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Abstract

The energy demand is rapidly increasing worldwide, and with the environmental
crisis is more people substituting fossil fuels with renewable energy sources. The
new renewable energy sources are not as flexible and reliable as the old fossil power
sources which can unstabilize the power grid. Hydropower plants can be scheduled,
and therefore stabilize the power grid, but the higher complexity in scheduling makes
the computational time too high to conduct a hydropower schedule often enough.
Therefore might machine learning help with lowering the time complexity, and thereby
let the scheduling be done at a higher frequency. From a literature review have the
LSTM neural network model been a possible fit for this research. After testing the
model the LSTM model had a 99.7% lower computational time, but the accuracy with
MAPE evaluation as low as 67.5% did not hold a standard where the model could be
recommended as a substitute, but it can be used as a supplement.
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Sammendrag

Energiforbruket øker raskt globalt, og med miljøkrisen erstatter stadig flere men-
nesker fossile brensler med fornybare energikilder. De nye fornybare energikildene
er ikke like fleksible og p̊alitelige som de gamle fossile energikildene, noe som kan
føre til ustabilitet i strømnettet. Vannkraftverk kan planlegges, og dermed stabilis-
ere strømnettet, men den økte kompleksiteten i planleggingen gjør at beregningstiden
blir for lang til å gjennomføre en vanlig vannkraftplan ofte nok. Derfor kan maskin-
læring bidra til å redusere tidskompleksiteten og dermed tillate hyppigere planlegging.
Etter en litteraturgjennomgang har LSTM nevrale nettverkmodellen vist seg å være
en mulig løsning for denne forskningen. Etter å ha testet modellen viste det seg at
LSTM-modellen hadde 99,7% lavere beregningstid, men nøyaktigheten med MAPE-
evalueringen s̊a lav som 67,5% oppfylte ikke en standard der modellen kunne anbefales
som en erstatning, men den kan brukes som et supplement.
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1 Introduction

The world is currently experiencing a growing energy demand. This demand for energy,
along with the environmental crisis, has made most of the newly created power plants
renewable. The environmental crisis has caused some of the energy consumers to shift from
fossil fuel to electric fuel thereby reinforcing the growing energy demand on a worldwide
scale. The new renewable energy sources are less stable and have less flexibility than fossil
energy sources like coal power plants.

Hydropower, on the other hand, has the advantage that it is not only flexible but also
reliable as it can be scheduled when it is needed.. This can help to counteract the variation
of renewable power sources and stabilize the power grid. Hydropower plants can have
multiple cascading reservoirs which makes planning and scheduling difficult/harder to
enact. This makes hydropower scheduling a more computationally time-heavy task. The
downside of hydropower scheduling’s long completion time can be a) the scheduling can
either not be done rapidly enough to take unpredicted changes into consideration, or
b)might somewhat lack enough details on the scheduling.

Using machine learning is a great way to lower the computational time, making this a more
feasible approach. Machine learning requires a very lengthy and time-heavy computational
time when training said system. However after the training is completed , the calculations
can be conducted inn only a fraction of the time the training itself required, although it
is important to note that it is not necessarily as accurate as the original model.

The aim of this master’s thesis is, therefore, to look into if, with the use of machine
learning, one could lower the computational time while still keeping a good accuracy.
This will be explored through a case study containing a hydropower plant with three
cascading reservoirs.

The main research question for this master thesis is: Can the optimization model in long-
term hydropower scheduling be substituted by a machine learning model in order to reduce
the computational time?

To achieve this will this masters thesis aim to:

• Present a relevant theory for the master’s thesis.

• Assess literature surrounding long-term hydropower schedules in order to find a
state-of-the-art scheduling model.

• Examine literature concerned with machine learning in hydropower schedules to find
a fitting machine learning model to test against the state of art scheduling model.

• Presents the targeted optimization model.

• Present and discuss the results of the machine learning model.

• Presents further work that can be conducted as an explanation of this master thesis
and for the research area.

This master’s thesis is building on the specialization project that was conducted last
semester. Some of the theory and the long-term hydropower scheduling optimization
model have been borrowed and extended to fit this master thesis. Some of the figures
created for the specialization project have also been transferred.
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2 Theory

In this chapter, the theoretical foundations underpinning this thesis are presented. Section
2.1 introduces the fundamental concepts of hydropower plants, their key classifications,
construction, and principles of operation. It also provides an overview of hydropower
scheduling and elucidates some of the main concepts involved in the process. Section
?? offers an explanation of the Benders Decomposition technique, a powerful tool used
in optimization problems. Machine learning, with its different techniques, models, and
evaluation methods, is presented in section 2.3. The chapter concludes with a summary
and introduction to the following chapter in section 2.5.

2.1 Hydropower Plant

To fully comprehend the complexities of hydropower scheduling, it is crucial to understand
the structure and operation of a hydropower plant. Hydropower plants can be categorized
based on various criteria, with their capacity for water storage being one of the most
distinguishing factors. Broadly, they are classified as either reservoir-based or run-of-river
hydropower plants [1].

Reservoir-based hydropower plants have large storage facilities, allowing them to hold sub-
stantial amounts of water. The storage capacity enables the plant operators to schedule
electricity generation to the most optimal times. Reservoir-based hydropower plant gen-
erates electricity by harnessing the potential energy of the water stored in the reservoir
from the height difference between the reservoir and the generator. This can be expressed
through the following equation [2]:

P = η ∗ ρ ∗ g ∗ h ∗Q (1)

Where P is the power output, η is the efficiency of the plant, ρ is the density of water, g
is the acceleration due to gravity, h represents the height difference utilized to generate
electricity, and Q is the flow rate of water through the turbines.

On the other hand, run-of-river hydropower plants have little to no storage capability. As
the name suggests, they rely primarily on the river’s natural flow to generate electricity.
The power generated in these plants results from the kinetic energy in the water stream
as it flows through the turbines. This kinetic energy conversion can be represented using
the equation [2]:

P =
1

2
∗ η ∗ ρ ∗A ∗ v2 (2)

In this equation, P is the power output, η is the plant efficiency, ρ is the water density, A
is the cross-sectional area of the stream, and v is the velocity of the water flow.

A typical reservoir-based hydropower plant can be classified into five key components: the
reservoir, the tunnel, the turbine and generator, the discharge tunnel, and the discharge
pool.

The reservoir stores and holds the water naturally flowing into an area [1]. The reservoir
can take the form of a natural pond or have an artificial body created using a dam. The

2



geographical characteristics of the location determine the choice of dam type and size. A
regulation hatch is incorporated to release the water for maintenance or emergencies. To
prevent structural damage to the dam, a spillway is commonly incorporated to discharge
the water safely in the event of overflow or spillage. Any overflow or spillage from the
reservoir results in the loss of potential energy and revenue for the plant.

The water from the reservoir to the turbine is transported through the water tunnel,
referred to as the tunnel. The design and roughness of the tunnel play a crucial role in the
plant’s efficiency since bends, turns, and rough surfaces can lead to efficiency losses. In
figure 8 can, a vertical tunnel connected to the main water tunnel can be seen, this is called
the surge shaft . The surge shaft relieves pressure and allows the water to oscillate and
lose momentum when the plant is shut down, reducing potential damage to the plant [3].
Additionally, can this tunnel be placed strategically to allow unregulated water to flow
into the system.

The turbine and generator constitute the core of the hydropower plant. Here, the potential
energy of the water is converted into electrical energy [4]. The water pressure propels the
turbine, which rotates the generator to produce electricity. Different types of turbines are
used based on the height difference utilized in the plant and the volume of water flow.
Different types of turbines are used for different height differences. Each turbine will have
different efficiency depending on the water realized [5]. The difference in efficiency can be
minimized by having multiple pairs of turbines and generators to minimize the efficiency
loss by utilizing the synergy between them.

After passing through the turbine, the water is guided to the discharge pool via the
discharge tunnel. The tunnel is positioned lower than the reservoir to prevent the creation
of a vacuum in the water tunnel, which would negatively affect the plant’s efficiency. The
discharge pool signifies the end of the hydropower plant, and it can take the form of
another reservoir, an unregulated river, or a direct outlet to the sea.

The overall efficiency of a hydropower plant is a combination of losses throughout the
system, including the tunnel, turbine, and any vacuum created. This can be represented
by the following equation:

η = 1− ηtunnel − ηturbine − ηvacuum − ... (3)

Figure 1: Cross-sectional view of a typical hydropower plant

This section provides a basic understanding of how a typical reservoir-based hydropower

3



plant functions, laying the groundwork for subsequent discussions on hydropower schedul-
ing.

2.1.1 Hydro power scheduling

The scheduling of reservoir-based hydropower plants poses a significant optimization chal-
lenge. As these plants can store water for future use, determining the optimal use of the
stored water becomes a scheduling problem [6].

The complexity of this problem is further exacerbated in cases where there are a network
of cascading hydropower plants, where the output of one plant serves as the input for
another. The timing and volume of water release must be carefully coordinated to ensure
optimal operations across the entire system. To manage these complexities, hydropower
scheduling is often divided into several components, each serving different time horizons:
long-term (1-5 years), mid-term (1-52 weeks), short-term (1-7 days), and real-time.

Long-term hydropower scheduling focuses on strategic decisions and provides a broad
schedule of the reservoir level and water value on a weekly basis. This is crucial for
overall system planning and ensuring water resources are used optimally. Water value
is the value the system would obtain if it obtained one additional unit of water. This
serves as an essential determinant of when and how to produce power. The output of
the long-term hydropower scheduling serves as input to the mid-term scheduling. The
midterm hydropower scheduling provides greater details, often providing daily time steps.
The mid-term scheduling is often considered the binding between long-term and short-
term scheduling. Both the mid-term and long-term scheduling processes must incorporate
uncertainty modeling into their calculations. This is due to unpredictable variables like
rainfall and further demand.

The output of the mid-term scheduling is used as input to the short-term scheduling. The
short-term scheduling operates on more certainty regarding demand and weather forecast,
allowing a detailed hourly plan to be generated. This plan is then taken to the power
market, where the final decision on how much and when to sell is made. If the condition
changes, the day of production will the final production plan be changed with real-time
scheduling.

2.1.2 Load Shedding

Load shedding is a tool used when there is insufficient power to satisfy the demand [3].
Load shedding works by reducing or cutting off the power to consumers or areas. This
can be planned in cases like maintenance or if there is extreme weather or lack of power in
the market. The goal of load shedding is to reduce the stress on the power grid to prevent
it from overloading. The downtime can vary from minutes to hours [7]. Load shedding is
usually tried to minimize the inconvenience of the society, therefore, planned load shedding
is often done at night, and unplanned load shedding often follows a prioritized list where
critical buildings like hospitals are prioritized [8].

4



2.2 Benders Decomposition

When solving large-scale optimization problems, the overall complexity might be very high.
To lower the complexity, a decomposition technique might be used. There exist Multiple
decomposition techniques like Bender’s Decomposition, Dantzig–Wolfe Decomposition,
and Lagrangian Relaxation [9]. Benders Decomposition is particularly notable for its
efficacy in handling high-dimensional, nonlinear problems.

Benders decomposition was first presented in 1962 in a paper by J. F. Benders [10].

Benders decomposition divides an optimization problem into one master problem and
several subproblems. The master problem is then solved, and the complicated value is
sent down to the subproblem as a constant instead of a variable. The subproblems are
then solved, providing information to the master problem and generating new cuts to the
master problem, this can be seen in figure 2. These prosess continue iteratively until a
solution is found. Benders decomposition can be shown mathematically as follows [11].

Original problem

min
N∑
i=1

cixi +
M∑
j=1

djyj (4)

Subject to

N∑
i=1

al,ixi +
M∑
j=1

el,jyj ; l = 1, .., q (5)

0 ≤ xi ≤ xupi ; i = 1, ..., N (6)

0 ≤ yj ≤ yupj ; j = 1, ...,M (7)

Is transformed into:

Master problem

min

N∑
i=1

cixi + α (8)

subject to

M∑
j=1

djy
k
j +

N∑
i=1

λk
i (xi − xki ) ≤ α (9)

0 ≤ xi ≤ xupi ; i = 1, ..., N (10)

α ≥ αlow (11)

subproblem

min
m∑
j=1

djyj (12)
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Figure 2: Information flow in Benders Decomposition.

Subjected to

N∑
i=1

cl,ixi +
M∑
j=1

el,jyj ≤ bl; l = 1, ..., q (13)

0 ≤ yj ≤ yupj ; j = 1, ...,M (14)

xi = xki : λi; i = 1, ..., N (15)

Where c, d, a, and e are constants, x and y are variables, λ is the dual value of the
complicating constraint, l, I, and j are indexes going respectively from 1 to q, N and M,
yup and xup are the upper limit of x and y while αlow is the lower limit, k is the iteration,
and α is the connection variable taking the cuts into the optimal value.

2.3 Machine Learning and Neural Networks

Machine learning(ML) is a subcategory of artificial intelligence [12]. ML recognizes pat-
terns, makes decisions, and improves with experience. ML is divided into four major parts;
Supervised, unsupervised, semi-supervised, and reinforced learning [13]

Supervised learning is when the model is trained on labeled datasets, where the input
data and corresponding target variables have a known relationship [14]. The primary
objective is to learn a mapping function capable of predicting the target variables based
on the input data. In contrast, unsupervised learning concerns the training of models on
unlabeled data, with the principal goal being to recognize trends or patterns in the data
without prior knowledge. Semi-supervised learning combines both approaches, where the
model is trained on labeled and unlabeled data. Reinforcement Learning differs somewhat
from the others. It operates around the concept of a system of rewards and punishments.
An agent interacts with an environment, receiving feedback in the form of punishments
or rewards for these interactions. Through this feedback mechanism, the agent learns the
optimal strategy to maximize long-term rewards based on actions.

6



2.3.1 Linear Regression

Linear regression is an ML technique defined as an equation that determines the linear
relationship between a single dependent variable Y, and one or more independent vari-
ables [15]. The simplest form of the linear regression equation is often called classic linear
regression, it has one dependent and one independent variable and is defined by the for-
mula:

Y = β0 + β1 ∗X + ϵ (16)

where:

Y is the dependent variable. X is the independent variable. β0 is the intercept of the line
at Y when X = 0. β1 is the slope of the line. ϵ is the error term for anything that may
affect the dependent variable other than the independent variable, including measurement
errors. Determining the line is a method to minimize the differences of the observed known
value and the predicted value. The common method to achieve this is known as the least
squares method, which can mathematically be represented as:

minβ0,β1

n∑
i=1

(Yi − β0 − β1 ∗Xi)
2 (17)

There are two main types of linear regression, classical linear regression and multiple linear
regression. The main difference between them is how many independent variables they
use to make a prediction. Multiple linear regression can be represented by this equation:

Y = β0 + β1 ∗X1 + β2 ∗X2 + ...+ βp ∗Xp + ϵ (18)

Each coefficient βi now represents the change in the average value of Y due to a one-unit
change in Xi, holding all other variabels fixed.

2.3.2 Neural Network

The Neural network is under the ML category of supervised learning. It is inspired by
how the nervous system of the human brain works [16]. Neural networks are constructed
as a graph consisting of an input layer, one or several hidden layers, and an output layer
as shown in figure 3. Each layer contains a series of neurons, or nodes, and each node in
one layer is connected to each node in the next layer. To know how often the information
should be passed from a node to another is a number called weights, this number often
comes as fraction. The weights of these connections, are denoted as wl

j,k where j and k
are the neurons the weight is connected from and to and l is the layer number, are learned
during the training process. The number of neurons in the input layer corresponds to
the number of input features, and the number of neurons in the output layer corresponds
to the number of output variables. The number of neurons in the hidden layers is often
chosen based on trial and error or an optimization algorithm.

There are several types of neural networks, each with their unique architecture and use
cases. The most common types are Feedforward Neural Networks (FNNs), Convolutional
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Figure 3: This is an example of how a Neural Network can look

Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). Each type has its
strengths and weaknesses, so the choice of type will dependend on the problem, and the
available data, one overall weakness of the neural network is the amount of data neded
to make good predictions. Feedforward Neural Networks (FNNs) is the simplest type of
neural network, FNNs consist of an input layer, one or more hidden layers, and an output
layer, each neuron in a layer is connected to every neuron in the next layer [17]. The data
flows from the input layer to the output layer without looping back. Convolutional Neural
Networks (CNNs) are designed to automatically and adaptively learn spatial hierarchies
of features from the input data [18]. The main difference between FNNs and CNNs is
that CNNs take advantage of the hierarchical pattern in data and assemble more complex
patterns using smaller and simpler patterns. Recurrent Neural Networks (RNNs) are
used when there is a sequential relationship in the input data, such as a time series or a
sentence [17]. Unlike FNNs and CNNs, which have no memory and process each input
independently, RNNs can use their memory to process sequences of inputs, meaning output
for a given input can depend on previous inputs.
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2.3.3 Long Short-Term Memory (LSTM)

Recurrent Neural Networks are suffering from challenges in learning long-term depend-
encies due to the vanishing or exploding gradients problem [19]. The vanishing gradient
problem is when the weights in the network don’t get updated due to the gradient value
being too small. Normally the weights are updated proportionally to the gradient value.
If this becomes too small the problem may stop the training even if it doesn’t have the
optimal solution to the problem. This makes it hard for the RNN to learn and adjust its
parameters to capture dependencies in sequences that span more than a few steps. Long
Short-Term Memory (LSTM) units are a type of RNN architecture designed to combat
this issue and effectively capture long-term dependencies in sequence data.

The key idea behind LSTM units is the cell state. The cell state can provides information
from earlier steps in the sequence to later steps. Gates control what information enters,
remains in, and leaves the cell state. Each LSTM cell consists of an input gate, a forget
gate, an output gate, and a cell state. The gates are used to regulate the information
flow in the LSTM cell—deciding what information to keep or discard. The cell state
acts as a ”conveyor belt” carrying memory from earlier in the sequence. Through these
mechanisms, the LSTM cell can learn to recognize important patterns over time, forget
irrelevant data, and make predictions based on the relevant information it has retained.

2.3.4 Bayesian Optimization

Bayesian optimization is a model-based method for global optimization of black-box func-
tions, particularly useful for expensive to evaluate functions or those with no closed-form
expression or gradient information. This technique becomes very efficient when the num-
ber of function evaluations is limited due to constraints such as time or cost.

The main components of Bayesian optimization are:

• Surrogate Model: This is a probability model that is easy to optimize and is used
to approximate the unknown function. Gaussian Processes (GPs) are commonly
used due to their capacity to provide a measure of uncertainty.

• Acquisition Function: This is a utility function built from the surrogate model
that provides a measure of which point in the input space should be evaluated next.
The acquisition function trades off exploitation, i.e., sampling where the surrogate
model predicts high performance, and exploration, i.e., sampling where the uncer-
tainty is high. Examples of acquisition functions include Expected Improvement
(EI), Probability of Improvement (PI), and Upper Confidence Bound (UCB).

The Bayesian Optimization process follows these steps:

1. Initialize with a set of points and corresponding function evaluations.

2. Fit the surrogate model to the current set of evaluations.

3. Find the point that maximizes the acquisition function.

4. Evaluate the objective function at this new point and augment the existing set of
points.
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5. Repeat steps 2-4 until a stopping criterion is met, e.g., a maximum number of func-
tion evaluations, a maximum time, or the acquisition function is below a threshold.

The performance of Bayesian Optimization heavily depends on the choice of the surrogate
model and the acquisition function, and the way in which these components are combined.

2.3.5 Ensemble Models

Ensemble models is a machine learning technique that combines the prediction of different
ML models to improve the overall performance [20]. This can lead to improved predictive
performance compared to any single model. The prediction of the different models is
aggregated into one ensembled model. This technique minimizes the error one individual
model may have by utilizing the diversity of the different models. Each ML model will
have some variation on the prediction, which can be reduced when combined as long as no
model is correlating. With lower variation, the prediction can be more stable and reliable.
This can be shown mathematically with these equations:

The variance of the ensemble’s average prediction is given by:

V ar(ȳ) = V ar

(
1

N

N∑
i=1

yi

)
(19)

where N is the number of models, ρ is the correlation between any two models and σ2 is
the variance. this equation is equal to:

V ar(ȳ) =
1

N2

N∑
i=1

N∑
j=1

Cov(yi, yj) (20)

When i = j will Cov(yi, yj) be the variance of the model σ2, this occurs N times. When
i ̸= j will Cov(yi, yj) be ρσ2, this will occur N2 −N times.

The equation will then be:

V ar(ȳ) =
1

N2
[Nσ2 + (N2 −N)ρσ2] (21)

Simplifying this:

V ar(ȳ) =
σ2

N
+ (1− 1

N
)ρσ2 (22)

From equation 22, the variation of the ensembled model can be calculated. The best case
for the ensembling model is when the models are completely unrelated ρ = 0. This gives
a variance of σ2

N . The worst case is when the model is 100% correlated ρ = 1. This in
turn gives an variance of σ2, the same as that of a single model. The ensemble model’s
variance is always as good or better than the variance of a single model.

2.3.6 Performance Measuring

The overarching goal of this study is to assess the potential of machine learning algorithms
in long-term hydropower scheduling, thus reducing the overall time required. To effectively
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evaluate the efficiency of machine learning techniques relative to traditional optimization
methodologies, two principal factors must be considered: the computational time and the
accuracy of the program.

Computational time, denoting the duration a computer algorithm requires to complete
its task, provides an efficient and practical way of comparing distinct algorithms [21].
The hardware setup will impact the performance of computational time, it is, therefore,
essential to run the algorithms on the same or equal computers when comparing.

To objectively measure the efficacy of the machine learning model, various performance
metrics are employed, including the Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), mean absolute error(MAE), mean absolute percentage error (MAPE), and
Root Mean Squared Logarithmic Error (RMSLE). This research will primarily utilize the
first three metrics: MSE, RMSE, and MAE. Using diverse evaluation techniques allows
for a more comprehensive analysis, considering each metric has unique strengths and
limitations.

The Mean Squared Error (MSE) is computed as follows [22]:

MSE =
1

N

N∑
i=1

(r̂i − ri)
2 (23)

where N denotes the total number of predicted values, r̂i represents the predicted values,
and ri is the actual values. The MSE computes the average of the squares of the errors,
emphasizing larger errors due to the squaring operation.

The Root Mean Squared Error (RMSE), a derivative of MSE, is expressed as [23]:

RMSE =

√√√√ 1

N

N∑
i=1

(r̂i − ri)2 (24)

where N is the total number of predicted values, r̂i signifies the predicted values, and ri
represents the actual values. The RMSE is the square root of the MSE, mitigating the
heavy penalization of larger errors exhibited by MSE, thus providing a more balanced
measure of model performance.

This equation can calculate the mean absolute error [24]:

MAE =
1

N

N∑
i=1

|ri − r̂i| (25)

where N is the total number of predicted values, r̂i is the predicted values, ri signifies the
actual values. MAE gives the mean absolute value between the predicted values and the
measured data without considering the direction of the error.

mean absolute percentage error (MAPE) can be calculated through this equation:

MAPE = 1− 1

N

N∑
i=1

| ri
rmax

ri −
r̂i
ˆrmax

| (26)
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where N is the total number of predicted values, r̂i is the predicted values, ˆrmax is the
highest predicted value, ri signifies the actual values, rmax is the highest nesting value.
MAPE gives the mean absolute percentage value between the predicted values and the
measured data without considering the direction of the error.

2.4 Syntetic data

To have a well-trained ML, an extensive amount of data is needed. This is not always
possible to obtain from industrial partners. Therefore, algorithms to obtain representative
synthetic data are made. European data protection supervisor defines synthetic data as
”synthetic data is artificial data that is generated from original data and a model that
is trained to reproduce the characteristics and structure of the original data” [25]. The
synthetic and original data should have a similar structure and provide good data for
ML training and testing. To generate the synthetic data, different models and technics
can be used. This thesis focuses on Time-series Generative Adversarial Networks (Ti-
meGAN) [26]. TimeGan is a good model for generating time-series data. This model
strives to give flexibility from an unsupervised paradigm while having the control given by
supervised training. From Yoon, Jarrett, and Schaar’s research, this model outperforms
other state-of-the-art models. The model has four network components, a recovery func-
tion, an embedding function, a sequence generator, and a sequence discriminator. The
autoencoding components (first two) and the adversarial components (last two) are trained
jointly so the TimeGan simultaneously learns to encode features, generate representations
and iterate across time. The embedding network provides the latent space, a lower di-
mensional space where the input data is mapped out. The adversarial network operates
within this space, distinguishing between real and synthetic data. Through a supervised
loss, synchronizing both real and synthetic data, this helps to make the synthetical data
more realistic.

2.4.1 Data types

Machine Learning (ML) leverages various data categories, differentiated by their charac-
teristics and format. These include Numeric Data, Categorical Data, Text Data, Image
Data, and Time Series Data. The data used in this thesis are primarily Time Series Data.

Time series data consists of a series of data points collected at consecutive time intervals
[27]. These data points represent the same variable and are chronologically recorded,
enabling the study of changes to the variable over time. Time series data can either
be regular or irregular, depending on the uniformity of the time intervals at which the
data points are collected. In regular time series data, data points are collected at evenly
spaced time intervals. The regularity of the time intervals allows for more straightforward
analysis and forecasting as patterns such as trends and seasonality can often be more
easily identified. Irregular time series data are the data points collected at irregular time
intervals. Analysis and forecasting for irregular time series data can be more challenging
due to the inconsistent intervals between data points.

2.5 Theory conclusion

This chapter is the main theory used in this master’s thesis. The next chapter presents
a literature review to find the most suitable machine learning model and hydropower
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scheduling technique to answer the research question.
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3 Literature review

This master’s thesis aims to investigate the performance of machine learning as a sub-
stitute for the optimization techniques used in long-term hydroelectric power scheduling
(LTHPS). To achieve this goal, it is vital to conduct a thorough literature review. The lit-
erature review for this thesis has three main goals: to find the state-of-the-art optimization
techniques for LTHPS, to identify which machine learning techniques are being used in
the field, and to determine how different machine learning techniques have performed. To
ensure the research is most relevant to the field, it is important to compare the results of
machine learning to the state-of-the-art LTHPS optimization techniques while considering
the main breakthroughs in LTHPS optimization techniques. Different machine learning
techniques have been used in the field; therefore, it is important to ensure that the re-
search in this thesis uses a new technique or approach to further advance the research in
the field. In section 3.1 will look at some of the most important hydro power schedul-
ing techniques. The different types of machine learning techniques used in hydropower
scheduling are looked at in section 3.2. This chapter ends with a conclusion in section 3.3

3.1 Hydro power scheduling

In paper [28] is one of the earliest publications on hydropower scheduling using water value
as far as the author of this thesis knows. Here the motivation for having a water value is
to better schedule the water resources against the thermal plants. The water value takes
in the losses from different discharge flows and different reservoir levels. This method
follows the principles of stochastic dynamic programming (SDP) and is advised to have
30 years of data to do the best calculation. The method is primarily applicable to a single
reservoir system, but if the system has multiple reservoirs, and it can be approximated
that there is no unnecessary spillage, the water value can be calculated for the aggreg-
ated system. In [29] there are two new methods for including multi reservoirs hydropower
scheduling presented that are also based on SDP. The first is called the one-at-a-time
method, and this method breaks the multi-variable problem into a series of one-state sub-
problems which is solved using dynamic programming. The second method is called the
aggregation decomposition method, this method breaks the problem into a series of two-
stage sub-problems and solves it with dynamic programming. Turgeon concluded that
the aggregated method is a better operating policy than the one-at-a-time method, and
emphasizes that the method will only increase linearly with added reservoirs. To better
solve problems with multiple reservoirs, Pereira and Pinto presented a new method in this
paper [30]. The new approach is called stochastic dual dynamic programming (SDDP),
it is based on the approximation of the expected-cost-to-go functions of SDP by a piece-
wise linear function. The new approach obtains the dual solution from the optimization
problem at each stage, which corresponds to the cuts from benders decomposition. In
this paper [31] a new model to solve long-term multi reservoirs hydropower scheduling
is proposed. The new model is referred to as a scenario fan simulator (SFS). This ap-
proach combines optimization techniques with simulation. The SFS method represents
the stochastic reservoir inflow for further weeks as a fan of scenarios in a sequence of two-
stage stochastic linear programming (SLP) problems. The Benders Decomposition is used
to solve each SLP problem efficiently, the solution is then saved. The simulation approach
consists of solving the SLP problem for all first-week inflow scenarios for all time steps,
the solution is stored. For week t+1 the optimal end value of t will be the starting point of
t+1. Helseth, Mo and Warland conclude that the new method is competitive with an es-
tablished model based on SDDP for market simulation purposes, provides better results in
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terms of socioeconomic surplus, and handles extreme weather slightly better. A drawback
of this model is the computation time, but this can be eliminated by running the different
scenarios on parallel processors. This method is used in the new market model made by
SINTEF energy [32]. This market model is aiming to give a detailed representation of
the hydropower system while not relying on the aggregation of the hydropower system.
SINTEF is one of Europe’s largest independent research organizations [33]. SINTEF was
established in 1950 in Trondheim and has today become a world-leading research insti-
tute. SINTEF energy created one of the existing models used in the market called EMPS
model [34].

3.2 Machine learning in Hydro power scheduling

There are several different machine learning models and approaches that can be used to
solve the LTHPS problem. Bordin, Skjelbred, Kong, and Yang conducted state-of-the-art
research in 2020 with a main focus on short-term hydroelectric power scheduling. The
article looked at both river-based and reservoir-based hydroelectric power production.
However, it is worth noting that this literature review will focus primarily on reservoir-
based hydroelectric power production. The study reviewed 23 different papers, ten of
which used machine learning for river-based hydroelectric power scheduling, and three of
which used machine learning to predict the inflow.

3.2.1 Reinforcement learning

Riemer-Sørensen and Rosenlund take a look at Deep Reinforcement Learning for Long
Term scheduling [35]. The challenge the article is looking at is deciding when to sell or
store water given the electricity price on a week-to-week basis. The reinforcement machine
learning is trained with real and synthetic data corresponding to 5700 years. The author’s
results shows that the reinforcement model ends up with a different schedule than the
classical optimization models, the author then concludes that this model can be a good
supplement to the traditional optimization tools, but not a replacement as of now. In this
article [36] reinforcement learning is used on a long-term hydropower schedule, the time
horizon is one year with the predicted value being water released on a daily timescale.
The released water goes into a river that contains multiple runs of river power plants and
provides water to irrigated agricultural areas. The author of this article concludes that
RL can be an alternative to mitigate the use of SDP.

3.2.2 Neural Network

Reference [37] looks into an artificial neural network(ANN) as a possible model to sub-
stitute for optimizing hydropower reservoir management. To train and test the ANN,
43 years of inflow data was used. The model predicted hatch release, and where com-
pared to a simulation model using stochastic dynamic programming (SDP). To evaluate
the results R2, RMS and RE are used. Haddad and Alimohanmmadi conclude that ANN
is a good substitution for the simulation model for this case. The ANN predicted very
close results to the simulation model. Reference [38] trained and tested an ANN with
41 years of monthly inflow data for one reservoir. The study aimed to estimate three
variables in reservoir management: monthly inflow, monthly evaporation, and monthly
storage. Two ANN methods were used to test this, the feed-forward backpropagation and
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the radial basis function. KILINÇ and CIǦIZOǦLU conclude that both methods provide
satisfactory estimations considering the plots and performance evaluation.

Reference [39] artificial neural network for predicting the reservoir level of cascaded reser-
voirs was looked at. The reservoir is supplying water to society, works as a flood stop,
and provides water to hydropower plants. The paper looks at three plants where the
ANN has been trained and tested with 29, 43, and 23 years of monthly historical data
for the different plants. The performance on training was 95%, 69%, and 98% while the
performance on the testing was 97%, 75%, and 97% for the respective plants. Abdulkadir,
Salami Sule, and Adeyemo conclude that the neural network has reliable results, and is a
very versatile forecasting tool in reservoir management modeling.

This study [40] looks at two multi-purpose reservoirs. The purposes looked at in this article
include irrigation, water supply, industries, and hydropower production with more. Two
ANN were trained and tested on 26 and 40 years of data respectively, they performed 95%
and 69% prediction rate on the training part, while the performance on the testing data
was 97% and 75% for the two ANN respectively. Abdulkadir, Sule, and Salami conclude
that the ANN is a very versatile toll in reservoir management modeling.

The paper [41] demonstrates how implicit stochastic optimization combined with deep
neural networks can be used to find optimal reservoir operating. The case study contained
two cascading reservoirs. The DNN was trained with a daily timescale with a total of 8299
days of inflow and price data. Concludes that the model is from an operational standpoint
computationally inexpensive, and may be utilized in combination with other technics.

3.2.3 Other approaches

The research goal of this study [42] is to propose a new approach to trend assessment. To
test the new approach the inflow data of 30 hydropower plants (HPPs) is used. The new
approach linear mowing window (LMW) took a fixed time of 30 years of the data, used
linear regression on this, for then to move the window one year. Concludes that LMW is
a more reliable technique than linear regression.

3.3 Conclution of literature review

In section 3.1 different hydropower scheduling technique using SDP, SDDP, and SFS was
described. From the section, it can be seen that the scheduling techniques evolved over
time to incorporate more details for multi-reservoir hydropower scheduling problems. As
far as the author of this thesis knows, the newest technique is Scenario fanning simulation.
This is further reinforced by the fact that SINTEF Energy included this technic in their
new market model. SINTEF energy created the EMPS model which is one of the models
used today. This implies that the SFS technique will be used for long-term hydropower
scheduling in the next years to come. The downside with SFS was that it can be a bit
time-consuming which might be solved by implementing machine learning. The state-of-
the-art hydropower scheduling technique and the one that will be looked at in this thesis
is the SFS technique.

Section 3.2 went through some of the machine learning models used in hydropower schedul-
ing. Here can it be seen that Naural Network and reinforced machine learning were two
of the most used machine learning technique for hydropower scheduling. Reinforcement
learning did not perform well in this field, but different types of Neural Networks did

16



produce promising results. Therefore a neural network model will be the best fit for this
master’s thesis. As far as the author of this master thesis knows has Long Short-term
memory Neural Networks not been used in hydropower scheduling, so this is, therefore,
the choice of the neural network model used in this thesis.

In the next chapter, the mathematical model based on the scenario fanning simulation
model will be presented, it will go into further detail for the different parameters and
variables of real-world equivalent.
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4 Mathematical model

In this chapter, the mathematical model is presented in section 4.1. Section 4.2 explains
how the parameters and variables are connected to a hydropower system. This section
also explains some of the simplifications used in this model, their reason, and how they are
predicted to impact the results. The model presented in this chapter is an SDDP model.
Section 4.3 explains how this model is further evolved into an SFS model by combining
optimization with simulation. In section 4.4 a summary of this chapter is presented.

4.1 Optimization model

To test how the machine learning model works well, a model for long-term hydropower
scheduling will be made as a base case for the performance of the machine learning
modes. The optimization model for long-term hydropower scheduling uses a combina-
tion of Benders Decomposition and scenario simulation. This is the state-of-the-art hy-
dropower scheduling technique shown in section 3.1, and will be shown in the following
sections. Benders decomposition splits the scenario into a first and second stage as ex-
plained in 2.2.

4.1.1 Notations

Sets first stage:
G = number of generators (27)

C = number of cuts (28)

F = number of resevoirs (29)

Index first stage:
g ∈ G (30)

c ∈ C (31)

f ∈ F (32)

First stage variables:
Pg = Production from generator g (33)

Sg = Spillage from the reservoir connected to generator g (34)

Bg = Bypass water connected to generator g (35)

L = Load shed (36)

Rg = Reservoir level in the reservoir connected to generator g (37)

Dg = Discharge water out of generator g (38)

Reg = Released water from the reservoir to the water tunnel going to generator g (39)

α = Penalty factor used in benders to consider the second stage (40)

Parameters first stage:

rMax
g = The upper limit for the reservoir level connected to generator g (41)
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pMax
g = The maximum production for generator g (42)

dMax
g = The maximum discharge from generator g (43)

iRg = The regulated inflow to the reservoir connected to generator g (44)

iUg = The unregulated inflow to the Watergate way connected to generator g (45)

rIntg = The initial level for the reservoir connected to generator g (46)

l = The load needed to be met (47)

conv = The conversion factor to convert m3to Mwh (48)

cut = Cuts generated from second stage (49)

cshed = The cost of load shedding (50)

cspil = The cost of spillage (51)

cby = The cost of bypassing water (52)

fg,f = Binary variable telling which generator obtains the discharge water from which reservoir
(53)

Sets second stage:
G = number of generators (54)

W = number of Weeks (55)

S = number of Scenarios (56)

F = number of reservoirs (57)

Index second stage:
g ∈ G (58)

w ∈ W (59)

s ∈ S (60)

f ∈ F (61)

Second stage variables:

Pw,g = Production in week w from generator g (62)

Sw,g = Spillage in week w from the reservoir connected to generator g (63)

Bw,g = Bypass water in week w connected to generator g (64)

Lw = Load shedding in week w (65)

Rw,g = Reservoir level in week w for the reservoir connected to generator g (66)

Dw,g = Discharge water in week w out of generator g (67)

Rew,g = Released water in week w from the reservoir to the water tunnel going to generator g
(68)

Parameters second stage:

rMax
g = The upper limit for the reservoir level connected to generator g (69)
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rMin = The lower limit for the aggregated system (70)

pMax
g = The maximum production for generator g (71)

pmin
g = The minimum production for generator g (72)

dMax
g = The maximum discharge from generator g (73)

iRw,g = The regulated inflow in week w to the reservoir connected to generator g (74)

iUw,g = The unregulated inflow in week w to the Watergate way connected to generator g
(75)

rIntg = The initial level for the reservoir connected to generator g (76)

lh = The load in week w (77)

conv = The conversion factor to convert m3to Mwh (78)

cut = Cuts generated from second stage (79)

cshed = The cost of load shedding (80)

cspil = The cost of spillage (81)

cby = The cost of bypassing water (82)

fg,f,w = Binary variable telling which generator obtains the discharge water from which reservoir
(83)

4.1.2 Mathematical model

min
∑
g∈G

cspil ∗ Sg + cby ∗Bg + cshed ∗ L+ α (84)

s.t
Rg ≤ rMax

g , g ∈ G (85)∑
g∈G

Rg ≥ rMin (86)

Pg ≤ pMax
g , g ∈ G (87)

Pg ≤ pMin
g , g ∈ G (88)

Dg ≤ dMax
g , g ∈ G (89)∑

g∈G
Pg + L = l (90)

rIntg − Sg −Reg + iRg + fg,fDg = Rg, g ∈ G, f ∈ F (91)

Reg −Bg + iUg = Dg, g ∈ G (92)

Dg ∗ conv = Pg, g ∈ G (93)

α ≥ cut (94)

min
∑
w∈W

∑
g∈G

cspil ∗ Sw,g + cby ∗Bw,g +
∑
w∈W

cshed ∗ Lw (95)
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s.t
Rw,g ≤ rMax

g , w ∈ W, g ∈ G (96)∑
g∈G

Rg ≥ rMin (97)

Pw,g ≤ pMax
g , w ∈ W, g ∈ G (98)

Pw,g ≤ pmin
g , w ∈ W, g ∈ G (99)

Dw,g ≤ dMax
g , w ∈ W, g ∈ G (100)∑

g∈G
Pw,g + Lw = l, w ∈ W (101)

Rw,g − Sw,g −Rew,g + iRw,g + fw,g,fDw,g = Rw,g, w ∈ W, g ∈ G (102)

Rew,g −Bw,g + iUw,g = Dw,g, w ∈ Wg ∈ G (103)

Dw,g ∗ conv = Pw,g, w ∈ Wg ∈ G (104)

4.2 System

This system only looks at the scheduling of a cascading hydropower plant. The scheduling
only looks at meeting the planned demand for the system. There is therefore no need to
look at other energy producers or transfer lines in the model. The system borders can be
seen in 4. The load inside the system borders is the load that the hydropower plant has
to meet in the scheduling. This demand can be demand needed inside the node, it can
also be the energy being transferred out of the system border, or it can be a combination
of this. Where the demand in the scheduling ends up does not impact how the scheduling
is being made in this case. For this system, the import of energy is not possible, this is
a conscious choice to lower the overall complexity of the system and will have minimal
impact on the results in this master’s thesis. If the load is not met, the model has to
compensate with loadsheading as seen in equation (90) and (101), which is penalized in
the objective value equation (84) and (95).

4.2.1 Reservoir

The system has physical limitations that have to be taken into consideration when making
the mathematical model, one of these limitations is the reservoir. The reservoir will usually
have an upper and lower water level limit. The upper limit will be set by the size of the
dam, it is usually set a bit under the height of the dam to avoid spillage. From equation
(85) and (96) combined with equation (91) and (102) it can be seen that the maximum
reservoir level is set to the absolute limit of the dam since the model obtains spillage
when rMax

g is reached. This is a simplification of a real-life system, but this simplification
significantly reduces the complexity of the problem, while not impacting the results of
this thesis. There are multiple factors that can set the lower limit of the system. How
much water the wildlife around and in the reservoir need is one of them, this is usually
set by governments when the hydropower plant gets permission to be built. Another is
what the geology looks like, if the reservoir has a lot of finer sediment on the floor of the
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Figure 4: system with system borders

reservoir, the intake gate will be higher to avoid getting too much of the sediment into
the plant. From equation (86) and (97) it can be seen that the lower limit of the reservoir
is aggregated in this case, this as recommended by the industry partner to get a more
realistic scheduling for the user case. The belief is that whether to aggregate this or not
will not impact the results of this research. The lower and upper limit of the reservoir can
be seen illustrated in figure 5

4.2.2 Water flow

The amount of water going into the hydropower plant is limited by the cross-section of
the water and discharge tunnel, which is usually built to transfer the same amount of
water, this can be seen in equation (89) and (100). In equation (92) and (103), it can be
seen that unregulated inflow is taken in, this is the water coming in through the swing
shaft. This water cannot be regulated, so the model has to schedule for bypassing water
to stabilize the amount of water needed for production. The reservoir is filled up with the
regulated inflow, and the discharged water from the generators is higher up in the system.
The reservoir is lowered by spillage and releases water into the water tunnels, and this can
be seen in equation (91) and(102). The objective function is a minimizing function, and
this tells the model to minimize the spillage, bypassed water, and load shed. The cost of
this differs from what the plant’s owner feels is most disturbing for the system, but the
load shed is usually the highest. In the first stage, there is also an α which represents the
cost found in the second stage. This allows the first stage to take the second stage into
consideration and plan the current week accordingly.

4.2.3 Production

From equation (87) and (98) it can be seen that the model has an upper limit for produc-
tion, this represents the physical limitations of the turbine and generator. This takes into
account how much power can be transferred out of the generator, and how much water the
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Figure 5: crossection of an dam

rotator can take for a given moment. This upper limit also has a safety factor to minimize
the damage to the system. The system has a minimum production to let the turbine spin
and generate power. However, this is usually not the lower limit of the production. The
lower limit of the production is often set from an economical point of view. The lower
limit for production is often set to where the efficiency of the system is tolerable. The
lower the efficiency of the system is the more water has to be spent producing the same
amount of energy, therefore the lower limit is often set where the owners of the system
feel comfortable with it from an economical point of view. The lower limit of the model
can be seen in equation (88) and (99).

4.3 Scenario fan simulator

Scenario fan simulator(SFS) was introduced in section 3.1, it is a combination of optim-
ization and simulation. The sections above have explained the optimization part of this
model, and the simulation part takes care of how the model stores results and when the
optimization is conducted. The inflow for the current week w is a known constant and the
optimization model is then used to find the optimal solution, and the optimal solution is
then stored and used to calculate the constant known inflow for next week w+1. This is
repeated until the SFS model has gone through all weeks in the system. This is illustrated
in 6 for a model with 52 weeks and n scenarios for the two first weeks
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Figure 6: This figure shows the logic of the SFS model for a model with 52 weeks total, n
scenarios total for the first two weeks.
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4.4 Conclusion Method

The mathematical model has been presented in this chapter, and the variables and para-
meters connections have been found in the system. Further, the SFS model has been
presented and explained how it was implemented. In the next chapter, a case study using
this model will be presented, data-gathering will be discussed, and the technique used to
create the machine-learning model will be discussed.
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5 Case study

To train and test a machine learning model is it essential to obtain data. This data
gathering requires a case study to have a basis for the data. The case study for this
master’s thesis is described in section 5.1. Further, the process to obtain a bigger dataset
than what industry partners can provide is given in section 5.2. The machine learning
models are used in this thesis that are discussed in section 5.3. Here, the evaluation
method used in this thesis is also described. This chapter ends with a summary in section
5.4

5.1 Description

To better test the performance of the machine learnings model against the optimization
model, a case study was created. The case study is a smaller version of another case study
from a PHD paper. In the original case study, 12 hydro power reservoirs, transformer lines,
wind production, and thermal power production were included. To test the performance
of the machine learning model, a smaller case focusing on three cascading hydropower
reservors was enough. From 7 it can be seen that reservoirs eight, nine, and ten, were
renamed zero, one, and two for this thesis.

Figure 7: Original hydropower case

The system has three cascading reservoirs with one generator connected to each reservoir.
The discharged water from the upper generators, generators one and two, flows into the
lower reservoir zero. From figure 8 the details for the flow of the system can be seen. The
reservoir is filled up with discharged water and regulated inflow water. If the reservoir is
full, any inflowing water will be spillage. The reservoir is then lowered by releasing water
into the water tunnel, unregulated inflow enters the water tunnel through the swinging
shaft and the excess water is tunneled away as bypassed water. The released water then
enters the generator and is discharged to the lower reservoir or the river.

The mathematical model presented in chapter 4 is a general model, in this chapter can
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Figure 8: diagram of the hydro power plant

the formulation be specified do to the information from the case study. From table 1 the
cost parameters used in the objective function can be found. Here, it can be seen that the
cost of load shedding is higher than spillage and bypass, this is to encourage the model to
always meet the load demand. The time horizon for the case study is one year with weekly
time steps. The parameter cost for maximum discharge, reservoir level, and production
is given in table 2. The case does not have any minimum discharge or production, but it
has a minimum reservoir level of 10% of maximum capacity. The initial reservoir level at
week zero is set to 65 % of the maximum reservoir level.

The data set for this case study was provided by an industrial partner, for a bigger case
study as mentioned above. Therefore it was necessary to scale the data somewhat to be
used in this data set. The load data was scaled to have a maximum of 140 MWh, the
scaling was conducted by dividing all the demand with maximum demand and multiplying
it by the new maximum load. With this approach, the trend of the load will be kept, while
the new dataset would better fit this case study. The inflow data was also modified, this
was increased by a factor of 15. All the data points were multiplied by 15, this was
conducted with both the unregulated and regulated inflow.

Cost
Load shedding 4500
Spillage 80
bypass 20

Table 1: Table containing the cost penalties used in the model

The capacity of the reservoir
(VMax)-Mm3

Maximum production of hydro-plant
(QMax) -VM

Maximum discharge
(PMax)−Mm3

Generator 0 15 50.0 125.3
Generator 1 30 12 24
Generator 2 47.3 30.3 28.5

Table 2: The table contains data for the reservoir size and maximum value for production
and discharge
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5.2 Synthetic data

Neural network is a good machine learning thickening, but it has one big downside, the
amount of data needed to train the models. This is often higher than the amount of
data that is possible to obtain, it is therefore not unusual to generate more data through
data synthesis. This data is often called synthetic or artificial data. The original dataset
was received from an industrial partner. This data set included typology, inflow, and
demand data for 50 years. The typology data contained which reservoirs were connected,
the efficiency rates, and the different limitations. The inflow data set included regulated
and unregulated inflow for every reservoir each week for 50 years. The demand data set
included load data for the area. This data is too small to thoroughly train and test the
ML, so synthetic data is needed to obtain valid results. The creation of the synthetic
dataset was based on the original dataset. To generate the synthetic data for this master’s
thesis, TimeGan is used to generate inflow data. Using TimeGan, the data set increased
from 50 years of data to 2557 years of data both for regulated and unregulated inflow.
The original setting for TimeGan was used to create the data.

5.3 Machine learning models

After going through the literature review, a Long short-term memory (LSTM) neural
network was chosen as the best fit to be tested for implementation into the LTHPS. This
ML technique was, as far as the author of this thesis knows, not tested in hydropower
scheduling. There have been multiple other neural network models used like artificial
neural networks and deep neural networks which have got promising results. This can
indicate that LSTM NN might give good results for this case study.

Six networks were made to ensure as good results as possible, one for each reservoir
predicting water value and one for each reservoir for predicting reservoir level.

The trends for the different reservoir levels were so different for each reservoir that multiple
networks were expected to get the best results. The data file was split into training and
testing data, with 1790 years corresponding to 70% of the data going to training and 767
corresponding to 30 % years going to testing. The input data for both the NN predicting
water value and reservoir level was inflow data. The key element of LSTM NN is that
it has memory. For the networks in this thesis, the last five predictions were stored in
memory.

To find the optimal hyperparameters for the LSTM NN, Bayesian optimization is used.
Baysion optimization had 10 iterations to work through. The bounds of the hyperpara-
meters can be seen in table 3. The bounds of the hyperparameters are found using trial
and error, the optimal solution was within these bounds throughout all the testing.

Number of neurons Number of layers Learning rate
Lower bound 8 1 1e-4
Upper bound 64 3 1e-1

Table 3: Tabel containing the bounds of the hyperparameters for the long short-term
memory natural network

The performance of the machine learning model is evaluated using Root mean square
error calculation. This evaluation does not always give a clear picture of the performance,
so two other machine learning models using linear regression were created to work as a
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baseline to compare the performance of the LSTM NN model. The two linear regression
machine learning model is ridge regression from the sklearn library and XGBRegression
from the xgboost library. The linear regression and neural network predict the model
using different technique, so embedding was also included to see if it could be utilized.
The embedding was not optimized in any way, so the models were included with equal
fractions.

5.4 Conclusion of Case study

In this chapter, the case study has been presented. Further, the method to generate
synthetic data to increase the data set has been discussed. The chapter ended with a
discussion on which machine learning models going to be used in this thesis and how it is
are going to be evaluated. In the next chapter, the results will be presented and discussed.
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6 Result and discusion

6.1 Hydro power production

In tabel 4 can the evaluation results for predicting the production of the different reservoirs
be seen. This shows the mean squar error (MSE), the mean average error (MAE), the
root mean squear error (RMSE) and the mean average prosentage error (MAPE) for the
four different machine learning technique, ridge, XBGRegressor, LSTM and Ensemble for
each reservoir. MAPE is presented as an prosentage, while the rest is decimal numbers
cut at six decimals.

MSE MAE RMSE %

Production
Reservoir 8

Ridge 30.953785 3.835969 5.563613 95.0501 %
XBGRegressor 36.756865 4.125552 6.062744 94.7886 %
LSTM 30.298562 3.809250 5.504413 94.7394 %
Ensemble 31.093137 3.857451 5.576122 94.9646 %

Production

Reservoir 9

Ridge 8.177210 1.194694 2.859582 68.3593 %
XBGRegressor 9.546925 1.281636 3.089810 74.9374 %
LSTM 7.926746 1.171228 2.815448 67.4889 %
Ensemble 8.165172 1.192929 2.857477 69.1512 %

Production
Reservoir 10

Ridge 17.611084 3.065050 4.196556 74.9060 %
XBGRegressor 20.912075 3.275638 4.572972 74.6512 %
LSTM 16.979026 3.021703 4.120561 75.0366 %
Ensemble 17.625071 3.068865 4.198222 74.8468 %

Table 4: The evaluation results for production prediction

Figure 9 - 11 is presented as grids of figures corresponding to the reservoir zero, one and
two. Each grid containing a figure showing one ML models predicted values against the
testing values. The same testing values is showed for each of the ML models. Figure 9
has the lowest value at around 40, and the highest value with around 90,figure 10 has the
highest value with around 25 and the lowest around 5 and figure 11 has the highest value
at around 14 and the lowest around 0.

Table 4 shows that reservoir zero outperformed both reservoirs one and two when using
the MAPE evaluation. However, reservoir zero is still performing inefficiently when jux-
taposed with the other reservoirs when utilizing the other evaluation techniques. This is
especially evident when using the MSE evaluation. A possible reason for this discrepancy
comes from the large variation of data points. Looking at Figure 9, the maximum value
reaches 90, which is exponentially higher when compared to Figures 10 and 11, where
the maximum value is shown to be around 25 and 14. The RMSE and MAE do to some
degree take this variation into consideration, but will not be as accurate when opposed to
the MAPE evaluation, which normalizes the values before evaluating them. This variation
will therefore not affect the MAPE evaluation, making the MAPE evaluation a preferable
evaluation technique used in this thesis.

When taking the normalized MAPE values into account, it can be seen that reservoir one
and two both produced significantly inferior results than reservoir zero did. Causation
can be a result of the shape of the data itself. This statement is further supported when
looking through Figures 10 and 11, where the data is shown to have a more discrete form
as opposed to the data shown in Figure 9. The fast-changing discrete data could be harder
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Figure 9: This figure shows a grid of the weekly production prediction for reservoir 0
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.
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Figure 10: This figure shows a grid of the weekly production prediction for reservoir 1
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.
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Figure 11: This figure shows a grid of the weekly production prediction for reservoir 2
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.
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to gather from the inflow data. The potential source of this data shape originates from the
downscale from the original dataset, illustrated in Figure 8. This downscale can remove
some of the essential input data needed for the machine learning models to perform well,
potentially producing less precise results.

Looking back at Table 4, the data shows that the LSTM model slightly outperformed the
other machine learning models on reservoir two, but was again slightly outperformed on
reservoirs zero and one. An explanation for this can be that to successfully trains a Neural
network, a huge amount of data is needed. The ridge and XBG both have an easier task
of finding patterns with less data than the LSTM does. However, the LSTM model might
do better to find lees occurring trends in the dataset. However, the LSTM model has a
higher chance to find less occurring trends in the dataset which is good because this will
stop the model from predicting infeasible solutions, and therefore be closer the testing
value.
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6.2 Water value

In tabel 5 can the evaluation results for predicting the production of the different reservoirs
be seen. This shows the mean squar error (MSE), the mean average error (MAE), the root
mean squear error (RMSE) and the mean average prosentage error (MAPE) for the four
different machine learning technique, ridge, XBGRegressor, LSTM and Ensemble for each
reservoir. MAPE is presented as an prosentage, while the rest is decimal numbers cut at
six decimals. Figure 12 - 14 is presented as grids of figures corresponding to the reservoir

MSE MAE RMSE MAPE

Ridge 15.675099 1.610445 3.959179 91.2398 %
XBGRegressor 18.746445 1.738796 4.329716 88.3843 %
LSTM 15.344949 1.603208 3.917263 91.9840 %

Water
value
Reservoir 8

Ensemble 15.756544 1.623405 3.969451 91.7508 %

Ridge 55.325032 2.926293 7.438080 91.8299 %
XBGRegressor 66.112236 3.200485 8.130943 88.6395 %
LSTM 175.800083 12.972585 13.258962 92.4058 %

Water
value

Reservoir 9 Ensemble 69.176923 6.245184 8.317267 92.4326 %

Ridge 125.011053 6.506435 11.180834 83.6771 %
XBGRegressor 144.243526 6.575063 12.010143 82.6121 %
LSTM 122.341946 6.557204 11.060829 83.6163 %

Water
value
Reservoir 10

Ensemble 124.463075 6.495852 11.156302 83.7656 %

Table 5: The evaluation results for water value prediction

zero, one and two. Each grid containing a figure showing one ML models predicted values
against the testing values. The same testing values are shown for each of the ML models.
Figure 12 has the lowest value at around 0, and the highest value with around 20,figure
13 has the highest value with around 30 and the lowest around 0 and figure 14 has the
highest value at around 40 and the lowest around 0.

The contents of Table 5 show overall good results from the prediction of the water value
in all of the reservoirs. When looking at the normalized MAPE, the best result was over
92%, with the lowest result reaching over 82%. In contrast, the lowest result from Table
4 was 67.4889%. The good results are likely affected by the shape of the data. The data
itself had only a small number of different values to predict, therefore making it easier to
recognize the pattern. We see this corroborated in Figure 12, where the water value is
around 20 for most of the year, this is an abnormal outcome where there machine learning
models find the pattern quite easy. Continuing with Table 5, one can see that the LSTM
model do outperform the other models when using the MAPE evaluation in reservoir zero,
however it is still being outperformed by the other two reservoirs when using the ensemble
method. This method might be a better fit when the data is shaped with the lower
variance, as seen in figure 12. Table 5 also shows that the MSE values are significantly
higher for the LSTM model than they were for the other reservoir one models, this might
come from the difference in how the LSTM model do prediction and the difference in how
MSE and MAPE evaluate the data.

Figure 13, shows the reader that the LSTM model uses 3-4 weeks longer than the other
models, to reach testing values after week 20, but follows the swinging pattern closer than
the other models do until then, this might be the reason that MSE and MAPE give vastly
different evaluation for the LSTM on one. None of the predicted values for all models can
follow the fast-changing values of the water value in Figures 12 to 14. Here, the Water

35



Figure 12: This figure shows a grid of the weekly water value prediction for reservoir 0
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.
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Figure 13: This figure shows a grid of the weekly water value prediction for reservoir 1
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.
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Figure 14: This figure shows a grid of the weekly water value prediction for reservoir 2
for one predicted year. The upper left figure shows the prediction conducted with Ridge
regression, the upper right shows the prediction conducted with XGBRegression, the lower
left showed the prediction conducted with LSTM and the lower right figure shows the
prediction conducted with the ensemble method.

value can go from 0 one week to 40 the following week. This might come as a result of
the case study not including all the data from every reservoir, and therefore the inflow
might not represent the complexity of upstream discharge filling the reservoirs. The LSTM
model is the only model that manages to not predict an infeasible solutions ero is sat as
the lowest the water value could reach. With this reasoning in mind, it could explain why
the LSTM model performed this well in the evaluation.
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MSE MAE RMSE MAPE

Ridge 0.057436 0.033883 0.239658 99.1032 %
XBGRegressor 0.129995 0.022040 0.360549 99.7977 %
LSTM 0.054181 0.018079 0.232769 99.8795 %

Reservoir
level
Reservoir 0

Ensemble 0.063442 0.021825 0.251876 99.6926 %

Ridge 0.097510 0.049436 0.312266 99.4907 %
XBGRegressor 0.164851 0.047933 0.406019 99.6911 %
LSTM 0.092811 0.036149 0.304649 99.8796 %

Reservoir
level

Reservoir 1 Ensemble 0.102188 0.040803 0.319668 99.8008 %

Ridge 27.602556 2.308737 5.253813 94.9581 %
XBGRegressor 32.816938 2.501367 5.728607 93.9402 %
LSTM 27.321315 2.191803 5.226980 95.3620 %

Reservoir
level
Reservoir 2

Ensemble 27.786565 2.281259 5.271296 95.1436 %

Table 6: The evaluation results for reservoir level prediction

6.3 Reservoir level

In tabel 6 can the evaluation results for predicting the production of the different reservoirs
be seen. This shows the mean squar error (MSE), the mean average error (MAE), the
root mean squear error (RMSE) and the mean average prosentage error (MAPE) for the
four different machine learning technique, ridge, XBGRegressor, LSTM and Ensemble for
each reservoir. MAPE is presented as an prosentage, while the rest is decimal numbers
cut at six decimals.

Figure 15 - 17 is presented as grids of figures corresponding to the reservoir zero, one
and two. Each grid contains a figure showing one ML models predicted values against
the testing values. The same testing values is showed for each of the ML models. Figure
15 has values around 15, figure 16 has the highest value with around 30 and the lowest
around 23 and figure 17 has the highest value at around 47,5 and the lowest around 30.

The prediction given of the reservoir level was fairly accurate with a normalized MAPE
between 93.9402 % to 99.8796 %, as can be seen in table 6. This is most likely a result of
the data shape, as the data here has a very low variation. The low variation is illustrated
in Figures 15 to 17. From the MAPE evaluation, In the same table, the LSTM model
performed slightly better than the other models in all reservoirs.

Reasons for this might be, as mentioned previously, the water value, and the fact that the
LSTM model does not predict infeasible values.

It has seen an overall trend that it is a hard stop for values at the reservoir’s upper limit.

This trend is consistent with the results of this case study l and will help with the LSTM
model, giving more precise answers, but the model will have to be retrained if some
conditions change, for an instant, the reservoir level being increased or decreased.
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Figure 15: This figure shows a grid of the weekly reservoir level prediction for reservoir
0 for one predicted year. The upper left figure shows the prediction conducted with
Ridge regression, the upper right shows the prediction conducted with XGBRegression,
the lower left shows the prediction conducted with LSTM and the lower right figure shows
the prediction conducted with the ensemble method.
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Figure 16: This figure shows a grid of the weekly reservoir level prediction for reservoir
1 for one predicted year. The upper left figure shows the prediction conducted with
Ridge regression, the upper right shows the prediction conducted with XGBRegression,
the lower left shows the prediction conducted with LSTM, and the lower right figure shows
the prediction conducted with the ensemble method.
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Figure 17: This figure shows a grid of the weekly reservoir level prediction for reservoir
2 for one predicted year. The upper left figure shows the prediction conducted with
Ridge regression, the upper right shows the prediction conducted with XGBRegression,
the lower left shows the prediction conducted with LSTM, and the lower right figure shows
the prediction conducted with the ensemble method.
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6.4 Computational time

The computational time is dependent of multiple factors with cuputaisinal power on the
hardware, if any other programs are running in the same hardware, heat in the room and
on the hardware as a few examples. Therfor is computational time presented here an
average of the last ten times the programs have been running.

The SFS model gather all the result in one go and use on average 11 652 sekonds or
around 3 hours 14 minutes to gather all the result with the original 50 scenarios. With
more scenarios will this computational time increase, but it might give a more detailed
results on the data. The machine learning models have been split into 9 separated codes
that might run in parallel or it can be run in a series. When the codes are run in a series
the average computational time is 34 seconds to gather the water level, reservoir level
and production production. When the programs are runn in parallel did it take a total
of 15 seconds to gather all the results. The optimization model generate the results in
series, therefore will the series computational time be used when comparing. The machine
learning model used a total 11618 second less then the optimization model, which is 99.7%
time reduction.

6.5 General source of the error

When conducting research, there is always a chance that error sources can impact the
results. Some of the potential errors concerning this research project have already been
discussed in the subsections above. The following subchapter will explore more potential
errors that could have impacted the research. The case study used for this master’s thesis
contains a smaller scope than the original case study but it still uses the same data set.
To take in this scope difference, we use an inflow factor and a maximum demand that has
been established to make the dataset fit better with this case study. This inflow factor
and demand is manually picked and might therefore give some extreme cases. In Figure
13, the reservoir level is the maximum reservoir level throughout all the weeks. This trend
continues for most of the testing years for all the reservoirs. This indicates that the inflow
factor was too big, so instead of planning when to store and release water, the scheduling
would instead always be at maximum capacity. This caused it to spill a lot of water. This
makes the case less realistic and the results from the reservoir level and water level less
reliable as definitive results for the performance of the machine learning models. This is
not believed to impact the result of how the LSTM model could predict the result since
it was on a theoretical basis, but after seeing the results is it believed to have given a
data shape that had a too simple pattern to predict, and therefore might have produced
unrealistically good results.

The dataset used for this master’s thesis included 50 years of data, to train a machine
learning model, especially for a Neural Network model a significant amount of data is
needed. In order to provide this, synthetic data was created. The synthetic data was
created by an machine learning model and is being treated as an black box in this master
thesis. It can therefore have made artificial data that didn’t fit this case study properly
and possibly impacted the results.

Since programming for this master thesis was done manually, human errors like misspelling
can take place and therefore temper with the results. To minimize this error’s ability to
affect the research, the code has been split up and tested separately, whenever this was
possible. The code used in this master thesis contains some premade userpacks imported
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and used. These userpacks might contain faults and not do as intended by the author of
this master thesis and are therefore a source of potential error in the research. To lower the
chance for these errors to impact the research, the imported userpacks have been looked
into before being used to ensure that they do as intended.
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7 Conclution

This master’s thesis presented an overview of hydropower scheduling and machine learning
through an extensive theory chapter, a literature review, an in-depth model presentation,
and a case study containing a hydropower plant with three cascading reservoirs. The
literature review gilded the state-of-the-art long-term hydropower scheduling technic and
a possible machine learning technic to test the optimization model against.

The case study used real-life data provided for a hydropower reservoir with 13 cascading
reservoirs. This dataset was originally provided for a bigger case study executed by a
Ph.D. Candidate, so it where modified with an inflow factor and a demand cap to fit
the smaller case study. The original data contained 50 years of data, but to have proper
training in the machine learning model were 2507 synthetic years created using TimeGan
to a total of 2557 years with data. The case study was conducted using four machine
learning technics: Ridge, XGB, LSTM, and Ensemble, where the two first was set as base
case models, while the last two would be looked at for performance.

The main results from the case study show that the machine learning models had a com-
putational time reduction of 99.7 %. The accuracy showed that base case models were
beaten in 7/9 of both the LSTM and ensemble models, while beaten with at least one
of them in 8/9 evaluations when looking at the MAPE evaluation technic. Prediction of
the production for reservoir zero where the one evaluation where neither the LSTM or
the ensemble model could outperform the base case models. The prediction for the power
production where also the one place where the machine learning models scored the lowest.
The LSTM model scored 94.7 %, 67.5%, and 75% with the MAPE evaluation. The power
production prediction is the one evaluation that will impact the conclusion most since this
seems to have the most realistic results. The ensemble model had some times it could
compete with the LSTM model, however, the LSTM model manage to outperform it most
of the time, so from these results might the LSTM model be better given this case study.

The LSTM model had a fantastic computational time reduction and performed best in
overall accuracy, however, it was outperformed once by the ridge model, and it had ac-
curacy scores as low as 67.5%. From the case study conducted in this thesis can it be
concluded that the LSTM machine-learning model can be a great supplement, but it is
not ready to substitute the optimization model used today.
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8 Future work

This chapter will discuss areas of this master’s thesis that can be expanded for further
work. Some of the areas are already mention under the result and discussion chapter of
this thesis

The dataset in this master thesis is not originally planed for the case study used. Therefore
was an inflow factor and a maximum demand put in to ensure that the data will be provided
could be used. In further work, it would be beneficial to research how machine learning
can be used in hydropower scheduling to include a case study that takes the whole dataset
unchanged to get more realistic results.

Hydropower is a flexible and reliable power source, but in many areas is there an energy
mix more unreliable and variable than simulated in this master’s thesis. Therefore might
further work a bigger case study containing multiple nodes connected through transmission
lines. Each node could contain a renewable power source and some load to better simulate
the energy mix in many areas. With this new case, can it be interesting to see if hydropower
scheduling using machine learning can stabilize the power grid.

As an extension of this case, pumping power can also be included as an extra stabilator
to the grid. Pumping power can utilize the power surplus from the power grid to fill the
reservoirs, and then provide that water when the renewables don’t provide as much power.

Machine learning models use much less time than the regular hydropower scheduling pro-
gram, as found out in this research, therefore might a test where the long time hydropower
schedule has more details be beneficial, this can for an instant, be a daily timestep for one
year and might make the seasonal schedule redundant if the research is successful.

Machine learning is timesaving compared to the optimization model, therefore, might
other machine learning models and technics be beneficial to have further research on. The
literature review conducted in this thesis has Neural Network potential to be used as a
replacement for the optimization model used today and might be beneficial to look into
in further research. The results from this master’s thesis also find an ensemble model to
be beneficial to look into, especially with a Neural Network as a part of the model.
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