronic systems,
including inverters, voltage converters, and energy storage devices. It transforms voltage
or current energy sources into usable types of energy for powering electrical equipment.
The use of complementary switches for each cell increases the conversion efficiency while
decreasing energy loss. Furthermore, precise voltage specifications for each cell’s terminals
are required to ensure system stability and reliability.

Figure 3. Three-cell converter.

The equation for the three-cell converter system is as follows:

ICk = (Sk+1 − S− k) ∗ Iload (12)

ICk = Ck
dVCk

dt
(13)

by combining the two previous equations, we will have:

dVCk =
Sk+1 − Sk

Ck
∗ Iload (14)

The voltage equations for the two floating capacitors in the converter are represented
by the following differential equations:{

dVC1
dt = S2−S1

C1
∗ Iload

dVC2
dt = S3−S2

C2
∗ Iload

(15)

Based on the mesh theorem, the voltage Vload is determined by the sum of the voltages
at the interrupt terminals:

Vload =
p

∑
k=0

(VCk −VCk−1) ∗ Sk (16)

With VC0 = 0 V and VCp = E (in this case, VCp = Vbus), Vbus is the output voltage of the
boost converter powered by the solar field. The load current is represented by

dIload
dt

=
Vout

L
− R

L
IC (17)

The variation of the load current is given by the following relationship:

dIload
dt

= −R
L

IC −
S2 − S1

L
VC1 −

S3 − S2

L
VC2 +

E
L

S3 (18)
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The switches are controlled by pulses that are generated by the intersection be-
tween a modulating carrier signal and a triangular waveform as illustrated in Figure 4.
The duty cycle is determined by the output voltage regulation algorithm of the serial
multicellular converter.

Figure 4. PWM with PI Control.

The triangular signals are defined by the following equations:

f1(u) =
arcsin(sin(2π fp∗t−φ))+π/2

π

f2(u) =
arcsin(sin(2π fp∗t−φ)−σ)+π/2

π
.
.
.

fp(u) =
arcsin(sin(2π fp∗t−φ)−(p−1)σ)+π/2

π

(19)

The output signal’s harmonics would be reduced by a phase shift of 2π/p.

3. MPPT-Optimized Steepest Gradient Method

The proposed MPPT method involves utilizing the first- and second-order Taylor
approximations to optimize the cost function F(Xk) in each iteration k. The first-order
Taylor approximation is used to determine the gradient direction, while the second-order
Taylor approximation determines the optimal step size in the gradient direction [40]. In
each iteration k, the cost function is assessed, and the function’s gradient is computed. The
gradient directs towards the steepest descent, and it is used to update the parameter vector
Xk. The updated parameter vector Xk is then utilized to assess the cost function F(Xk) in
the next iteration. This process is repeated until the cost function reaches its minimum or
maximum value, depending on the case.

In summary, the suggested MPPT method is an effective and efficient methodology
for optimizing the power output of a solar panel by shifting the operating point to the
maximum power point. The approach includes modifying the operating point iteratively
using first- and second-order Taylor approximations until the maximum power point
is reached.

The first-order approximation of the function F(Xk) in the proximity of Xk is

F(Xk) + ∆F(Xk) = F(Xk + σk) (20)

F(Xk+1) = F(Xk) + gT(Xk)σk = F(Xk) + σkF(Xk) (21)

with
gk = g(Xk) = 5F(Xk) (22)

Xk ∈ Rnx1, g(Xk) ∈ Rnx1, σk ∈ Rnx1 (23)
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Then, the variation of the cost function (∆F(Xk)) is defined as the sum of the products
of the gradients of the variables of the cost function by the corresponding normal vectors
(gi) and the unit variation vectors (σi) that define the search direction. The final formula
given by Equation (24) is then obtained by calculating the dot product between the gradient
vector of the cost function (gk) and the corresponding unit variation vector (σk) multiplied
by the cosine of the angle between these two vectors (θk):

∆F(Xk) =
n

∑
i=0

giσi = ‖gk‖‖σk‖ cos θk (24)

To maximize F(Xk), the greatest increase in F(Xk) is achieved when

θk = 0 −→ σk = gk (25)

where σk is the steepest descent direction.
In numerical computation, the solution does not always converge to X∗ (the optimal

value of Xk. A tuning parameter α (a positive value) is required to ensure that the algorithm
converges to the X∗ solution. When maximizing F(Xk), this is the case:

Xk+1 = Xk + αgk, α � 0 (26)

Choosing the optimal α can be determined by using the second-order approximation
of F(Xk+1):

F(Xk+1) ≈ F(Xk) + αgT
k gk +

1
2

α2gT
k Hkgk (27)

where
Hk = ∇2F(Xk) (28)

If the Hessian of F(Xk) is available, the α* that minimizes F(Xk) can be calculated
analytically by using the second-order approximation of F(Xk+1). By evaluating the
Hessian at the current iterate, it can be used to approximate the local behavior of the
function in the vicinity of Xk. This approximation can be used to determine the step size α
that will minimize F(Xk+1) and, therefore, converge to the optimal solution X∗:

dF(Xk + αgk)

dα
= gT

k gk + αgT
k Hkσk (29)

dF(Xk + αgk)

dα
= 0 −→ αx = −

gT
k gk

gT
k Hkgk

(30)

Then,

Xk+1 = Xk −
gT

k gk

gT
k HkXkgk

gk (31)

In this particular case, the parameter Xk, represented as Vpvk (voltage), is a scalar value
(a single parameter). The power function, represented as Ppvk = F(Vre f k), is a concave
function that has a maximum value at the maximum power point (MPP). The first and
second derivatives of this power function, represented as gk and Hk, respectively, can
be calculated using the expression of Ppvk in terms of current and voltage values. These
derivatives are essential in determining the optimal value of Vpvk through the use of
numerical optimization techniques, such as the Newton–Raphson method.

To better understand the proposed method, here are the steps of the complete mathe-
matical modeling for the MPPT-optimized steepest gradient method control technique:

1. Solar panel model:
The solar panel model can be represented by the following equivalent circuit equation:

Ipvk = Iph − I0 ∗ (e(Vpvk+Ipvk∗R)/(α∗Vt) − 1) (32)
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where Ipvk is the output current of the solar panel at point k; Iph is the current photo-
generated by the solar panel; I0 is the reverse saturation current of the diode; Vpvk is
the solar panel output voltage at point k; R is the load resistor connected to the solar
panel; a is the voltage temperature coefficient; and Vt is the thermal voltage.
The output power of the solar panel can be calculated as follows:

Ppvk = Vpvk ∗ Ipvk (33)

2. Calculation of the power function: The power function can be represented by the
following expression:

Ppvk = F(Vre f k) = Vre f k Iph −
I0αV2

t
R

e(
Vre f k
αVt
−1) (34)

where Vre f k is the solar panel reference voltage at point k.
3. Calculation of the first and second derivatives of the power function: The first deriva-

tive of the power function with respect to the reference voltage can be calculated
as follows:

gk =
dF(Vre f k)

d(Vre f k)
= Iph −

2I0αVt

R
e(

Vre f k
αVt
−1)e

Vre f k
αVt (35)

The second derivative of the power function with respect to the reference voltage can
be calculated as follows:

Hk =
d2F(Vre f k)

d(V2
re f k)

= −2I0αVt

R
[
e

Vre f k
αVt

αVt
+ e(

Vre f k
αVt
−1)e

Vre f k
αVt ] (36)

The algorithm of the MPPT-optimized steepest gradient method technique can be
described as follows:

• Initialize the reference voltage Vre f k to a known value;
• Calculate the quantities of the algorithm.

4. Results and Discussion

The simulation procedure entails modeling the system with MATLAB software tools
and performing simulations to evaluate the performance of the suggested control mecha-
nism and structure. The MPPT OSGM, an optimization technique used to maximize the
power output of a photovoltaic (PV) system, is the focus of the first half of the simulation.
Three tests are carried out to validate the efficiency and effectiveness of the proposed
control technique and structure.

The global system parameters are summarized in Table 2 as follows.

Table 2. System parameters.

Parameters Values (Unit)

Boost Capacitor 2200 µF
Floating Capacitor (multicell converter) 33 µF

Inductance (Multicell converter) 15 mH
Inductance boost 100 mH

DC Voltage reference (Multicell converter) 145 V
Commutation frequency 1.5 KHz

PI Gains (Multi cell voltage regulation) Kp = 40; & Ki = 0.001

4.1. Test 1

One of the tests conducted is Test 1, where the system is subjected to constant lighting
conditions of G = 1000 W/m2.
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Apart from the previously mentioned results, it is worth noting that the OSGM
technique also achieved a higher efficiency rate when compared to the P&O method.
The higher output power and fewer oscillations produced with the OSGM technique
demonstrate this. Furthermore, the OSGM method is well known for its robustness and
adaptability to changing environmental conditions, which is an important factor to consider
when choosing an MPPT algorithm for a solar power system. Overall, the simulation
results presented in Figure 5 provide clear evidence of the advantages of utilizing the
OSGM method over the P&O method in terms of performance and efficiency.

Figure 5. PV output power.

The OSGM approach not only improves response time and signal quality, but it also
improves the system’s overall efficiency and stability. It tracks the maximum power point
precisely and quickly, resulting in increased power production from the solar system.
Reduced chattering ensures system stability and reduces the risk of system failure. Further-
more, the OSGM method is a more robust choice for MPPT control in solar systems due
to its adaptability to changing environmental conditions and a wider range of operating
conditions. The results presented in Figure 6 confirm the superiority of the OSGM method
over the traditional P&O control method.

Figure 6. Output boost voltage.

The OSGM control approach, in addition to its capacity to eliminate disturbances,
provides a more steady and constant charging current, which is critical for assuring the
appropriate working and lifetime of the battery or load being charged. This is owing to
its capacity to identify the maximum power point precisely and promptly, resulting in a
higher power output from the solar system and effective charging of the load. Furthermore,
the OSGM method is a more robust choice for MPPT control in solar systems due to its
adaptability to changing environmental conditions and ability to handle a wider range of
operating conditions. Overall, the results presented in Figure 7 further highlight the benefits
of using the OSGM method over the traditional P&O technique for charging applications.
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Figure 7. Current load.

It is important to note that the OSGM-MPPT method also exhibits better steady-state
performance as evidenced by the smaller Vc1 and Vc2 voltage oscillations when compared
to the P&O method. This is a significant advantage, as it reduces the risk of converter
failures and increases the overall lifespan of the system. Overall, the findings in Figure 8
underscore the superiority of the OSGM-MPPT method over the P&O method in terms of
performance and efficiency in solar systems.

Figure 8. Floating voltage.

4.2. Test 2

The second test evaluates the OSGM method’s adaptability and effectiveness in MPPT
control for solar systems by changing the lighting conditions from 600 to 1000 W/m2.

The simulation results in Figure 9 illustrate the superiority of the OSGM algorithm
over the conventional P&O MPPT control method in terms of power value and stability
during a test where the irradiance is varied from 600 W/m2 to G = 1000 W/m2. The output
power tracked by the OSGM algorithm reaches the highest value with minimal oscillations,
highlighting its capability to optimize power output in a photovoltaic system. These results
are consistent with the anticipated outcomes and demonstrate the effectiveness of the
proposed OSGM algorithm.

The results of the simulation in Figure 10 are clear in their demonstration of the
superiority of the OSGM method over the P&O method when there is a change in the
irradiance from 600 W/m2 to G = 1000 W/m2. The figure highlights the better energy
quality and stability of the output voltage produced by the proposed boost method as
compared to that of the P&O control.

The OSGM control method also provides a more stable charging current during a
change in irradiance from 600 W/m2 to G = 1000 W/m2 as shown in Figure 11. This
is important for ensuring the proper functioning and longevity of the battery or load
being charged.
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Figure 9. PV power output.

Figure 10. Output boost voltage.

Figure 11. Current load.

Figure 12 illustrates that the OSGM-MPPT method has superior performance com-
pared to the P&O method, with smaller Vc1 and Vc2 voltage oscillations, even under
changing irradiance conditions.

4.3. Test 3

Two tests for variable climatic conditions were added to assess the robustness of the
proposed structure. The variations were made on the TFT site in Illizi in Algeria as part of
the national research project “Design of a Cathodic Protection System with Photovoltaic
Panels”. In the first case, the temperature is set at a value of 298 K, while the illumination is
varied according to Figure 13.
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Figure 12. Floating voltage.

Figure 13. Illumination variation.

Three cases of illumination variation are shown in Figure 13, including the most critical
case “month of December”, the annual average of illumination in the TFT zone in Illizi,
Algeria, and the last most favorable case.

The power and stability during the test where the site’s actual irradiance was used
are illustrated by the simulation results in Figure 14. The proposed structure achieved the
highest output power with minimal oscillations, demonstrating its ability to optimize the
output power in a photovoltaic system and reduce loss due to switching effects.

Figure 14. Power with illumination variation.

The results of the simulation of Figure 15 are clear in their demonstration during a
change of illumination in the real case. The figure highlights the better power quality and
the stability of the output voltage produced by the proposed boosting method.
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Figure 15. Output voltage with illumination variation.

Better transient performance of the structure is demonstrated by the smaller Vc1 and
Vc2 voltage oscillations, even during changes in illuminance as shown in Figure 16. This
is a notable advantage, as it lowers the likelihood of converter failures and extends the
overall lifespan of the system.

Figure 16. Voltage capacitors with illumination variation.

In the second case, the illumination is fixed at a value of 1000 W/m2, while the
temperature is varied according to Figure 17.

Three cases of temperature variation are shown in Figure 17, including the most
critical case “month of August”, the annual average of illumination in the TFT zone in Illizi,
Algeria, and the last most favorable case.

Figures 18–20 show the results of the proposed system during temperature variations
in the Saharan environment: the output power, the boost voltage, and the floating capacitors’
voltages, respectively.
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Figure 17. Temperature variation.

Figure 18. Power with temperature variation.

Figure 19. Output voltage with temperature variation.



Electronics 2023, 12, 2283 16 of 19

The MPPT (maximum power point tracking) control is crucial for optimizing the
energy production of solar panels. It regulates the voltage and current output of the panel
to maximize the supplied electrical power. However, the temperature of the photovoltaic
panel can influence the performance of the MPPT control.

Indeed, an increase in the panel temperature leads to a decrease in the output voltage,
which can impact energy production. This is explained by the effect of temperature on the
electrical characteristics of solar cells.

However, the proposed structure for the MPPT control seems to be effective, as it does
not generate energy losses due to switching, even during temperature variations. Thus,
the cathodic protection system applied in Saharan areas can operate at lower temperatures
without any negative effects on the performance of the MPPT control.

Figure 20. Floating voltage with temperature variation.

4.4. Comparative Study

The study conducted a comparative analysis of two techniques proposed by [41,42],
with respect to the technique investigated in this work. The comparison criteria included
Pmpp(watts), current (A), Vmpp (volts), time response (seconds), and the larger oscillations.
The results of the comparison are presented in Table 3. The suggested approach outper-
formed the other two strategies in terms of response time and oscillations around the
highest power point, according to the data. This performance enhancement enables the
series multicellular converter to have a more steady voltage with less disturbance. These
findings imply that the suggested approach is a superior choice for systems requiring
higher levels of stability and efficiency. Further research can be conducted to investi-
gate the technique’s applicability in other systems and to optimize its performance in
specific applications.

Table 3. Comparative study.

MPPT
Techniques Pmpp (Watts) Current (A) Vmpp(Volts) Time Response

(Seconds)
The Larger of
Oscillations References

P&O 72.80 4.67 15.60 0.40 (Slow) Very large [42]

ANFIS 74.45 4.43 16.78 0.05 (Fast) Small [41]

Proposed
Method 74.75 4.42 16.88 0.025 (very

Fast) Small ———
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5. Conclusions

The results of the simulation studies clearly demonstrate the superiority of the OSGM-
MPPT method over the conventional P&O method. The OSGM method provides higher
output power, more stability, better efficiency, and improved steady-state performance
compared to the P&O method. It is also more resilient and flexible to changing climatic
circumstances, which is critical for maintaining the solar system’s correct operation. These
advantages make the OSGM-MPPT approach a viable option for MPPT control in solar
energy systems. Future research might concentrate on increasing the performance of the
OSGM-MPPT approach by the incorporation of additional algorithms and control strategies.
Furthermore, implementing the OSGM-MPPT method in real-world solar systems and
evaluating its performance under different environmental conditions would provide valu-
able insights for further improving the method. Simulation study, experimental analysis,
and investigating the application of the OSGM-MPPT method in other renewable energy
systems, such as wind or hydro-power systems, may open up new avenues for improving
the efficiency and performance of these systems, which are considered future directions.
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