
https://doi.org/10.1007/s00145-023-09477-z
J Cryptol (2023)36:37

Research Article

Compact Structure-Preserving Signatures with Almost
Tight Security∗

Masayuki Abe
NTT Social Informatics Laboratories, Tokyo, Japan

abe.masayuki.914@gmail.com

Dennis Hofheinz
ETH Zurich, Zurich, Switzerland

hofheinz@inf.ethz.ch

Ryo Nishimaki
NTT Social Informatics Laboratories, Tokyo, Japan

ryo.nishimaki@ntt.com

Miyako Ohkubo
Security Fundamentals Laboratory, CSR, NICT, Tokyo, Japan

m.ohkubo@nict.go.jp

Jiaxin Pan
Department of Mathematical Sciences, Norwegian University of Science and Technology,

Trondheim, Norway
jiaxin.pan@ntnu.no

Communicated by Daniele Micciancio.

Received 6 August 2018 / Revised 6 July 2023 / Accepted 7 July 2023
Online publication 10 August 2023

Abstract. In structure-preserving cryptography, every building block shares the same
bilinear groups. These groups must be generated for a specific, a priori fixed security
level, and thus, it is vital that the security reduction in all involved building blocks is
as tight as possible. In this work, we present the first generic construction of structure-
preserving signature schemes whose reduction cost is independent of the number of
signing queries. Its chosen-message security is almost tightly reduced to the chosen-
plaintext security of a structure-preserving public-key encryption scheme and the se-
curity of Groth–Sahai proof system. Technically, we adapt the adaptive partitioning
technique by Hofheinz (Eurocrypt 2017) to the setting of structure-preserving signature
schemes. To achieve a structure-preserving scheme, our new variant of the adaptive
partitioning technique relies only on generic group operations in the scheme itself. In-
terestingly, however, we will use non-generic operations during our security analysis.

∗A preliminary version appeared in the proceedings of CRYPTO 2017.
D. Hofheinz, supported by DFG Grants HO 4534/4-1 and HO 4534/2-2.
J. Pan, supported by DFG Grant HO 4534/4-1.

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09477-z&domain=pdf

37 Page 2 of 41 M. Abe et al.

Instantiated over asymmetric bilinear groups, the security of our concrete scheme is
reduced to the external Diffie–Hellman assumption with linear reduction cost in the
security parameter, independently of the number of signing queries. The signatures in
our schemes consist of a larger number of group elements than those in other non-tight
schemes, but can be verified faster, assuming their security reduction loss is compensated
by increasing the security parameter to the next standard level.

Keywords. Structure-Preserving signatures, Tight reduction, Adaptive partitioning.

1. Introduction

1.1. Background

A structure-preserving signature (SPS) scheme [4] is designed over bilinear groups, and
features public keys, messages, and signatures that only consist of source group elements.
Furthermore, signature verification only uses group membership testing and relations
that can be expressed as pairing product equations. Coupled with the Groth–Sahai non-
interactive proof system [40] (GS proofs for short), SPS schemes are a powerful tool in
constructing a wide range of cryptographic applications. Various SPS schemes based on
compact standard assumptions exist in the literature [3–5,22,24,25,39,46,49,53]. When
looking at schemes from standard assumptions, the state-of-the-art scheme in [47] yields
signatures as compact as consisting of six source group elements.

In this paper, we address the tightness of security proofs for SPS schemes with com-
pact parameters, i.e., constant-size signatures and standard (non-q-type) assumptions.
Formally, a security reduction constructs an adversary A on a computational assumption
out of an adversary A′ on the security of a cryptographic scheme. If we let ε and t de-
note the success probability and runtime of A, and ε′ and t ′ the success probability and
runtime of A′, then we define the security loss of the reduction, or simply the reduction
cost, as (ε′t)/(εt ′) [26]. The reduction is tight if the security loss is a small constant or
almost tight if it grows only (as a preferably small function) in the security parameter λ.
In particular, we are concerned about security loss with less dependence to the number
qs of A′’s signing queries in a chosen-message attack that can be as large as 230.

The only tightly secure SPS under compact assumptions is that by Hofheinz and
Jager [43]. Their tree-based construction, however, yields unacceptably large signatures
consisting of hundreds of group elements. For other SPS schemes under compact as-
sumptions, the security is proven using a hybrid argument that repeat reductions in qs .
Thus, their security loss is O(qs) [3,53] or even O(q2

s) [49], as shown in Table 1.
The non-tightness of security reductions does not necessarily mean the existence of a

forger with reduced complexity, but the security guarantees given by non-tight reductions
are quantitatively weaker than those given by tight reductions. Recovering from the
security loss by increasing the security parameter is not a trivial solution when bilinear
groups are involved. The security in source and target groups should be balanced, and
computational efficiency is influenced by the choice of curves, pairings, and parameters
such as embedding degrees, and the presence of dedicated techniques. In practice, an
optimal setting for a targeted security parameter is determined by actual benchmarks,
e.g., [10,31,37], and only standard security parameters such as 128, 192, and 256 have
been investigated. One would thus have to hop to the next standard security level to offset

Compact Structure-Preserving Signatures... Page 3 of 41 37

Table 1. Object sizes and loss of security among structure-preserving signature schemes with assumptions in
the standard model.

Reference |M| |σ | |pk| Sec. Loss Assumptions

HJ [43] 1 10d + 6 13 8 DLIN
ACDKNO [3] (n1, 0) (7, 4) (5, n1 + 12) O(qs) SXDH, XDLIN1
ACDKNO [3] (n1, n2) (8, 6) (n2 + 6, n1 + 13) O(qs) SXDH, XDLIN1
LPY [53] (n1, 0) (10, 1) (16, 2n1 + 5) O(qs) SXDH, XDLIN2
KPW [49] (n1, 0) (6, 1) (0, n1 + 6) O(q2

s) SXDH
KPW [49] (n1, n2) (7, 3) (n2 + 1, n1 + 7) O(q2

s) SXDH
JR [47] (n1, 0) (5, 1) (0, n1 + 6) O(qs log qs) SXDH
Ours (Sect. 4.2) (n1, 0) (13, 12) (18, n1 + 11) O(log qs) SXDH
Ours (Sect. 4.3) (n1, n2) (14, 14) (n2 + 19, n1 + 12) O(log qs) SXDH
JOR [45] (n1, 0) (11, 6) (7, n1 + 16) O(λ) SXDH
GHKP [35] (n1, 0) (8, 6) (2,n1 + 9) O(log qs) SXDH
AJOR [8] (n1, 0) (6, 6) (n1 + 11, 2n1 + 12) O(log qs) SXDH
AJOPRW [7] (n1, 0) (7, 4) (2,n1 + 11) O(log qs) SXDH
CH [29] (n1, 0) (7, 2) (7, n1 + 8) O(log qs) SXDH, extKerMDH

Smallest possible parameters are set to parameterized assumptions. Notation (x, y) means x and y elements in
G1 and G2, respectively. The |M|, |σ |, |pk| columns mean the number of group elements in a message vector,
the number of group elements in a signature, and the number of group elements in a public key, respectively.
The “Sec. Loss” column means reduction costs. The “Assumptions” column means the underlying assumptions
for proving security. For HJ, parameter d limits number of signing to 2d . Parameters qs and λ represent number
of signing queries and security parameter, respectively. Schemes in boldface were proposed after our work had
been published at CRYPTO 2017. More discussions about these schemes are given in “Follow-up Works
and Open Problems”

Table 2. Comparison of factors relevant to computational efficiency against SPS schemes having smallest
signature sizes.

Reference |M| #(s.mult) #(PPEs) #(Pairings)
in signing Plain Batched

KPW [49] (n1, 0) (6, 1) 3 n1 + 11 n1 + 10
JR [47] (6, 1) 2 n1 + 8 n1 + 6
Ours (Sect. 4.2) (15, 15) 15 n1 + 57 n1 + 16
KPW [49] (n1, n2) (8, 3.5) 4 n1 + n2 + 15 n1 + n2 + 14
Ours (Sect. 4.3) (17.5, 16) 16 n1 + n2 + 61 n1 + n2 + 18

Third column indicates number of scalar multiplications in G1 and G2 for signing. Multi-scalar multiplication
is counted as 1.5. For JR, a constant pairing is included. Column “Batched” shows the number of pairings in a
verification when pairing product equations are merged into one by using a batch verification technique [18]

the security loss in reality. Besides, we stress that increasing the security parameter for
a building block in structure-preserving cryptography is more costly than usual as it
results in losing efficiency in all other building blocks using the same bilinear groups.
Thus, the demand for tight security is stronger in structure-preserving cryptography.

Even in ordinary (i.e., non-structure-preserving) signature schemes, most of the con-
structions satisfying tight security are either in the random oracle model, e.g., [1,16,28,
48], rely on q-type or strong RSA assumptions, e.g., [20,54], or lead to large signatures
and/or keys, e.g., [27,51]. Hofheinz presented the first tightly secure construction with

37 Page 4 of 41 M. Abe et al.

compact signatures and keys under a standard compact assumption over bilinear groups
[41]. However, his construction can only be used to sign integer messages (and not group
elements or, e.g., its own public key), so it is not structure-preserving.

1.2. Our Contributions

We propose the first (almost) tightly secure SPS schemes with constant number of group
elements in signatures. Our schemes are proven secure based on standard assumptions
(e.g., the symmetric external Diffie–Hellman (SXDH) assumption). Concretely, we first
present a generic construction of an almost tightly secure SPS scheme from a structure-
preserving public-key encryption secure against chosen-plaintext attacks and the GS
proof system. With ElGamal encryption and the GS proofs over asymmetric pairing
groups, we obtain concrete SPS schemes with compact signature size whose unforge-
ability against adaptive chosen-message attacks (UF-CMA) is reduced from the SXDH
assumption with security loss at most O(λ), which is independent of qs .1

The primary benefit of our tightly secure SPS schemes is their availability in structure-
preserving cryptography under the current standard security level. For a system modu-
larly built with structure-preserving building blocks, a compact and tightly secure SPS
scheme has been a missing piece, since other useful building blocks, such as one-time
signatures and commitments, are known to be tightly secure. Plugging in our scheme,
one can increase the proven security in applications of structure-preserving cryptog-
raphy such as blind signatures [4], group signatures [53], and unlinkable redactable
signatures [23] used in anonymous credential systems.

The second benefit of our result is the removal of qs from the security bound, which
aims to simplify the systems design. With previous schemes, there are trade-offs among
security, efficiency, and usability; if one desires stronger security guarantees without
sacrificing efficiency, a rigid limitation has to be put on the number of signatures per
public key, or, if more flexibility on the number of possible signatures is important in
considered applications, one has to take the risk with weaker security guarantees or less
efficiency. With our schemes, one no longer needs to fix qs in advance and can focus on
desirable security and permissible efficiency for the targeted system.

Nevertheless, the performance as a stand-alone signature scheme is of a concern. We
summarise several parameters that dominate the space and computation costs in Table 1
and 2. The bare numbers in the tables imply that our schemes are outperformed by those
in the literature if they are used at the same security level. Taking the security loss into
consideration, however, the tightness of our schemes offsets the difference in terms of
computational complexity. We elaborate this point in the following. Though concrete
complexity varies widely depending on platforms and implementations, it is safe to say
that computing a pairing in the 192-bit security level is slowed by a factor of δ := 6 to
7 on ordinary personal computers [13,31] and δ := 9 to 12 on processors for embedded
systems [9,38,56] compared to those in the 128-bit security level. (This slowdown factor
should increase if we take recent update of key sizes as suggested in [12].) According
to the number of pairings in Table 2, our scheme for bilateral messages at the 128-bit

1The security loss in our previous version [6] is O(λ), and in this version we improve it to O(log qs)
(which is O(log λ) for any given polynomial-time adversary A, although the constant may depend on A).

Compact Structure-Preserving Signatures... Page 5 of 41 37

security level verifies a signature with batch verification 4.6 < δ(n1+n2+14)/(n1+n2+
18) < 9.3 times faster than the KPW scheme at the 192-bit security setting for offsetting
its security loss of 60 bits. Applying the same argument to the case of unilateral messages,
ours in the 128-bit security level will be 2.2 < δ(n1 + 6)/(n1 + 16) < 4.5 times faster
compared to the JR scheme in the 192-bit security level. Even with plain verification,
i.e., without batch technique, the advantage remains depending on the platform and the
size of messages.

We note that the above simple argument ignores dedicated techniques for computing
pairing products, e.g., [55], and costs for subtle computations. It may not be fair to ignore
the concrete security loss in our schemes, which can be as large as 11 bits for at most 240

signing queries, as mentioned in Sect. 4. Nevertheless, taking into account the fact that
the performance gap between different security levels will be larger than those shown in
the above benchmarks published previously [50] (i.e., slowdown factor δ in the above
argument will be much larger), even the simple estimation is aimed to show the practical
significance of tightly secure schemes.

1.3. Technical Overview

Eliminating any representation-dependent computation in the construction is a crucial
technical challenge. Towards this goal, we adapt the “adaptive partitioning” technique
of Hofheinz [42] (which in turn builds upon [27]) to the setting of structure-preserving
signatures. Thus, in our security proof, we gradually transform the conditions necessary
for a successful forgery until a valid forgery is impossible. This will require O(log qs)
game hops.

Concretely, in the scheme itself, we require that every valid signature must carry an
(encrypted) “authentication tag” Z = X , where X ∈ G is a fixed group element. We
will gradually transform this requirement Z = X into the following combination of
requirements on the authentication tag Z∗ from a valid forgery:

(a) We must have Z∗ = X · M∗, where X ∈ G is a fixed random group element, and
M∗ ∈ G is the signed message in the forgery.

(b) Also, we must have Z∗ = X · Mi for some previously signed message Mi .

Since we may assume M∗ /∈ {Mi } in the (non-strong) existential unforgeability experi-
ment, any attempted forgery will thus be invalid.

The key technique to establishing these modified requirements is a “partitioning argu-
ment” similar to the one from [42]. That is, in the proof, we will enforce more and more
dependencies of the authentication tag Z on the bit representation of M. Note that this
bit representation is not used in the real scheme; this would in fact be problematic in the
context of structure-preserving constructions. For instance, to establish a dependence of
Z on the k-th bit bM of the bit representation of M, we proceed as follows:

1. First, we “partition” the set of all messages into two subsets, depending on bM.
This means that signatures issued by the experiment now carry (an encryption of)
bM in a special component. The reason for this partitioning is that we can now,
depending on the encrypted bM, use different verification rules.

2. We guess the encrypted bit b∗ from the forgery and change the encrypted Z in
issued signatures for all bM �= b∗. (This change can be justified by setting up

37 Page 6 of 41 M. Abe et al.

things such that Z can only be retrieved from a signature if the encrypted bit b
is equal to b∗. If b �= b∗, then Z is hidden and can hence be modified in issued
signatures.) This introduces a dependence of Z in issued signatures on bM.

However, the encrypted bit b∗ from the forgery is not necessarily identical to bM∗ (since
this property cannot be easily enforced in a structure-preserving way). As a consequence,
we cannot force the adversary to respect the additional dependencies in his forgery. Yet,
we will show that we can force the adversary to reuse one Z = X · Mi from a signing
query. This leads to requirement (b) in verification forgeries, and requirement (a) will
finally be enforced by a regular GS proof in signatures (that GS proof is simulated in all
intermediate steps).

This line of reasoning borrows from Chen and Wee’s [27] general idea of establishing
tight security through a repeated partitioning of the message space (resp. identity space
in an identity-based encryption scheme) into two sets, each time adjusting signatures for
messages from one of the two sets in the process. However, their approach, as well as
other follow-up approaches (e.g., [11,19,34,41,52]), embeds the partitioning already in
the scheme (in the sense that the scheme must already contain all potentially possible
“partitioning rules,” for instance according to each message bit). Since these rules in
the mentioned schemes are based on the message bits (or an algebraic predicate on the
discrete logarithm of the message [41]), this would not lead to a structure-preserving
scheme.

Instead, we adapt the “adaptive partitioning” (AP) technique of Hofheinz [42], in
which the partitioning is performed dynamically, through an encrypted partitioning bit
embedded in signatures. This allows us to separate partitioning from the way messages
are bound to signatures in the scheme. We thus bind a message through an authentication
tag, as mentioned above, that is more algebraic and admits structure-preserving GS
proofs. The encrypted partitioning bit is fixed to a constant in the real scheme and turned
into a variable only in the security proof where non-generic computations are allowed.

In adapting AP to our setting, we face two difficulties, however: the partitioning
used in AP is bit-based (which is incompatible with our requirement of a structure-
preserving scheme), and its complexity leads to comparatively complex schemes. More
specifically, AP leads to several expensive “OR”-proofs in ciphertexts, resp. signatures.
As a consequence, the (encryption) schemes in [42] are not competitive in complexity to
non-tightly secure schemes, even when taking into account a potentially larger security
level for non-tightly secure schemes. On the other hand, our signature schemes are
carefully designed so that GS proofs in signatures are done only for less costly linear
relations (except for one crucial “OR”-proof). We further use optimization techniques
of Escala and Groth [32] to reduce the size of GS proofs in our instantiation.

Moreover, AP crucially relies on the bit representation of messages (resp. encryption
tags that are hash values in [42]). In particular, the encryption scheme from [42] is
not structure-preserving. For our purposes, we thus have to modify this technique to
work with group elements instead of hash values. This leads to a very simple and clean
structure-preserving signature scheme whose security proof still crucially uses the bit
representation of group elements. We find this property surprising and conceptually
interesting.

Compact Structure-Preserving Signatures... Page 7 of 41 37

1.4. Difference to the Previous Version

The constructions in both the previous and current versions are the same, but here we
apply a (slightly) different proof technique to improve the security loss of the scheme,
namely, from O(λ) to O(log qs). Typically, we will have qs � 2λ (e.g., λ = 128 and
qs ≈ 240), so this improvement might be significant. This proof technique is motivated
by [35].

1.5. Follow-up Works and Open Problems

Our work is the first tightly secure SPS with compact public keys, and it laid the founda-
tion for many follow-up schemes, such as [7,8,29,35,45]. Among them, [8,45] use more
efficient NIZK proof systems to implement our framework, while [7,29,35] construct
tightly secure SPS schemes from compact and tightly secure message authentication
code schemes.

While being compact and tightly secure, our concrete SPS schemes and the follow-up
works contain a moderate number of group elements in a signature. We note that our
scheme still has larger public key and signature sizes than the non-tight schemes, but
it paved a way to the aforementioned, more efficient follow-up works. We suppose that
eventually we will have a truly practical tightly secure scheme, and we leave this as an
open problem. Another interesting open problem is to decrease the security loss from
O(log qs) to O(1).

1.6. Organization

The rest of the paper is organized as follows. After introducing notations, security defini-
tions, and building blocks in Sect. 2, we present our generic construction and its security
proof in Sect. 3. We discuss an instantiation over asymmetric bilinear groups in Sect. 4.

2. Preliminaries

2.1. Notations

For an integer p, define Zp as the residual ring Z/pZ. If B is a set, then x
$←− B denotes

the process of sampling an element x from setB uniformly at random. All our algorithms
are probabilistic polynomial time (p.p.t. for short) unless stated otherwise. If A is an

algorithm, then a
$←− A(b) denotes the random variable, which is defined as the output

of A on input b. To make the randomness explicit, we use the notation a ← A(b; r),
meaning that the algorithm is executed on input b and randomness r . Note that A’s
execution is now deterministic. For an element μ ∈ Zp, we denote by μ|k ∈ {0, 1}k the
first k bits of μ’s binary representation and by μ[k] ∈ {0, 1} the k-th bit of μ’s binary
representation. An empty string is denoted by ε.

We say that a function is negligible in security parameter λ if, for all constant c > 0
and all sufficiently large λ, ν(λ) < λ−c holds.

37 Page 8 of 41 M. Abe et al.

2.2. Pairing Groups and Diffie–Hellman Assumptions

Let PGGen be an algorithm that on input security parameter λ returns a description
par = (p,G1,G2,GT , e, G1,G2) of pairing groups, where p is a poly(λ)-bit prime,
G1, G2, GT are cyclic groups of order p, G1 and G2 are generators of G1 and G2,
respectively, and e : G1 × G2 → GT is an efficiently computable non-degenerate
bilinear map. Pairing group par is said to be a Type-III asymmetric pairing group if
G1 �= G2, and there does not exist an efficiently computable isomorphism between G1
and G2. When distinction between source groups is not important, we use G and G to
represent G1 and/or G2, and their default generator, respectively. When a group element
is given to an algorithm as an input, its membership to the intended group must be tested,
but we make it implicit throughout the paper for conciseness of the description.

Our instantiation in Sect. 4 is based on the following standard assumption over asym-
metric pairing groups.

Definition 2.1. (DecisionalDiffie–Hellmanassumption)ThedecisionalDiffie–Hellman
assumption (DDHs) holds relative to PGGen in group Gs (s ∈ {1, 2, T }) if, for all p.p.t.
adversaries A, advantage function

AdvddhsPGGen(A) := | Pr[A(par,Ga
s ,G

b
s ,G

ab
s) = 1] − Pr[A(par,Ga

s ,G
b
s ,G

c
s) = 1]|

is negligible in security parameter λ, where the probability is taken over

par
$←− PGGen(1λ), a, b, c

$←− Zp. The SXDH assumption holds relative to PGGen if

for all p.p.t. adversaries A, advantage function AdvsxdhPGGen(A) := max(Advddh1
PGGen(A),

Advddh2
PGGen(A)) is negligible.

2.3. Structure-Preserving Signatures

Definition 2.2. (Structure-Preserving signature scheme) An SPS scheme SPS with
respect to PGGen is a tuple of algorithms SPS = (Gen,Sign,Ver):

• The key generation algorithm Gen(par) takes par
$←− PGGen(1λ) as input and

returns a public/secret key pair, (pk, sk), where pk ∈ G
npk for some npk ∈ poly(λ).

Message space M := G
n for some constant n ∈ poly(λ) is implicitly determined

by pk.
• The signing algorithm Sign(sk,M) returns a signature σ ∈ G

nσ for some nσ ∈
poly(λ).

• The deterministic verification algorithm Ver(pk,M, σ) solely evaluates pairing
product equations and returns 1 (accept) or 0 (reject).

(Perfect correctness.) For all (pk, sk)
$←− Gen(par), all messages M ∈ M, and all

σ
$←− Sign(sk,M), Ver(pk,M, σ) = 1 holds.

Though our final goal is to achieve security against adaptive chosen-message attacks,
we use the following slightly relaxed notion in the generic construction.

Compact Structure-Preserving Signatures... Page 9 of 41 37

Definition 2.3. (UF-XCMA Security) A signature schemeSPS is unforgeable against
auxiliary chosen-message attacks (UF-XCMA-secure) for relation R if, for all p.p.t.
adversaries A, advantage function

Advuf-xcma
SPS (A) := Pr

[
Ver(M∗, σ ∗) = 1

∣∣∣∣∣ par
$←− PGGen(1λ);

(M∗, σ ∗) $←− AInit,Sign(·,·)(par)

]

is negligible in security parameter λ where

• Init runs (pk, sk)
$←− Gen(par), initializes QM with ∅, and returns pk to A,

• Sign(M,m) checks if R(M,m) = 1, runs σ
$←− Sign(sk,M), adds the M to QM,

and returns σ to A, and
• Ver(M∗, σ ∗) returns 1 if M∗ /∈ QM and 1 = Ver(pk,M∗, σ ∗), or returns 0, other-

wise.

As we are concerned with structure-preserving schemes, we fix R(M,m) to a relation
that returns 1 iffM = Gm where G is a generator in a group. This relation is sufficient for
our purpose, that is, combining with a partial one-time signature scheme described below.
By letting R be a constant function R = 1, we obtain a standard notion of unforgeability
against chosen-message attacks (UF-CMA-secure) and denote its advantage function
by Advuf-cma

SPS (A). UF-XCMA is slightly stronger than unforgeability against extended
random message attacks (UF-XRMA) introduced by Abe et al. [3]. While UF-XRMA is
relative to a preliminary fixed algorithm that chooses messages to sign, it is the adversary
that selects messages in UF-XCMA. Thus, UF-XCMA implies UF-XRMA.

From UF-XCMA to UF-CMA: In this paper, we focus on constructing UF-XCMA se-
cure structure-preserving signature and then, transform it to a UF-CMA secure SPS by
using a partial one-time signature (POS) scheme [3,17] in the standard way [3,49]. POS
is also known as two-tier signature schemes and is a variation of one-time signatures
where parts of keys are updated after every signing. Here, we recall useful definitions
of POS and the transform.

Definition 2.4. (Partial One-Time Signature Scheme [17]) A partial one-time sig-
nature scheme POS with respect to PGGen is a set of polynomial-time algorithms

(G,Update,S,V) that, for par
$←− PGGen(1λ):

• G(par) generates a long-term public key pk and secret key sk, and implicitly defines
the associated message space Mo and the one-time public key space Kopk.

• Update(par) takes par as input, and outputs a one-time key pair (opk, osk).
• S(sk, osk,M) outputs a signature σ on message M based on sk and osk.
• V(pk, opk,M, σ) outputs 1 for acceptance or 0 for rejection.

(Perfect correctness.) For all (pk, sk)
$←− G(par), all (opk, osk)

$←− Update(par), all

messages M ∈ M, and all σ
$←− S(sk, osk,M), V(pk, opk,M, σ) = 1 holds.

POS is structure-preserving if pk, opk, M, and σ consist only of elements in G, and
V evaluates group membership testing and pairing product equations.

37 Page 10 of 41 M. Abe et al.

We require POS to be unforgeable against one-time non-adaptive chosen-message
attacks (OT-nCMA), which is defined as follows. Here “one-time” means an adversary
cannot forge a second signature with respect to an opk.

Definition 2.5. (OT-nCMA Security) A POS scheme is unforgeable against one-time
non-adaptive chosen-message attacks (OT-nCMA) if for any algorithmA, the following
advantage function Advncma

POS (A) is negligible in λ,

Advncma
POS (A) := Pr

[
Ver(opk∗,M∗, σ ∗) = 1

∣∣∣∣∣ par
$←− PGGen(1λ);

(opk∗, σ ∗,M∗) $←− AInit,Sign(·)(par)

]

where

• Init runs (pk, sk)
$←− G(par), initializes QM with ∅, and returns pk to A.

• Sign(M) runs (opk, osk)
$←− Update(par) and σ

$←− S(sk, osk,M), and then,
returns (opk, σ) to A, and records (opk,M, σ) to the list QM.

• Ver(opk∗, σ ∗,M∗) returns 1 if there exists (opk∗,M, σ) ∈ QM and M∗ �= M and
1 = V(pk, opk∗,M∗, σ ∗), or returns 0, otherwise.

Let POS := (G,Update,S,V) be a structure-preserving partially one-time signa-
ture scheme with message space M and one-time public key space Kopk, and xSPS :=
(Gen′,Sign′,Ver′) be a structure-preserving signature scheme with message space
Kopk. The transformed UF-CMA secure SPS scheme, SPS := (Gen,Sign,Ver), is
defined as follows.

Gen(par): Sign(sk,M): Ver(pk,M, σ):

(pk1, sk1)
$←− G(par) (opk, osk)

$←− Update(par) Parse σ = (opk, σ1, σ2)

(pk2, sk2)
$←− Gen′(par) σ1

$←− S(sk1, osk,M) If V(pk1, opk,M, σ1) = 1

pk := (pk1, pk2) σ2
$←− Sign′(sk2, opk) ∧ Ver′(pk2, opk, σ2) = 1

sk := (sk1, sk2) Return (opk, σ1, σ2) then return 1
Return (pk, sk) Else return 0

The correctness and structure-preserving property of SPS are implied by those of
POS and xSPS in a straightforward way. The following theorem ([3, Theorem 3])
states UF-CMA security of SPS.

Theorem 2.6. If POS is OT-nCMA secure and xSPS is UF-XRMA secure, then
SPS defined as above is UF-CMA secure. In particular, for all adversaries A against
UF-CMA security ofSPS, there exist adversariesB againstOT-nCMA security ofPOS
and C against UF-XRMA security of xSPS with running times T(A) ≈ T(B) ≈ T(C)

and Advuf-cma
SPS (A) ≤ Advncma

POS (B) + Advuf-xrma
xSPS (C).

Compact Structure-Preserving Signatures... Page 11 of 41 37

2.4. Public-Key Encryption Schemes

Definition 2.7. (Public-key encryption) A Public-Key Encryption scheme (PKE) con-
sists of algorithms PKE := (GenPKE,Enc,Dec):

• The key generation algorithmGenPKE(par) takespar
$←− PGGen(1λ) as input and

generates a pair of public and secret keys (pk, sk). Message space M is implicitly
defined by pk.

• The encryption algorithm Enc(pk,M) returns a ciphertext ct.
• The deterministic decryption algorithm Dec(sk, ct) returns a message M.

(Perfect correctness.) For all par
$←− PGGen(1λ), (pk, sk)

$←− GenPKE(par), mes-

sages M ∈ M, and ct
$←− Enc(pk,M), Dec(sk, ct) = M holds.

Definition 2.8. (IND−mCPA Security [14]) A PKE scheme PKE is indistinguishable
against multi-instance chosen-plaintext attack (IND−mCPA-secure) if for any qe ≥ 0
and for all p.p.t. adversaries A with access to oracle Enc at most qe times the following
advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣∣Pr

[
b′ = b

∣∣∣∣∣par
$←− PGGen(1λ); (pk, sk)

$←− GenPKE(par);
b

$←− {0, 1}; b′ $←− AEnc(·,·)(pk)

]
− 1

2

∣∣∣∣∣ ,

where Enc(M0,M1) runs ct∗ $←− Enc(pk,Mb), and returns ct∗ to A.

Some public-key encryption schemes, e.g., ElGamal encryption [30] and Linear en-
cryption [21], are structure-preserving and satisfy IND − mCPA security with tight re-
ductions to compact assumptions such as DDH and the Decision Linear assumption [21],
respectively (cf. [43]).

2.5. The Groth–Sahai Proof System

We recall the Groth–Sahai proof system and its properties as a commit-and-prove
scheme. We follow definitions by Escala and Groth in [32] in a simplified form that

is sufficient for our purpose. For a given pairing group par
$←− PGGen(1λ), the GS-

proof system is a non-interactive zero-knowledge proof (NIZK) system for satisfiability
of a set of equations over par. Let Lpar be a family of NP languages defined over par.
For a language L ∈ Lpar, let RL := {(x, ω) : x ∈ L and ω ∈ W (x)} be a witness
relation, where W (x) is the set of witnesses for x ∈ L. As our construction fixes the
language in advance, it is sufficient for our purpose to define the proof system to be
specific to L as follows.

Definition 2.9. (The Groth–Sahai Proof System) The Groth–Sahai commit-and-prove

system for par
$←− PGGen(1λ) and L ∈ Lpar consists of p.p.t. algorithms GS :=

(BG,Com,P,V) that:

37 Page 12 of 41 M. Abe et al.

• BG(par) is a binding common reference string generation algorithm that outputs
crs.

• Com(crs, ω; r) is a commitment algorithm that outputs a commitment c for given
witness ω with randomness r ← Rc and crs.

• P(crs, (x, c), (ω, r)) is a prover algorithm that returns a proof ρ on (x, ω) ∈ RL ∧
c = Com(crs, ω; r).

• V(crs, x, c, ρ) is a deterministic verification algorithm that returns 0 (reject) or 1
(accept).

(Perfect correctness.) For all par
$←− PGGen(1λ), crs

$←− BG(par), (x, ω) ∈ RL, and
r ∈ Rc, V(crs, x, c,P(crs, (x, c), (ω, r))) = 1 holds, where c ← Com(crs, ω; r).
When witness ω consists of several objects and only part of them are committed to c,
commitments for the remaining part of the witness is prepared by P and included in the
proof.

The following properties of the GS-proof system are used in this paper. For a fully
formal treatment, we refer to [32].

Definition 2.10. (Security properties of the Groth–Sahai proof system) The following

properties hold for all par
$←− PGGen(1λ),

• Perfect Soundness: For all crs ∈ BG(par), all x /∈ L, all c, and all ρ, we have
V(crs, x, c, ρ) = 0.

• CRS Indistinguishability: There exists a algorithm HG, called the hiding com-
mon reference string generator that, for all adversaries A, the following advantage
function is negligible,

AdvcrsindGS (A)

:=

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣b′ = b

∣∣∣∣∣∣∣∣
par

$←− PGGen(1λ);
crs0

$←− BG(par); (crs1, trap)
$←− HG(par);

b
$←− {0, 1}; b′ $←− A(crsb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
.

• Dual-mode Commitment: For all crs ∈ BG(par), Com is perfectly binding.
Namely, for all w0 �= w1, we have {c0 ← Com(crs, w0; r0)} ⋂
{c1 ← Com(crs, w1; r1)} = ∅ (where the sets are taken over r0, r1 ∈ Rc).
For all (crs, trap) ∈ HG(par), Com is perfectly hiding. Namely, for all ω0 �=
ω1, the following two distributions are identical: {c0 ← Com(crs, ω0; r0)} and
{c1 ← Com(crs, ω1; r1)}, where r0, r1 ∈ Rc.

• Perfect Zero-knowledge: There exists a simulator Sim := (SimCom,SimP)

such that, for all (crs, trap) ∈ HG(par), and (x, ω) ∈ RL, the following two
distributions are identical:

{(c, ρ) | r $←− Rc; c ← Com(crs, ω; r); ρ
$←− P(crs, (x, c), (ω, r))}, and

{(c′, ρ′) | (c′, γ)
$←− SimCom(crs, trap); ρ′ $←− SimP(crs, trap, γ)}.

Compact Structure-Preserving Signatures... Page 13 of 41 37

Fig. 1. Our signature scheme xSPS.

Since the above distributions are identical, it also holds for reused commitments
and multiple adaptively chosen statements x that involve the same witness and
commitment.

The GS-proof system is structure-preserving for proving satisfiability of linear multi-
scalar multiplication equations (MSEs) and a nonlinear quadratic equation (QE). Re-
garding security, it is known that its CRS indistinguishability is tightly reduced to the
SXDH assumption (cf. Theorem 4.3).

3. Generic Construction

In this section, we focus on a generic construction of a UF-XCMA-secure SPS scheme,
xSPS. By coupling it with an off-the-shelf structure-preserving POS scheme, we obtain
a UF-CMA-secure SPS scheme via Theorem 2.6.

3.1. Scheme Description

Let par
$←− PGGen(1λ) be a set of system parameters. We represent a source group and

its generator by G and G, respectively. Let PKE := (GenPKE,Enc,Dec) be a PKE
scheme, and GS := (BG,Com,P,V) be the Groth–Sahai proof system for languages
L0 and L1 defined below. Our SPS scheme xSPS := (Gen,Sign,Ver) is defined in
Fig. 1.

37 Page 14 of 41 M. Abe et al.

The correctness of xSPS is implied by that of the Groth–Sahai proof system, and the
structure-preserving property is implied by that of the PKE scheme and the Groth–Sahai
proof system.

Remark 3.1. (Role of proof ρ0) The main role is to bind a message into a signature. In
the real scheme, it is just a proof of the signing key x0 in ct0 (and c0) since x1 is fixed to
0. Yet the proof is bound to message M through randomness r1 used for committing to
x1. In the security proof, it can be seen as an encrypted one-time message authentication
code (MAC) of M and forces the adversary to reuse given signatures since, intuitively,
the adversary cannot generate a new MAC for hidden keys x0 and x1.

Remark 3.2. (Role of proof ρ1) ρ1 is used for partitioning. It proves that two ciphertexts
ct0 and ct1 are consistent (namely, the same plaintext is encrypted) or the plaintext in
the ciphertext ct2 is committed to in c2. In the real scheme, ρ1 proves the consistency
of double encryption ct0 and ct1. In the security proof, ρ1 enables us to achieve two
(seemingly incompatible) functionalities under a binding mode CRS. One is forcing
the adversary to use consistent ciphertexts in its forgery. A simulator guesses z∗2 in the
forgery and makes x2 �= z∗2 hold. The other is letting the simulator use inconsistent
ciphertexts in a special situation achieved using a partitioning technique (see Sect. 3.2
for more details). In that situation, the simulator can make x2 = z2 hold and use a real
witness of ρ0.

Remark 3.3. (On the range of z2) The range of z2 is Zp since z2 is the plaintext of ct2.
Readers might think we should bind z2 on {0, 1} by using a Groth–Sahai proof since
the simulator in the security proof guesses z∗2 in the forgery as explained in the previous
remark. This is not the case. In fact, even if an adversary uses z∗2 such that z∗2 /∈ {0, 1},
it has no advantage because the simualtor uses x2 such that x2 ∈ {0, 1} in the security
proof. Value z2 affects ρ1. However, to make a valid forgery by using x2 = z∗2 as a
witness in ρ1, adversaries have no choice but to use z∗2 ∈ {0, 1} as long as x2 ∈ {0, 1}.
Accordingly, we do not need to bind z2 on {0, 1}. This intuition is implemented formally
in the proof of Lemma 3.20.

Remark 3.4. (On verifying correctness of pk) Verifying correctness of commitment
ki with respect to ski is not necessary for achieving UF-CMA security where keys are
generated honestly by definition. But it may have to be verified (once for all at the time
of publishing pk) if the scheme is used in an application where signers can be corrupted
at the time of key generation.

Remark 3.5. (On XCMA and CMA security ofxSPS.) We prove thatxSPS isUF-XCMA
for efficiency though, in fact, we can prove xSPS is
UF-CMA. When we prove UF-CMA, a simulator does not have exponents of queried
messages, but the simulator must generate proofs ρ0 for x1 �= 0 under the binding mode
crs0 in the security proof (see Sect. 3.3 for details). This is achievable if ρ0 is generated as
a proof of “pairing product equations (PPEs)” (in both the real and simulated schemes).
If the simulator has exponents, then ρ0 is generated as a proof of “(linear) multiscalar
multiplication equations”, which is more efficient than that of PPEs. We not only up-

Compact Structure-Preserving Signatures... Page 15 of 41 37

grade UF-XCMA to UF-CMA but also achieve an SPS scheme for vector messages by
combining our xSPS with (partial) one-time signature at very low cost [3]. Thus, we
select the UF-XCMA-secure scheme. See also Sect. 4 for efficiency.

3.2. Overview of Security Proof

Our main goal is to implement an additional check of A’s forgery σ ∗ := (ct∗0, ct∗1, ct∗2,
ρ∗

0 , ρ∗
1). We not only verify Groth–Sahai proofs, but also check if Z∗

0 ∈ {Gx0 ·Mx1
i }qsi=1 for

Z∗
0 ← Dec(sk0, ct∗0). That is, we will force A to reuse an Mi in queried messages for Z∗

0
(we will set x1 := 1 to achieve this during the game transitions). This explicit check will
be introduced when x1 = 0, so that only one fixed value of Z∗

0 = Gx0 is consistent with
the language L0. In this case, with crs0 for ρ∗

0 being still in perfect soundness mode,
we will be able to establish this explicit check by relying on this perfect soundness.
Once this explicit check is introduced, we can switch crs0 to simulation mode to be able
to prepare simulated signatures with simulated proofs ρ0, and to eventually switch to
x1 = 1. Since A is not allowed to reuse a signed message in its forgery, this leads to a
contradiction and A never wins.

To change the success forgery condition, we replace the value z0 := x0 in signatures
of the signing oracle and the additional forgery check with a value z0 := RFk(μ|k)
where RFk : {0, 1}k → Zp is truly random, and μ|k is the k-bit prefix of a binary
encoding μ ∈ {0, 1}L of a signed message M ∈ G, where L is the smallest even integer
that is equal to or larger than the bit size of p. Note that encoding μ appears only in the
security proof (not in the real scheme). We start with RF0(ε) := x0 for the empty string
ε. We will introduce more dependencies of z0 on x2 and z∗2 in ct∗2.

To increase the entropy of z0 (this will make z0 unpredictable for M∗ and force A
to reuse z0 from the signing oracle) and eventually set z0 := RFL(μ), we replace
z0 := RFk(μ|k) with z0 := RFk+1(μ|k+1) step by step. At each step, we partition the
signature space into two halves according to the (k + 1)-th bit of μ. The partitioning bit
is dynamically changed by z∗2 hidden in ct∗2. At the beginning of the game, the simulator
guesses the bit z∗2 used in a forgery and aborts if the guess is incorrect (z∗2 is accessible with
the decryption key sk2). Signature queries are created with a case distinction depending
on the (k+1)-th bit μ[k+1] of μ. If μ[k+1] is equal to the guessed z∗2 from the forgery,
nothing is changed in the signing process. However, if μ[k + 1] is different from z∗2, we
use another independent random function RF′

k and set z1 := RF′
k(μ|k) in the generated

signature (i.e., more randomness is supplied).
Note that at this point, we want to change the encrypted values z0, z1 in the generated

signature, while being able to decrypt the value z∗0 from the forgery (to implement the
additional check mentioned above). Intuitively, we can do so since the proved statement
(z0 − z1)(x2 − z2) = 0 guarantees a consistent double encryption with z0 = z1 precisely
when x2 �= z2. Hence, if we initially set up x2 as 1 − z∗2 (using our guess for z∗2), it is
possible for the simulator to generate inconsistent double encryptions (with z0 �= z1)
whenever μ[k + 1] = z2 �= z∗2. On the other hand, a decryption key for either z∗0 or z∗1
can be used to implement the final check on the adversary’s forgery (since z∗0 = z∗1).
These observations enable a Naor-Yung-like double encryption argument to modify the
z0, z1 values in all generated signatures with μ[k + 1] �= z∗2.

37 Page 16 of 41 M. Abe et al.

After the above transition is iterated, all signatures are generated with (or checked for)
z0 := z1 := RFL(μ) for a truly random function RFL . At this point, we can replace z0
and z1 with z0 := z1 := RFL(μ)+m since RFL(μ) is an independently and uniformly
random element.

We can replace z0 := z1 := RFL(μ)+m with z0 := z1 := x +m in a similar way to
the case from RF0(ε) = x to RFL(μ) (see the proof for the detail). Thus, we can force
A to reuse an Mi in queried messages for Z∗

0 , as we explained at the beginning of this
section.

3.2.1. Improvement on the Security Loss

Motivated by [35], the above strategy can also be implement by using an index i (which
denotes the i-th signing query from the adversary) as inputs to the random functionsRFk

and RFL , since the encoding μ is not explicitly used in the scheme and we only require
qs-many random values to randomize the signatures in order to finish the transition from
z0 = x0 to random z0. By doing this, we can only apply the hybrid argument on the length
of the index i (1 ≤ i ≤ qs) and reduce the security loss from O(λ) to O(�log qs�). Note
that qs is less or even much less than 2λ. In the following, we present our updated proof
with security loss O(�log qs�) in details. The proof is almost the same as the previous
one, but with less hybrid repetitions.

3.3. Security Proof

Theorem 3.6. If PKE is IND−mCPA-secure andGS is a Groth–Sahai proof system,
then xSPS (defined in Sect.3.1) is UF-XCMA-secure. Particularly, for all adversaries
A, there exist adversaries B1 and B2 with running time T(B1) ≈ T(A) ≈ T(B2) and

Advuf-xcma
xSPS (A) ≤ (8L + 6)AdvcrsindGS (B1) + 12L · Advmcpa

PKE (B2) + 4Lqs
p

,

where L := �log qs� and qs the maximal number of signing queries from A.

Proof. Let A be an adversary against UF-XCMA security of xSPS. We prove Theo-
rem 3.6 via Games G0-G3 defined in Fig. 2. We use AdvGα to denote the advantage of
A in Game Gα .
G0 is the real attack game. We have lemmata below.

Lemma 3.7. AdvG0 = Advuf-xcma
xSPS (A).

Lemma 3.8. (G0 toG1) There exist adversariesB1 against CRS indistinguishability of
GS and B2 against IND−mCPA security ofPKEwith running timesT(A) ≈ T(B1) ≈
T(B2) and AdvG0 ≤ AdvG1 + (4L + 3) · AdvcrsindGS (B1) + 6L · Advmcpa

PKE (B2) + 2Lqs
p ,

where L := �log qs� and qs is the maximal number of signing queries from A.

We prove Lemma 3.8 in Sect. 3.3.1.

Compact Structure-Preserving Signatures... Page 17 of 41 37

Fig. 2. Games G0-G3 for the proof of Theorem 3.6. Boxed code is only executed in the games marked in the
same box style at the top right of every procedure. Non-boxed code is always run. F : {1, . . . , qs } → Zp is a
truly random function. L0 and L1 are languages defined in Sect. 3.1.

Lemma 3.9. (G1 to G2) AdvG1 = AdvG2.

Proof. The changes in G2 are:

• Switching x1 from 0 to 1: since c1 is already simulated and is independent of x1 in
G1, pk is distributed identically in both G1 and G2.

• Switching Z0 and Z1 from GF(j) to GF(j) ·M j : since F is a truly random function,
{GF(j)}qsj=1 and {GF(j) · M j }qsj=1 are distributed identically.

Thus, games G1 and G2 are identical. �

Lemma 3.10. (G2 toG3) There exist adversaries B1 against CRS indistinguishability
of GS and B2 against IND − mCPA security of PKE with running times T(A) ≈
T(B1) ≈ T(B2) andAdvG2 ≤ AdvG3 +(4L+3) ·AdvcrsindGS (B1)+6L ·Advmcpa

PKE (B2)+
2Lqs
p , where L := �log qs� and qs is the maximal number of signing queries from A.

After switching z0,i and z1,i from F(i) to F(i) + mi in G2, G3 switches them from
F(i)+mi to x0 +mi , which is exactly the step from G0 to G1, but in a reverse direction.
The proof of Lemma 3.10 is similar to that of Lemma 3.8. The details are in Sect. 3.3.2.

Lemma 3.11. (G3) AdvG3 = 0.

37 Page 18 of 41 M. Abe et al.

Fig. 3. Overview of transitions in Lemma 3.8. In the “crs0” and “crs1” columns, “B” (resp. “H”) means that
commitments are perfectly binding and proofs are perfectly sound (resp. commitments are perfectly hiding
and proofs are perfectly zero-knowledge). In the “ρ0” column, “real” (resp. “sim”) means that proofs are
generated by using the real witness w0 (resp. the trapdoor trap). In the “reduction” column, we write what
kind of security is used. “Soundness” (resp. “ZK”) means the perfect soundness (resp. zero-knowledge) of the
Groth–Sahai proof system. z0,i and z1,i are the value used in simulating the i-th signing query. 0 ≤ k ≤ L−1
and L := �log qs� are integers.

Proof. In G3, crs0
$←− BG(par) is in the binding mode. By the perfect soundness,

Z∗
0 = Gx0 ·M∗ if the GS-proof verificationV(crs0, (pk0, ct

∗
0,M

∗), (c0, c1, k3), ρ
∗
0) = 1.

Since G1 is a prime-order cyclic group and M∗ /∈ QM, Z∗
0 /∈ {Z0, j = Gx0 · M j }qsj=1

always holds and Ver(M∗, σ ∗) outputs 0. �

Summarizing Lemmata 3.7-3.11, we have Theorem 3.6. �

3.3.1. From G0 to G1: Proof of Lemma 3.8

In this section, we prove Lemma 3.8. The proof proceeds via GamesH0-H3 andH4,0-H4,L

defined in Figs. 3 and 4 gives an overview of the game transitions. The advantage of A
in Game Hα is denoted by AdvHα .

We define H0 := G0 and have lemmata as follows.

Lemma 3.12. (H0) AdvH0 = AdvG0.

Lemma 3.13. (H0 to H1) AdvH1 = AdvH0.

Proof. In H1, crs0
$←− BG(par) is in the binding mode and the GS proof for L0 is

perfectly sound. Then, Z∗
0 = Gx0 holds if ρ0 is accepted. Thus, H1 and H0 are identical.

�

Lemma 3.14. (H1 toH2) There exists an adversaryB against CRS indistinguishability
with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvH2 − AdvH1|.

Proof. GamesH2 andH1 only differ in the distribution of crs0 returned by Init, namely,
crs0 is in the hiding or binding mode. From that, we obtain a straightforward reduction
to CRS indistinguishability of GS. �

Compact Structure-Preserving Signatures... Page 19 of 41 37

Fig. 4. Games H0-H3 and H4,0 − H4,L for the proof of Lemma 3.8. RFk : {0, 1}k → Zp is a truly random
function. i |k is the first k bits of the counter i .

Lemma 3.15. (H2 to H3) AdvH3 = AdvH2.

Proof. Instead of using the prover algorithm P, H3 generates ρ0 and relevant commit-
ments with the zero-knowledge simulator,Sim. By the perfect zero-knowledge property,
H3 = H2. �

In H4,0, we syntactically define x0 by RF0(ε), which is a fixed random element from
Zp, and we have

Lemma 3.16. (H3 to H4,0) There exists an adversary B against CRS indistinguisha-
bility ofGS with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvH4,0 − AdvH3|.

Proof. The only difference between H4,0 and H3 is the simulation of crs1, which is
generated by either BG (in H3) or HG (in H4,0) since RF0(ε) = x0 and j |0 = ε for all
j ∈ [qs]. From that, we obtain a straightforward reduction to CRS indistinguishability
of GS. �

Lemma 3.17. (H4,k toH4,k+1) There exist adversariesB1 against CRS indistinguisha-
bility ofGS and B2 against IND−mCPA security of PKE with running times T(B1) ≈
T(B2) ≈ T(A) and AdvH4,k − AdvH4,k+1 ≤ 4AdvcrsindGS (B1) + 6Advmcpa

PKE (B2) + 2qs
p

37 Page 20 of 41 M. Abe et al.

Fig. 5. Games H4,k,1-H4,k,10 for the proof of Lemma 3.17. j[k] is the k-th bit of j and j |k is the first k bits
of j . RFk+1 : {0, 1}k+1 → Zp is a truly random functions (defined by Eq. (2)).

Proof. We define the games between H4,k and H4,k+1 in Fig. 5, and an overview of the
game transitions is presented in Fig. 6.

Lemma 3.18. (H4,k to H4,k,1) AdvH4,k,1 = AdvH4,k .

Proof. In H4,k,1, x2 is switched from 0 to 1 − β, where β
$←− {0, 1}. Though x2 �= z2,i

may happen in H4,k,1, still z0,i = z1,i holds and hence, ins1 is in L1 in both games.

Thus, commitment c2
$←− Com(crs1, x2) and proofs ρ1 distribute identically in both

games due to the witness indistinguishability under crs1 generated by HG(par). Thus,
AdvH4,k,1 = AdvH4,k . �

Lemma 3.19. (H4,k,1 to H4,k,2) There exists an adversary B against IND − mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,2 −
AdvH4,k,1|.

Compact Structure-Preserving Signatures... Page 21 of 41 37

F
ig
.6

.
T

hi
s

is
a

su
m

m
ar

y
of

th
e

ga
m

e
tr

an
si

tio
n

in
L

em
m

a
3.

17
.I

n
“c
rs

1
”

co
lu

m
n,

“B
”

(r
es

p.
“H

”)
m

ea
ns

th
at

co
m

m
itm

en
ts

ar
e

pe
rf

ec
tly

bi
nd

in
g

an
d

pr
oo

fs
ar

e
pe

rf
ec

tly
so

un
d

(r
es

p.
co

m
m

itm
en

ts
ar

e
pe

rf
ec

tly
hi

di
ng

an
d

pr
oo

fs
ar

e
pe

rf
ec

tly
ze

ro
-k

no
w

le
dg

e)
.I

n
th

e
“g

ue
ss

”
co

lu
m

n,
if

th
e

si
m

ul
at

or
ch

oo
se

s
a

ra
nd

om
gu

es
s
β

∈{
0,

1},
th

en
β

is
w

ri
tte

n.
In

“w
1
”

co
lu

m
n,

“z
0,
i
=

z 1
,i

”
an

d
“z

2,
i
=

x 2
”

m
ea

ns
th

at
ea

ch
eq

ua
tio

n
ho

ld
s

in
L 1

.F
or

z 0
,i

an
d
z 1

,i
,w

e
co

ns
id

er
tw

o
ca

se
s,

on
e

is
β

�=
i| k

+1
an

d
th

e
ot

he
r

is
β

=
i| k

+1
.I

n
th

e
fo

rm
er

ca
se

,(
z 2

,i
−

x 2
)

=
0

ho
ld

s
in

L 1
an

d
ρ

1
is

a
va

lid
pr

oo
f.

In
th

e
la

tte
r

ca
se

,(
z 0

,i
−

z 1
,i
)

=
0

ho
ld

s
in

L 1
an

d
ρ

1
is

a
va

lid
pr

oo
f.

In
th

e
“f

or
ge

ry
ch

ec
k”

co
lu

m
n,

Z
∗ j

is
se

tt
o
D
ec

(s
k
j,
ct

∗ j)
fo

r
j
∈{

0,
1}

an
d
Z

0,
i

is
th

e
pl

ai
nt

ex
to

fc
t 0

in
th

e
i-

th
si

gn
at

ur
e
σ
i.

In
th

e
“a

bo
rt

co
nd

.”
co

lu
m

n,
if
Z

∗ 2
�=

G
β

ho
ld

s,
th

e
si

m
ul

at
or

ab
or

ts
.I

n
th

e
“r

ed
uc

tio
n”

co
lu

m
n,

w
e

w
ri

te
w

ha
t

ki
nd

of
se

cu
ri

ty
is

us
ed

.“
C

R
S

IN
D

”,
“S

ou
nd

ne
ss

”,
an

d
“H

id
in

g”
m

ea
n

th
e

C
R

S
in

di
st

in
gu

is
ha

bi
lit

y,
pe

rf
ec

t
so

un
dn

es
s,

pe
rf

ec
tb

in
di

ng
of

th
e

G
ro

th
–S

ah
ai

pr
oo

fs
ys

te
m

,r
es

pe
ct

iv
el

y.
“S

ta
t.

D
if

f.
”

m
ea

ns
th

e
st

at
is

tic
al

di
ff

er
en

ce
be

tw
ee

n
th

e
tw

o
ad

va
nt

ag
es

.N
ot

e
th

at
R
F
k+

1
(i

| k+
1
)
:=

R
F
k
(i

| k)
if

μ
[k

+
1]

=
β

an
d
R
F
k+

1
(i

| k+
1
)
:=

R
F

′ k
(i

| k)
if
i[k

+
1]

=
1

−
β

.

37 Page 22 of 41 M. Abe et al.

Proof. In H4,k,2, ct2 encrypts Z2,i = Gi[k+1], instead of Z2,i = G0. Observe that sk2
is used only in making commitment k2 and proof ρ1 with crs1 generated by HG(par) in
both games. Thus, we can construct a straightforward reduction to bound the difference
by IND − mCPA security of PKE by using perfect zero-knowledge simulator Sim for
making ρ1 and relevant commitments. �

Lemma 3.20. (H4,k,2 to H4,k,3) AdvH4,k,3 = 1
2 AdvH4,k,2.

Proof. In H4,k,3, β and b are independent of adversary’s view and chosen uniformly at
random. c2 perfectly hides β since crs1 is generated by HG(par) and the simulation of
Sign is independent of β. Thus, the event Abort is independent of adversary’s success
event and

Pr[Abort] = Pr[(z∗2 ∈ {0, 1}) ∧ z∗2 = 1 − β] + Pr[z∗2 /∈ {0, 1} ∧ b = 0]
= 1

2
Pr[z∗2 ∈ {0, 1}] + 1

2
(1 − Pr[z∗2 ∈ {0, 1}]) = 1

2
,

where z∗2 is the discrete log of Z∗
2 based on G and independent of b. This only halves

A’s advantage. We note that, for all accepted forgeries in Games H4,k,3 to H4,k,8, the
following equation holds:

z∗2 �= x2. (1)

�

In the following games, we define the random function for an integer i ∈ Zp:

RFk+1(i |k+1) :=
{
RFk(i |k)
RF′

k(i |k)
(i[k + 1] = β)

(i[k + 1] = 1 − β)
, (2)

where RFk and RF′
k are two independent random functions from {0, 1}k → Zp. As

stated in Sect. 2.1, i |k ∈ {0, 1}k denotes the first k bits of i’s binary representation and
by i[k] ∈ {0, 1} the k-th bit of i’s binary representation. By the definition, we note that
RFk+1 : {0, 1}k+1 → Zp is a random function.

Lemma 3.21. (H4,k,3 to H4,k,4) There exists an adversary B against IND − mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,4 −
AdvH4,k,3|.

Proof. In game H4,k,4, x2 = z2,i holds if i[k + 1] �= β; otherwise, z0,i = z1,i . If
i[k + 1] = β, then z0,i = z1,i = RFk(i |k), otherwise x2 = z2,i = 1 − β by Eq. (2).
Thus, in either case, (z0,i − z1,i)(x2 − z2,i) = 0 holds and ins1 ∈ L1. Another difference
between AdvH4,k,3 and H4,k,4 is that ct1 is a ciphertext either of Z1,i = GRFk+1(i |k+1)

(in H4,k,4) or Z1,i = GRFk (i |k) (in AdvH4,k,3). Moreover, sk1 is used only for making
k1 and ρ1 with respect to crs1 generated by HG(par) in both games. Thus, as well as
Lemma 3.19, we can construct a straightforward reduction to bound this difference by
IND−mCPA-security of PKE using Sim for simulating ρ1 and relevant commitments.
Lemma 3.21 is concluded. �

Compact Structure-Preserving Signatures... Page 23 of 41 37

Fig. 7. Games H′
1-H′

3 for the proof of Lemma 3.22.

Lemma 3.22. (H4,k,4 to H4,k,5) There exists an adversary B against CRS indistin-
guishability ofGS with running timeT(B) ≈ T(A) and 2AdvcrsindGS (B) ≥ |AdvH4,k,5 −
AdvH4,k,4|.

Proof. InH4,k,5,Ver rejects a forgery if Z∗
1−(kmod 2)

/∈ {GRFk (j |k)}qsj=1 instead of using
Z∗
kmod 2. In these games, Eq. (1) holds and we can switch crs1 to be binding and argue

that Z∗
kmod 2 = Z∗

1−(kmod 2)
must hold by z∗2 �= x2 and the perfect soundness of GS for

languageL1. More formally, we prove that via the game sequence in Fig. 7. Here, we only
change the simulation of Init andVer, and the simulation ofSign is the same as inH4,k,4.
As shown in Lemma 3.21, ins1 is always in L1 and we can construct a straightforward
reduction to show that there exists an adversary B against CRS indistinguishability of
GS with

AdvcrsindGS (B) ≥ |AdvH′
1 − AdvH4,k,4|.

Since crs1 is binding in both H′
1 and H′

2, by the perfect soundness of GS and Eq. (1),
Z∗
kmod 2 = Z∗

1−(kmod 2)
holds if ρ∗

1 gets verified. Hence, the changes between H′
1 and H′

2
are only conceptual, and thus, AdvH′

2 = AdvH′
1. By the CRS indistinguishability of

GS, we have AdvcrsindGS (B) ≥ |AdvH′
3 − AdvH′

2|. It is clear that AdvH′
3 = AdvH4,k,5

�

Lemma 3.23. (H4,k,5 to H4,k,6) There exists an adversary B against IND − mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,6 −
AdvH4,k,5|.

Proof. In H4,k,6, z0,i = z1,i is used as w1. It holds that (z0,i − z1,i)(x2 − z2,i) = 0
and ins1 ∈ L1 as the case in H4,k,5. In the signing oracle of H4,k,6, ct0 encrypts
Z0,i = GRFk+1(i |k+1) instead of Z0,i = GRFk (i |k). Observe that sk0 is used only in
making k0 and ρ1 with crs1 generated by HG(par) in both games. We thus can con-
struct a straightforward reduction to bound the difference between H4,k,5 and H4,k,6 by

37 Page 24 of 41 M. Abe et al.

IND−mCPA security using zero-knowledge simulator Sim for making ρ1 and relevant
commitments. �

Lemma 3.24. (H4,k,6 to H4,k,7) AdvH4,k,6 ≤ AdvH4,k,7 + qs
p .

Proof. According to Eq. (2), the difference between H4,k,6 and H4,k,7 is that the ac-
cepted forgery with a Z∗

1−(kmod 2)
in either:

Z6 := {GRFk (j |k)}qsj=1

= {GRFk (j |k) : j[k + 1] = β}qsj=1︸ ︷︷ ︸
=:S1

∪{GRFk (j |k) : j[k + 1] = 1 − β}qsj=1

(in H4,k,6)

or

Z7 := {GRFk+1(j |k+1)}qsj=1 = S1 ∪ {GRF′
k (j |k) : j[k + 1] = 1 − β}qsj=1(in H4,k,7).

We note that, for the i-th messages M where i[k + 1] = 1 − β and i |k ∈ CM := { j |k :
j[k + 1] = β}qsj=1, the value GRFk (i |k) ∈ S1. Namely,

S ′ := S1

⋂
{GRFk (j |k) : j[k + 1] = 1 − β}qsj=1

= {GRFk (j |k) : j[k + 1] = 1 − β ∧ j |k ∈ CM}qsj=1.

We note that S ′ is not empty, since each element GRFk (j |k) depends on the k-bit prefix
of j . Thus, we can rewrite

Z6 = S1 ∪ {GRFk (j |k) : j[k + 1] = 1 − β ∧ j |k /∈ CM}qsj=1︸ ︷︷ ︸
=:S2

.

We define the following game H4,k,6′ between H4,k,6 and H4,k,7. H4,k,6′ simulates Init
and Sign as in H4,k,6, but differs in simulating Ver, where it only accepts forgery with
Z∗

1−(kmod 2)
∈ S1. Precisely, H4,k,6′ simulates Ver as follows:

• Parse σ ∗ := ((ct∗j)0≤ j≤2, ρ
∗
0 , ρ∗

1).

• Z∗
2 ← Dec(sk2, ct∗2). If Z∗

2 �= Gβ , then return 0.
• Z∗

1−(kmod 2)
← Dec(sk1−(kmod 2), ct∗1−(kmod 2)). If Z∗

1−(kmod 2)
/∈ S1, then return

0.
• Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ ∗) = 1).

We note that the value RFk(j |k) is perfectly hidden from A for j[k + 1] = 1 − β

and j |k /∈ CM since A only learns RF′
k(j |k) from Sign by Eq. (2) and RF and RF′ are

two independent random functions. Thus, even an unbounded adversary A can output a

Compact Structure-Preserving Signatures... Page 25 of 41 37

value in S2 with probability at most qs/p and the following holds,

AdvH4,k,6 − AdvH4,k,6′ ≤ qs
p

.

Compared to H4,k,6′ , there are more valid forgeries in H4,k,7 and we have

AdvH4,k,6′ ≤ AdvH4,k,7.

Thus, AdvH4,k,6 − AdvH4,k,7 ≤ qs
p and we conclude the lemma. �

Lemma 3.25. (H4,k,7 to H4,k,8) AdvH4,k,8 = 2AdvH4,k,7.

Proof. H4,k,8 accepts a forgery no matter if Abort = 1 or not. By the same argument
as in Lemma 3.20, this doubles the advantage of A. �

Note that we have stopped using sk2 in H4,k,8. In H4,k,9, ct2 encrypts Z2,i = G0

instead of Z2,i = Gi[k+1]. By the same argument as Lemma 3.19, we have

Lemma 3.26. (H4,k,8 to H4,k,9) There exists an adversary B against IND − mCPA
security of PKE with running time T(B) ≈ T(A) and Advmcpa

PKE (B) ≥ |AdvH4,k,9 −
AdvH4,k,8|.

Lemma 3.27. (H4,k,9 to H4,k,10) AdvH4,k,10 = AdvH4,k,9.

Proof. In H4,k,10, x2 is switched from 1−β to 0 and ρ1 is generated by using P instead

of Sim. Since crs1 is generated by HG(par), c2
$←− Com(crs1, x2) is distributed the

same in both H4,k,9 and H4,k,10. So is ρ1 by the perfect zero-knowledge property. Thus,
AdvH4,k,10 = AdvH4,k,19. �

Lemma 3.28. (H4,k,10 to H4,k+1) AdvH4,k+1 = AdvH4,k,10.

Proof. H4,k,10 simulates Init and Ver the same as in H4,k and z0,i = z1,i

= RFk+1(i |k+1). Thus, AdvH4,k,10 = AdvH4,k+1. �

From Lemmata 3.18 to 3.23, we have

AdvH4,k−2AdvH4,k,6 ≤ |AdvH4,k−2AdvH4,k,6| ≤ 4AdvcrsindGS (B1)+5Advmcpa
PKE (B2).

From Lemmata 3.25 to 3.28, we have

2AdvH4,k,7 − AdvH4,k+1 ≤ |2AdvH4,k,7 − AdvH4,k+1| ≤ Advmcpa
PKE (B2).

As 2AdvH4,k,6 ≤ 2AdvH4,k,7 + 2qs
p (Lemma 3.24), we conclude Lemma 3.17 as

AdvH4,k − AdvH4,k+1 ≤ 4AdvcrsindGS (B1) + 6Advmcpa
PKE (B2) + 2qs/p.

37 Page 26 of 41 M. Abe et al.

�
We syntactically define F(i) := RFL(i) in G1 since the binary representation of a

group element is unique and have

Lemma 3.29. (H4,L to G1) There exists an adversary B against CRS indistinguisha-
bility ofGS with running time T(B) ≈ T(A) and AdvcrsindGS (B) ≥ |AdvG1 −AdvH4,L |.

Proof. We note that L = �log qs� and thus, for every signing query z0,i = z1,i = F(i)
and F : {1, ..., qs} → Zp is a random function. The only difference between G1 and
H4,L is the simulation of crs1, which is generated by either BG (in G1) or HG (in H4,L).
From that, we obtain a straightforward reduction to the CRS indistinguishability of GS.
�

Combining Lemmata 3.12 to 3.17 and Lemma 3.29, we have AdvG0 ≤ AdvG1 +
3AdvcrsindGS (B1)+L ·(4AdvcrsindGS (B1)+6Advmcpa

PKE (B2)+ 2qs
p) and conclude Lemma 3.8.

3.3.2. From G2 to G3: Proof of Lemma 3.10

The proof of Lemma 3.10 is essentially the same as Lemma 3.8, but the game sequence
is defined in the reverse order. For completeness, we define the game sequence in Fig. 8.
For the game sequence S0,k , the index k starts with L and decreases till 0. We use AdvSi

to denote the advantage of A in Game Si .
By defining RFL(i |L) := F(i) and the same argument as in Lemma 3.16, we have

Lemma 3.30. (G2 to S0,L) There exists an adversary B against CRS indistinguisha-
bility ofGSwith running timesT(A) ≈ T(B) and AdvcrsindGS (B) ≥ |AdvS0,L −AdvG2|.

Lemma 3.31. (S0,k toS0,k−1) There exist adversariesB1 against CRS indistinguisha-
bility ofGS andB2 against IND−mCPA security ofPKEwithT(A) ≈ T(B1) ≈ T(B2)

and AdvS0,k − AdvS0,k−1 ≤ 4AdvcrsindGS (B1) + 6 Advmcpa
PKE (B2) + 2 qs

p .

Proof. The proof of Lemma 3.31 is essentially the same as the one of Lemma 3.17, but
here we derandomize z0,i and z1,i fromRFk(i |k) toRFk−1(i |k−1) instead of randomizing
z0,i and z1,i from RFk−1(i |k−1) to RFk(i |k). We define the detailed games in Fig. 9 and
sketch the proof as follows.

By the same arguments as in Lemmata 3.18 to 3.20, we have the following Lemmata.

Lemma 3.32. (S0,k to S0,k,1) AdvS0,k,1 = AdvS0,k .

Lemma 3.33. (S0,k,1 to S0,k,2) There exists an adversary B against IND − mCPA
security of PKE with T(A) ≈ T(B1) and Advmcpa

PKE (B) ≥ |AdvS0,k,2 − AdvS0,k,1|.

Lemma 3.34. (S0,k,2 to S0,k,3) AdvS0,k,3 = 1
2 AdvS0,k,2.

Compact Structure-Preserving Signatures... Page 27 of 41 37

Fig. 8. Games S0,L −S0,0 and S1 - S3 for the proof of Lemma 3.10. RFk : {0, 1}k → Zp is a truly random
function, and i is a random binary encoding of Mi .

In the following games, for an integer i ∈ Zp we define the random function:

RFk−1(i |k−1) := RFk(i |k−1, β), (3)

where β is a random bit chosen in Init. We note that RFk−1 : {0, 1}k−1 → Zp is a
random function, since RFk is a random function.

Lemma 3.35. (S0,k,3 to S0,k,4) There exists an adversary B against IND − mCPA
security of PKE with T(A) ≈ T(B) and Advmcpa

PKE (B) ≥ |AdvS0,k,4 − AdvS0,k,3|.

Proof. The proof is similar to that of Lemma 3.21. First observe that, in S0,k,4, if
i[k] = β, then z0,i = z1,i = RFk(i |k−1, β)+mi by Eq. (3), otherwise, x2 = z2,i = 1−β.
Thus, (z0,i − z1,i)(x2 − z2,i) = 0 holds and ins1 ∈ L1 in either case. By the perfect
WI of GS, this difference is perfectly hidden from the adversary. Then, the difference
between S0,k,4 and S0,k,3 is that ct1 is a ciphertext either of Z1,i = GRFk−1(i |k−1) · Mi

(in S0,k,4) or Z1,i = GRFk (i |k) · Mi (in S0,k,3). Since sk1 is used only for making k1
and ρ1 with respect to crs1 generated by HG(par) in both games, we can construct a
straightforward reduction to bound this difference by IND − mCPA-security of PKE
using zero-knowledge simulator Sim to make ρ1 and relevant commitments. The lemma
is concluded. �

37 Page 28 of 41 M. Abe et al.

Fig. 9. Games S0,k,1-S0,k,10 for the proof of Lemma 3.31. i[k] is the k-th bit of i and i |k is the first k bits of
i . RFk−1 : {0, 1}k−1 → Zp is a truly random functions (defined by Eq. (3)).

By the same arguments as in Lemmata 3.22 to 3.23, we have

Lemma 3.36. (S0,k,4 to S0,k,5) There exists an adversary B against CRS indistin-
guishability of GS with T(A) ≈ T(B) and 2AdvcrsindGS (B) ≥ |AdvS0,k,5 − AdvS0,k,4|.

Lemma 3.37. (S0,k,5 to S0,k,6) There exists an adversary B against IND − mCPA
security of PKE with T(A) ≈ T(B) and Advmcpa

PKE (B) ≥ |AdvS0,k,6 − AdvH0,k,5|.

Lemma 3.38. (S0,k,6 to S0,k,7) AdvS0,k,6 − AdvS0,k,7 ≤ qs
p .

Proof. Similar to Lemma 3.24, the difference between S0,k,6 and S0,k,7 is that the
accepted forgery with a Z∗

1−(kmod 2)
in either:

Z6 := {GRFk (j |k)M j }qsj=1

= {GRFk (j |k−1,β)M j : j[k] = β}qsj=1︸ ︷︷ ︸
=:S1

∪ {GRFk (j |k−1,1−β)M j : j[k] = 1 − β}qsj=1︸ ︷︷ ︸
=:S2

(in S0,k,6)

Compact Structure-Preserving Signatures... Page 29 of 41 37

or

Z7 := {GRFk−1(j |k−1)M j }qsj=1

= S1 ∪ {GRFk (j |k−1,β)M j : j[k] = 1 − β}qsj=1︸ ︷︷ ︸
=:S3

(in S0,k,7),

according to Eq. (3).
We define the following game S0,k,6′ between S0,k,6 and S0,k,7. S0,k,6′ simulates Init

and Sign as in S0,k,6, but it differs in simulating Ver, where it only accepts forgery with
Z∗

1−(kmod 2)
∈ S1. More precisely, S0,k,6′ simulates Ver as follows:

• Parse σ ∗ := ((ct∗j)0≤ j≤2, ρ
∗
0 , ρ∗

1).

• Z∗
2 ← Dec(sk2, ct∗2). If Z∗

2 �= Gβ , then return 0.
• Z∗

1−(kmod 2)
← Dec(sk1−(kmod 2), ct∗1−(kmod 2)). If Z∗

1−(kmod 2)
/∈ S1, then return

0.
• Return (M∗ /∈ QM) ∧ (Ver(pk,M∗, σ ∗) = 1).

From answers of Sign, adversaries A only learn value RFk(j |k−1, β) for all sign-
ing messages M j . Thus, if RFk : {0, 1}k → Zp is a random function, then values
RFk(j |k−1, 1 − β) are perfectly hidden from A until Ver is asked. We have that, even
for an unbounded adversary A, it can only output a value in S2 with probability at most
qs
p and the following holds

AdvS0,k,6 − AdvS0,k,6′ ≤ qs
p

.

Compared to S0,k,6′ , there are more valid forgeries in S0,k,7 and we have

AdvS0,k,6′ ≤ AdvS0,k,7.

Thus, AdvS0,k,6 − AdvS0,k,7 ≤ qs
p and we conclude the lemma. �

Lemma 3.39. (S0,k,7 to S0,k,8) AdvS0,k,8 = 2AdvS0,k,7.

Lemma 3.40. (S0,k,8 to S0,k,9) There exists an adversary B against IND − mCPA
security of PKE with T(A) ≈ T(B) and Advmcpa

PKE (B) ≥ |AdvS0,k,9 − AdvS0,k,8|.

Lemma 3.41. (S0,k,9 to S0,k,10) AdvS0,k,10 = AdvS0,k,9.

Lemma 3.42. (S0,k,10 to S0,k−1) AdvS0,k−1 = AdvS0,k,10.

Summarizing the above lemmata, we have AdvS0,k−AdvS0,k−1 ≤ 4 AdvcrsindGS (B1)+
6 Advmcpa

PKE (B2) + 2 qs
p and conclude Lemma 3.31. �

By defining RF0(ε) := x0
$←− Zp, similar to Lemma 3.16, we have

37 Page 30 of 41 M. Abe et al.

Lemma 3.43. (S0,0 to S1) There exists an adversary B against CRS indistinguisha-
bility with running time T(A) ≈ T(B) and AdvcrsindGS (B) ≥ |AdvS1 − AdvS0,0|.

Similar to Lemma 3.14 and 3.15, we have

Lemma 3.44. (S1 to S2) AdvS2 = AdvS1.

Lemma 3.45. (S2 toS3) There exists an adversaryB against CRS indistinguishability
with running times T(A) ≈ T(B) and AdvcrsindGS (B) ≥ |AdvS3 − AdvS2|.

Observing that crs0
$←− BG(par), z0,i = z1,i = x0 +mi and ρ0

$←− P(crs0, ins0, w0),
we have G3 = S3 and

Lemma 3.46. (S3 to G3) AdvG3 = AdvS3.

Summarizing Lemmata 3.30 to 3.46, we have AdvG2 ≤ AdvG3 + (4L + 3)

AdvcrsindGS (B1) + 6L · Advmcpa
PKE (B2) + 2Lqs

p .
We omit high level outlines of the game transitions in Lemma 3.10 and 3.31 since

they are very similar to Fig. 3 and 6 for Lemma 3.8 and 3.17.

4. Instantiation

We instantiate our generic construction in Type-III bilinear groups under the SXDH
assumption. Throughout this section, we denote group elements in G1 with plain upper-
case letters, such as X , and elements in G2 such letters with tilde, such as X̃ . Scalar
values in Zp are denoted with lower-case letters. We may also put a tilde to scalar values
or other objects when they are related to group elements in G2 in a way that is clear from
the context.

We begin with optimizations in Sect. 4.1 made on top of the generic construction.
We then present a concrete scheme for signing unilateral messages in Sect. 4.2 and for
bilateral messages in Sect. 4.3 followed by full details of the Groth–Sahai proofs in
Sect. 4.4.

4.1. ElGamal Encryption with Common Randomness

Observe that relation (z0 − z1)(x2 − z2) = 0 in L1 is a quadratic equation and it can be
proved efficiently by a GS proof if z0 and z1 are committed in the same group and z2
is committed in the other group. Relevant encryptions should follow the deployment of
groups. We thus build the first two ciphertexts, ct0 and ct1 in G1, and ct2 in G2.

To gain efficiency, we consider using the same randomness for making ct0 and ct1. For
this to be done without spoiling the security proof, it is sufficient that one of the ciphertext
ctb is perfectly simulated given the other ciphertext ct1−b. Formally, we assume that there

exists a function, saySimEnc, such that, for any key pairs (pk, sk)
$←− GenPKE(par) and

(pk′, sk′) $←− GenPKE(par), any messages m and m′ in the legitimate message space,

Compact Structure-Preserving Signatures... Page 31 of 41 37

and any randomness s, it holds that Enc(pk′,m′; s) = SimEnc(sk′,m′,Enc(pk,m; s)).
In [15], Bellare et al. formally defined such a property as reproducibility. Given re-

producible PKE and its ciphertext ctb
$←− Enc(pkb,G

zb ; s), we can compute another

ciphertext ct1−b
$←− SimEnc(sk1−b,Gz1−b , ctb) without knowing skb or s. All reduction

steps with respect to the CPA security of PKE go through using SimEnc and simulated
GS proofs. Precisely, we use SimEnc in Lemma 3.21 to compute ct0 from given ct1.
Similar adjustment applies to Lemma 3.23, 3.35 and 3.37.

As shown in [15], ElGamal encryption (EG) is reproducible. Let (y,Gy) and (y′,Gy′
) ∈

Zp ×G1 be two key pairs of ElGamal encryption. Given ciphertext (M · (Gy)s,Gs) of
message M with s and public key Gy , one can compute (M ′ · (Gs)y

′
,Gs) for any M ′

using secret key y′. It is exactly the same ciphertext obtained from the regular encryption
with common randomness s. We thus encrypt z0 and z1 with ElGamal encryption in G1
using the same randomness and removing redundant Gs . For encrypting z2, we also use
ElGamal but in G2. Bellare et al. show that the multi-message chosen-plaintext security
for each encryption holds under the DDH assumption in respective groups, which is
directly implied by the SXDH assumption [14]. We thus have:

Theorem 4.1. For all adversaries A against IND − mCPA security of EG, there
exists an adversary C against the SXDH assumption with running time T(C) ≈ T(A)

and Advmcpa
PKE (A) ≤ 2 AdvsxdhPGGen(C) + 1

p .

4.2. Concrete Scheme for Unilateral Messages

We present a concrete scheme, SPSu1, for signing messages in G1. We use a structure-
preserving one-time signature scheme, POSu1, taken from the results of Abe et al.
[3], and the SXDH-based instantiation of GS proof system. The description of POSu1
is blended into the description of SPSu1. For the GS proofs, however, we only show
concrete relations in this section and present details of computation in Sect. 4.4.

We use notations [x]i and [x̃]1 as a shorthand of Com(crsi , x) and Com(c̃rs1, x),
respectively. We abuse these notations to present witnesses in a relation. It is indeed
useful to keep track which CRS and which source group is used to commit to a witness.
This notational convention is used in the rest of the paper.

Scheme SPSu1: Let par := (p,G1,G2,GT , e,G, G̃) be a description of Type-III
bilinear groups generated by PGGen(1λ).

SPSu1.Gen(par): Generates crs0, and (crs1, c̃rs1) as shown in (18). Picks x0
$←− Zp

and set x1 = x2 := 0. Generates three ElGamal keys Ỹ0 := G̃ y0 , Ỹ1 := G̃ y1 , and

Y2 := Gy2 where yi
$←− Zp for i = 0, 1, 2. Then, computes commitments

[x0]0 := Com(crs0, x0; rx00), [x1]0 := Com(crs0, x1; rx10),

[y0]0 := Com(crs0, y0; ry00), [x̃2]1 := Com(c̃rs1, x2; rx21),

[y0]1 := Com(crs1, y0; ry01), [y1]1 := Com(crs1, y1; ry11),

[ỹ2]1 := Com(c̃rs1, y2; ry21)

37 Page 32 of 41 M. Abe et al.

as shown in Eq. (19). Generates a persistent key pair of POSu1 by w
$←− Z

∗
p, γi

$←−
Z

∗
p, G̃r := G̃w, and G̃i := G̃γi

r for i = 1, . . . , n1. Outputs pk and sk defined as

pk := (G, G̃, crs0, crs1, c̃rs1, Ỹ0, Ỹ1,Y2, [x0]0, [x1]0, [x̃2]1, [y0]0, [y0]1, [y1]1, [ỹ2]1,

G̃r , G̃1, . . . , G̃n1), and sk := (x0, y0, y1, y2, rx00 , rx10 , rx21 , ry00 , ry01 , ry11 , ry21 , w,

γ1, . . . , γn1), where par and pk are implicitly included in pk and sk, respectively.
SPSu1.Sign(sk,M): Given sk as defined above and M =: (M1, . . . , Mn1) ∈ G

n1
1 ,

proceeds as follows.

– Generate one-timePOSu1 key pair α
$←− Z

∗
p and Ã := G̃α , and compute a one-time

signature, (Z , R), by

Z := Gα−ρ w and R := Gρ

n1∏
i=1

M−γi
i , (4)

where w, γ1, . . . , γn1 are taken from sk, and ρ is chosen uniformly from Zp.
– Encrypt z0 = z1 := x0, and z2 := 0 as (Ẽz0 , Ẽz1 , Ẽs) := (G̃z0 Ỹ s

0 , G̃z1 Ỹ s
1 , G̃s)

and (Ez2 , Et) := (Gz2Y t
2,Gt), where s, t

$←− Zp.
– Commit to z0, z1, and z2 by [z0]0, [z0]1, [z1]1, and [z̃2]1, as described in Eq. (19).
– Using crs0, commitments [x0]0, [x1]0, and [y0]0 in pk, and default commitment

[1]0 computed with randomness 0 ∈ Zp, as shown in Eq. (20), compute GS proofs
ρ0,0 and ρ0,1 for relations

ρ0,0 : G̃[z0]0(G̃−1)[x0]0(Ã−1)[x1]0 = 1, and (linear MSE in G2) (5)

ρ0,1 : Ẽ [1]0
z0

(G̃−1)[z0]0(Ẽ−1
s)[y0]0 = 1 (linear MSE in G2) (6)

that correspond to clauses G̃z0 = G̃x0 ·M̃x1 for M̃ := Ã and (Ẽz0 , Ẽs) ∈ Enc(Ỹ0, G̃z0)

in L0, respectively.
– Similarly, using (crs1, c̃rs1) and default commitments [1]1 and [1̃]1, computes GS

proofs ρ1,0, ρ1,1, ρ1,2, and ρ1,3 for relations

ρ1,0 : ([x̃2]1 − [z̃2]1)([z0]1 − [z1]1) = 0, (nonlinear QE) (7)

ρ1,1 : Ẽ [1]1
z0

(G̃−1)[z0]1(Ẽ−1
s)[y0]1 = 1, (linear MSE in G2) (8)

ρ1,2 : Ẽ [1]1
z1

(G̃−1)[z1]1(Ẽ−1
s)[y1]1 = 1, and (linear MSE in G2) (9)

ρ1,3 : E [1̃]1
z2

(G−1)[z̃2]1(E−1
t)[ỹ2]1 = 1, (linear MSE in G1) (10)

that correspond to clauses in L1.
– Output a signature σ := (Ã, Z , R, Ẽz0 , Ẽz1 , Ẽs, Ez2 , Et , [z0]0, [z0]1, [z1]1, [z̃2]1,

ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2, ρ1,3).

SPSu1.Ver(pk,M, σ): Return 1 if all the following verifications are passed. Return 0,
otherwise.

Compact Structure-Preserving Signatures... Page 33 of 41 37

– Verify signature (Z , R) of POSu1 for M = (M1, . . . , Mn1) with one-time key Ã
by

e(G, Ã) = e(Z , G̃) e(R, G̃r)

n1∏
i=1

e(Mi , G̃i). (11)

– Verify all GS proofs ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2, ρ1,3 with commitments [z0]0, [z0]1,
[z1]1, [z̃2]1, and ciphertext Ẽz0 , Ẽz1 , Ẽs , Ez2 , Et in σ , using [x0]0, [x1]0, [y0]0, [x̃2]1,
[y0]1, [y1]1, [ỹ2]1 in pk, as expressed in Eqs. (23) and (25). Default commitments
[1]1 and [1̃]1 are built on-the-fly following Eq. (20).

This completes the description of SPSu1.

4.2.1. Performance

Keeping in mind that generators G and G̃ are used commonly in the components,
we assess the size of public-keys and signatures. By (a, b), we denote a and b el-
ements in G1 and G2, respectively. A public-key consists of common reference string
(crs0, (crs1, c̃rs1)) consisting of (7, 4) elements, commitments ([x0]0, [x1]0, [y0]0,

[x̃2]1, [ỹ2]1, [y0]1, [y1]1) consisting of (10, 4) elements, three ElGamal public-keys
(p̃k0, p̃k1, pk2) consisting of (1, 2) elements, and a public-key (G̃r , G̃1, · · · , G̃n1) for
POSu1 that contains (0, n1+1) elements. In total, a public- key consists of (18, n1+11)

elements. A signature consists of commitments [z0]0, [z0]1, [z1]1, [z̃2]1 containing (6, 2)

elements, four proofs,ρ0,0, ρ0,1, ρ1,1, andρ1,2, for linear MSEs inG2 that costs (0, 1)×4,
proof ρ1,0 of nonlinear QE consisting of (2, 2) elements, proof ρ1,3 for a linear MSE in
G1 that costs (1, 0), three ElGamal ciphertexts (of two ones share a randomness) con-
sisting of (2, 3) elements, and a one-time public-key and signature of POSu1 consisting
of (0, 1) and (2, 0) elements, respectively. Summing up, a signature consists of (13, 12)

group elements.
Since computational cost largely depends on available resources and implementation,

we only show basic parameters that can be dominant factors in computation. First, for
signature generation, the number of elements in a signature almost counts a number of
scalar multiplications. To be slightly more accurate, we count the number of multi-scalar
multiplications and add them as 1.5 scalar multiplications. Element R in POSu1 and
all elements in proofs ρ0,0, ρ0,1, ρ1,1, ρ1,2, ρ1,0, ρ1,3 that sum up to (4, 6) elements in
total are computed through multi-scalar multiplications. The remaining (9, 6) elements
in a signature are those in commitments and ElGamal encryptions for binary values
and counted as scalar multiplications. Accordingly, we estimate the signing cost as
15(= 4×1.5+9) and 15(= 6×1.5+6) scalar multiplications inG1 andG2, respectively.
Computational workload for verification is much more implementation dependent. The
number of equations and pairings are 15 and n1 +57, respectively, from simple counting
in the description. With the most aggressive batch verification that wraps all equations
into one, we merge pairings with respect to default generators G and G̃, and CRSes. It
reduces the number of pairings down to n1 +16 in exchange of increasing the number of
multi-scalar multiplications (which is ignored in Table 2) for randomizing each element.
Note that the size of randomness in batching is an additional statistical parameter for the
soundness of verification. We consider full-size randomness for minimizing the loss.

37 Page 34 of 41 M. Abe et al.

4.2.2. Security

Regarding POSu1 used in the above construction, the following statement is proven in
[3].

Theorem 4.2. ([3]) POSu1 is OT-nCMA secure if the DDH2 assumption holds with
respect to PGGen. In particular, for all polynomial-time algorithms A, there exists a
polynomial-time algorithmBwithT(A) ≈ T(B) andAdvncma

POSu1(A) ≤ Advddh2
PGGen(B)+

1/p.

With asymmetric pairing groups, CRS indistinguishability of GS proof system is
tightly reduced from the SXDH assumption. Namely, the following theorem holds.

Theorem 4.3. ([40]) For all adversaries A against CRS indistinguishability of GS,
there exists an adversary B with running time T(B) ≈ T(A) and AdvcrsindGS (A) ≤
2 · AdvsxdhPGGen(B).

Combining Theorems 2.6, 3.6, 4.1, 4.2, and 4.3, we have the following theorem.

Theorem 4.4. SPSu1 is UF-CMA if the SXDH assumption holds with respect to
PGGen. In particular, for any polynomial-time algorithmA, there exists a polynomial-
time algorithm B that runs in almost the same as A and

Advuf-cma
SPSu1(A) ≤ (40L + 13) · AdvsxdhPGGen(B) + 4L(qs + 3) + 1

p
. (12)

If we set the number of possible signing queries to qs = 240, i.e., L = �log2 qs� = 40,
the security loss of SPSu1 is approximately in 11 bits (210.6).

4.3. Concrete Scheme for Bilateral Messages

To sign bilateral messages (M1,M2) ∈ G
n1
1 × G

n2
2 , we use SPSu1 in the previous

section to sign M1 ∈ G
n1
1 and combine it with another POS, say POSu2, that signs

M2 ∈ G
n2
2 . Since a one-time public key of POSu2 is in G1, it can be appended to M1

and authenticated by SPSu1 by extending the message space to G
n1+1
2 . We give the

details below.
Scheme SPSb:

SPSb.Gen(par): Given par, proceeds with the same steps, except for generating keys
for POSb instead of POSu1.

– Chooses w,μ randomly from Z
∗
p and computes G̃r := G̃w and Gr := Gμ. For

i = 1, . . . , n1 + 1, uniformly chooses γi from Zp and computes G̃i := G̃γi
r . For

j = 1, . . . , n2, uniformly chooses ψ j from Zp and computes G j := G
ψ j
r .

– Outputs pk and sk defined as pk := (G, G̃, crs0, crs1, c̃rs1, Ỹ0, Ỹ1,Y2, [x0]0, [x1]0,

[x̃2]1, [y0]0, [y0]1, [y1]1, [ỹ2]1, G̃r , G̃1, . . . , G̃n1+1,Gr ,G1, . . . ,Gn2) and sk :=
(x0, y0,

y1, y2, rx00 , rx10 , rx21 , ry00 , ry01 , ry11 , ry21 , w,

Compact Structure-Preserving Signatures... Page 35 of 41 37

γ1, . . . , γn1+1, μ,ψ1, . . . , ψn2), where par and pk are implicitly included in pk
and sk, respectively.

SPSb.Sign(sk,M): Given sk as defined above andM = (M1, . . . , Mn1 , M̃1, . . . , M̃n2) ∈
G

n1
1 × G

n2
2 , proceeds as follows.

– GeneratesPOSu2 one-time key pair ζ
$←− Z

∗
p and B := Gζ , and one-time signature

(Z̃ , R̃) by

Z̃ := G̃ζ−δμ and R̃ := G̃δ

n2∏
j=1

M̃
−ψ j
j (13)

where μ,ψ1, · · · , ψn2 are taken from sk, and δ is chosen uniformly from Z
∗
p.

– Sets Mn1+1 := B.

– Generates one-timePOSu1 key pair α
$←− Z

∗
p and Ã := Gα

2 and one-time signature
(Z , R) by

Z := Gα−ρ w, and R := Gρ

n1+1∏
i=1

M−γi
i (14)

where w, γ1, . . . , γn1+1 are chosen from sk, and ρ is chosen from Zp.
– Then, creates ElGamal ciphertexts and GS proofs as well as those in SPSu1.
– Outputs a signature σ := (B, Z̃ , R̃, Ã, Z , R, Ẽz0 , Ẽz1 , Ẽs, Ez2 , Et , [z0]0, [z0]1,

[z1]1, [z̃2]1, ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2, ρ1,3).

SPSb.Ver(pk,M, σ):
Returns 1 if all the following verifications are passed. Returns 0 otherwise.

– Parses M into M = (M1, . . . , Mn1 , M̃1, . . . , M̃n2) ∈ G
n1
1 × G

n2
2 .

– Verifies signature (Z̃ , R̃) of POSu2 for (M̃1, . . . , M̃n2) with one-time key B by

e(B, G̃) = e(G, Z̃) e(Gr , R̃)

n2∏
j=1

e(G j , M̃ j). (15)

– Verifies signature (Z , R) of POSu1 for (M1, . . . , Mn1) and Mn1+1 := B with
one-time key Ã by

e(G, Ã) = e(Z , G̃) e(R, G̃r)

n1+1∏
i=1

e(Mi , G̃i). (16)

– Verifies GS proofs as well as SPSu1.

4.3.1. Performance

The only difference compared to SPSu1 is extra POSu2. It adds (n2 + 1, 1) and (1, 2)

elements and results in (n2 + 19, n1 + 12) and (14, 14) elements in a public-key and a

37 Page 36 of 41 M. Abe et al.

Table 3. Sizes and computational costs for GS proofs in the SXDH assumption setting for relations used in
our construction.

Object #(elements) #(s.mult) Verification
#(equations) #(pairings)

CRS in G1 (3, 0) (3, 0) – –
CRS in G2 (0, 3) (0, 3) – –
Commitment [w] for w ∈ Zp (2, 0) (3, 0) – –
Commitment [w̃] for w ∈ Zp (0, 2) (0, 3) – –
Commitment [b] for b ∈ {0, 1} (2, 0) (2, 0) – –
Commitment [b̃]for b ∈ {0, 1} (0, 2) (0, 2) – –
Proof of linear MSE in G1 (1, 0) (1.5, 0) 2 4
Proof of linear MSE in G2 (0, 1) (0, 1.5) 2 4
Proof of nonlinear QE (2, 2) (3, 3) 4 16

Default generators G and G̃ are not included in CRS. Column #(s.mult) indicates number of scalar multipli-
cations in G1 and G2 for generating object by counting multi-scalar multiplication as 1.5. Linear MSE and
nonlinear QE are specific to relations in Eq. (5) to (10)

signature, respectively. Among (1, 2) elements newly added to a signature, only one in
G2 is computed by multi-scalar multiplication. Hence, the cost for signature generation
increases by 2.5 and 1 scalar multiplications in G1 and G2, respectively. In verification,
the additional POS requires 1 more equation and n2+4 pairings, resulting in 16 equations
and n1+n2+61 pairings. Two of the new pairings includeG and G̃ , they are merged with
pairings with respect to those elements, and the remaining n2 + 2 pairings are counted
as an additional cost in the case of batch verification. Hence, we have n1 + n2 + 18
pairings.

4.3.2. Security

Theorem 4.2 holds for POSu2 under the DDH1 assumption. Combining it with Theo-
rem 4.4, we obtain the following.

Theorem 4.5. SPSb is UF-CMA if the SXDH assumption holds with respect to
PGGen. In particular, for any polynomial-time algorithm A, there exists an algorithm
B with T(B) ≈ T(A) and

Advuf-cma
SPSb (A) ≤ (40L + 14) · AdvsxdhPGGen(B) + 4L(qs + 3) + 2

p
. (17)

4.4. Specific Groth–Sahai Proofs under SXDH

Among wide variations of relations that are provable with GS proofs, our instantiation
involves only three types of relations; linear multiscalar multiplication equations (MSEs)
inG1 andG2, and nonlinear quadratic equations (QEs). Witnesses are committed in either
G1 or G2 depending on the relations to prove. We summarize the space and computation
complexity in Table 3 and give details in the sequel.

Compact Structure-Preserving Signatures... Page 37 of 41 37

CRS Generation: Our construction includes three independent common reference
strings, crs0 and (crs1, c̃rs1) generated in the binding mode as

crs0 :=
(

G Q0
U0 V0

)
, crs1 :=

(
G Q1
U1 V1

)
, c̃rs1 :=

(
G̃ Q̃1

Ũ1 Ṽ1

)
, (18)

where, for χ0, ξ0, χ1, ξ1, χ̃1, ξ̃1
$←− Z

∗
p, Qi := Gχi ,Ui := Gξi , Vi := Gχi ξi for i = 0, 1

and Q̃1 := G̃χ̃1 , Ũ1 := G̃ ξ̃1 , Ṽ1 := G̃χ̃1 ξ̃1 .
Scalar Commitments: To commit to x ∈ Zp under crsi , compute

[x]i := Com(crsi , x; r) := (Ux
i Gr , (Vi G)x Qr

i), (19)

where r ∈ Zp is a fresh randomness. A default commitment of 1 ∈ Zp uses 0 ∈ Zp as
a randomness, namely,

[1]i := Com(crsi , 1; 0) := (Ui , Vi G). (20)

When x is committed by using c̃rs1, we denote it by [x̃]1 and compute as

[x̃]1 = Com(c̃rs1, x; r) := (Ũ x
1 G̃r , (Ṽ1 G̃)x Q̃r

1). (21)

Proof of Scalar MSE: Proof ρ0,0 for relation (5) as a linear MSE in G1 consists of a
single element π0,0 ∈ G2 computed as

π0,0 := G̃rz0 (G̃−1)rx0 (Ã−1)rx1 , (22)

where rz0 , rx0 , and rx1 are random coins used to commit to z0, x0, x1 by [z̃0]0, [x̃0]0,
[x̃1]0, respectively. It is verified by evaluating

e(Cz0,1, G̃) e(Cx0,1, G̃
−1) e(Cx1,1, Ã

−1) = e(G, π0,0), and

e(Cz0,2, G̃) e(Cx0,2, G̃
−1) e(Cx1,2, Ã

−1) = e(Q0, π0,0), (23)

where (Cx,1,Cx,2) := [x]0 for x ∈ {z0, x0, x1}, and G̃ and Q0 are taken from crs0.
Proofs ρ0,1, ρ1,1, and ρ1,2, are for linear MSEs in exactly the same form as Eq. (5).

They are generated and verified in the same manner as above.
Proof of Nonlinear QE: Proof ρ1,0 for nonlinear QE (7) consists of (θ1,0,1, θ1,0,2,

π1,0,1, π1,0,2) ∈ G
2
1 × G

2
2 that, ψ

$←− Zp,

θ1,0,1 := U
z0(rx2 −rz2)−z1(rx2 −rz2)

1 G(rx2 −rz2)(rz0 −rz1)−ψ,

θ1,0,2 := (V1G)z0(rx2 −rz2)−z1(rx2 −rz2) Q
(rx2 −rz2)(rz0 −rz1)−ψ

1 ,

π1,0,1 := Ũ
x2(rz0 −rz1)−z2(rz0 −rz1)

1 G̃ψ, and

π1,0,2 := (Ṽ1G̃)x2(rz0 −rz1)−z2(rz0 −rz1) Q̃ψ
1 , (24)

37 Page 38 of 41 M. Abe et al.

where rx is a random coin used to commit to x. The verification evaluates

e(Cz0,1C
−1
z1,1

, D̃x2,1) e(Cz0,1C
−1
z1,1

, D̃−1
z2,1

) = e(G, π1,0,1) e(θ1,0,1, G̃),

e(Cz0,2C
−1
z1,2

, D̃x2,1) e(Cz0,2C
−1
z1,2

, D̃−1
z2,1

) = e(Q1, π1,0,1) e(θ1,0,2, G̃),

e(Cz0,1C
−1
z1,1

, D̃x2,2) e(Cz0,1C
−1
z1,1

, D̃−1
z2,2

) = e(G, π1,0,2) e(θ1,0,1, Q̃1), and

e(Cz0,2C
−1
z1,2

, D̃x2,2) e(Cz0,2C
−1
z1,2

, D̃−1
z2,2

) = e(Q1, π1,0,2) e(θ1,0,2, Q̃1), (25)

where (Cx,1,Cx,2) := [x]1 for x ∈ {z0, z1}, (D̃y,1, D̃y,2) := [ỹ]1 for y ∈ {x2, z2}, and
other group elements are taken from (crs1, c̃rs1).

Batch Verification: The number of pairing computations in Eqs. (23) and (25) can
be reduced when verifying proofs ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ1,2 and ρ1,3 at once by batch
verification. By merging pairings with respect to G, G̃, Q0, Q1, Q̃1, Ã, Ẽz0 , Ẽs , D̃x2,1,
D̃x2,2, D̃z2,1, D̃z2,2, Ẽz1 , Ez2 , and Et , we have a single pairing product equation consisting
of 15 pairings. It will be merged further with the verification equations for the POS part
that includes pairings involving G and G̃. For SPSu1, the batch verification equation
consists of n1 + 16 pairings, of which n1 + 1 pairings are from POSu1. For SPSb, it
consists of n1 + n2 + 18 pairings, of which n1 + n2 + 3 pairings are from POSb.

Acknowledgements

We thank Mehdi Tibouch and Taechan Kim for their valuable discussion on parameters
settings for bilinear groups.

Funding Open access funding provided by NTNU Norwegian University of Science and Technology (incl
St. Olavs Hospital - Trondheim University Hospital)

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, M. Tibouchi, Tightly-secure signatures from lossy iden-
tification schemes. in D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, (Springer, Heidelberg, April 2012), pp. 572–590.

[2] M. Abdalla, T. Lange, editors,PAIRING 2012, volume 7708 of LNCS. (Springer, Heidelberg, May 2013).
[3] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo, Constant-size structure-

preserving signatures: Generic constructions and simple assumptions. J. Cryptol., 29(4), 833–878 (2016)

http://creativecommons.org/licenses/by/4.0/

Compact Structure-Preserving Signatures... Page 39 of 41 37

[4] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo, Structure-preserving signatures and
commitments to group elements. J. Cryptol., 29(2), 363–421, (2016)

[5] M. Abe, J. Groth, K. Haralambiev, M. Ohkubo, Optimal structure-preserving signatures in asymmetric
bilinear groups. in P. Rogaway, editors, CRYPTO 2011, volume 6841 of LNCS, (Springer, Heidelberg,
August 2011), pp. 649–666.

[6] M. Abe, D. Hofheinz, R. Nishimaki, M. Ohkubo, J. Pan. Compact structure-preserving signatures with
almost tight security. in J. Katz, H. Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
(Springer, Heidelberg, August 2017), pp. 548–580.

[7] M. Abe, C.S. Jutla, M. Ohkubo, J. Pan, A. Roy, Y. Wang, Shorter QA-NIZK and SPS with tighter security.
in S.D. Galbraith, S. Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, (Springer,
Heidelberg, December 2019), pp. 669–699.

[8] M. Abe, C.S. Jutla, M. Ohkubo, A. Roy. Improved (almost) tightly-secure simulation-sound QA-NIZK
with applications. in T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of
LNCS, (Springer, Heidelberg, December 2018), pp. 627–656.

[9] T. Acar, K. Lauter, M. Naehrig, D. Shumow, Affine pairings on ARM. in M. Abdalla and T. Lange,
editors, [2], pp. 203–209.

[10] D.F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, F. Rodríguez-Henríquez. Implementing
pairings at the 192-bit security level. in M. Abdalla and T. Lange, editors, [2], pp. 177–195

[11] N. Attrapadung, G. Hanaoka, S. Yamada, A framework for identity-based encryption with almost tight
security. in T. Iwata and J.H. Cheon [44], (2015), pp. 521–549.

[12] R. Barbulescu, S. Duquesne, Updating key size estimations for pairings. J. Cryptol., 32, 1298-1336.
(2018).

[13] P.S.L.M. Barreto, C. Costello, R. Misoczki, M. Naehrig, G.C.C.F. Pereira, G. Zanon, Subgroup security
in pairing-based cryptography. in K.E. Lauter, F. Rodríguez-Henríquez, editors, LATINCRYPT 2015,
volume 9230 of LNCS, (Springer, Heidelberg, August 2015), pp. 245–265.

[14] M. Bellare, A. Boldyreva, S. Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. in B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, (Springer, Heidelberg,
May 2000), pp. 259–274.

[15] M. Bellare, A. Boldyreva, J. Staddon, Randomness re-use in multi-recipient encryption schemeas. in
Public Key Cryptography - PKC 2003, 6th International Workshop on Theory and Practice in Public
Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, (2003), pp. 85–99.

[16] M. Bellare, P. Rogaway, The exact security of digital signatures: How to sign with RSA and Rabin. in
U.M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, (Springer, Heidelberg, May 1996), pp.
399–416.

[17] M. Bellare, S. Shoup, Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without ran-
dom oracles. in T. Okamoto, X. Wang, editors, PKC 2007, volume 4450 of LNCS, (Springer, Heidelberg,
April 2007), pp. 201–216.

[18] O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, D. Vergnaud, Batch Groth-Sahai. in J.
Zhou and M. Yung, editors, ACNS 10, volume 6123 of LNCS, (Springer, Heidelberg, June 2010), pp.
218–235.

[19] O. Blazy, E. Kiltz, J. Pan, (Hierarchical) identity-based encryption from affine message authentication.
in J.A. Garay, R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, (Springer, Heidelberg,
August 2014), pp. 408–425.

[20] D. Boneh, X. Boyen, Secure identity based encryption without random oracles. in M. Franklin, editor,
[33], pp. 443–459.

[21] D. Boneh, X. Boyen, H. Shacham, Short group signatures. in M. Franklin, editor, [33], pp. 41–55.
[22] J. Camenisch, M. Dubovitskaya, K. Haralambiev, Efficient structure-preserving signature scheme from

standard assumptions. in I. Visconti and R. De Prisco, editors, [57], pp. 76–94.
[23] J. Camenisch, M. Dubovitskaya, K. Haralambiev, M. Kohlweiss, Composable and modular anonymous

credentials: Definitions and practical constructions. in T. Iwata, J.H. Cheon, editors, ASIACRYPT 2015,
Part II, volume 9453 of LNCS, (Springer, Heidelberg, November / December 2015), pp. 262–288.

[24] J. Cathalo, B. Libert, M. Yung, Group encryption: Non-interactive realization in the standard model. in
M. Matsui, editors, ASIACRYPT 2009, volume 5912 of LNCS, (Springer, Heidelberg, December 2009),
pp. 179–196.

37 Page 40 of 41 M. Abe et al.

[25] M. Chase, M. Kohlweiss, A new hash-and-sign approach and structure-preserving signatures from DLIN.
in I. Visconti and R. De Prisco, editors, [57], pp. 131–148.

[26] S. Chatterjee, N. Koblitz, A. Menezes, P. Sarkar, Another look at tightness II: practical issues in cryp-
tography. in Paradigms in Cryptology–Mycrypt 2016. Malicious and Exploratory Cryptology–Second
International Conference, Mycrypt 2016, Kuala Lumpur, Malaysia, December 1-2, 2016, Revised Se-
lected Papers, (2016), pp. 21–55.

[27] J. Chen, H. Wee, Fully, (almost) tightly secure IBE and dual system groups. in R. Canetti, J.A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, (Springer, Heidelberg, August 2013), pp. 435–
460.

[28] B. Chevallier-Mames, An efficient CDH-based signature scheme with a tight security reduction. in V.
Shoup, editor,CRYPTO2005, volume 3621 of LNCS, (Springer, Heidelberg, August 2005), pp. 511–526.

[29] G, Couteau, D. Hartmann, Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic
languages. in D. Micciancio, T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
(Springer, Heidelberg, August 2020), pp. 768–798.

[30] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. in G.R.
Blakley, D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, (Springer, Heidelberg, August 1984),
pp. 10–18.

[31] A. Enge, J. Milan, Implementing cryptographic pairings at standard security levels. in R.S. Chakraborty,
V. Matyas, P. Schaumont, (eds), Security, Privacy, and Applied Cryptography Engineering - 4th Inter-
national Conference, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings, volume 8804 of
Lecture Notes in Computer Science, (Springer, 2014), pp. 28–46.

[32] A. Escala, J. Groth, Fine-tuning Groth-Sahai proofs. in H. Krawczyk, editor, PKC 2014, volume 8383
of LNCS, (Springer, Heidelberg, March 2014), pp. 630–649.

[33] M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS. (Springer, Heidelberg, August 2004).
[34] R. Gay, D. Hofheinz, E. Kiltz, H. Wee, Tightly CCA-secure encryption without pairings. in M. Fischlin,

J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, (Springer, Heidelberg, May
2016), pp. 1–27.

[35] R. Gay, D. Hofheinz, L. Kohl, J. Pan, More efficient (almost) tightly secure structure-preserving signa-
tures. in J.B. Nielsen, V. Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, (Springer,
Heidelberg, April/May 2018), pp. 230–258.

[36] R. Gennaro, M.J.B. Robshaw, editors. CRYPTO 2015, Part II, volume 9216 of LNCS. (Springer, Hei-
delberg, August 2015).

[37] R. Granger, D. Page, N.P. Smart, High security pairing-based cryptography revisited. in F. Hess, S.
Pauli, M.E. Pohst, editors,Algorithmic Number Theory, 7th International Symposium, ANTS-VII, Berlin,
Germany, July 23-28, 2006, Proceedings, volume 4076 of Lecture Notes in Computer Science, (Springer,
2006), pp. 480–494.

[38] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, D. Jao, Efficient implementation of bilinear pairings
on ARM processors. in L.R. Knudsen, H. Wu, editors, SAC 2012, volume 7707 of LNCS, (Springer,
Heidelberg, August 2013), pp. 149–165.

[39] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures. in
Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, (Springer, Heidelberg,
December 2006), pp. 444–459.

[40] J. Groth, A. Sahai, Efficient non-interactive proof systems for bilinear groups. SIAM J. Comput., 41(5),
1193–1232 (2012)

[41] D. Hofheinz, Algebraic partitioning: fully compact and (almost) tightly secure cryptography. in E.
Kushilevitz, T. Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, (Springer, Heidelberg,
January 2016), pp. 251–281.

[42] D. Hofheinz, Adaptive partitioning. in J.-S. Coron, J.B. Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, (Springer, Heidelberg, April/May 2017), pp. 489–518.

[43] D. Hofheinz, T. Jager, Tightly secure signatures and public-key encryption. Des. Codes Cryptography,
80(1), 29–61 (2016)

[44] T. Iwata, J.H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS. (Springer, Heidelberg,
November/December 2015).

Compact Structure-Preserving Signatures... Page 41 of 41 37

[45] C.S. Jutla, M. Ohkubo, A. Roy, Improved (almost) tightly-secure structure-preserving signatures. in M.
Abdalla, R. Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, (Springer, Heidelberg, March
2018), pp. 123–152.

[46] C.S. Jutla, A. Roy, Improved structure preserving signatures under standard bilinear assumptions. Cryp-
tology ePrint Archive, Report 2017/025, (2017). http://eprint.iacr.org/2017/025.

[47] C.S. Jutla, A. Roy, Improved structure preserving signatures under standard bilinear assumptions. in
Public-Key Cryptography–PKC 2017—20th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Amsterdam, The Netherlands, March 28–31, 2017, Proceedings, Part II,
(2017), pp. 183–209.

[48] J. Katz, N. Wang, Efficiency improvements for signature schemes with tight security reductions. in S.
Jajodia, V. Atluri, T. Jaeger, editors, ACM CCS 2003, (ACM Press, 2003), pp. 155–164.

[49] E. Kiltz, J. Pan, H. Wee, Structure-preserving signatures from standard assumptions, revisited. in R.
Gennaro, M.J.B. Robshaw, editors, [36], (2015), pp. 275–295.

[50] T. Kim, R. Barbulescu, Extended tower number field sieve: A new complexity for the medium prime case.
in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, (Springer, Heidelberg,
August 2016), pp. 543–571.

[51] B. Libert, M. Joye, M. Yung, T. Peters, Concise multi-challenge CCA-secure encryption and signatures
with almost tight security. in P. Sarkar, T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, (Springer, Heidelberg, December 2014), pp. 1–21.

[52] B. Libert, T. Peters, M. Joye, M. Yung, Compactly hiding linear spans—tightly secure constant-size
simulation-sound QA-NIZK proofs and applications. in T. Iwata, J.H. Cheon, editors, [44], (2015), pp.
681–707.

[53] B. Libert, T. Peters, M. Yung, Short group signatures via structure-preserving signatures: standard model
security from simple assumptions. in R. Gennaro, M.J.B. Robshaw, editor, [36] (2009) pp. 296–316.

[54] S. Schäge, Tight proofs for signature schemes without random oracles. in Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, (Springer, Heidelberg, May 2011), pp. 189–206.

[55] M. Scott, On the efficient implementation of pairing-based protocols. in L. Chen, editor, 13th IMA
International Conference on Cryptography and Coding, volume 7089 of LNCS, (Springer, Heidelberg,
December 2011), pp. 296–308.

[56] R. Verma, Efficient implementations of pairing-based cryptography on embedded systems. PhD thesis,
(Rochester Institute of Technology, New York, USA, 2015).

[57] I. Visconti, R. De Prisco, editors. SCN 12, volume 7485 of LNCS. (Springer, Heidelberg, September
2012).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://eprint.iacr.org/2017/025

	Compact Structure-Preserving Signatures with Almost Tight Security
	1. Introduction
	1.1. Background
	1.2. Our Contributions
	1.3. Technical Overview
	1.4. Difference to the Previous Version
	1.5. Follow-up Works and Open Problems
	1.6. Organization

	2. Preliminaries
	2.1. Notations
	2.2. Pairing Groups and Diffie–Hellman Assumptions
	2.3. Structure-Preserving Signatures
	2.4. Public-Key Encryption Schemes
	2.5. The Groth–Sahai Proof System

	3. Generic Construction
	3.1. Scheme Description
	3.2. Overview of Security Proof
	3.2.1. Improvement on the Security Loss

	3.3. Security Proof
	3.3.1. From G0 to G1: Proof of Lemma 3.8
	3.3.2. From G2 to G3: Proof of Lemma 3.10

	4. Instantiation
	4.1. ElGamal Encryption with Common Randomness
	4.2. Concrete Scheme for Unilateral Messages
	4.2.1. Performance
	4.2.2. Security

	4.3. Concrete Scheme for Bilateral Messages
	4.3.1. Performance
	4.3.2. Security

	4.4. Specific Groth–Sahai Proofs under SXDH

	Acknowledgements
	References

