
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Mats Jaer Nottveit
Håkon Anders Strømsodd

Automatic Music Transcription Using
Self-Supervised Learning

Combining Simple Siamese Representation
Learning and Automatic Music Transcription

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
June 2023

Mats Jaer Nottveit
Håkon Anders Strømsodd

Automatic Music Transcription Using
Self-Supervised Learning

Combining Simple Siamese Representation Learning
and Automatic Music Transcription

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Mats Jaer Nottveit and Håkon Anders Strømsodd

Automatic Music Transcription Using
Self-Supervised Learning
Combining Simple Siamese Representation Learning and
Automatic Music Transcription

Master’s Thesis in Computer Science, June 2023
Supervisor: Björn Gambäck

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Abstract
Automatic Music Transcription (AMT) is a technique that involves utilising an algorithm
to convert a musical recording into a musical notation format such as Musical Instrument
Digital Interface (MIDI) or sheet music. AMT systems with good performance can
provide value to musicians of all levels and can save considerable amounts of time when
a transcription is needed. However, AMT is a difficult task, even for humans, and
has only seen significant leaps in performance in the past five years (2018-2023). This
recent interest in AMT and the accompanying increase in state-of-the-art performance is
primarily attributed to the improved availability of training data and recent developments
in deep learning.

Current state-of-the-art AMT systems perform very well in single-instrument settings.
However, most of these models are limited to piano transcriptions since the available
datasets primarily consist of piano performances. Training data containing multiple
instruments is still severely limited, which negatively impacts the performance of multi-
instrument AMT models. Current state-of-the-art multi-instrument transcription models
perform around 20% worse on multi-instrument datasets than on single-instrument
datasets. This supports the observation that the lack of multi-instrument training data
is still the biggest roadblock for further improvement of multi-instrument AMT models.

To address this lack of data, this thesis aimed to investigate the use of self-supervised
learning with AMT and observe how this affects the performance of the transcription
model. In the experiments conducted in this thesis, the Simple Siamese representation
learning algorithm was used to enable pre-training on unlabelled data. Unlike any
previous related work, this method allows for the use of datasets containing only audio
in addition to traditional AMT datasets, thereby expanding the range of usable training
data.

The experiments carried out in this thesis investigate different ways of combining the
Simple Siamese learning algorithm with the existing Onsets and Frames AMT model. The
majority of these experiments performed on average worse when compared to traditional
AMT models not utilising the Simple Siamese training algorithm. The best model
from the experiments achieved multi-instrument performance metrics 2.5% lower than
state-of-the-art models. While some experiments proved that the pre-trained model
was able to learn some musical features, it was not enough to enhance transcription
performance. These results point to the conclusion that combining the Simple Siamese
training algorithm with the Onsets and Frames architecture does not contribute to a
positive increase in performance.

All transcription models from the experiments were trained on the Slakh2100 dataset,
while the MTG-Jamendo (MTG-J) dataset containing only audio recordings was utilised
during pre-training. An open-source PyTorch data loader specifically for use with the
MTG-J dataset was created, enabling fast and easy loading of audio. Additionally, this
data loader provided parallelisation during loading and is capable of speeding up loading
times during training by a factor of 10.

i

Sammendrag
Automatisk Musikktranskripsjon (AMT) er en teknikk som innebærer å bruke en algoritme
til å konvertere et lydopptak til et musikknotasjonsformat som for eksempel MIDI eller
noter. AMT-systemer med god ytelse kan være til nytte for musikere på alle nivåer og kan
være svært tidsbesparende dersom en transkripsjon av et musikkstykke er nødvendig. AMT
er imidlertid ansett som en svært vanskelig oppgave, selv for mennesker, og ordentlige
fremskritt innen feltet har kun skjedd de siste fem årene (2018-2023). Denne nylig økte
interessen for AMT og de tilhørende fremskrittene i ytelsen til de toppmoderne AMT-
systemene skyldes hovedsakelig økt tilgjengelighet av treningsdata samt nylig utvikling
innenfor dyp læring.

De nåværende toppmoderne AMT-systemene viser svært gode resultater i enkeltinstru-
mentstranskripsjon. De fleste av disse modellene er imidlertid begrenset til pianotran-
skripsjon, ettersom store deler av den tilgjengelige treningsdataen kun inneholder piano.
Treningsdata som inneholder flere enn ett instrument er fortsatt veldig begrenset, noe
som negativt påvirker ytelsen til AMT-systemene for flerinstrumentstranskripsjon. De
nåværende toppmoderne AMT-systemene for flerinstrumentstranskripsjon viser om lag
20% dårligere resultater på datasett med flere instrumenter enn på datasett med kun
ett instrument. Dette støtter påstanden om at mangelen på treningsdata fortsatt er den
største hindringen for ytterligere forbedring av flerinstrumentstranskripsjon.

For å takle denne mangelen på data, hadde denne masteroppgaven som mål å undersøke
bruk av selvstyrte læringsalgoritmer sammen med AMT for å observere hvordan dette
påvirker ytelsen til en transkripsjonsmodell. Under eksperimentene som ble gjennomført i
denne masteroppgaven ble SimSiam-algoritmen brukt til å muliggjøre trening på umerket
data. I motsetning til tidligere arbeid innenfor AMT tillater denne treningsmetoden
bruk av umerket data (data som kun inneholder lydopptak) i tillegg til tradisjonelle
AMT-datasett. Dette utvider dermed utvalget av tilgjengelig treningsdata.

Eksperimentene gjennomført i denne masteroppgaven undersøker ulike måter man
kan kombinere SimSiam-algoritmen med den eksisterende AMT-modellen «Onsets and
Frames». De fleste av disse eksperimentene resulterte i gjennomsnittlig dårligere ytelse
enn tradisjonelle AMT-modeller som ikke benytter seg av SimSiam-algoritmen. Den
beste modellen fra eksperimentene oppnådde om lag 2,5% dårligere resultater enn de
toppmoderne systemene. Selv om noen av eksperimentene beviste at den forhåndstrente
modellen greide å lære visse musikalske trekk, var ikke dette tilstrekkelig til å øke ytelsen
til modellen. Dette peker mot konklusjonen om å kombinere SimSiam-algoritmen med
den eksisterende «Onsets and Frames»-modellen ikke bidrar til økt ytelse.

Alle transkripsjonsmodellene fra disse eksperimentene ble trent på Slakh2100-datasettet
samt MTG-Jamendo-datasettet (MTG-J) der sistnevnte kun inneholder lydklipp. Under
arbeidet ble en PyTorch-datainnlaster med åpen kildekode utviklet, spesifikt for lasting
av MTG-J-datasettet. Denne datainnlasteren gjør at data kan hentes raskt og enkelt
under trening og sørger for at parallellisering kan utnyttes. Sistnevnte medfører at
innlastingstidene under trening reduseres med en faktor på 10.

ii

Preface
This Master’s Thesis was written as a collaborative project in Computer Science at the
Norwegian University of Science and Technology (NTNU) during the spring semester
of 2023. The work was conducted at the Department of Computer Science and was
supervised by Professor Björn Gambäck. It is based on our preliminary report Automatic
Music Transcription Using Deep Learning (Nottveit and Strømsodd, 2022), written during
the fall semester of 2022.

First, special thanks go to our supervisor Professor Björn Gambäck for providing
excellent guidance, support, and expertise throughout the work and for allowing us to
explore the intersection of music and machine learning.

Additionally, we would like to thank Henrik Grønbech for initiating research into AMT
at NTNU in his Master’s thesis and for allowing us to reuse his implementation of the
extended Onsets and Frames architecture. This allowed us to focus our attention on
the self-supervised system and its incorporation into the extended Onsets and Frames
architecture.

We are grateful to the IDUN HPC group at NTNU for providing us with the hardware
necessary to investigate the combination of self-supervised learning and AMT (Själander
et al., 2019).

Finally, we would like to extend our thanks to our friends, family and fellow students.
Their support, engagement, and insightful discussions have been invaluable.

Mats Jaer Nottveit and Håkon Anders Strømsodd
Trondheim, 1st June 2023

iii

Contents

Abstract i

Sammendrag ii

Preface iii

List of Figures x

List of Tables xi

Acronyms xiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goal and Research Questions . 2
1.3 Research Method . 3
1.4 Contributions . 4
1.5 Thesis Structure . 5

2 Background and Theory 7
2.1 Automatic Music Transcription . 7
2.2 AI and Machine Learning . 8

2.2.1 Self-Supervised Learning . 8
2.2.2 Deep Learning . 9
2.2.3 Transposed Convolution . 11
2.2.4 Residual Neural Network . 11
2.2.5 Siamese Neural Networks . 12
2.2.6 Pre-Training . 12
2.2.7 Image Augmentations . 13

2.3 Music Theory . 13
2.4 Fourier Transform . 14
2.5 Audio Representation . 14

2.5.1 Staff Notation . 14
2.5.2 Waveform . 15
2.5.3 Spectrograms . 15

v

Contents

2.5.4 MIDI . 16
2.6 Evaluation . 17

2.6.1 Precision . 17
2.6.2 Recall . 18
2.6.3 F1 Score . 18

3 Datasets 19
3.1 MAPS . 19
3.2 MAESTRO . 19
3.3 GiantMIDI-Piano . 19
3.4 Million Song Dataset . 20
3.5 MusicNet . 20
3.6 Lakh . 20
3.7 Slakh2100 . 20
3.8 Cerberus4 . 21
3.9 URMP . 21
3.10 GuitarSet . 21
3.11 MTG-Jamendo . 21
3.12 MNIST . 21

4 Related Work 23
4.1 Preliminary Approaches . 23
4.2 Onsets and Frames . 24
4.3 MT3 . 26
4.4 NoteEM . 28
4.5 Comparison . 30
4.6 Self-Supervised Pre-Training . 31

4.6.1 Simple Siamese Representation Learning 31
4.6.2 BYOL Representation Learning . 31

5 Architecture 33
5.1 Pre-Processing . 34
5.2 Self-Supervised System . 35

5.2.1 Data Augmentations . 36
5.2.2 Encoder Architectures . 37

5.3 Fully Supervised System . 38
5.4 Post-Processing . 41

6 Experiments and Results 43
6.1 Experimental Plan . 43

6.1.1 Baseline Experiments . 43
6.1.2 Experiments on Input Replacement 44
6.1.3 Experiments on Concatenation . 45
6.1.4 Experiments on Augmentation Selection Mode 46

vi

Contents

6.1.5 Experiments on Size of Unlabelled Dataset 46
6.2 Experimental Setup . 47

6.2.1 Datasets . 47
6.2.2 Third-Party Libraries . 47
6.2.3 Spectrogram Generation . 47
6.2.4 Network Parameters . 48
6.2.5 Hardware . 49

6.3 Experimental Results . 49
6.3.1 Experiment 0: Simple Siamese Verification 50
6.3.2 Experiment 1: Onsets and Frames Baseline 50
6.3.3 Experiment 2: Input Replacement 51
6.3.4 Experiment 3: Early Concatenation 51
6.3.5 Experiment 4: Late Concatenation 52
6.3.6 Experiment 5: Augmentation Selection Mode 52
6.3.7 Experiment 6: More Unlabelled Data 52

7 Evaluation and Discussion 53
7.1 Evaluation . 53
7.2 Discussion . 59

7.2.1 Discussion of Results . 59
7.2.2 Discussion of Architecture . 61
7.2.3 Discussion of Data . 63

8 Conclusion and Future Work 65
8.1 Conclusion . 65
8.2 Future Work . 67

Bibliography 69

A List of Third-Party Python Libraries 73

B Detailed Projector Architectures 75

C Individual Results from Repeated Runs 79

D F1 Score Plots for Remaining Experiments 81

E Example Transcriptions of Validation Data 83

vii

List of Figures

2.1 Multilayer perceptron . 10
2.2 LSTM unit . 10
2.3 Transposed convolutional layer . 11
2.4 Comparison of a CNN and a residual neural network 12
2.5 Staff notation . 15
2.6 Example spectrogram . 16
2.7 Piano roll . 17

4.1 Original Onsets and Frames architecture 25
4.2 Extended Onsets and Frames architecture 27
4.3 U-Net architecture . 28
4.4 NoteEM training algorithm . 29

5.1 Overall architecture of the system . 33
5.2 Simple Siamese training algorithm . 35
5.3 Onsets and Frames architecture with sub-network 39
5.4 Sub-networks present in the modified Onsets and Frames model 40
5.5 Onsets and Frames architecture for the late concatenation approach . . . 41
5.6 Model predictions and resulting MIDI after post-processing 42

7.1 Experiment 1b example predictions . 54
7.2 F1 scores for experiment 1b and 1c . 54
7.3 Experiment 2d and 2e example predictions 55
7.4 F1 scores for experiment 2c, 3a and 3b . 56
7.5 F1 scores for experiment 4a and 4b . 57

D.1 F1 scores for experiment 2b and 2d . 81
D.2 F1 scores for experiment 5a and 5b . 81
D.3 F1 scores for experiment 6a and 6b . 82

E.1 Transcribed validation spectrograms for experiment 1b 83
E.2 Transcribed validation spectrograms for experiment 1c 84
E.3 Transcribed validation spectrograms for experiment 2a 85
E.4 Transcribed validation spectrograms for experiment 2b 85
E.5 Transcribed validation spectrograms for experiment 2c 86
E.6 Transcribed validation spectrograms for experiment 2d 86

ix

List of Figures

E.7 Transcribed validation spectrograms for experiment 2e 87
E.8 Transcribed validation spectrograms for experiment 3a 87
E.9 Transcribed validation spectrograms for experiment 3b 88
E.10 Transcribed validation spectrograms for experiment 4a 88
E.11 Transcribed validation spectrograms for experiment 4b 89
E.12 Transcribed validation spectrograms for experiment 5a 90
E.13 Transcribed validation spectrograms for experiment 5b 91
E.14 Transcribed validation spectrograms for experiment 6a 92
E.15 Transcribed validation spectrograms for experiment 6b 93

x

List of Tables

4.1 Comparison between different state-of-the-art AMT models 30

5.1 Probabilities in Augmentation Selection Algorithm B 37

6.1 Parameters for mel-scaled spectrogram calculation 48
6.2 Parameters for the neural networks . 49
6.3 Results from experiment 0 . 50
6.4 Results from experiment 1 and 2 . 50
6.5 Rerun experiments and their equivalents in Grønbech 51
6.6 Results from experiments 3, 4 and 5 . 51
6.7 Averaged results from repeated runs . 52

A.1 List of third-party Python libraries . 73

B.1 Projector in Encoder Architecture 1 . 75
B.2 Projector in Encoder Architecture 2 . 76
B.3 Projector in Encoder Architecture 3 . 77

C.1 Results from individual reruns of experiment 1c 79
C.2 Results from individual reruns of experiment 5b 79
C.3 Results from individual reruns of experiment 6a 80
C.4 Results from individual reruns of experiment 6b 80

xi

Acronyms
ADSR Attack Decay Sustain Release.

AI Artificial Intelligence.

AMT Automatic Music Transcription.

BiLSTM Bidirectional Long Short-Term Memory.

BYOL Bootstrap Your Own Latent.

CNN Convolutional Neural Network.

DAW Digital Audio Workstation.

DFT Discrete Fourier Transform.

EM Expectation Maximisation.

F0 Fundamental Frequency.

FFT Fast Fourier Transform.

GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

LSTM Long Short-Term Memory.

MIDI Musical Instrument Digital Interface.

MIR Music Information Retrieval.

MLP Multilayer Perceptron.

MTG-J MTG-Jamendo.

NMF Non-Negative Matrix Factorisation.

NN Neural Network.

xiii

Acronyms

RNN Recurrent Neural Network.

SimSiam Simple Siamese Representation Learning.

SOTA state-of-the-art.

STFT Short-Time Fourier Transform.

xiv

1. Introduction
Automatic Music Transcription (AMT) is a technique that involves utilising an algorithm
to create a symbolic representation of a musical composition through an audio recording
of a performance. In essence, we want to create a system that is able to generate sheet
music or some other musical notation format given an audio recording. AMT systems
with good accuracy would greatly impact productivity for musicians worldwide, especially
for composers and teachers.

The field of AMT has been researched for decades. Starting in the late 70s, the
first AMT system was developed, which was a somewhat capable AMT system at the
time. The model was, however, limited to monophonic recordings, meaning it could not
transcribe multiple notes playing simultaneously. Developments in Artificial Intelligence
(AI) and deep learning, as well as the release of AMT-applicable training data, have
paved the way for the current state-of-the-art (SOTA) solutions within the field.

Though recent years have seen the release of labelled AMT training data, the main
roadblock preventing further advancements is the lack of high-quality labelled training
data for multi-instrument AMT. The main goal of this report is to explore the use of self-
supervised pre-training for AMT in order to mitigate this data shortage. Self-supervised
learning is a relatively new field of machine learning, seeing advancements, especially in
later years with the release of Siamese representation learning methods. These methods
allow the use of unlabelled data during pre-training. In an AMT setting, this means
datasets containing only audio, which are more abundant and easier to come by than
traditional labelled AMT datasets.

This section will first present the motivation for the research carried out in this thesis
before formulating a main research goal and accompanying research questions. The
research questions are designed to structure the work such that answering each research
question ultimately contributes to fulfilling the main goal. Then, the research method is
presented, followed by the noteworthy contributions provided by this thesis. Finally, the
general structure of the thesis is presented.

1.1. Background and Motivation

Leading up to the work done in this thesis, a preliminary report was written by the same
authors. The report investigated the related work in SOTA AMT and tried to identify
the most critical obstacles preventing further advancements. It also investigated how
self-supervised learning can be used with AMT to enable the use of training data not
directly applicable to current SOTA methods. The results identified in the report formed
the foundation for the motivation of this thesis, presented below.

1

1. Introduction

While general-purpose multi-instrument AMT systems have not yet reached the level
required for public use, their eventual benefits are countless, and use cases span a wide
range of applications. Such a system would be capable of generating transcriptions for
musical pieces without available transcriptions and could even transcribe improvised
performances. Additionally, when rearranging or reharmonising a piece, a transcription
is often needed. In this case, an automatically generated transcription could save hours
or even days of work for a musician, depending on their skill level and the length and
complexity of the composition.

Even though research on AMT has been carried out for decades already, it remains a
difficult task for computers. The field has seen great advancements in single-instrument
transcription due to developments in deep learning as well as the release of large datasets
containing piano performances and transcriptions. However, current SOTA solutions still
struggle with generalising to multi-instrument music transcription. One major reason for
the lack of progress in this branch of AMT is the low amount of training data available.
As all modern approaches rely on some kind of machine learning algorithm, large amounts
of training data are needed to train an effective AMT system. However, there is a lack
of datasets for AMT, especially datasets containing recordings of multiple instruments.
Therefore, current SOTA models are largely limited to piano transcription rather than
multi-instrument transcription.

Some types of self-supervised learning allow for additional training, usually pre-training,
on typically unusable training data. This could, for instance, be methods taking advantage
of datasets containing only MIDI or only audio to improve the performance of the final
AMT model. The preliminary report identified that although some SOTA solutions
have utilised self-supervised learning, they have not yet utilised it in a way that enables
the use of unlabelled data. Investigations into such methods open up the possibility of
using datasets containing only audio or MIDI, which are far more accessible than current
multi-instrument AMT datasets.

1.2. Goal and Research Questions

Due to the massive lack of high-quality labelled training data available for multi-
instrument AMT, this thesis aims to investigate if self-supervised learning can be
employed in AMT to mitigate this data shortage. To clearly describe the purpose
of this investigation, the following goal is defined:

Goal Examine if self-supervised pre-training can be used to increase the performance of
AMT models.

To facilitate the research and experimentation used to reach this goal, several research
questions are formulated to divide and structure the work contributing to the overall
goal:

2

1.3. Research Method

Research Question 1 How does the use of a pre-trained encoder, used to replace the
input to the transcriber network affect the performance of an AMT model?

This research question will be answered by replacing the transcriber’s input with an
encoding and observing the effect this has on the performance of the model. Different
encoder sizes are also tested to understand the possible advantages and limitations of
this method.

Research Question 2 How does the use of a pre-trained encoder, used to supplement
the input to the transcriber network affect the performance of an AMT model?

This research question is closely related to research question 1, but instead of examining
the effect of replacing the input to the transcriber model, we will examine the effect of
injecting an encoded spectrogram into the transcriber model. Tests for injecting the
encoded spectrograms at different locations in the model are also performed to discover
how this affects transcription performance.

Research Question 3 How do different modes of selecting data augmentations affect
the performance of an AMT model?

This research question investigates how changing the augmentation selection algorithm
affects the performance of the model. To test this, an encoder is pre-trained using a
different augmentation selection scheme, after which a transcriber is trained using this
encoder.

Research Question 4 How does the amount of unlabelled data affect the results of
the AMT model?

This research question will be answered by pre-training two encoder models on different
amounts of unlabelled data and comparing the results between two transcriber models
utilising these encoders.

1.3. Research Method

Initially, a structured literature review was conducted. To gather as much information as
possible on AMT and the current SOTA models, a snowballing-approach was utilised.
Here, related work cited in each paper is investigated further, which in turn leads to
additional potentially relevant articles. This literature review ultimately resulted in the
related work presented in Chapter 4 and the datasets presented in Chapter 3.

Before implementation of the model could commence, a substantial amount of planning
was conducted to decide the specific topic of research and what type of data was available
for use, depending on the final architecture. This investigation indicated it would be
beneficial to use self-supervised learning to solve the limitations of the amount of labelled
data. Additionally, a decision had to be made on the specific type of self-supervised

3

1. Introduction

learning algorithm to utilise. To help make a decision on which algorithm to choose,
additional research, specifically in the field of self-supervised learning, was conducted in
order to find a method that was possible to implement during the limited time available
but still had the potential to provide valuable results.

In order to make good use of the time available, a week-by-week plan for the entire
thesis was first created. This schedule contained information about when specific tasks
were the main focus and at what point they were planned for completion. The plan was
also continuously updated to account for unforeseen factors during initial planning.

1.4. Contributions
Through the experiments conducted in this thesis and the theory and architecture
presented in Chapters 2 and 5, several contributions that could provide value to further
research on AMT are identified and summarised as follows:

• A thorough investigation into different ways of pre-training audio encoders using
the Simple Siamese Representation Learning (SimSiam) training algorithm and
the combination of these methods with an existing SOTA AMT architecture to
discover how this affects the performance of the AMT model.

• An open-source implementation of the SimSiam training algorithm and a pre-
training system with spectrogram augmentations able to train on unlabelled audio
data. This system is integrated into an existing AMT implementation, providing a
complete pipeline containing both training steps.

• An open-source PyTorch data loader designed specifically for the MTG-Jamendo
(MTG-J) dataset. This data loader automatically generates spectrograms from
the audio in the dataset and is capable of parallelising this task during training,
resulting in loading times between batches being reduced by an order of magnitude.

• Recommendations for future work within the field, both specifically using self-
supervised learning for AMT and for the field of AMT as a whole.

• A comprehensive overview of the current and previous SOTA solutions in AMT as
well as a presentation of the necessary background theory needed to understand
the concepts referenced throughout this thesis.

• A presentation of related work on self-supervised Siamese representation learning
and augmentation techniques commonly utilised by these training algorithms.

4

1.5. Thesis Structure

1.5. Thesis Structure
1. Chapter 2 presents the necessary background theory for the concepts described

in the following sections. It covers the fields of AMT and AI and gives a brief
introduction to music theory and different ways of representing audio.

2. Chapter 3 presents the different datasets referenced throughout this report and
what kinds of data they consist of.

3. Chapter 4 covers the related work in the field, including both preliminary approaches
to AMT and modern SOTA solutions relying on deep learning. It also provides
an overview of SOTA AMT models and how they differ from one another in both
architecture and performance. Lastly, this chapter also presents related work on
Siamese representation learning.

4. Chapter 5 presents the architecture utilised in this thesis. It covers the four main
parts of the system, the pre-processing step, the self-supervised system, the fully
supervised system and the post-processor. This chapter also details how these four
systems are combined and describe the different encoder architectures utilised in
the experiments.

5. Chapter 6 presents the experimental plan, detailing each experiment and their
purpose, the experimental setup, covering details about third-party libraries, sys-
tem hyperparameters and hardware, and finally, the results from running these
experiments.

6. Chapter 7 evaluates and discusses the results presented in Chapter 6, comparing
the results with the baseline experiments and the related work.

7. Chapter 8 gives some final thoughts on the results and contributions provided by
this thesis and presents recommendations for future work on AMT.

5

2. Background and Theory
This section will present the background and theory necessary for understanding concepts
covered in the later parts of the thesis. First, AMT concepts are covered before presenting
the field of AI and music theory. Finally, different audio representations and the evaluation
criteria utilised in the experiments are presented. Sections 2.1 through 2.6 are based on
Nottveit and Strømsodd (2022) with several additions and minor modifications.

2.1. Automatic Music Transcription
AMT is the process of automatically transforming acoustic signals into some form of
musical notation (Benetos et al., 2013). Musical notation can range from Musical
Instrument Digital Interface (MIDI) to staff notation. AMT can be used by musicians to
make scores over improvised recordings to reproduce the performances. Another use is
to get scores for pieces that do not have one or one that is not easily accessible.

AMT systems can get quite complex and are therefore divided into sub-tasks. The main
sub-tasks are multi-pitch detection and note tracking. Multi-pitch detection determines
which pitches are being played, and note tracking determines the start and end of a note.
Other sub-tasks include recognising different instruments and which instruments play
which notes, as well as determining the rhythm of a song. Benetos et al. (2019) separate
operations in AMT into four levels:

• Frame-Level Transcription estimates the pitches within a frame. A frame is a
specific slice of an audio recording spanning a small time frame (usually around
10ms), meaning one second of audio could, for instance, be divided into 100 frames.
Each frame is usually analysed separately. However, in some cases, contextual
information, such as neighbouring frames, is also included in the analysis.

• Note-Level Transcription tracks which notes are being played and when they
are being played. The note-level transcription connects pitch estimations over time.
In addition to the pitch, it also tracks a note’s start and end. However, it is often
difficult to track the end of a note, as a clear endpoint is often not present or can
be ambiguous.

• Stream-Level Transcription groups notes into streams, where each stream is
typically one instrument. The most common method of distinguishing which notes
belong to each instrument is to take advantage of the fact that different instruments
produce different sounds even when playing the same pitch. This concept is known
as timbre.

7

2. Background and Theory

• Notation-Level Transcription is the conversion of music into a human-readable
format, typically staff notation. As concepts like the tempo, beat, time signature
and key are unknown, notation-level transcription aims to quantify these unknown
variables. Knowing these variables, it is possible to create human-readable music
notation, such as staff notation.

2.2. AI and Machine Learning

All AMT models make use of AI methods to function. Today, most solutions utilise
machine learning, a sub-field of AI. Machine learning algorithms train AI models to
solve specific tasks. There are numerous machine learning models, such as decision trees,
simple regression analysis or Neural Networks (NNs), each capable of solving different
problems. Machine learning algorithms are usually placed into one of the following
categories depending on how the model is trained.

• Supervised Learning algorithms rely on labelled data for training. The data used
for these approaches are usually organised as pairs of observations and targets, i.e.,
the model’s input and the desired output. AMT models are typically created using
supervised learning algorithms, as most datasets provide both musical recordings
(model input) and MIDI transcription (desired model output).

• Unsupervised Learning algorithms, in contrast to supervised learning algorithms,
do not need target values in their training data. The models produced by these
algorithms are typically used to find structure in data, for example, by grouping
data on similarities. Clustering algorithms are typical examples of models that use
unsupervised learning.

• Reinforcement Learning algorithms are learning algorithms that learn through
exploring an environment by making actions. Training then occurs when the
model is given feedback on which actions were good or bad, depending on the
system’s overall goal. Reinforcement learning algorithms are typically used to
create autonomous agents such as robots or vehicles.

2.2.1. Self-Supervised Learning

In addition to the three main paradigms of machine learning algorithms, some additional
learning methods exist. Self-supervised learning uses a combination of unsupervised and
supervised learning. This could, for instance, be achieved by performing unsupervised pre-
training on a model and then later training it through a supervised training algorithm.
This can sometimes help alleviate problems with low amounts of labelled data for
classification tasks.

8

2.2. AI and Machine Learning

2.2.2. Deep Learning

Neural networks constitute the entire sub-field of Deep Learning and have seen a significant
increase in popularity during the last ten years, mainly due to the use and increased
availability of Graphics Processing Units (GPUs) for training neural networks. The
architecture of neural networks is based on the neurons and synapses in real biological
brains and how these cells communicate. Countless deep learning architectures exist,
each suited for different kinds of tasks. The most basic yet widespread type of deep
learning architecture is the Multilayer Perceptron (MLP) and excels at a wide range of
tasks. For processing visual data, Convolutional Neural Networks (CNNs) are commonly
used, as they are especially good at extracting visual features from images. The AMT
field has had recent success with Recurrent Neural Networks (RNNs), deep learning
models suitable for time-series or temporal data, where data’s order of appearance carries
information. Different types of deep learning architectures can also be combined to
produce networks with processing capabilities from multiple domains.

• MLP, often referred to as a fully connected neural network, is a network where each
neuron (perceptron) is connected to all neurons in the following layer. Figure 2.1
illustrates how neurons are connected in an MLP.

• CNN is a type of neural network architecture that utilise convolutional kernels
to extract visual features from data (O’Shea and Nash, 2015). The convolutional
kernel is a matrix of weights, making up a filter, which can be passed over the
input data, such as an image. The weights in the matrix are then used to create a
weighted sum of each corresponding pixel in the image. Different configurations of
weights in the kernel filter allow for the extraction of different types of features in an
image, such as edge detection or blurred or sharper parts of an image. Additionally,
convolutional layers are effective ways of reducing the size of an image, and their
parameters can be adjusted to output specific sizes depending on their input image.

• RNN is another type of neural network architecture utilising recurrent connections
to extract temporal data. The recurrent connections produce an effective cycle in
the information flow through the network, as parts of the output from an RNN
layer are passed as input to itself when the network processes subsequent data
points. A widespread implementation of RNNs is the Long Short-Term Memory
(LSTM) unit by Hochreiter and Schmidhuber (1997), illustrated in Figure 2.2. The
LSTM unit has an internal state, making it possible to process data differently
depending on the data the unit has already processed. A variant of the LSTM unit
is the Bidirectional Long Short-Term Memory (BiLSTM) unit, which consists of
two LSTM layers processing data in opposite directions. One processes data from
left to right, while the other processes data from right to left. In AMT, this would
give the network access to the audio both preceding and succeeding a particular
point in time.

9

2. Background and Theory

Input Layer Hidden Layers Output Layer

Figure 2.1.: Illustration of an MLP, and how each perceptron is connected to all per-
ceptrons in the previous and following layers.

Figure 2.2.: The LSTM unit receives two extra inputs in addition to the output from
the upstream layer (xt): the hidden state ht-1 and the cell state ct-1 from
running the previous data point through the LSTM layer. The cell outputs
its new hidden state ht and the new cell state ct. Reprint of Figure 1 from
ArunKumar et al. (2022) under CC BY 4.0 license.

10

2.2. AI and Machine Learning

2.2.3. Transposed Convolution

A convolutional layer has the ability to down-scale the dimensions of its input image. To
achieve the opposite effect, a transposed convolutional layer is used. This effect can be
achieved by adding columns and rows containing the value 0 around and in between the
input data. By then passing this data to a standard convolutional layer, the output will
have an increased size compared to the original input data. The amounts of padded rows
and columns can be adjusted depending on the desired output size. Figure 2.3 illustrates
how a transposed convolutional layer is able to upscale a 3x3 image to a 5x5 image.

1 2 3

1 2 3

Figure 2.3.: Illustration of a transposed convolutional layer. The input data (green) is a
3x3 pixel image. White squares in the intermediate grid have the value 0. A
kernel of size 3x3 is passed over the intermediate grid, producing an output
image of 5x5 pixels (blue).

2.2.4. Residual Neural Network

Residual neural networks are neural networks that take advantage of shortcuts in the
model architecture. These shortcuts let the data skip past some layers in the model and
can be observed in Figure 2.4 (right). Their function is to send the output of one layer,
not just to the following layer but also to layers further down the line. Shortcuts can
have different lengths, and this length is denoted by the number of layers the shortcut
skips plus one. Meaning a shortcut of length two skips one layer and passes the data
to the second downstream layer, as shown in Figure 2.4. Additionally, each layer also
receives data from the previous layer.

11

2. Background and Theory

 Convolutional Layer

Model Input

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

Model Output

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

 Convolutional Layer

Model Output

Model Input

Figure 2.4.: Comparison between a normal CNN (left) and a residual neural network
(right). In the residual neural network, residual connections are illustrated
with arrows, each skipping one layer of the network. Typically, shortcuts
skip one or two layers.

2.2.5. Siamese Neural Networks

A Siamese neural network is a type of deep learning architecture utilising two identical
networks on different inputs. The output from this operation produces an output vector
from each sub-network, often an encoding, preserving information about important
features in the input. A popular use case for Siamese neural networks is to measure the
similarity between two inputs by computing the difference between the output vectors
produced by the two sub-networks.

2.2.6. Pre-Training

Pre-training in deep learning is the process of training parts of a neural network prior to
the main training step. This is usually performed by training a small neural network
on one dataset and later incorporating this network into another model, which is then
trained on a different dataset. Pre-training can be grouped into three domains: Transfer
Learning, Classification and Feature extraction. Transfer Learning is when a model
uses the knowledge it has learned in one problem to solve another somewhat unrelated
problem. For instance, a model can use its knowledge from a car detection problem
to solve a building detection problem. The second category is Classification. In image
classification, models can be pre-trained on datasets containing thousands of classes.
These models can later be used for specialised classification tasks with only a few classes.
This often leads to better results than training a model from scratch directly on the
specialised classification problem. Additionally, the amount of data needed for the

12

2.3. Music Theory

specialised classification problem is often reduced when utilising this approach. Feature
extraction, the third category, refers to the transformation of raw data into features that
preserve the most amount of information. During pre-training using this method, a model
is normally trained to output a representation much smaller than its input data. This
forces the model to pack as much information into the small representation as possible.
This method often yields better results when the downstream task is trained on these
representations rather than the original raw data.

2.2.7. Image Augmentations

Image augmentations are modifications applied to an image and are utilised in machine
learning to artificially increase the size and diversity of a dataset. An image is augmented
by altering or changing it in some way, making it different from the original. Examples
of image augmentations include image rotation, image flipping, colour adjustments or
blurring.

2.3. Music Theory

A pure tone is a sinusoidal wave at a specific frequency (Alm and Walker, 2002). This
frequency determines the note’s pitch. The frequency of a pure A4 tone is usually defined
as 440Hz. As the frequency is doubled, the pitch increases by one octave. An A5 is
therefore 880Hz, and an A3 is 220Hz. Tones generally have a Fundamental Frequency
(F0) accompanied by overtones which are each different multiples of the F0. Western
music has 12 semitones within each octave. One semitone is made up of 100 cents,
meaning that if an A4 is increased by 100 cents, it would become an A♯4. In terms of
note pitch, an A♯4 is identical to a B♭4. However, different names for identical notes are
used in different circumstances depending on their context.

The presence of a pitch is called a note, and the start of a note is referred to as the
note onset. This corresponds to the exact time when a string on a guitar is plucked, or
a key on a piano is pressed. Note offset refers to when the note stops. This does not
necessarily mean the point in time when the key is released but rather when the pitch is
no longer present. However, it is not required to be absent, but its volume must be below
a certain threshold to be considered absent. Usually, this threshold is set to a particular
fraction of the note’s maximum volume.

Another way of describing a note is through Attack Decay Sustain Release (ADSR).
Each time a note is pressed, it goes through these four stages. Attack is the period from
the note being pressed until it reaches its maximum volume or velocity. Decay describes
the time from this peak until the sound reaches a sustain level. Sustain is the duration
the note volume held at a constant level, which lasts until the key is released. Lastly, the
release is the time it takes from when the key is physically released until the note offset.
When comparing ADSR with onsets and offsets, the onset is the start of the attack stage,
and the offset is the end of the release stage.

13

2. Background and Theory

2.4. Fourier Transform
The Fourier transform is a mathematical transformation commonly used for isolating
individual frequency components in a signal. The Fourier transform of any mathematical
function is itself a function showing the individual frequencies making up the original
function and their amplitudes. This is especially useful when processing audio signals to
differentiate between different notes in a recording. In Equation 2.1, f̂(ξ) is the Fourier
transform of the function f at frequency ξ. Plotting f̂(ξ) over a range of values for ξ
produces a frequency domain indicating the different frequencies making up f and their
amplitudes.

f̂(ξ) =
∫ ∞

−∞
f(x)e−i2πξxdx (2.1)

Due to the discrete nature of all digitally stored data, computers are limited to a
simplified version of the Fourier transform called the Discrete Fourier Transform (DFT),
shown in Equation 2.2. The DFT runs on a set of data points xn where n ∈ [0, N − 1],
and produces the frequency domain Xk where k ∈ [0, N − 1]. This algorithm is, however,
computationally quite complex, running in O(n2) time. Therefore, computers normally
use a specialised faster algorithm for calculating the DFT. This algorithm, commonly
referred to as the Fast Fourier Transform (FFT), reduces the complexity to O(n log(n))
(Cochran et al., 1967).

Xk =
N−1∑
n=0

xn · e− i2π
N

kn (2.2)

2.5. Audio Representation
There are several different useful formats for representing music and audio digitally or
in written form. The most ubiquitous written format is staff notation, commonly used
in sheet music worldwide and is detailed in Section 2.5.1. Digitally represented audio
comes in many formats, such as MP3 or WAVE. The WAVE format is one of the most
popular formats for storing uncompressed digital audio and is detailed in Section 2.5.2.
A spectrogram represents audio as a heatmap, showing frequencies present at different
times in an audio recording, detailed in Section 2.5.3. Finally, MIDI is a digital music
representation format comparable to staff notation and is often used as target values in
AMT models. MIDI is detailed in Section 2.5.4.

2.5.1. Staff Notation

Staff notation is a language that allows humans to read music. It represents information
on which notes to play and how long they should be played. Gerou and Lusk (1996)
presents an overview of rules for staff notation. It is a 160-page book covering all there
is to know about sheet music and staff notation. The first four measures of Sibelius’
Op. 76, 2nd movement are displayed in Figure 2.5, and incorporate some of these rules.

14

2.5. Audio Representation

For instance, the 2
4 fraction indicates the time signature of the piece, meaning there are

two quarter notes in each measure. The ♯ symbol indicates that certain notes should be
raised one semitone.

Figure 2.5.: The first four measures of Sibelius’ Op. 76, 2nd movement for piano in staff
notation. The piece is in 2

4 time signature, indicating each measure contains
two quarter notes. The right and left hands play the upper and lower staves,
respectively.

2.5.2. Waveform

Waveform is one of the most common ways of storing uncompressed audio digitally.
This involves storing the audio wave samples directly without any compression. Several
different waveform audio file formats exist, but the most commonly used today are
Microsoft and IBM’s WAVE format and Apple’s AIFF format.

2.5.3. Spectrograms

A spectrogram is a visual representation of audio. Spectrograms visually show the
different frequencies present in an audio recording. Figure 2.6 shows an example of a
spectrogram. Time is represented on the horizontal axis and frequency on the vertical
axis. The amplitude of a given frequency then determines the colour of each pixel at any
given time. In Figure 2.6, the lighter areas correspond to notes in the original recording,
and their position on the vertical axis indicates their frequencies.

The process of generating spectrograms from audio utilises the FFT algorithm to break
up audio waves into a sum of sine waves. This is achieved by breaking the audio recording
into small chunks and analysing them individually. By running each chunk through the
DFT to get its fundamental frequencies, it is possible to create individual columns in the
spectrogram. These columns can then be combined to create the full spectrogram of the
recording. This process for creating spectrograms is known as the Short-Time Fourier
Transform (STFT).

When listening to music, humans interpret the pitch of notes in a logarithmic manner.
Therefore, several transformations to spectrograms have been proposed to simulate how
humans comprehend pitch. One of these transformations, proposed by Stevens et al.
(1936), is the mel scale. The mel scale is a subjective scale designed such that notes in

15

2. Background and Theory

the scale are an equal distance from each other, as judged by humans. This decreases
the amount of detail for lower and higher frequencies in the spectrogram while focusing
on the pitches in the typical range of human perception.

Figure 2.6.: A spectrogram of a piece of music, the most common input format for AMT
models, converted using the STFT. Light spots resembling notes in a piano
roll are individual notes and their corresponding overtones with increasing
frequency on the vertical axis and time on the horizontal axis.

2.5.4. MIDI

MIDI is a protocol that allows computers and electronic instruments to communicate by
sending instructions to each other (MIDI Manufacturers Association, 2009). MIDI has
a wide range of use cases. For example, a musician can record his performance using a
MIDI instrument. This recording can later be played back using the same instrument
or any other sound. With a MIDI recording or a MIDI file, it is also possible to edit
the data by changing each note’s pitch or timing. This is typically done using a Digital
Audio Workstation (DAW). Another feature the DAW has is the ability to manually add
notes, meaning that recording someone playing an instrument is not required. This is a
popular tool for producers, especially those producing electronic music. Popular DAWs
include FL Studio, Ableton and Logic Pro. The piano roll, a feature present in most
DAWs, makes it easier for humans to read the MIDI messages. An example of the piano
roll is illustrated in Figure 2.7. Here, a short MIDI file spanning eight bars is displayed.

16

2.6. Evaluation

Figure 2.7.: The piano roll in the FL Studio DAW showing eight bars with different
chords. In the piano roll, the note pitch is indicated on the vertical axis and
the note onset and offset on the horizontal axis.

2.6. Evaluation
AMT models are typically trained to predict note pitch, onset and offset. During this
process, a way to evaluate the resulting transcription, and thus the model’s performance,
is needed. In the field of Music Information Retrieval (MIR), this is usually achieved
using precision, recall, and F1 scores. These metrics are commonly used in information
retrieval and machine learning to evaluate the performance of different systems. AMT is
considered a binary classification problem, meaning the predictions it produces are either
correct or incorrect. A note prediction can, therefore, either be correct (true) or incorrect
(false) and either present (positive) or absent (negative). This produces four categories
in which a note prediction can be: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). These four prediction categories are used to calculate the
following metrics.

2.6.1. Precision

Precision measures the number of correct predictions relative to the number of total
predictions. In AMT, this is the percentage of the predicted notes that also appear in
the ground truth MIDI.

Precision = TP

TP + TN
(2.3)

17

2. Background and Theory

2.6.2. Recall

Recall measures the number of correct predictions relative to the number of desired
correct predictions. In AMT, this is the percentage of notes in the ground truth MIDI
that are also present in the predicted transcription.

Precision = TP

TP + FN
(2.4)

2.6.3. F1 Score

In most cases, it is desirable to balance the model to perform acceptably regarding both
precision and recall simultaneously. To achieve this, the F1 score is used to evaluate the
model by combining precision and recall into one single metric. The α parameter allows
us to assign a weight to either precision or recall.

F1 = 1
α 1

P recision + (1 − α) 1
Recall

(2.5)

To weigh precision and recall equally, α is usually set to 0.5, which results in the following
simplified equation.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(2.6)

18

3. Datasets
This section presents the relevant datasets containing different types of labelled or
unlabelled datasets for use with MIR. The Slakh2100, MTG-Jamendo and MNIST
datasets are utilised in the experiments detailed in Chapter 6 and discussed further
in Section 7.2.3. The remaining datasets are utilised by the related work presented in
Chapter 4. Most of the datasets presented below contain either musical recordings, MIDI
data or both. Sections 3.1 through 3.10 are derived from Nottveit and Strømsodd (2022)
with minor modifications.

3.1. MAPS

The MAPS (MIDI Aligned Piano Sounds) dataset contains real audio recordings with
ground truth MIDI transcriptions explicitly created for use with AMT (Emiya, 2010). It
consists of 65 hours of recorded piano performances and is divided into four parts ISOL,
RAND, UCHO and MUS. ISOL contains isolated notes. RAND and UCHO contain
recordings of different chords played on a piano. The former is made up of chords with
random pitches, while the latter contains chords commonly associated with western music.
The last part of the dataset, MUS, contains actual recordings of musical pieces performed
on a grand piano.

3.2. MAESTRO

MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) is a
dataset explicitly created for AMT. It contains high-quality recordings and transcriptions
created using the Yamaha Disklavier (Hawthorne et al., 2019). The Yamaha Disklavier
is a high-end grand piano with integrated MIDI capture capabilities, such that MIDI
transcriptions and audio recordings can be captured simultaneously. Nine years of piano
competitions performed on this piano resulted in a dataset containing over 172 hours of
recorded piano performances and corresponding MIDI transcriptions.

3.3. GiantMIDI-Piano

GiantMIDI-Piano is a dataset of piano recordings transcribed to MIDI using the deep
learning AMT model created by Kong et al. (2021). The transcriptions contain data
for note pitch, onset, offset and velocity, and onsets and offsets for the sustain pedal.
GiantMIDI-Piano consists of 10,885 piano recordings totalling 1,237 hours, transcribed

19

3. Datasets

into MIDI files. These MIDI transcriptions are regarded to be of high quality due to
the transcriber model achieving an onset F1-score of 96.72% on the MAESTRO dataset
(Kong et al., 2022).

3.4. Million Song Dataset

The Million Song dataset consists of 280GB of metadata and audio features for one
million songs (Bertin-Mahieux et al., 2011). Each song’s dataset contains information
about the artist, time signature, release date, and artist location. It does not contain
audio but does, however, provide code for downloading corresponding audio from 7digital.

3.5. MusicNet

The MusicNet dataset contains 34 hours of recordings and MIDI transcriptions of classical
pieces performed by chamber music ensembles (Thickstun et al., 2017). The 330 pieces
in the dataset are written by ten classical composers, including Beethoven, Schubert, and
Brahms. The dataset is heavily skewed toward pieces by Beethoven, as around half of
the dataset in terms of time consists of music written by Beethoven.

3.6. Lakh

Lakh is a dataset of MIDI files matched to audio recordings from the Million Song Dataset
(Raffel, 2016). From more than 176,000 MIDI files, 160,000 MIDI files were matched
with audio recordings from the Million Song Dataset. All 160,000 files had a duration of
more than 30 seconds, and the matches had varying levels of confidence. From an AMT
point of view, the Lakh dataset only contains ground truth MIDI transcriptions and no
audio recordings. Although every MIDI file in Lakh has a match in the Million Song
Dataset, the overall lack of confidence in these matches makes the dataset infeasible to
use with AMT directly.

3.7. Slakh2100

Slakh2100, or Synthesised Lakh, is a subset of MIDI files from the Lakh dataset digitally
synthesised into audio recordings (Manilow et al., 2019). It contains 2100 high-quality
audio-MIDI pairs totalling over 145 hours of recordings. Created for music source
separation, the Slakh dataset is well suited for use with AMT due to the high note-
level correlation between ground truth MIDI and the synthesised audio. Every audio
recording in Slakh contains piano, bass, guitar, and drums, while most contain at least
one additional instrument.

20

3.8. Cerberus4

3.8. Cerberus4
Cerberus4 is a derivative dataset of Slakh2100, consisting of 542 hours of synthesised
audio spread across 1327 different pieces (Gardner et al., 2022). It was created by
extracting subsets of instruments for each recording. These were selected such that each
resulting subset contains precisely one of each of piano, guitar, bass, and drums.

3.9. URMP
The University of Rochester Multi-modal Music Performance (URMP) is a multi-track
and multi-instrument dataset containing both audio and video recordings, as well as
sheet music and MIDI transcription of 44 classical performances (Li et al., 2019). The
dataset is designed for use in MIR and AMT, and therefore also contains high accuracy
ground truth frame and note-level transcriptions in addition to the MIDI data. The
recordings are performed on a selection of 14 instruments, each piece on different subsets
of these instruments. The ensemble includes four woodwinds, four brass and six different
string instruments.

3.10. GuitarSet
The GuitarSet dataset presented by Xi et al. (2018) contains over three hours of live
polyphonic guitar recordings. The recordings are different guitarists playing the same
pieces, such as Autumn Leaves and Pachelbel’s Canon. All recordings contain acoustic
guitar recordings. This dataset also provides aligned transcriptions in the form of
MIDI-files.

3.11. MTG-Jamendo
The MTG-Jamendo (MTG-J) dataset presented by Bogdanov et al. (2019) provides
more than 55000 full audio tracks spanning 87 different genres performed on 40 different
instruments. The dataset is unlabelled and thus contains no MIDI-files representing the
notes played in the recordings.

3.12. MNIST
The MNIST dataset contains more than 58000 different handwritten digit images (LeCun
et al., 1998). The digits are written by 500 different people, resulting in a wide range of
different styles for the handwritten digits.

21

4. Related Work
This chapter will present previous research within AMT, including both preliminary
approaches and modern SOTA methods utilising deep learning and neural networks. The
latter will be the main focus, as all current SOTA solutions utilise neural network-based
approaches. First, the Onsets and Frames model by Google Magenta and similar models
based on this architecture are presented. Then, the transformer-based model, MT3, is
presented followed by a self-supervised approach to AMT. This chapter also provides a
comparison between SOTA methods, comparing their training datasets and performance.
Lastly, related work on self-supervised representation learning is presented. Sections 4.1
through 4.4 are based on Nottveit and Strømsodd (2022) with minor modifications.

4.1. Preliminary Approaches

In the late 1970s, a team from the University of Michigan created one of the first AMT
systems (Piszczalski and Galler, 1977). Their goal was to transcribe sound into staff
notation representation. This was achieved by mapping the sound into the frequency
domain, which was done using the FFT. They created a three-dimensional representation
of the sound by calculating the frequencies, with time, frequency and amplitude on each
axis. They then used this representation to pick the most substantial frequency in each
period. The end of a note was defined as either the beginning of the following note or
at the point in time in which the note’s amplitude fell below a certain threshold. The
note’s pitch was then assigned to the average most substantial frequency in the period
the note was active. After repeating this process for the whole recording, the results
were converted to staff notation.

One of the main drawbacks of this model is that each time frame could only be assigned
the average most substantial frequency. It can only assign one pitch to each point in
time, resulting in a monophonic transcription. Another issue with this model is that it
relies heavily on the notes having a strong F0. This works well on instruments like the
flute or electronically generated sine waves, as they have a strong F0. However, this is
not always the case for other instruments, and the system could, in these cases, produce
worse transcriptions.

Later, another team proposed a new method for AMT using Non-Negative Matrix
Factorisation (NMF) (Smaragdis and Brown, 2003). This method is capable of polyphonic
music transcription, meaning it can transcribe pieces with multiple notes playing simul-
taneously. NMF transcription assumes that the harmonic profile in a musical recording
is static. In practice, all notes should have the same relative overtones. The advantage of
this approach is that any previous musical knowledge is not required, and the model will

23

4. Related Work

learn by observing the notes in the recording. This, however, also leads to one of the
main drawbacks of NMF, as it cannot separate notes that do not appear on their own in
the recording.

4.2. Onsets and Frames
Since the 90s, the use of artificial neural networks has vastly increased. Along with
most other fields, MIR and AMT have also seen a leap in performance due to the rise of
neural networks. Today, most leading AMT models are based on the Onsets and Frames
architecture developed by Google Magenta. The following section presents some of these
models.

Created by Google Magenta in 2017, the Onsets and Frames model is an AMT model
capable of transcribing polyphonic piano recordings with high accuracy (Hawthorne et al.,
2018). This method innovated the field by the way it predicts individual notes. The
model is divided into two parts, an onset predictor and a frame predictor. First, note
onsets are predicted by the onset predictor to mark the beginning of each note in the
piece. The onset predictions include information about the note’s pitch and in which
frame the onset is located. These predictions, along with the spectrogram, are then given
to the frame predictor, which then predicts the pitches of notes present in each frame. By
using the onset predictions as part of the input to the frame predictor, frame predictions
are restricted by onset predictions such that frames without an accompanying note onset
are less likely to appear.

The model was trained on the MAPS dataset, covered in Section 3.1, consisting of
actual piano recordings and aligned MIDI data. The model takes audio converted to log
mel-spectrograms as input. These were generated using the FFT with 229 logarithmically
spaced frequency bins, a hop length of 512 and a window length of 2048 at a sample rate
of 16kHz (Hawthorne et al., 2018). The complete spectrogram is then passed through
the network without segmentation.

The onset predictor and the frame predictor consist of two separate neural networks,
a convolutional neural network and a recurrent neural network. The convolutional
neural networks are designed to pre-process the input spectrogram such that the most
valuable features are extracted from the input. Convolutional neural networks, such as
spectrograms, are often applied when processing image data because they are good at
extracting visual features from images. The CNNs in each predictor is followed by an
RNN. The first layer is the BiLSTM layer with 128 units running in both directions. The
output of this LSTM is then passed through a fully-connected layer of 512 nodes and
a sigmoid activation function followed by an output layer of 88 nodes. These 88 nodes
represent each key on a standard 88-key grand piano. For the frame predictor, the input
to the RNN is the output from the CNN concatenated with the output from the onset
predictor. Both predictors use the cross-entropy loss function, and the total loss of the
model is defined as the sum of these individual losses. This architecture is illustrated in
Figure 4.1.

24

4.2. Onsets and Frames

When trained on the MAPS dataset, the model achieves a frame-level F1 score of
78.30% and a note-level F1 score of 82.29% (Hawthorne et al., 2018). This frame-level
F1 score is slightly better than previous SOTA models, while the onset F1 score is a 52%
relative increase from previous SOTA models. The release of the MAESTRO dataset by
Hawthorne et al. (2019), covered in Section 3.2, prompted the team to push the results
further. The team trained a larger version of their previous Onsets and Frames model
on the new and larger dataset to receive a frame-level F1 score of 90.15% and an onset
F1 score of 95.32%. This newly modified Onsets and Frames model included an offset
predictor, whose predictions were also used as inputs to the frame predictor. The new
model also increased the size of the CNN, the RNN and the fully-connected layers.

Figure 4.1.: The initial Onsets and Frames architecture presented by Hawthorne et al.
(2018). The model contains an onset and a frame predictor, each given a
log mel-spectrogram as input. In addition to the spectrogram input, the
onsets predictions are passed through parts of the frame predictor. Reprint
of Figure 1 from Hawthorne et al. (2018) under CC BY 4.0 license.

The initial Onsets and Frames model proposed by Hawthorne et al. (2018) encodes
the presence of a note onset in a binary fashion for each frame. I.e. the model predicts
which frames have note onsets but not at what time an onset happens within the 32ms
frame. To improve the timing accuracy of these onset predictions, ByteDance, another
research group, proposed a new model for onset representation (Kong et al., 2021). This
representation uses a regression-based onset encoding, enabling arbitrary resolution of
note onset location within each frame. The team also modify the architecture to include
velocity predictions in the input to the onset predictor’s RNN. They also swap the
BiLSTM with bi-directional Gated Recurrent Unit (GRU) in the RNN stage of each
predictor.

25

4. Related Work

The new model presented by Kong et al. (2021) outperforms previous SOTA results
receiving a note onset F1 score of 96.72% compared to Onsets and Frames’ 95.60%
(reproduced by ByteDance) when trained on the MAESTRO dataset. Frame-level F1 score
is 89.62%, which is somewhat lower than SOTA performance at 91.40%. After achieving
this result, Kong et al. (2021) proceeded to create high-quality MIDI transcriptions of a
large dataset of piano recordings, ultimately resulting in the creation of the GiantMIDI-
Piano dataset detailed in Section 3.3.

The two models presented so far have only focused on single-instrument transcription
and even specialised their model architectures for use with piano transcription. A master’s
student at the Norwegian University of Science and Technology (NTNU), expanded the
previous work with the Onsets and Frames model by training a similar model on a multi-
instrument dataset (Grønbech, 2021). The model architecture, illustrated in Figure 4.2,
resembles the previous Onsets and Frames model, with the addition of an offset and
velocity predictor. The frame predictor then utilises both onset, offset and velocity
predictions for frame prediction. The main difference, however, is adding a U-Net, a fully
convolutional neural network. The U-Net works by downsampling and then upsampling
the input data using convolutional layers. Then, the U-Net is trained to predict the noise
in the input image, which is then subtracted from the original image to remove noise.
The U-Net architecture is illustrated in Figure 4.3. During the upsampling process, data
from the corresponding layer in the encoder is concatenated to the data from the layer
below. This noise removal process is performed on the spectrograms before it is passed
on to each predictor.

The model proposed by Grønbech (2021) was trained on the Slakh2100 dataset and
achieves promising results when compared to contemporary SOTA single-instrument
AMT models. When evaluating electric bass transcription in a multi-instrument setting
without source separation, the model achieves a note F1 score of 92.9%. In the same
experiment, piano and guitar transcription results yield note F1 scores of 74.3% and
64.7%, respectively.

4.3. MT3

Concurrently with the work done by Grønbech (2021), another team focusing on the
same task published their findings in late 2021. They argue that AMT systems should
be capable of both transcribing multiple voices playing simultaneously and played by
different combinations of instruments. The team, therefore, proposed a new model, the
Multi-Task Multitrack Music Transcription (MT3) model Gardner et al. (2022), capable
of performing these tasks. The model can transcribe an arbitrary amount of instruments
given a spectrogram generated from an audio recording.

The architecture builds on previous work in natural language processing and incorpor-
ates the T5 architecture developed by Raffel et al. (2019). This model is an autoencoder
and transformer architecture capable of predicting the most probable following tokens
given an input sequence. For language models, tokenisation is achieved by representing
each word as a single token. This enables the model to predict word sequences. However,

26

4.3. MT3

Log Mel-Spectrogram

Onset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Activation Predictor

FC Sigmoid

Conv Stack

BiLSTM

Offset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Frame Predictor

FC Sigmoid

BiLSTM

Onset Prediction Frame Prediction Offset Prediction

Velocity Predictor

FC Sigmoid

Conv Stack

BiLSTM

Velocity Prediction

Figure 4.2.: The extended Onsets and Frames architecture proposed by Grønbech (2021),
featuring offset and velocity predictors. Offset, onset and activation predic-
tions are concatenated and passed as input to the frame predictor. Reprint
of Figure 5.1 from Grønbech (2021) with permission.

when such models are used for AMT, a token vocabulary capable of describing music must
be constructed. The MT3 model uses a vocabulary of tokens describing musical events
similar to the MIDI standard, such as note pitch, instrument type, note-on/note-off
and end-of-string events. The instrument type token is crucial for multi-instrument
transcription for the model to specify to which instrument the following events belong.
Like most previous SOTA AMT models, the MT3 model utilises log mel-spectrograms as
its input. The model then produces a sequence of token outputs which is later converted
to standard MIDI.

The MT3 model achieves SOTA performance when evaluated on the MAESTRO
dataset with frame and onset F1 scores of 86% and 95%, respectively, when trained
on all datasets (Gardner et al., 2022). Onset F1 scores for the remaining test datasets
Cerberus4, GuitarSet, MusicNet, Slakh2100 and URMP are 92%, 90%, 50%, 76%, 77%,
respectively. According to the team behind MT3, their model outperforms all other
models in their comparison when evaluated on multitrack datasets such as Cerberus4,
Slakh2100 and MusicNet.

27

4. Related Work

Figure 4.3.: The U-Net architecture illustrates how a spectrogram is passed through the
encoder-decoder style architecture. The U-Net outputs a mask, which is
then subtracted from the input for denoising. Reprint of Figure 1 in Jansson
et al. (2017) under CC BY 4.0 license.

4.4. NoteEM

The NoteEM model by Maman and Bermano (2022) is one of the few SOTA AMT
models utilising self-supervised learning. The model is trained using the Expectation
Maximisation (EM) algorithm, and the training process is divided into three steps: pre-
training, E-step and M-step. A simplified overview of the model is shown to the far left
in Figure 4.4. During the first step, the team bootstraps the training process by training
the model on labelled data similar to data used by previous SOTA models. Maman and
Bermano use the MIDI Pop Dataset for this bootstrapping process. This large dataset
consists only of MIDI data. It contains more than 77,000 MIDI representations of pop
songs, from which the team synthesised their audio.

After pre-training, the team continues with the E-step. This training step utilises the
MusicNet dataset containing multiple recordings of pieces and a single MIDI-file for each
piece. There is no aligned MIDI for every single recording, so the MIDI data is only a
somewhat good audio representation. The team also uses a small set of self-collected data
and MusicNet for training. The authors refer to the combined dataset used in this step
as the unaligned dataset. During the E-step, spectrograms of the recordings are passed
through the network. The network’s output is combined with the unaligned ground truth
MIDI using Dynamic Time Warping (DTW). This produces a new audio transcription
closer to the aligned ground truth than the unaligned MIDI.

28

4.4. NoteEM

This new transcription can then be used for fully supervised training during the M-step.
Although the training data is not fully aligned, the training procedure is identical to how
models by Hawthorne et al. were trained. The network architecture is also identical to
that of Hawthorne et al.. However, the NoteEM network is around 1.5 times larger in
terms of trainable parameters. The E-step and M-step can be repeated multiple times to
further improve the model and the unaligned training data.

The NoteEM model achieves frame and onset F1 scores of 77.0% and 89.7%, respectively,
when tested on piano from the MAESTRO dataset. The model can also be used on other
instruments as it is a multi-instrument transcriber. However, these scores are lower than
piano transcription scores.

Figure 4.4.: Illustration of the NoteEM training algorithm. Left: An overview of the
training process. Middle: The E-step during training. Right: The M-step
during training. Reprint of Figure 1 in Maman and Bermano (2022) under
CC BY-NC-SA 4.0 license.

29

4. Related Work

4.5. Comparison
Table 4.1 shows a comparison between the presented related work in AMT. The table
presents the different datasets used to train each model, which instruments the models can
transcribe, and each team’s reported onset F1 score. For the multi-instrument transcriber
models presented in this chapter, the reported onset F1 score shown in Table 4.1 is the
onset F1 for the instrument and dataset, yielding the highest F1 score.

Table 4.1.: Comparison between architecture and performance in SOTA AMT models.
The Onset F1 column shows the onset F1 scores reported by each team from
experimental results.

Author Architecture Instrument Dataset Onset F1 (%)
Hawthorne et al. (2018) Onsets and Frames Piano MAPS 82.89
Hawthorne et al. (2019) Onsets and Frames Piano MAESTRO 95.32
Kong et al. (2021) Onsets and Frames Piano MAESTRO 96.72
Grønbech (2021) Ext. Onsets and Frames Multi Slakh2100 92.91

Gardner et al. (2022) MT3 Multi Multi 962

Maman and Bermano (2022) NoteEM Multi Multi 89.73

1The onset F1 score for the Ext. The Onsets and Frames model was 92.9% for the instrument achieving
the best performance (electric bass).

2The onset F1 score for the MT3 model was 96% on the test dataset achieving best performance
(MAESTRO).

3The onset F1 score for the NoteEM model was 89.7% for the instrument and test dataset achieving
best performance. (Piano transcription on MAESTRO).

30

4.6. Self-Supervised Pre-Training

4.6. Self-Supervised Pre-Training
The following section presents the related work on self-supervised pre-training methods,
specifically Siamese representation learning, which is utilised to pre-train an encoder
model on unlabelled data in the target domain. The two methods presented below are
closely related, and both utilise Siamese neural networks during pre-training.

4.6.1. Simple Siamese Representation Learning

Simple Siamese Representation Learning (SimSiam), is a method for unsupervised image
representation learning presented by Chen and He (2021). It can be used for pre-training
an encoder model on unlabelled data and is often used for image classification. The
way SimSiam works is by applying two sets of image augmentations to an input image
from the training data. This results in two different versions of the input image, each
passing through the encoder network. This produces two encodings of the image, one
for each augmentation. A predictor is then given these image encodings and is trained
to predict the encoder output for the other augmentation. A loss is calculated using
cosine-similarity between the prediction and the actual encoding. Finally, losses are
added together, and gradients are propagated through the predictor and the encoder.
After pre-training, the predictor is discarded and the encoder can be utilised in a wide
range of downstream machine learning tasks.

4.6.2. BYOL Representation Learning

Bootstrap Your Own Latent (BYOL), is another method for unsupervised image rep-
resentation learning presented by Grill et al. (2020). Its use case is identical to that of
SimSiam, and its implementation is fairly similar. Like SimSiam, BYOL applies two
different sets of image augmentations to the input image. However, these two augmented
images are now passed through two encoder models. The weights of the second encoder
model are a moving average of the previous weights of the main encoder. This is known as
a momentum encoder and, along with BYOL’s loss function, differentiates this algorithm
from SimSiam.

Grill et al. (2020) present a list of augmentations and individual probabilities for
applying these augmentations to the input of each encoder. Chen and He (2021) utilise
the same augmentations and probabilities in SimSiam as the ones presented by Grill
et al. (2020).

31

5. Architecture

This chapter presents the system architecture used to conduct each experiment presented
in Chapter 6. The overall architecture is designed to be trained in two steps. First, a
self-supervised training step utilising only unlabelled data, followed by a fully supervised
training step with labelled data. The second step makes use of the model pre-trained in
the self-supervised training step. In order for the models to extract information from
the input data more easily, the datasets need to be processed before training can begin.
Furthermore, the raw output from the networks also needs processing before model
performance can be evaluated and MIDI output can be constructed from the network’s
predictions.

The overall architecture of the system, illustrated in Figure 5.1, is comprised of four
main parts presented in this chapter. First, the pre-processor, responsible for audio
to spectrogram conversion and parsing of ground truth MIDI, is presented. The self-
supervised training algorithm and encoder architectures are then presented, followed
by the extended Onsets and Frames architecture and its supervised training procedure
responsible for frame, onset and offset predictions. Finally, the post-processing step is
presented, detailing how the model’s predicted features are converted to the output MIDI
format.

Extended
Onsets and Frames

Pre-Processor

Spectrogram
Generator

MIDI Parser

MTG-J

Slakh2100

SimSiam
Pre-Trainer

Slakh2100

Encoder Model

Post-Processor
Frame, onset

and offset
predictions

Slakh2100 MTG-Jamendo

MIDI

Figure 5.1.: Overall architecture of the system implemented in this thesis. The data flows
through the pre-processor, the output of which passes through the pre-trainer
and the main Onsets and Frames model. The predictions produced by the
latter after training are passed to the post-processor capable of producing
MIDI-files of the transcribed audio.

33

5. Architecture

5.1. Pre-Processing

The system’s pre-processing steps handle the data before it is used during training. As
the system trains on both labelled and unlabelled data, the pre-processing step must
handle both forms. A central part of the pre-processing step is the conversion of input
audio to a format the neural network can read. This conversion is identical in both the
self-supervised and the fully supervised training steps. During this pre-processing step,
the audio is converted to log mel-spectrograms using the STFT. This algorithm creates
spectrograms in matrix form, suitable in size for direct input to the neural network.

Data from the Slakh2100 dataset was loaded using the slakh-dataset Python library.
This library was set up to load each minibatch of audio and accompanying MIDI
transcription. Each time an audio track was loaded, a random 20-second chunk from
the source audio file, along with its MIDI counterpart, was selected and loaded. For the
MTG-J dataset, a similar data loader was created by adapting the source code from
the slakh-dataset library to work on MTG-J. This improved code quality and was
necessary for the parallelisation of data loading during pre-training.

While loading the Slakh2100 dataset, the system must handle the conversion of ground
truth MIDI to a matrix representation identical to that of the network’s output. The
output has dimensions 88 by 640. 88 is the number of different notes the network can
predict, while 640 is the number of time steps these notes can occur in. For the network
to learn during the fully supervised training step, each converted ground truth label must
match the input spectrogram to a high degree of accuracy in terms of timing. Using
these converted MIDI labels, the neural network is trained to produce the desired MIDI
pattern when prompted with the corresponding input spectrogram.

As the audio in the Slakh2100 dataset is rendered at a 44.1 kHz sample rate and
the Onsets and Frame model demands data at a 16 kHz sample rate, data had to be
resampled. This conversion was performed only once before training. First, data in the
original FLAC format was converted to the raw WAV format. These WAV-files were then
resampled into the desired 16 kHz sample rate and were finally converted back to the
original FLAC format required by the Onsets and Frames model.

The data in MTG-J was distributed in the compressed MP3 format. These files were
directly loaded to produce raw samples of the audio with a 44.1 kHz sample rate. However,
unlike for the Slakh2100 dataset, the loaded audio recordings from the MTG-J dataset
were directly resampled to 16 kHz during loading.

Due to how the extended Onsets and Frames model is implemented, spectrograms
from both datasets are rotated 90 degrees in a clockwise direction compared to the
spectrograms detailed in Section 2.5.3. This results in time being represented on the
vertical axis and pitch on the horizontal axis with minimum values for both axes in the
top left of the spectrogram.

34

5.2. Self-Supervised System

5.2. Self-Supervised System

To compensate for the lack of labelled data, a self-supervised system was implemented.
This addition divides the training procedures into two separate steps. First, training on
unlabelled data is performed, after which training on labelled data occurs. To differentiate
the two training methods, training on unlabelled data is referred to as pre-training, while
training on labelled data is referred to as supervised training.

The pre-training step utilises the Simple Siamese Representation Learning (SimSiam)
algorithm by Chen and He (2021) presented in Section 4.6.1. This step aims to train an
encoder architecture to produce meaningful representations of its input spectrograms.
The SimSiam algorithm is illustrated in Figure 5.2. It consists of two neural networks:
the encoder network f and the predictor network h. Figure 5.2 illustrates the flow of
data as two instances of the encoder network f . However, in the actual implementation
of SimSiam, the encoder network f is a single neural network. During pre-training, the
encoder is given two augmented versions, x1 and x2, of the same input image. This results
in two different embeddings, z1 and z2. z1 is then passed on to the predictor h, whose
task is to predict z2 (the embedding produced by the encoder given x2). Simultaneously,
a prediction p2 for z1 is produced by h, given z2. Loss is then calculated using the loss
function defined in Equation 5.1.

Input
Image

x1

Predictor h

Encoder f

Projector

Backbone

Encoder f

Projector

Backbone

Predictor h

x2

z2z1

SimilaritySimilarity

p2p1

z2z1

Figure 5.2.: Simple Siamese training algorithm. Two augmentations, x1 and x2, of
the input image are passed through the encoder f . For each input, the
encoder produces respective embeddings z1 and z2, which are passed along
to the predictor h. This predictor produces predictions p1 and p2 which
are compared to their counterpart and a loss is calculated based on this
similarity.

35

5. Architecture

Loss = −CosSim(p1, z2) + CosSim(p2, z1)
2 (5.1)

CosSim(p, z) = p · z

max(||p||2 · ||z||2, ϵ) (5.2)

The loss function, defined in Equation 5.1, utilises Cosine Similarity, defined in
Equation 5.2. The Cosine Similarity formula computes the product of the l2-norms of p
and z. The max-function is used with ϵ = 10−8 to avoid division by zero errors.

During pre-training of the encoder, there is a possibility that the model collapses,
which means that the encoder outputs the same encoding regardless of its input. To
decrease the probability of this happening during pre-training, it is vital that gradients
are not applied to the encoder directly along the path of z1 and z2, and only through the
predictor h (Chen and He, 2021).

5.2.1. Data Augmentations

Different image augmentations are needed during self-supervised training of the encoder
using SimSiam. Here, one or more image augmentations are applied to each batch to
produce the model inputs x1 and x2. Both augmented spectrograms are then passed
through the encoder-predictor stack. The following augmentations were considered
relevant for audio spectrograms, based on the augmentations utilised by Grill et al. (2020)
and Chen and He (2021) for image classification.

• Gaussian Blur: The Gaussian blur augmentation blurs the image, making the
image seem out of focus.

• Erase: The erase augmentation removes or erases a random rectangle in the
image. A random rectangle is selected, and all values within are replaced with the
spectrogram’s overall minimum value.

• Noise Injection: Adds Gaussian noise to the spectrogram creating a low-quality
effect on the image.

• Crop and Stretch: Crops the spectrogram in the time dimension by slicing away
a random amount of rows in the matrix on the top and bottom. The spectrogram
is then resized to its original dimensions to achieve a stretching effect.

• Pitch Shift: Moves the spectrogram left or right a random amount resulting in
either an increased or decreased frequency. The empty area at the far left or far
right of the spectrogram is filled with the spectrogram’s minimum value to keep
the matrix’s original shape.

36

5.2. Self-Supervised System

Augmentation Selection Algorithm

Having multiple augmentations to choose from, we need some way of selecting which
augmentations to apply. In the SimSiam training algorithm, two different augmented
versions of the same spectrogram is created. For this purpose, two different algorithms
for augmentation selection were designed. The first algorithm, Augmentation Selection
Algorithm A, selects an augmentation randomly, which is then applied to an image. This
augmentation is then prevented from being randomly chosen when picking the following
augmentation. The second algorithm, Augmentation Selection Algorithm B, operates
probabilistically. In this algorithm, each augmentation has a probability of being chosen,
meaning an image could be augmented by more than one augmentation. Since different
augmented images are desired, the set of probabilities for applying the augmentations
differs between the first and second time a spectrogram is augmented. Derived from the
probabilities of similar image augmentations presented by Grill et al. (2020), Table 5.1
presents the probabilities utilised in Augmentation Selection Algorithm B.

Table 5.1.: Probabilities for the different augmentations in Augmentation Selection Al-
gorithm B. The two columns x1 and x2 show probabilities for applying each
augmentation to the input image to produce the two augmented images x1
and x2.

Augmentation x1 x2
Random crop and stretch 1.0 1.0
Random erase 0.2 0.2
Gaussian blur 0.8 0.1
Random pitch shift 0.0 0.3
Noise injection 0.3 0.3

5.2.2. Encoder Architectures

During the experiments carried out in this thesis, several architectures were tested. In
accordance with Chen and He (2021), the encoder is divided into two parts: the backbone
and the projector. The backbone makes up most of the encoder in terms of trainable
parameters, while the projector is usually an MLP or a CNN. The following section
presents the different architectures utilised as the backbone and projector in the encoder
network. In all experiments, the predictor architecture is almost identical to the projector
architecture, with only layer sizes differentiating the two. Overall, three different encoder
architectures were implemented. All architectures utilise a residual neural network as the
backbone, while the projector differs more between architectures. Appendix B details the
projectors utilised in each architecture. The main difference between the three encoder
architectures is the output shape of the encoding. The first architecture outputs an
encoding of shape 640 by 229. The second architecture cuts this roughly in half and
outputs an encoding with the shape 640 by 128. The third and final encoder architecture
outputs a much smaller encoding of only 1 by 768 values.

37

5. Architecture

Encoder Architecture 1: Resnet34 With Large Output

The backbone of Encoder Architecture 1 is the default Resnet34 implementation from
PyTorch. This architecture is based on residual neural networks, detailed in Section
2.2.4, and consists of 34 convolutional layers with residual connections between layers.
The final two layers in the network, an Average Pooling layer and a fully connected layer
with 1000 nodes, were removed to avoid an unnecessary bottleneck between the backbone
and the projector. Following the backbone is a small projector CNN containing five
two-dimensional transposed convolutional layers, responsible for upscaling the encoder’s
output from 640 by 128 to 640 by 229. This projector is detailed in Table B.1.

Encoder Architecture 2: Resnet34 With Medium Output

The backbone of Encoder Architecture 2 is identical to the backbone of Encoder Ar-
chitecture 1. However, the projector network following the backbone is altered such
that the output from the encoder is the same shape as the output from the backbone,
640 by 128. As a consequence of this change, the projector in Encoder Architecture 2
is redesigned to both receive and produce tensors of size 640 by 128. This projector
consists of three two-dimensional convolutional layers followed by three two-dimensional
transposed convolutional layers. A two-dimensional batch normalisation layer follows
each fully connected layer in the projector, and a ReLU activation function follows each
internal layer. This projector is detailed in Table B.2.

Encoder Architecture 3: Resnet18 With Small Output

In the third revision of the Encoder Architecture, the backbone was changed to Resnet18 in
an attempt to avoid overfitting the encoder model. The last two layers in this backbone
were kept as is and were not removed as in the two previous encoder architectures.
Because of this change, the backbone produced tensors of size 1 by 1000, and the
projector was modified accordingly. The projector in Encoder Architecture 3 consists
of three linear layers, each followed by batch normalisation layers and ReLU activation
functions following the internal layers. Each hidden layer in the projector has a size of
2048, while the output layer has a size of 768. This projector is detailed in Table B.3.

5.3. Fully Supervised System
After the pre-training step, training moves on to the fully supervised step, training
on labelled data. Here, the pre-trained encoder model is incorporated into a modified
version of the existing Onsets and Frames architecture used by Grønbech (2021). In this
thesis, velocity predictions are not utilised, and the velocity predictor shown in Figure 4.2
is thus removed. Instead, this modified Onsets and Frames architecture processes the
representation created by the encoder network trained in Section 5.2.

38

5.3. Fully Supervised System

Log Mel-Spectrogram

Onset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Activation Predictor

FC Sigmoid

Conv Stack

BiLSTM

Offset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Sub-Network

Frame Predictor

FC Sigmoid

BiLSTM

Onset Prediction Frame Prediction Offset Prediction

Figure 5.3.: The modified Onsets and Frames architecture utilised in the replacement
and early concatenation approaches. The architecture features a sub-network
at the beginning of the model. The experiments in this thesis utilise two
different sub-networks.

In the experiments carried out in this thesis, three main architectures were tested. The
first architecture is referred to as the replacement method and is illustrated in Figure 5.3.
In this method, sub-network A, shown in Figure 5.4, is used as the sub-network in
Figure 5.3. The sub-network consists only of the pre-trained encoder, which receives
a log mel-spectrogram. An output encoding is produced by the encoder and is sent to
the rest of the model. The main Onsets and Frames model following the sub-network
consists of four main predictors, each responsible for predicting different features in the
audio. The output from the encoder is passed through three identical predictors with
different target values. The onset and offset predictors are fitted on the notes’ beginning
and end, respectively. The output from the onset, offset and activation predictors are
concatenated and passed along to the frame predictor, which is responsible for predicting
notes present in individual frames. Finally, the activation prediction is discarded, and
the onset, frame, and offset predictions form the outputs from the network.

39

5. Architecture

The second architecture, referred to as early concatenation, shares the architecture of
the Onsets and Frames model, shown in Figure 5.3, with the replacement method. This
architecture differs from the replacement method by utilising sub-network B instead of
sub-network A from Figure 5.4. The sub-network receives the same input as before: a
log mel-spectrogram passed through a pre-trained encoder. The encoded spectrogram is
then concatenated to the original input spectrogram, and this combined input is passed
as the input to the Onsets and Frames model.

Sub-Network B

Encoder

Concatenation

Encoder

Sub-Network A

Figure 5.4.: The two different sub-networks featured in the experiments. Sub-network A
consists simply of an encoder network passing its output as the output of
the sub-network. Sub-network B concatenates the encoder output to the log
mel-spectrogram input to the sub-network and outputs this concatenated
tensor.

The third architecture, referred to as late concatenation, is illustrated in Figure 5.5.
Similarly to the extended Onsets and Frames model by Grønbech (2021), only the log
mel-spectrogram is sent to the predictors. However, after the BiLSTM-layers in the Onset,
Offset and Activation predictors, the encoding of the original input is concatenated into
the network. More specifically, the output from the BiLSTM-layer in each predictor is
concatenated with the pre-trained encoder output. Each BiLSTM-layer outputs a tensor
of size 640 by 768, while the encoder outputs a tensor of size 1 by 768. The encoder
output is therefore repeated along the vertical axis to create a 640 by 768 tensor. This
tensor is concatenated with the BiLSTM’s output along the horizontal axis, resulting in
a 640 by 1536 tensor. Finally, the tensor is passed through the fully connected layers
and frame predictor as usual.

40

5.4. Post-Processing

Log Mel-Spectrogram

Onset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Activation Predictor

FC Sigmoid

Conv Stack

BiLSTM

Offset Predictor

FC Sigmoid

Conv Stack

BiLSTM

Frame Predictor

FC Sigmoid

BiLSTM

Onset Prediction Frame Prediction Offset Prediction

Encoder

Figure 5.5.: The modified Onsets and Frames architecture utilised in the late concatena-
tion approach. The log mel-spectrogram is passed to each predictor and the
encoder. The output from the encoder is then concatenated into the network
following the BiLSTM layer in each predictor.

5.4. Post-Processing

As the system’s goal is to produce MIDI Transcriptions, additional processing must be
applied to the raw output from the system. A threshold cutoff is used to filter out faint
frame, onset and offset predictions such that only the strongest predictions remain. This
threshold is normally set to 0.5. As the network is able to predict any value between 0
and 1, only frame, onset and offset predictions stronger than this threshold are preserved.

A simple mapping from the frame predictor to MIDI could easily be done. However,
additional processing steps can be applied to avoid unnecessary errors. For instance, if
the output from the frame predictor indicates a note is being played, but no output from
the onset predictor indicates the beginning of this note, the frame predictions will be
discarded. The same principle applies to the offset predictor. When the offset predictor
predicts an offset, and the frame predictor predicts that the same note is present even
after the offset, the note will end at the offset. Any extra frames predicted by the frame
predictor for that note will not be converted into MIDI unless another onset is predicted.

41

5. Architecture

Figure 5.6 illustrates the different ways the model can predict notes with onsets, frames
and offsets and how the post-processor handles each of these cases to produce the final
MIDI output from the transcriber. Notice how the note is entirely discarded in the MIDI
output if the onset is either absent or predicted without any accompanying frames.

Model Prediction MIDI Output

Frame

Note onset

Note offset

Figure 5.6.: Outcome for different note predictions after post-processing step. The left
column shows prediction from the Onsets and Frames model. Red indicates a
note onset prediction, green indicates a frame prediction, and blue indicates
a note offset prediction. The right column shows the resulting MIDI output
after the post-processing step.

42

6. Experiments and Results
This chapter presents the experiments conducted in this thesis and their respective results.
Each experiment is designed to answer one of the research questions presented in Section 1.
First, the experimental plan is presented, covering the details of each experiment and
its purpose. Then, the experimental setup is described, presenting the parameters and
information necessary to reproduce the results from each experiment. This includes details
about third-party libraries utilised in the implementation, datasets used during training
and parameters for the training procedures and spectrogram generation. Finally, detailed
results from all experiments are presented and some important results are highlighted.

6.1. Experimental Plan

This section presents the experimental plan for the thesis, in which specific details about
each planned experiment are presented. They are designed to answer one of the research
questions directly or to provide a point of comparison for later experiments.

The first two experiments serve as baseline experiments. Experiment 0 is designed
to verify the implementation of the training algorithm for the pre-training step, and
experiment 1 is designed to provide a point of comparison for all following experiments.
Experiments 2, 3 and 4 investigate different ways of incorporating a pre-trained encoder
model in the extended Onsets and Frames architecture. Experiment 5 is designed
to investigate the effect of how augmentations are selected during pre-training, and
experiment 6 investigates the effect of increasing the amount of training data during the
pre-training step.

6.1.1. Baseline Experiments

The first two experiments act as baseline experiments. The goal is to ensure that the
implementations of both the Onsets and Frames model and the Simple Siamese training
algorithm are correct and to provide a benchmark for comparison with results produced
by later experiments.

Experiment 0: Simple Siamese Verification

To verify our implementation of the Simple Siamese training algorithm, the first ex-
periment compares the difference in accuracy between two models, trained to classify
handwritten digits from the MNIST dataset. Both models are identical, with two con-
volutional layers followed by two fully connected layers with ten nodes in the output

43

6. Experiments and Results

layer. The first model was trained on the MNIST handwritten digits in 28 by 28 pixel
monochrome images. The second model was trained in the same manner. This time,
however, the input images were first passed through an encoder producing 28 by 28 pixel
image encodings. The encoder consisted of four convolutional layers and was pre-trained
using the Simple Siamese training algorithm. Both classifier networks were trained on
16.6% of the MNIST training set, while the encoder was trained using the remaining
83.4% of the training data, stripped of its labels. Finally, both trained classifier networks
were tested on the MNIST test set to evaluate their performances.

Experiment 1: Onsets and Frames Baseline

To verify that we can match the results from Grønbech (2021), we will rerun experiments
0, 1 and 3 on electric bass and all instruments, defined by Grønbech (2021). The results
from these runs will be compared to the corresponding results in Grønbech (2021) to
ensure that subsequent experiments can be safely compared with the results.

6.1.2. Experiments on Input Replacement

Experiment 2 is designed to answer Research Question 1. For this experiment, an encoder
will be added to the Onsets and Frames model. The spectrograms generated from
the audio will first pass through the encoder, after which the encoder’s output is sent
through the Onsets and Frames model. In this experiment, the encoder will be trained
using Simple Siamese Representation Learning (SimSiam) on 20% of the MTG-Jamendo
(MTG-J) dataset. The Onsets and Frames model will be trained in a supervised manner,
using the same dataset as in experiment 1. To observe how freezing the encoder’s weights
affect the result of the transcriber, some experiments have the weights of the encoder
frozen after pre-training. The weights are frozen in experiments 2a, 2b, 2d and 2e, while
in experiment 2c, they are not.

Experiment 2a: Single Channel Audio

This experiment utilises Encoder Architecture 1, a Resnet34 with a large output encoding,
detailed in Section 5.2.2. This encoder consists of a modified version of the default
Resnet34 implementation in PyTorch, followed by the projector, responsible for upscaling
the output to the desired dimensions. The size of this encoder architecture’s input
spectrogram and output embedding is identical (640 by 229 values). The encoder’s
weights are frozen after pre-training, and the input spectrograms only contain the electric
bass audio channel.

Experiment 2b: Mixed Audio

This experiment is nearly identical to experiment 2a, but the input spectrograms now
contain the whole mix of all instruments in each track. The encoder architecture is
identical to experiment 2a, and the transcriber model is still trained to only transcribe
electric bass.

44

6.1. Experimental Plan

Experiment 2c: Unfrozen Encoder

In this experiment, the encoder weights are not frozen to investigate how this affects the
final result. The encoder architecture is identical to experiments 2a and 2b.

Experiment 2d: Smaller Encoding

This experiment utilises Encoder Architecture 2, a Resnet34 with a medium-sized output
encoding, detailed in Section 5.2.2. In this architecture, the projector network following
the Resnet34 is modified to produce tensors of size 640 by 128, identical to the output of
the modified Resnet34. Encoder weights are once again frozen after pre-training.

Experiment 2e: Removal of Augmentation

In this experiment, the Random Pitch Shift augmentation, detailed in Section 5.1,
is removed from the set of possible augmentations during pre-training. The encoder
architecture is identical to experiment 2d and encoder weights are frozen after pre-training.

6.1.3. Experiments on Concatenation

The following experiments are designed to answer Research Question 2. Both experiments
3 and 4 investigate using a pre-trained encoder in the Onsets and Frames architecture by
concatenating an encoding to the data passing through the network.

Experiment 3: Early Concatenation

The same basic setup as in experiment 2d is used in this experiment. However, the
Early Concatenation approach detailed in Section 5.3 is utilised. In this method, the
output from the pre-trained encoder is concatenated to the original spectrogram, and this
combined tensor is passed as the input to the transcriber network. Experiment 3 uses
Encoder Architecture 2, detailed in Section 5.2.2 outputting embeddings of size 640 by
128. This embedding results in an input to the Onsets and Frames model of size 640 by
357 when concatenated with the original spectrogram (640 by 229). To test whether the
model ignores the encoding or can obtain useful information, the same experiment is run
with random initial weights for the encoder in experiment 3b. Essentially, an untrained
encoder is used. Encoder weights are not frozen in either experiment.

45

6. Experiments and Results

Experiment 4: Late Concatenation

In this experiment, the Late Concatenation approach detailed in Section 5.3 is utilised.
In this method, the input spectrogram is passed both to the transcriber model, as in
the baseline experiments, and to the encoder model. This experiment utilises Encoder
Architecture 3, a Resnet18 with a small output encoding, detailed in Section 5.2.2. This
encoder produces spectrogram embeddings of size 1 by 768 values. Experiment 4 is
divided into two parts, 4a and 4b, and encoder weights are frozen after pre-training in
both experiments. The model in 4a transcribes electric bass only, while the model in 4b
transcribes all instruments simultaneously.

6.1.4. Experiments on Augmentation Selection Mode

Experiment 5 is designed to answer Research Question 3 directly. In all previous
experiments, augmentations are applied using Augmentation Selection Algorithm A,
detailed in Section 5.2.1. In this experiment, the setup from experiment 4 is reused, only
altering how augmentations are selected.

Experiment 5: Augmentation Selection

Experiment 5 swaps Augmentation Selection Algorithm A with Augmentation Selection
Algorithm B, detailed in Section 5.2.1. In experiment 5a, the model is trained to transcribe
electric bass, while in experiment 5b, the model is trained to transcribe all instruments
simultaneously. Just like in experiment 4, Encoder Architecture 3 is used, and encoder
weights are frozen after pre-training.

6.1.5. Experiments on Size of Unlabelled Dataset

Experiment 6 is designed to directly answer Research Question 4, by investigating the
effect of altering the amount of unlabelled training data during pre-training.

Experiment 6: More Unlabelled Data

Experiment 6 trains an encoder model on more unlabelled data during pre-training.
All previous experiments involving a pre-trained encoder utilised 20% of the data in
the MTG-J dataset. This experiment increases the amount of data to 50% of MTG-J.
Experiment 6a trains a model to transcribe electric bass only, while experiment 6b trains
a model to transcribe all instruments. The setup is otherwise identical to experiment 5.

46

6.2. Experimental Setup

6.2. Experimental Setup
This section contains details about the experimental setup to provide reproducibility
of the results presented in Section 6.3. It will cover the datasets used, parameters of
the predictor and encoder models, spectrogram generation, hardware details, and any
specific third-party libraries used in the implementation1.

6.2.1. Datasets

Two datasets are used in the experiments, MTG-Jamendo (MTG-J) and Slakh2100.
MTG-J, the unlabelled dataset, is only used during pre-training of the encoder model. In
this thesis, only 50% of this dataset was used during training. This was done to limit the
ratio of unlabelled data compared to labelled data. For experiments 2-5, 20% of MTG-J
was used to achieve a split of 90% unlabelled and 10% labelled data. In experiment 6, the
amount of unlabelled data was increased to 50% of MTG-J. Additionally, an advantage
of not using all of the data from MTG-J is that this significantly decreases the time
required to pre-train the encoder model.

During supervised training, the Slakh2100 dataset was used. Parts of the dataset were
omitted during training due to significant errors in either the MIDI-files or the generated
audio. All audio tracks containing pitch bends were also removed, as the Onsets and
Frames architecture is currently unable to transcribe such audio features.

6.2.2. Third-Party Libraries

The neural network models utilised in all experiments were implemented in Python 3.8.6,
using PyTorch 1.9.0 and its corresponding TorchAudio and TorchVision implementations.
TorchAudio was also used when generating spectrograms from audio files. For evaluating
the quality of the transcriptions produced by the model during and after training, the
Python library mir_eval by Raffel et al. (2014) was used. This library is commonly
used for evaluating MIR tasks. A list of all third-party libraries and versions used in all
experiments is presented in Table A.1 in Appendix A.

6.2.3. Spectrogram Generation

To ensure that the mel-scaled spectrograms are consistent across both datasets, the
two datasets needed to have the same sample rate when generating the spectrograms.
However, the audio in MTG-J has a sample rate of 44.1 kHz, while the audio in Slakh2100
was converted to a 16 kHz sample rate prior to training. Thus, it was necessary to
downsample the MTG-J audio to 16 kHz during loading.

1https://github.com/haakon8855/multi-instrument-onsets-and-frames

47

https://github.com/haakon8855/multi-instrument-onsets-and-frames

6. Experiments and Results

The audio from both datasets is converted to mel-scaled spectrograms before being
passed through either model. These spectrograms are generated using PyTorch’s MelSpec-
trogram implementation in order to take advantage of parallel computations on the GPU.
Table 6.1 shows the parameters used for spectrogram generation and are identical to the
ones utilised by Grønbech (2021).

Table 6.1.: Parameters for mel-scaled spectrogram calculation.
Parameter Value
Sample rate 16 kHz
Minimum frequency 30 Hz
Maximum frequency 8000 Hz
Window length 2048
FFT size (n_fft) 2048
Hop length 512
Frequency bins 229
Power 1.0

6.2.4. Network Parameters

The two neural networks in the architecture presented in Chapter 5 are set up with a
range of different parameters, most of which are constant across all experiments. All such
parameters are presented in Table 6.2. The encoder is trained using the SGD optimiser
provided by PyTorch. A custom formula, presented in Equation 6.1 by Chen and He
(2021), is used to calculate the learning rate for the pre-training step. In all experiments,
this results in a learning rate of 0.0078125 due to the constant batch size of 40. This
batch size was chosen due to hardware limitations, as this was the maximum possible size
on the available A100-GPUs. All experiments utilising the encoder model are trained for
100 epochs, identical to the training duration suggested by Chen and He (2021).

For the Onsets and Frames model, all parameter values are identical to the ones used
in Grønbech (2021). This model uses the Adam optimiser, provided by PyTorch, and the
learning rate is considerably lower than in the pre-training step. Additionally, this model
utilises a learning rate decay procedure with a decay rate of 0.98, every 10000 iterations.
Along with the learning rate, the batch size is also considerably smaller compared to the
encoder. Some parameters for the Onsets and Frames model are no longer subject to
the hardware limitations present in the work by Grønbech (2021). However, all such
parameters are kept identical to Grønbech (2021) to ensure consistency and comparability
of results.

LR = LRbase ∗ BatchSize

256 (6.1)

48

6.3. Experimental Results

Table 6.2.: Parameters for both neural networks utilised across all experiments.
Parameter Value

Encoder
Base learning rate 0.05
Weight decay 0.0001
Momentum 0.9
Batch size 40
Epochs 100

Onsets and Frames
LR (Learning rate) 0.0006
LR decay rate 0.98
LR decay interval 10000
Momentum 0.9
Batch size 8
Iterations 50000

6.2.5. Hardware

All experiments are run on the IDUN HPC Cluster at NTNU, containing numerous
enterprise-level GPUs. The IDUN HPC Cluster has several P100, V100 and A100-GPUs.
The latter are available in both 40GB and 80GB VRAM variants. Due to the large batch
size requirement of the Simple Siamese training algorithm, and the large size of each
input spectrogram, all experiments carried out had to be run on the 40GB A100-GPUs.

To accommodate the large amount of data, a PyTorch data loader was created for the
MTG-J dataset in order for data to be loaded properly from disk during training. To
speed up this process, the loader was set up to utilise 10 separate processes, each loading
one training example in parallel. During the pre-training step, this sped up the loading
times between batches by a factor of 10.

6.3. Experimental Results
This section contains the results from the experiments presented in section 6.1. All the
results from every experiment are presented in the tables throughout this section. First,
the baseline experiments are presented, followed by the experiments on SimSiam in AMT.
At the end of this section, averaged results from running the same experiments multiple
times are presented.

49

6. Experiments and Results

6.3.1. Experiment 0: Simple Siamese Verification

Table 6.3.: Results from experiment 0 when running the two classifiers on the MNIST
test set.

Model Correct Classifications Total Classifications Accuracy
Baseline 9253 10000 92.53%

Pre-Trained 9277 10000 92.77%

The results from experiment 0 are presented in Table 6.3. The first model, trained only
on 10000 labelled examples from MNIST achieved an accuracy of 92.53%. The second
model, whose input was first passed through a pre-trained encoder trained using the
Simple Siamese training algorithm, achieved an accuracy of 92.77%.

6.3.2. Experiment 1: Onsets and Frames Baseline

The results from experiment 1 can be found in Table 6.4. It is clear that experiment
1a performs better than the other experiments. All F1 scores from experiment 1a, are
above 95%. It is worth noting that experiment 1a operates on individual source audio,
while the rest operates on a mix of instruments in the audio. Results for experiment
1b are, however, still quite high with respect to the F1 scores for both frame and note
onset, while there is a significant drop in the note with offset F1 score. Experiment 1c
transcribes all instruments simultaneously, and not just electric bass. In this experiment,
there is a noticeable difference in all scores compared to experiments 1a and 1b. The
experiments that have a counterpart in Grønbech (2021), presented in Table 6.5, all have
slightly lower scores. This difference is around 1-2 percentage points. The results from
experiments 1b and 1c are arguably the most important results from experiment 1, as all
later experiments are compared with these result.

Table 6.4.: Results from experiment 1 and 2
Experiment Instrument Source Frame Note Note /w offset

P R F1 P R F1 P R F1
1a Electric Bass Individual 97.2 96.2 96.6 97.5 96.5 96.9 96.0 95.0 95.5
1b Electric Bass Mix 93.0 90.1 91.3 91.5 90.3 90.7 83.9 82.7 83.1
1c All Mix 75.2 68.7 71.1 81.7 69.7 74.3 40.6 35.4 37.4
1d Electric Bass Mix 93.6 91.7 92.5 91.2 92.4 91.6 84.4 85.5 84.8
2c Electric Bass Mix 88.7 47.0 58.8 92.9 39.7 52.3 74.9 33.7 43.8

2Experiment 1c attempted to transcribe all instruments simultaneously while other parameters remained
equal to that of experiments 1a-1c in Grønbech (2021).

50

6.3. Experimental Results

Table 6.5.: Correlation between rerun-experiments in experiment 1 and their counterpart
in Grønbech (2021).

Experiment Equivalent in Grønbech (2021)
1a 0a
1b 1a
1c No equivalent2

1d 3a

6.3.3. Experiment 2: Input Replacement

The following experiments investigate the effects of incorporating a pre-trained encoder
model in the Onsets and Frames model. Table 6.4 shows the results from experiment
2, focusing on input replacement. This was tested by passing the input spectrogram
through a pre-trained encoder before passing the produced encoding through the Onsets
and Frames model. For experiments 2a, 2b, 2d and 2e, encoder weights were frozen after
pre-training, such that the encoder is not altered when training the Onsets and Frames
model. These experiments received precision, recall and F1 scores of 0.0% for all metrics.
This indicates that these models were unsuccessful in transcribing any notes. Experiment
2c tests an unfrozen encoder model, enabling the fully supervised training step to further
train the encoder as it trains the Onsets and Frames model. Results from this experiment
are presented in Table 6.4. Experiment 2c is the only model experiment 2 to achieve
note F1-scores above 0.0%.

6.3.4. Experiment 3: Early Concatenation

Both experiments in experiment 3 have quite similar results, which can be observed in
Table 6.6. Experiment 3b, utilising an untrained encoder with random initial weights,
yields slightly better results than the model trained in experiment 3a. This can be seen
especially in the note with offset F1 score in experiment 3b.

Table 6.6.: Results from experiments 3, 4 and 5
Experiment Instrument Source Frame Note Note /w offset

P R F1 P R F1 P R F1
3a Electric Bass Mix 91.0 87.6 89.1 89.5 88.5 88.9 80.4 79.5 79.8
3b Electric Bass Mix 91.2 88.6 89.8 90.2 87.5 88.6 84.0 81.4 82.5
4a Electric Bass Mix 91.1 86.9 88.8 90.6 87.6 88.9 84.0 81.2 82.4
4b All Mix 77.9 70.4 73.5 81.6 69.5 74.2 42.9 37.7 39.6
5a Electric Bass Mix 93.2 89.6 91.2 91.7 88.8 90.0 83.8 81.1 82.3
5b All Mix 77.7 69.2 72.7 81.7 68.8 73.5 42.8 37.2 39.1

51

6. Experiments and Results

6.3.5. Experiment 4: Late Concatenation

The results of experiment 4 can be observed in Table 6.6. Experiment 4a, which only
operates on electric bass, has substantially better scores than experiment 4b. This is
especially true when it comes to offset, where the difference in score is over 40 percentage
points. The models trained in experiments 4a and 4b achieve note F1 scores of 88.9
and 74.2, respectively. While the scores from experiment 4a are lower compared to
their baseline equivalents in experiment 1b, scores from experiment 4b seem to increase
compared to the equivalent results from experiment 1c.

6.3.6. Experiment 5: Augmentation Selection Mode

Table 6.6 shows the results from experiment 5. It is apparent from these results that the
change to Augmentation Selection Algorithm B has improved the scores when transcribing
only electric bass from the audio mix. Comparing experiment 5b with 4b, however, it
seems as though the scores decrease slightly in experiment 5b. After seeing these results,
experiments 1c and 5b were rerun four times each. This provided five runs for each
experiment which were then averaged to decrease any variation present in the results
from individual runs. Table 6.7 presents the averaged results from these repeated runs.
These results do not exhibit the apparent increase in performance between experiments
1c and 5b observed in Table 6.6, and indicate that the models trained in experiment 5b
are, on average, equal to the models trained in experiment 1c. Individual results from
each rerun are available in Appendix C.

Table 6.7.: Averaged results from repeated runs. Source data from individual runs are
available Appendix C.

Experiment Instrument Source Frame Note Note /w offset
P R F1 P R F1 P R F1

1c All Mix 77.3 68.6 72.0 83.7 68.3 74.3 42.9 36.0 38.7
5b All Mix 77.7 68.3 72.0 83.3 67.8 73.7 43.0 36.1 38.7
6a Electric Bass Mix 89.8 87.9 88.6 89.1 88.4 88.5 82.0 81.1 81.4
6b All Mix 77.2 67.1 71.1 83.8 67.7 73.7 42.9 35.8 38.5

6.3.7. Experiment 6: More Unlabelled Data

The two experiments in experiment 6 were both run five times each to provide a more
exact point of comparison to earlier experiments. The averages from these runs are
presented in Table 6.7 and do not seem to exhibit any increase in performance compared
to the results of experiments 1b or 1c. This is most evident when comparing the averaged
results of experiments 1c and 6b. The results from each individual rerun are available in
Appendix C.

52

7. Evaluation and Discussion
This chapter will evaluate and discuss the results presented in Section 6.3. First, the
research questions are evaluated by investigating the experimental results and comparing
these against results from the baseline experiments and the related work. This is followed
by discussing possible reasons for the observed results and how this affected certain
architectural choices during experimentation.

7.1. Evaluation

This section will analyse the results in detail and attempt to answer the research questions
and, finally, the overall thesis goal: Examine if self-supervised pre-training can be used to
increase the performance of AMT models. In general, the results presented in Section 6.3
do not indicate any direct benefit of combining SimSiam with AMT. In most experiments,
the model including a pre-trained encoder performs equal to or slightly worse than the
baseline models. However, some interesting findings in the raw output from the models
in some experiments indicate that the encoder can extract some information from its
input data given the proper parameters. This calls for further investigation into why this
happens and if it ultimately can be utilised to improve SOTA multi-instrument AMT
performance.

Experiments 0 and 1 served as baseline experiments, not to directly contribute to
any specific research question but to verify the implementation and provide points of
comparison for all later experiments. The primary purpose of experiment 0 was to verify
the implementation of the SimSiam training algorithm. It also served as a way to test
that the hardware used for later experiments was set up correctly. The results from
experiment 0 were uplifting. While the pre-trained model only marginally outperformed
the baseline model, it provided evidence that the SimSiam-algorithm implementation
was correct.

Experiment 1 was designed to provide a clear point of comparison for later experiments.
Most of the later experiments in this thesis share a fundamental similarity to one of the
sub-experiments in experiment 1. However, the results from experiment 1 are slightly
worse than those from the equivalent experiments carried out by Grønbech (2021).
Experiment 1a achieves frame, onset and onset with offset F1 scores of 96.6, 96.9
and 95.5, respectively. These scores are consistently lower than in Grønbech’s setup,
achieving F1 scores of respectively 98.5, 99.1 and 97.9 in the equivalent experiment.
Although not as profound, similar results can be observed when comparing experiments
1b and 1d to their counterparts in Grønbech (2021). This suggests that some part of
our setup could be set up differently than in Grønbech (2021), which may have been the

53

7. Evaluation and Discussion

cause for this discrepancy. To isolate the effects of adding a pre-trained encoder to the
transcriber model, results from later experiments will be compared mainly with results
from experiment 1 rather than directly with results from the related work.

Figure 7.1.: Model predictions (top) and ground truth MIDI (bottom) from experiment
1b when evaluated on audio from the validation dataset.

To further evaluate the models’ performance, model predictions from the validation
phase can be compared manually to the ground truth MIDI as shown in Figure 7.1. From
the model output shown on top, it is clear that most notes are present and correct. While
some errors occur in the baseline models, evident by the models’ F1 scores, these errors
seem to be caused mainly by missing onset predictions or wrong timing for predicted
frames, onsets or offsets. Similar detailed model predictions from all experiments are
available in Appendix E.

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 1b

Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 1c

Frame F1
Note F1
Note /w offset F1

Figure 7.2.: Frame, note and note-with-offset F1 scores for experiment 1b and 1c.

During supervised training, the model is evaluated on the validation dataset every 1000
iterations. Figure 7.2 shows the F1 score during training in experiments 1b and 1c as a
function of iterations on the horizontal axis. Consistent across all experiments transcribing
electric bass is the F1 score of 0.0 during the first few thousand iterations. On the other
hand, when transcribing all instruments simultaneously, like in experiment 1c, the F1
score seems to increase earlier, after just 2000 iterations. However, after training, the F1
score is much lower when transcribing all instruments than in experiments transcribing
electric bass only. The F1 score graphs from experiment 1 in Figure 7.2 are consistent
with results from the related work (Grønbech, 2021). However, the maximum F1 scores
after training seem to be somewhat lower in our reruns.

54

7.1. Evaluation

Research Question 1 How does the use of a pre-trained encoder, used to replace the
input to the transcriber network, affect the performance of an AMT model?

Experiment 2 was designed to answer this research question by passing the input spectro-
grams through an encoder before sending this encoding through the transcriber network.
The encoder was trained using the SimSiam training algorithm. The results from experi-
ments 2a and 2b show that replacing the transcriber input during supervised training
did not look very promising. Both models trained in these experiments achieved F1
scores of 0.0 for both frame, note onset and note-with-offset predictions. This indicates
that the models did not produce any predicted frames, onsets or offsets when validation
spectrograms were passed through the model. This conclusion is also supported by the
raw model outputs presented in Appendix E. Experiments 2a and 2b are equivalent to
experiments 1a and 1b, respectively, except that the inputs in experiments 2a and 2b
are passed through the encoder before reaching the transcriber network. As this was
the only difference between the models, we would expect somewhat similar results if the
encoder was able to produce meaningful embeddings of the input spectrograms.

Experiment 2c was the first model including a pre-trained encoder to successfully
produce predictions after training, evidenced by its non-zero precision and recall scores.
The model achieves a note F1 score of 52.3, much lower than the expected score of
around 90.7 from experiment 1b. It is worth noting that the onset precision score for
experiment 2c of 92.9 is a little higher than its equivalent in baseline experiment 1b of
91.5. However, the recall score is more than 50 percentage points lower in experiment
2c. The high precision score indicates that when the model in 2c predicts an onset, it is
usually correct. Still, the low recall score indicates that it fails to predict the majority of
the notes present in the recording. Additionally, it is difficult to tell whether this increase
in precision is even significant without repeating the experiment.

Figure 7.3.: Predictions and ground truth from experiment 2d (top two rows) and experi-
ment 2e (bottom two rows). For each experiment, predictions on validation
data are shown in the upper row, and ground truth MIDI is shown in the
lower row.

In an attempt to mitigate the apparent collapse of the encoder in earlier experiments,
experiments 2d and 2e were designed to create smaller spectrogram embeddings. Once
again, the transcriber model is unable to predict any notes, with precision, recall, and F1
scores of 0.0 across the board. However, looking at the raw output from the transcriber

55

7. Evaluation and Discussion

in Figure 7.3, the model seems to exhibit some ability to produce faint frame predictions.
The same behaviour is also observed in experiment 2e. Sadly, the model output in
experiments 2d and 2e is entirely devoid of onset predictions, so the post-processor does
not preserve any notes, resulting in the F1 score of 0.0. However, because encoder
weights were frozen during experiments 2d and 2e, the results from these experiments
are the most interesting yet. They prove the encoder does not collapse and is, in fact,
able to preserve some information from the input spectrogram.

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 2c
Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 3a

Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 3b

Frame F1
Note F1
Note /w offset F1

Figure 7.4.: Frame, note and note-with-offset F1 scores for experiment 2c, 3a and 3b.

When looking at the F1 scores during training from experiment 2c in Figure 7.4, it
is clear that the model has problems learning as quickly as in the baseline experiments.
The model achieves F1 scores of 0.0 until training is over 20% complete. Equivalent
graphs for all experiments, including experiments 2b and 2d, are included in Appendix
D. In these experiments, F1 scores were consistently at 0.0 during the entire training
procedure for both frame, onset and onset with offset metrics.

Research Question 2 How does the use of a pre-trained encoder, used to supplement
the input to the transcriber network affect the performance of an AMT model?

Experiments 3 and 4 were designed to answer Research Question 2, investigating the
concatenation of spectrogram encoding into the transcriber model. Experiment 3 con-
catenates this encoding to the input spectrogram, resulting in a larger network input
during the fully supervised training phase. Experiment 3a achieves a note F1 score of
88.9. Again, lower than the baseline F1 score of 90.7 from experiment 1b. However, this
model easily outperforms the model utilising the replacement method from experiment
2c by achieving a much better balance between the precision and recall metrics for both
frame, note and note-with-offset.

Experiment 3b was designed to verify the value of the pre-trained encoder in the
transcriber model by rerunning experiment 3a with an untrained encoder. Interestingly,
the results in experiment 3b are difficult to differentiate from the results in 3a. Metrics
for both frame and note transcription are nearly identical, while only the metrics for note-
with-offsets differ. The experiment utilising the untrained encoder model outperforms
the model using a pre-trained encoder, especially for the note-with-offset precision scores
of 84.0 and 80.4, respectively. This could indicate that the encoder model has difficulty
producing meaningful embeddings of the input spectrograms, which is further supported

56

7.1. Evaluation

by the F1 plots in Figure 7.4 for experiments 3a and 3b. Both plots resemble results
from experiment 1b. A notable observation is that the F1 score in experiment 3a seems
to increase earlier than in experiment 3b. However, this could be explained by random
variations in the initial model weights.

Experiment 4 attempts to answer Research Question 2 by concatenating the spectro-
gram encoding into the transcriber network deeper in the network. Thus, the results
from this experiment could be valuable when compared to both experiment 3 and experi-
ment 1. The encoder utilised in experiment 4 outputs a significantly smaller encoding
than in earlier experiments. Additionally, the encoder in experiment 4 was frozen after
pre-training, which was not the case for experiment 3. The model trained in experiment
4a achieves similar results to the model in experiment 3b. It is worth pointing out that,
as in experiment 3b, the note-with-offset precision score for experiment 4a is comparable
to that of baseline experiment 1b. At the same time, other metrics are consistently lower
in experiments 3b and 4a.

Experiment 4b utilises the same pre-trained encoder as in 4a while attempting to
transcribe all instruments simultaneously, and not just electric bass, as in earlier experi-
ments. Experiment 4b’s equivalent baseline experiment, without an encoder model, is
experiment 1c. This model outperforms the baseline model by over 2 percentage points
in all metrics except for note precision, recall and F1 score. This might indicate that the
encoder model is able to extract some information from the input spectrograms, which
may be valuable when transcribing all instruments simultaneously. Even though the
increase in performance is relatively small, it indicates that further investigation may be
necessary.

The F1 scores during training of experiments 4a and 4b, illustrated in Figure 7.5, also
seem to increase faster than in the baseline experiments. Especially noticeable is how
the frame F1 score follows the note F1 score much more closely in experiments 4a and 4b
than in experiments 1b and 1c. It is also apparent from Figure 7.5 that even though the
F1 scores end up at a similar level as in experiment 1, the models seem to learn faster
during the beginning of training and are eventually caught up by the baseline models.

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 4a

Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 4b

Frame F1
Note F1
Note /w offset F1

Figure 7.5.: Frame, note and note-with-offset F1 scores for experiment 4a and 4b.

57

7. Evaluation and Discussion

Research Question 3 How do different modes of selecting data augmentations affect
the performance of an AMT model?

Experiment 5 was designed to directly answer Research Question 3 by reusing the setup
from experiments 4a and 4b while swapping Augmentation Selection Algorithm A with
Algorithm B. This algorithm utilised an augmentation selection scheme similar to the
related work presented in Section 4.6. In terms of model architecture, the models trained
in experiments 5a and 5b are identical, with the former trained to transcribe electric bass
only, while the latter was trained to transcribe all instruments simultaneously. Results
from 5a are overall better than those of 4a, with a note F1 score of 90.0. Compared to
the baseline experiments, 5a performs quite similarly to Experiment 1b. For Experiment
5b, the opposite is true. The model’s performance is very similar to that of the model
trained in experiment 4b, and both models seem to outperform the baseline model trained
in 1c.

The fact that 5b seemed to slightly outperform experiment 1c called for further
investigation to discover whether or not this was a coincidence. Reruns of experiments
1c and 5b were therefore executed to expose the variance present in each run of these
experiments. The average values of these reruns indicate that the difference was, in fact,
due to a random variation in the results and not because either model performed better
on average. The results from reruns of experiments 1c and 5b seem to indicate that
the encoder model present in 5b does not affect the model’s transcription ability after
training.

Research Question 4 How does the amount of unlabelled data affect the results of
the AMT model?

Experiment 6 was designed to directly answer Research Question 4 and thus investigate
the effect of increasing the amount of unlabelled training data without increasing the
amount of labelled data. After the significant variance between individual runs was
discovered in experiment 5, experiments 6a and 6b were also run multiple times each. The
presented average scores from experiment 6a in Table 6.7 are lower than the results from
experiment 5a for all metrics. This difference is most significant for the frame prediction
metrics but is still present for onset and onset with offset predictions, especially in the
F1 scores.

The results from experiment 6b similarly indicate a decrease in performance when
the unlabelled dataset is increased. However, compared with the equivalent experiment
5b without the increased dataset, this increase only holds for frame prediction metrics,
and the difference is less significant than between experiments 6a and 5a. These results
seem to indicate that increasing the size of the unlabelled dataset to this extent does not
contribute positively to the performance of the final transcription model.

58

7.2. Discussion

7.2. Discussion

This section will discuss the results presented in Section 6.3. Section 7.1 discovered that
most experiments carried out in this thesis were unable to improve the performance of
the extended Onsets and Frames model proposed by Grønbech (2021). This discussion
will attempt to shed light on possible causes for this performance in light of the results,
the architecture and the training data.

7.2.1. Discussion of Results

The models trained in experiments 2a and 2b had some obvious problems, evident by the
precision, recall, and F1 scores all equal to 0.0 after training. With precision and recall
scores at 0.0, the model is unable to predict any notes correctly. This can be verified by
looking directly at the models’ outputs from these experiments in the figures presented
in Appendix E. A possible explanation for the empty transcriptions produced during
experiments 2a and 2b could be that the pre-trained encoder model produces similar
embeddings for all input spectrograms. If this were the case, it would result in similar
inputs to the transcriber model, which in turn would lack the required information to
transcribe the notes present in the original input spectrogram. This behaviour of the
encoder is a possible outcome when utilising the SimSiam training algorithm and is
referred to as model collapse by Chen and He (2021). It is likely possible to investigate
whether the encoder collapsed or not. For instance, by using some defined metric to
calculate the difference between embeddings of different spectrograms. The standard
deviation between embeddings is one such metric. However, this investigation was not
attempted during experimentation. In hindsight, this could provide clues as to why the
models trained in experiments 2a and 2b were unable to produce frame, onset and offset
predictions.

In experiment 2c, the model was able to produce both onset, offset and frame predictions.
However, the only difference between experiments 2b and 2c was that the encoder’s
weights were no longer frozen during supervised training. As a result, gradients were
calculated for both the encoder and transcriber models, allowing the encoder to be trained
further after its initial pre-training. The results point to the conclusion that the encoder
in experiment 2c did not learn enough during pre-training and instead received most of
its training during the supervised training step.

In experiments 2d and 2e, the models were able to produce faint frame predictions,
evident by their raw output illustrated in Figure 7.3. However, these frame predictions
seem to be washed out and stretched in the horizontal time dimension. To achieve this
effect, some information from the input spectrogram regarding the timing of each note
must be missing from the embedding produced by the encoder. As the encoder is only
trained in a self-supervised manner, it receives no direct penalty if the time dimension
of its input data is neglected in the embedding. Its only goal is to preserve as much
information as possible from the input spectrogram such that the SimSiam predictor is
able to predict the encoder’s output for both spectrogram augmentations. Nonetheless,
the results prove that the encoder model used in experiments 2d and 2e does not collapse

59

7. Evaluation and Discussion

and is able to create meaningful embeddings of the input spectrograms. While later
experiments were unable to take advantage of this, the results from experiments 2d and
2e do call for further investigation into the use of self-supervised representation learning
in combination with AMT.

The observed stretched quality of the frame predictions from experiments 2d, and 2e
could also be the result of a wrong choice of augmentations. Of the five augmentations
utilised in this thesis, only the Gaussian Blur and the Random Crop-and-Stretch aug-
mentations move data in the spectrogram’s time dimension (vertical). In experiment 2e,
the Random Crop-and-Stretch augmentation was removed from Augmentation Selection
Algorithm A. However, this did not produce any significant difference in the model’s per-
formance or output. In hindsight, it may have proven more valuable to explore the effect
of removing other augmentations or decreasing the intensiveness of the augmentations
applied.

During experiment 3, a transcriber model was trained using the early concatenation
approach with a pre-trained encoder in experiment 3a and an untrained encoder in
experiment 3b. Surprisingly, the transcriber model with the untrained encoder outper-
formed its pre-trained counterpart. A possible explanation for this behaviour is that
the encoder from experiment 3a has overfitted on the unlabelled training data and is
unable to handle the Slakh2100 dataset. Model collapse during pre-training could also be
another possibility and would explain why an encoder with random weights could lead to
the observed results. However, this explanation is less likely because of the transcriber
outputs seen in experiments 2d and 2e and the fact that the encoder architecture is
identical across experiments 2d, 2e, 3a and 3b.

During all experiments utilising the late concatenation approach, encoder weights were
frozen after pre-training. Similarly, most runs in experiment 2 also utilised frozen encoder
weights. The fact that encoder weights were not frozen during experiment 3 devalues
the results from this experiment and makes it difficult to compare experiment 3 with
other experiments. In hindsight, encoder weights should have been kept frozen during
experiment 3 as well.

Another possible issue, which may lead to the observed results, is the augmentations
applied during pre-training. The model trained in experiment 5b seemed to decrease
performance compared to experiment 4b, with the only difference being the Augmentation
Selection Algorithm. This could be caused by the fact that Augmentation Selection
Algorithm B has the potential to apply multiple augmentations at once. If the individual
augmentations were too aggressive, meaning they altered the spectrogram too much, it
could cause problems during pre-training.

60

7.2. Discussion

During experiment 6, two transcriber models were trained using encoders pre-trained
on a larger unlabelled dataset than the encoders in earlier experiments. These models
were unable to increase performance compared to their equivalent models from experiment
5. Increasing the amount of training data will, in most cases, give a model better chances
of being able to generalise well to new unseen data and should reduce the chances
of overfitting. Thus, the results from experiment 6 seem to contradict the previous
explanation of the encoder model overfitting on the unlabelled dataset. If overfitting did
happen, experiment 6 should have seen an increase in performance.

When looking at the results from all experiments, it seems the difference between
precision and recall is larger in the models that include an encoder. In these experiments,
precision is always higher than recall. Additionally, in experiments 2 through 6, it seems
that the corresponding recall score is always lower when the precision score is better than
in the equivalent baseline experiment. This suggests that the encoder encourages the
model to predict less often, but the prediction is more often correct when a prediction
occurs. However, as this observation also holds for experiment 3b, containing the
untrained encoder, it might only be the presence of the encoder network itself and not
the pre-trained encoder model causing this behaviour.

7.2.2. Discussion of Architecture

If the encoder is unable to produce meaningful embeddings of the spectrogram it is
presented with, the transcriber model will, in turn, have a hard time predicting notes
using the replacement approach. A potential explanation for this behaviour is that the
encoder network may have been either too large or too small. If the network is too small,
the encoder could not pass through enough information from the input spectrogram to
the encoding. Each input spectrogram covers 20 seconds of audio and a frequency range
from 30 Hz to 8000 Hz. In an average piece of western music, a 20-second excerpt could
include a considerable amount of information. Perhaps too much information for the
encoder to handle. Even though we would still expect the encoding to contain some
information, the amount could be minimal and even entirely irrelevant to the downstream
task. This is especially relevant in experiments 4 and onward, where the backbone in
the encoder architecture was swapped with a smaller ResNet, compared to the encoder
architectures used in earlier experiments.

On the other hand, a network too large for the encoding size could easily be overfitting
on the unlabelled data and perform poorly when presented with the labelled dataset.
This could explain the results in experiment 2, as the two datasets utilised in this thesis
are not perfectly similar. The audio in the Slakh2100 dataset is rendered from the target
MIDI, while the audio in the MTG-J dataset is mostly a collection of recordings of human
performances. The sound quality of individual instruments would vary more greatly
between tracks in MTG-J than in Slakh2100, and unlike the Slakh2100 dataset, some
tracks in MTG-J even contain vocal performances.

If the problems with the encoder did not occur because of its size, it is still a plaus-
ible explanation that the bottleneck in the encoder could be sub-optimal. In encoder
architectures 1 and 2, the last two layers in the ResNet were removed to avoid this

61

7. Evaluation and Discussion

bottleneck. Typically, the ResNet produces an output of size 1 by 1000 values. After this
alteration, the ResNets in encoder architectures 1 and 2 produced outputs of size 640 by
229 and 640 by 128, respectively. In encoder architecture 3, however, the ResNet was
unaltered and thus produced outputs of size 1 by 1000 values. The final output from the
encoder in this architecture was of size 1 by 768 values, almost 200 times smaller than
the output encoding from encoder architecture 1. This change was carried out to produce
encodings of similar size to that of the encoder used by Chen and He (2021) and to allow
for concatenation into the transcriber network. In hindsight, however, an encoding of
this size will likely not capture all the necessary information in the spectrogram. An
important distinction between the machine learning tasks tested in the related work
(Chen and He, 2021; Grill et al., 2020) and AMT is that the related work only tests their
methods on image classification. For image classification, where there may be around
1000 image classes at most, a ResNet output of 1000 values may be acceptable. However,
in AMT, where the model is trained to produce a prediction of 640 by 88 values, an
encoding of this size may not be feasible.

Self-supervised representation learning algorithms are, in most cases, utilised for simple
classification tasks where the model input belongs to exactly one of several categories.
While AMT is considered a binary classification problem, the input can contain an
arbitrary amount of notes. Thus, the number of classifications equals the number of
possible combinations of notes in the ground-truth MIDI. This could make extracting
data from the input exponentially harder than in simple classification tasks, which could
be another reason for the results observed in this thesis.

During all experiments, batch sizes during pre-training were set to 40 songs. This
batch size is much smaller than what is utilised by the related work on self-supervised
representation learning. Chen and He (2021) recommend a batch size of at least 256, and
show that performance decreases as batch size decreases. Due to the size of the encoder
model utilised in this thesis and the hardware limitations presented in Section 6.2.5,
larger batch sizes were unfortunately impossible and may have contributed negatively to
the encoder’s performance.

An inherent flaw with the concatenation approach tested in experiments 3 onward is
that the transcriber model could, during supervised training, learn to ignore the encoder
model’s output. One could also argue that this could happen more easily in the late
concatenation experiments (experiments 4-6). These experiments utilise a considerably
smaller encoding, concatenated much later in the transcriber network. In this case, the
encoder output is smaller than the data it is concatenated to, and the concatenated
data ultimately passes through fewer layers than in the early concatenation approach.
This explanation is also backed by the results from experiment 3b, where the transcriber
model trained on the untrained encoder showed no significant performance decrease when
compared to experiment 3a.

62

7.2. Discussion

7.2.3. Discussion of Data

The datasets utilised in this thesis were chosen to be as similar as possible and provide a
sufficient amount of unlabelled data in relation to labelled data. Due to the synthetic
nature of the audio in the Slakh2100 dataset, perfect similarity between the datasets
would be nearly impossible when considering the currently available datasets presented
in Section 3. The MTG-J dataset was chosen due to its size, instrumental variety and
similarity in style to the Slakh2100 dataset. A difference is, however, still quite noticeable
and may have impacted results in an unfortunate manner. When comparing audio from
both datasets, the audio from Slakh2100 appears to have a robotic MIDI-quality to it.
Furthermore, audio in MTG-J often contains singing and other instruments not present
in Slakh2100. This leads to the assumption that if the encoder was able to learn and
extract musical features during training on MTG-J, it might have been too difficult to
adapt this knowledge for the audio in Slakh2100.

63

8. Conclusion and Future Work
In this chapter, we will attempt to summarise the findings from the experiments and the
discussion of these results, followed by a presentation of notable contributions resulting
from the work in this thesis. Finally, ideas for future work in the field of AMT as a whole
are presented.

8.1. Conclusion

This thesis started out with the goal of investigating if self-supervised pre-training can
be used with AMT models to improve their transcription performance. While this is
not the first work investigating self-supervised learning in the field of AMT, none of the
related work has explored the use of Siamese representation learning methods to mitigate
the low amount of labelled training data available for AMT. Overall, the results from
the experiments carried out in this thesis indicate that combining the SimSiam training
algorithm with the Onsets and Frames architecture did not positively affect transcription
performance. Several different architectures were tested, and it was shown in experiments
2 and 4 that the encoder was able to learn. While this was not enough to improve the
performance of the transcription model above the baseline results, it implies that further
research on this method could be worthwhile.

When evaluating the first research question, examining the use of a pre-trained encoder
to replace the input to the transcription model, it was clear from the results that this
approach for combining the SimSiam training algorithm with the Onsets and Frames
model was not suitable. Performance was severely lacking during experimentation on this
method and, in most cases, the model failed to produce any predictions when encoder
weights were frozen. While freezing the weights in this experiment resulted in F1 scores
of 0.0, the raw output from the model proved that the encoder could learn something
during pre-training. This significant result prompted further experimentation on how
the encoder was combined with the transcription model.

The second research question in this thesis was designed to examine different ways
of concatenating the encoder output into the transcription model. Neither the early
concatenation nor the late concatenation approaches managed to outperform the baseline
models. Still, the results from these experiments matched the performance of the baseline
models more closely than earlier tests. In general, the difference between precision and
recall seemed to be more prominent in all the models that included an encoder, with
precision being higher than recall. The assumption is that this was caused by the encoder
output, which likely lacks information. When concatenated into the transcriber network,
this output may divert attention from the original input spectrogram. It was also shown

65

8. Conclusion and Future Work

that the models trained using the late concatenation approach appeared to reach peak F1
scores faster than in the baseline experiments, especially when transcribing all instruments
simultaneously. This indicates that the encoder can provide the transcription model with
some extra information, proving beneficial initially but ultimately preventing the model
from surpassing the performance of the baseline experiments.

The third research question concerns how data augmentations are selected during the
SimSiam pre-training step. Results from experiments designed to answer this research
question did not surpass the baseline experiments. Instead, they decreased performance
compared to earlier experiments utilising a simpler augmentation selection algorithm.
The inherent intensity of Augmentation Selection Algorithm B is assumed to be the most
probable cause for this behaviour. This algorithm can apply multiple augmentations
to the same input. With each augmentation possibly too aggressive, this could lead to
spectrograms augmented beyond recognition.

The final research question revolves around how the quantity of unlabelled data impacts
the encoder’s performance and, ultimately, the transcriber model. Though the amount of
unlabelled data was increased by a factor of 2.5, no performance increase was observed.
This result, consistent with results from all earlier experiments, highlights the encoder’s
inability to extract features from its input such that the produced encoding can benefit
the transcriber model.

While several contributions resulted from the work done in this thesis, the main
contribution is the extensive testing and experimentation on different encoder architectures
and different methods of combining these encoders with the extended Onsets and Frames
architecture created by Grønbech (2021). The system created by Grønbech (2021) was
reused and expanded in this thesis to include the SimSiam training algorithm and
encoder architectures such that the transcriber model can automatically incorporate the
encoder trained in pre-training. This thesis also includes a presentation of the current
SOTA solutions within both AMT and Siamese representation learning, as well as an
introduction to the necessary background theory utilised in later parts of the thesis. A
PyTorch data loader, similar to the one presented by Grønbech (2021) for Slakh2100,
was created for the MTG-J dataset. This enables parallelisation during the loading
of unlabelled data utilised by the pre-training system, capable of speeding up loading
times between individual batches by a factor of ten. Finally, this thesis also presents
recommendations for future work on self-supervised learning in AMT and the field of
AMT as a whole.

66

8.2. Future Work

8.2. Future Work

A machine learning model is never better than its training data. In all fields of machine
learning, the amount of training data available is crucial for a successful model regardless
of the training algorithm utilised. Identified in both the preliminary report and from the
results in this thesis is that there is still a severe lack of labelled multi-instrument training
data for AMT. Creating new and larger datasets containing such data could easily push
the performance of current SOTA models further without needing modifications to the
architecture. However, creating these transcriptions is a tedious task that is currently
impossible to fully automate. To alleviate the amount of work required to annotate
multi-instrument performances, a possible approach would be to first transcribe the
music using a SOTA multi-instrument model and then fine-tune these transcriptions
manually to achieve the required quality. Another possible approach for creating more
multi-instrument training data is synthesising data directly from MIDI. This method was
used to create the Slakh2100 dataset but is a less desirable solution, as current synthesis
methods cannot imitate real performances accurately.

The quality of the available training data also plays an essential role in the final result.
A perfectly trained model can imitate the training data flawlessly, but any faults or
shortcomings present in the data will, in turn, be reflected in the final model. This can
be mitigated using several methods, such as increasing the amount of training data or
identifying and removing faulty data points. The latter method was utilised during the
work by Grønbech (2021) on the Slakh2100 dataset and reused in this thesis. Additionally,
it was discovered from our experiments that the audio in the two datasets used during
training (MTG-J and Slakh2100) did not resemble each other as much as first presumed.
It would therefore be beneficial to explore how the architecture investigated in this thesis
would perform when pre-trained on data with a higher level of similarity to the labelled
data.

Even though the hardware utilised to run the experiments in this thesis was necessary
to include the encoder in the final model, it still imposed some limitations on the encoder
architecture. The size of the encoder model, its input and output size, and ultimately the
batch size was severely limited by the amount of memory available on the GPU during
pre-training. Compared to the recommendations from the related work on SimSiam (Chen
and He, 2021), the batch size utilised in all experiments in this thesis was reduced by an
order of magnitude. Given the necessary hardware, it would be helpful to investigate the
effect of increasing the batch size during pre-training.

Even though current SOTA multi-instrument transcription models do not perform on
the same level as SOTA single-instrument transcribers, they are most likely already good
enough to provide some value for musicians. However, most SOTA transcription models
are difficult to use if they do not provide a graphical user interface. Some models may
even require extensive knowledge from the end user about programming and the system’s
specific architecture to produce transcriptions. Therefore, a natural next step could be
to develop an application with a user-friendly interface incorporating a multi-instrument
transcription model. Future SOTA transcription models would also likely share similar

67

8. Conclusion and Future Work

input and output formats after training compared to current models. Swapping the
transcriber model in such a system with newer and better SOTA models should therefore
be trivial compared to the work required to improve the model itself.

The SimSiam training algorithm did not provide as much information for the transcriber
model as first anticipated. Several possible reasons for this failure were identified in the
discussion. However, it would be interesting to see how other self-supervised representation
learning methods handle the unlabelled training data and if they are able to pre-train
an encoder more efficiently than the SimSiam algorithm. One closely related training
algorithm to SimSiam is the BYOL training algorithm, detailed in Section 4.6.2. This
method also utilises Siamese networks, but the training algorithm and its loss function
are more complicated than that of SimSiam.

Another possibility would be to investigate how one of these self-supervised repres-
entation learning algorithms affects other SOTA AMT architectures such as the MT3
architecture by Gardner et al. (2022) or the NoteEM architecture by Maman and Bermano
(2022) which both differ significantly from the extended Onsets and Frames architecture
utilised in this thesis.

During pre-training in experiments 2 through 6, all augmentations utilised were adapted
from the related work on self-supervised learning (Chen and He, 2021; Grill et al., 2020).
However, these augmentations are not directly designed for use with spectrograms, and
some modifications to the augmentations had to be made. It could nonetheless be quite
valuable to thoroughly investigate what types of data augmentations are best suited to
music in the form of spectrograms and how these would affect the final model.

Another way to augment the data would be to load two different random parts of the
same song rather than augmenting one spectrogram using traditional image augmentations.
As western music, especially pop music, is quite similar throughout an entire song, the
two extracted segments would most likely share many features such as tempo, key and
time signature.

68

Bibliography
Jeremy F. Alm and James S. Walker. Time-Frequency Analysis of Musical

Instruments. SIAM Review, 44(3), January 2002. ISSN 0036-1445, 1095-
7200. doi:10.1137/S00361445003822. URL http://epubs.siam.org/doi/10.1137/
S00361445003822.

K.E. ArunKumar, Dinesh V. Kalaga, Ch. Mohan Sai Kumar, Masahiro Kawaji, and
Timothy M. Brenza. Comparative analysis of Gated Recurrent Units (GRU), long
Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA),
seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-
19 trends. Alexandria Engineering Journal, 61(10):7585–7603, October 2022. ISSN
11100168. doi:10.1016/j.aej.2022.01.011. URL https://linkinghub.elsevier.com/
retrieve/pii/S1110016822000138.

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi
Klapuri. Automatic music transcription: challenges and future directions. Journal of
Intelligent Information Systems, 41(3), December 2013. ISSN 0925-9902, 1573-7675.
doi:10.1007/s10844-013-0258-3. URL http://link.springer.com/10.1007/s10844-
013-0258-3.

Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Automatic
Music Transcription: An Overview. IEEE Signal Processing Magazine, 36(1):20–30,
January 2019. ISSN 1053-5888, 1558-0792. doi:10.1109/MSP.2018.2869928. URL
https://ieeexplore.ieee.org/document/8588423/.

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The
Million Song Dataset. In Proceedings of the 12th International Conference on Music
Information Retrieval (ISMIR 2011), 2011.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra.
The MTG-Jamendo Dataset for Automatic Music Tagging. Proceedings of the 36th
International Conference on Machine Learning, 2019. URL http://hdl.handle.net/
10230/42015.

Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. IEEE,
June 2021. URL https://ieeexplore.ieee.org/document/9578004/.

W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel, W.W. Lang, G.C.
Maling, D.E. Nelson, C.M. Rader, and P.D. Welch. What is the fast Fourier transform?

69

https://doi.org/10.1137/S00361445003822
http://epubs.siam.org/doi/10.1137/S00361445003822
http://epubs.siam.org/doi/10.1137/S00361445003822
https://doi.org/10.1016/j.aej.2022.01.011
https://linkinghub.elsevier.com/retrieve/pii/S1110016822000138
https://linkinghub.elsevier.com/retrieve/pii/S1110016822000138
https://doi.org/10.1007/s10844-013-0258-3
http://link.springer.com/10.1007/s10844-013-0258-3
http://link.springer.com/10.1007/s10844-013-0258-3
https://doi.org/10.1109/MSP.2018.2869928
https://ieeexplore.ieee.org/document/8588423/
http://hdl.handle.net/10230/42015
http://hdl.handle.net/10230/42015
https://ieeexplore.ieee.org/document/9578004/

Bibliography

Proceedings of the IEEE, 55(10), 1967. ISSN 0018-9219. doi:10.1109/PROC.1967.5957.
URL http://ieeexplore.ieee.org/document/1447887/.

Valentin Emiya. MAPS Database: a Piano database for multipitch estimation and
automatic transcription of music, July 2010. URL https://adasp.telecom-paris.
fr/resources/2010-07-08-maps-database/.

Josh Gardner, Ian Simon, Ethan Manilow, Curtis Hawthorne, and Jesse Engel. MT3:
Multi-Task Multitrack Music Transcription, March 2022. URL http://arxiv.org/
abs/2111.03017.

Tom Gerou and Linda Lusk. Essential dictionary of music notation. Alfred Publishing
Company, Van Nuys, CA, January 1996.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mo-
hammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal
Valko. Bootstrap your own latent: A new approach to self-supervised Learning,
September 2020. URL http://arxiv.org/abs/2006.07733.

Henrik Grønbech. Multi-Instrument Automatic Music Transcription with Deep Learning.
NTNU Open, June 2021. URL https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/2979217.

Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel,
Jesse Engel, Sageev Oore, and Douglas Eck. Onsets and Frames: Dual-Objective Piano
Transcription, October 2018. URL http://arxiv.org/abs/1710.11153.

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,
Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling Factorized
Piano Music Modeling and Generation with the MAESTRO Dataset, 2019. URL
https://openreview.net/pdf?id=r1lYRjC9F7.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. URL https://ieeexplore.ieee.org/abstract/document/
6795963.

Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna Kumar,
and Tillman Weyde. Singing Voice Separation With Deep U-NET Convolutional
Networks. Proceedings of the 18th International Society for Music Information Retrieval
Conference, 2017. URL https://openaccess.city.ac.uk/id/eprint/19289/.

Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang. High-resolution
Piano Transcription with Pedals by Regressing Onset and Offset Times, July 2021.
URL http://arxiv.org/abs/2010.01815.

70

https://doi.org/10.1109/PROC.1967.5957
http://ieeexplore.ieee.org/document/1447887/
https://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/
https://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/
http://arxiv.org/abs/2111.03017
http://arxiv.org/abs/2111.03017
http://arxiv.org/abs/2006.07733
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2979217
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2979217
http://arxiv.org/abs/1710.11153
https://openreview.net/pdf?id=r1lYRjC9F7
https://ieeexplore.ieee.org/abstract/document/6795963
https://ieeexplore.ieee.org/abstract/document/6795963
https://openaccess.city.ac.uk/id/eprint/19289/
http://arxiv.org/abs/2010.01815

Bibliography

Qiuqiang Kong, Bochen Li, Jitong Chen, and Yuxuan Wang. GiantMIDI-Piano: A
large-scale MIDI dataset for classical piano music, April 2022. URL http://arxiv.
org/abs/2010.07061.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 1998. URL http:
//yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.

Bochen Li, Xinzhao Liu, Karthik Dinesh, Zhiyao Duan, and Gaurav Sharma. Creating
a Multitrack Classical Music Performance Dataset for Multimodal Music Analysis:
Challenges, Insights, and Applications. IEEE Transactions on Multimedia, 21(2):
522–535, February 2019. ISSN 1520-9210, 1941-0077. doi:10.1109/TMM.2018.2856090.
URL https://ieeexplore.ieee.org/document/8411155/.

Ben Maman and Amit H. Bermano. Unaligned Supervision For Automatic Music
Transcription in The Wild, April 2022. URL http://arxiv.org/abs/2204.13668.
arXiv:2204.13668 [cs, eess].

Ethan Manilow, Gordon Wichern, Prem Seetharaman, and Jonathan Le Roux. Cutting
Music Source Separation Some Slakh: A Dataset to Study the Impact of Training Data
Quality and Quantity, September 2019. URL http://arxiv.org/abs/1909.08494.

MIDI Manufacturers Association. An Introduction to MIDI, 2009. URL https://www.
midi.org/images/easyblog_articles/43/intromidi.pdf.

Mats Jaer Nottveit and Håkon Anders Strømsodd. Automatic Music Transcription
using Deep Learning. Specialisation project, Dept. of Computer Science, Norwegian
University of Science and Technology, December 2022.

Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks,
December 2015. URL http://arxiv.org/abs/1511.08458. arXiv:1511.08458 [cs].

Martin Piszczalski and Bernard A Galler. Automatic music transcription. Computer
Music Journal, 1977. URL https://www.jstor.org/stable/40731297.

Colin Raffel. Learning-Based Methods for Comparing Sequences, with Ap-
plications to Audio-to-MIDI Alignment and Matching, 2016. URL https:
//www.proquest.com/openview/4dc9b57b251e7806ff9041a948b7c320/1?pq-
origsite=gscholar&cbl=18750.

Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang,
and Daniel P W Ellis. A TRANSPARENT IMPLEMENTATION OF COMMON
MIR METRICS. Proceedings of the 15th International Society for Music Information
Retrieval Conference, 2014. URL https://doi.org/10.5281/zenodo.1416528.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer

71

http://arxiv.org/abs/2010.07061
http://arxiv.org/abs/2010.07061
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://doi.org/10.1109/TMM.2018.2856090
https://ieeexplore.ieee.org/document/8411155/
http://arxiv.org/abs/2204.13668
http://arxiv.org/abs/1909.08494
https://www.midi.org/images/easyblog_articles/43/intromidi.pdf
https://www.midi.org/images/easyblog_articles/43/intromidi.pdf
http://arxiv.org/abs/1511.08458
https://www.jstor.org/stable/40731297
https://www.proquest.com/openview/4dc9b57b251e7806ff9041a948b7c320/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/4dc9b57b251e7806ff9041a948b7c320/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/4dc9b57b251e7806ff9041a948b7c320/1?pq-origsite=gscholar&cbl=18750
https://doi.org/10.5281/zenodo.1416528

Bibliography

Learning with a Unified Text-to-Text Transformer, July 2019. URL http://arxiv.
org/abs/1910.10683. arXiv:1910.10683 [cs, stat].

Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC: An
energy-efficient, high-performance GPGPU computing research infrastructure, 2019.

Paris Smaragdis and Judith C Brown. Non-negative matrix factorization for polyphonic
music transcription, 2003. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1285860.

S S Stevens, J Volkmann, and E B Newman. A Scale for the Measurement of the
Psychological Magnitude Pitch. JASA, 1936. URL https://asa.scitation.org/
doi/pdf/10.1121/1.1915893.

John Thickstun, Zaid Harchaoui, and Sham Kakade. Learning Features of Music from
Scratch, April 2017. URL http://arxiv.org/abs/1611.09827.

Qingyang Xi, Rachel M Bittner, Johan Pauwels, Xuzhou Ye, and Juan P Bello. GUI-
TARSET: A DATASET FOR GUITAR TRANSCRIPTION. ISMIR, page 8, 2018.
URL https://ismir2018.ismir.net/doc/pdfs/188_Paper.pdf.

72

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1285860
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1285860
https://asa.scitation.org/doi/pdf/10.1121/1.1915893
https://asa.scitation.org/doi/pdf/10.1121/1.1915893
http://arxiv.org/abs/1611.09827
https://ismir2018.ismir.net/doc/pdfs/188_Paper.pdf

A. List of Third-Party Python
Libraries

All experiments were run using Python 3.8.6 and the following packages installed. Some
packages may depend on other packages not listed in this table.

Table A.1.: The complete list of third-party Python libraries and their versions used to
run all experiments.

Package Version
ffmpeg-python 0.2.0
mido 1.2.10
mir-eval 0.7
numpy 1.22.4
openunmix 1.1.2
pillow 9.4.0
pretty-midi 0.2.9
sacred 0.8.4
scipy 1.10.0
slakh-dataset 0.1.20
soundfile 0.10.3.post1
spleeter 2.3.2
tensorboard 2.11.2
torch 1.9.0+cu111
torchaudio 0.9.0
torchsummary 1.5.1
torchvision 0.10.0+cu111
tqdm 4.64.1

73

B. Detailed Projector
Architectures

The following tables present the detailed architecture and parameters utilised in the
PyTorch implementations of the three encoder architectures. The upscaler-projector in
Encoder Architecture 1 is detailed in Table B.1. The projector in Encoder Architecture 2
does not perform any upscaling. Its parameters are detailed in Table B.2. The projector
in Encoder Architecture 3 is an MLP and thus purely built on PyTorch’s linear layers.
This network is detailed in Table B.3.

Table B.1.: Detailed architecture and parameters for the PyTorch implementation of the
upscaler-projector in Encoder Architecture 1

Layer Input
Channels

Output
Channels

Kernel Size Stride Padding

ConvTranspose2d 512 256 (2, 3) (2, 2) (0, 1)
ConvTranspose2d 256 128 (2, 3) (2, 2) (0, 1)
ConvTranspose2d 128 64 (2, 2) (2, 2) (0, 0)
ConvTranspose2d 64 32 (2, 3) (2, 2) (0, 1)
ConvTranspose2d 32 1 (2, 3) (2, 2) (0, 1)

75

B. Detailed Projector Architectures

Table B.2.: Detailed architecture and parameters for the PyTorch implementation of the
projector in Encoder Architecture 2

Layer Input
Channels

Output
Channels

Kernel Size Stride Padding

Conv2d 1 64 (3, 3) (2, 2) (1, 1)
BatchNorm2d 64 64 - - -
ReLU - - - - -
Conv2d 64 256 (3, 3) (2, 2) (1, 1)
BatchNorm2d 256 256 - - -
ReLU - - - - -
Conv2d 256 512 (3, 3) (2, 2) (1, 1)
BatchNorm2d 512 512 - - -
ReLU - - - - -
ConvTranspose2d 512 256 (2, 2) (2, 2) (0, 0)
BatchNorm2d 256 256 - - -
ReLU - - - - -
ConvTranspose2d 256 64 (2, 2) (2, 2) (0, 0)
BatchNorm2d 64 64 - - -
ReLU - - - - -
ConvTranspose2d 64 1 (2, 2) (2, 2) (0, 0)
BatchNorm2d 1 1 - - -
ReLU - - - - -

76

Table B.3.: Detailed architecture and parameters for the PyTorch implementation of the
projector in Encoder Architecture 3

Layer Input
Features

Output
Features

Linear 1000 2048
BatchNorm1d 2048 2048

ReLU - -
Linear 2048 2048

BatchNorm1d 2048 2048
ReLU - -
Linear 2048 768

BatchNorm1d 768 768

77

C. Individual Results from
Repeated Runs

This section contains tables with precision, recall, and F1 scores from individual reruns
utilised to calculate the averaged results presented in section 6. Results from reruns
of experiment 1c are presented in Table C.1. Table C.2 presents results from reruns of
experiment 5b. Finally, results from reruns of experiments 6a and 6b are presented in
Table C.3 and Table C.4, respectively.

Table C.1.: Results from individual runs used to calculate the averaged result for experi-
ment 1c presented in Table 6.7 in Section 6.3.

Exp. 1c Frame Note onset Note /w offset
Run Nr. P R F1 P R F1 P R F1

1 75.2 68.7 71.1 81.7 69.7 74.3 40.6 35.4 37.4
2 78.9 68.3 72.7 84.8 67.4 74.1 44.7 36.7 39.8
3 78.1 68.8 72.5 85.6 67.7 74.6 44.4 36.4 39.4
4 75.8 66.9 70.2 83.1 67.9 73.9 40.9 34.1 36.8
5 78.4 70.4 73.6 83.2 69.0 74.6 44.1 37.5 40.1

Average 77.3 68.6 72.0 83.7 68.3 74.3 42.9 36.0 38.7
St. dev 1.663 1.252 1.355 1.535 0.971 0.308 2.013 1.310 1.497

Table C.2.: Results from individual runs used to calculate the averaged result for experi-
ment 5b presented in Table 6.7 in Section 6.3.

Exp. 5b Frame Note onset Note /w offset
Run Nr. P R F1 P R F1 P R F1

1 77.7 69.2 72.7 81.7 68.8 73.5 42.8 37.2 39.1
2 78.3 69.2 72.9 84.8 67.7 74.4 45.5 37.4 40.6
3 77.1 69.9 72.6 81.3 68.5 73.5 41.7 36.3 38.4
4 78.1 69.0 72.8 84.2 67.5 73.7 43.6 36.0 38.8
5 77.5 64.0 69.1 84.5 66.3 73.3 41.5 33.5 36.6

Average 77.7 68.3 72.0 83.3 67.8 73.7 43.0 36.1 38.7
St. dev 0.477 2.406 1.636 1.663 0.979 0.427 1.627 1.558 1.439

79

C. Individual Results from Repeated Runs

Table C.3.: Results from individual runs used to calculate the averaged result for experi-
ment 6a presented in Table 6.7 in Section 6.3.

Exp. 6a Frame Note onset Note /w offset
Run Nr. P R F1 P R F1 P R F1

1 90.6 87.4 88.8 89.2 87.8 88.3 81.9 80.6 81.1
2 90.0 89.2 89.4 89.0 90.1 89.3 82.0 82.7 82.2
3 89.9 86.9 88.2 88.2 88.2 88.0 80.7 80.1 80.3
4 89.5 88.5 88.7 90.3 87.7 88.7 82.7 80.2 81.2
5 89.2 87.4 88.1 88.8 88.1 88.3 82.5 81.9 82.0

Average 89.8 87.9 88.6 89.1 88.4 88.5 82.0 81.1 81.4
St. dev 0.532 0.942 0.522 0.768 0.983 0.502 0.780 1.147 0.764

Table C.4.: Results from individual runs used to calculate the averaged result for experi-
ment 6b presented in Table 6.7 in Section 6.3.

Exp. 6b Frame Note onset Note /w offset
Run Nr. P R F1 P R F1 P R F1

1 75.7 66.4 70.0 83.0 67.7 72.6 41.4 35.0 37.4
2 77.3 65.7 70.2 83.8 68.8 74.5 42.1 35.4 37.9
3 78.0 68.3 72.2 83.9 68.6 74.5 44.4 37.6 40.2
4 78.5 68.2 72.4 83.8 67.4 73.6 43.9 36.5 39.2
5 76.5 66.8 70.5 84.5 66.0 73.2 42.5 34.5 37.6

Average 77.2 67.1 71.1 83.8 67.7 73.7 42.9 35.8 38.5
St. dev 1.127 1.139 1.148 0.534 1.118 0.829 1.254 1.247 1.199

80

D. F1 Score Plots for Remaining
Experiments

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 2b
Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 2d
Frame F1
Note F1
Note /w offset F1

Figure D.1.: Frame, note and note with offsets F1 scores for experiment 2b and 2d.

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 5a

Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 5b

Frame F1
Note F1
Note /w offset F1

Figure D.2.: Frame, note and note with offsets F1 scores for experiment 5a and 5b.

81

D. F1 Score Plots for Remaining Experiments

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 6a

Frame F1
Note F1
Note /w offset F1

0k 10k 20k 30k 40k 50k0

20

40

60

80

Experiment 6b

Frame F1
Note F1
Note /w offset F1

Figure D.3.: Frame, note and note with offsets F1 scores for experiment 6a and 6b.

82

E. Example Transcriptions of
Validation Data

The following figures show examples of transcribed music from the Slakh2100 validation
split. In all figures, the top row shows the input spectrogram, the upper middle row
shows the model predictions, the lower middle row shows the ground truth MIDI and
the bottom row shows the difference between model predictions and ground truth MIDI.
In the bottom row, grey pixels indicate correctly predicted features (frames, onsets and
offsets), blue pixels indicate features missing from the prediction and red pixels indicate
wrongly predicted features not present in the ground truth MIDI.

Figure E.1.: Transcribed validation spectrograms for experiment 1b.

83

E. Example Transcriptions of Validation Data

Figure E.2.: Transcribed validation spectrograms for experiment 1c.

84

Figure E.3.: Transcribed validation spectrograms for experiment 2a.

Figure E.4.: Transcribed validation spectrograms for experiment 2b.

85

E. Example Transcriptions of Validation Data

Figure E.5.: Transcribed validation spectrograms for experiment 2c.

Figure E.6.: Transcribed validation spectrograms for experiment 2d.

86

Figure E.7.: Transcribed validation spectrograms for experiment 2e.

Figure E.8.: Transcribed validation spectrograms for experiment 3a.

87

E. Example Transcriptions of Validation Data

Figure E.9.: Transcribed validation spectrograms for experiment 3b.

Figure E.10.: Transcribed validation spectrograms for experiment 4a.

88

Figure E.11.: Transcribed validation spectrograms for experiment 4b.

89

E. Example Transcriptions of Validation Data

Figure E.12.: Transcribed validation spectrograms for experiment 5a.

90

Figure E.13.: Transcribed validation spectrograms for experiment 5b.

91

E. Example Transcriptions of Validation Data

Figure E.14.: Transcribed validation spectrograms for experiment 6a.

92

Figure E.15.: Transcribed validation spectrograms for experiment 6b.

93

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background and Motivation
	Goal and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background and Theory
	Automatic Music Transcription
	AI and Machine Learning
	Self-Supervised Learning
	Deep Learning
	Transposed Convolution
	Residual Neural Network
	Siamese Neural Networks
	Pre-Training
	Image Augmentations

	Music Theory
	Fourier Transform
	Audio Representation
	Staff Notation
	Waveform
	Spectrograms
	MIDI

	Evaluation
	Precision
	Recall
	F1 Score

	Datasets
	MAPS
	MAESTRO
	GiantMIDI-Piano
	Million Song Dataset
	MusicNet
	Lakh
	Slakh2100
	Cerberus4
	URMP
	GuitarSet
	MTG-Jamendo
	MNIST

	Related Work
	Preliminary Approaches
	Onsets and Frames
	MT3
	NoteEM
	Comparison
	Self-Supervised Pre-Training
	Simple Siamese Representation Learning
	BYOL Representation Learning

	Architecture
	Pre-Processing
	Self-Supervised System
	Data Augmentations
	Encoder Architectures

	Fully Supervised System
	Post-Processing

	Experiments and Results
	Experimental Plan
	Baseline Experiments
	Experiments on Input Replacement
	Experiments on Concatenation
	Experiments on Augmentation Selection Mode
	Experiments on Size of Unlabelled Dataset

	Experimental Setup
	Datasets
	Third-Party Libraries
	Spectrogram Generation
	Network Parameters
	Hardware

	Experimental Results
	Experiment 0: Simple Siamese Verification
	Experiment 1: Onsets and Frames Baseline
	Experiment 2: Input Replacement
	Experiment 3: Early Concatenation
	Experiment 4: Late Concatenation
	Experiment 5: Augmentation Selection Mode
	Experiment 6: More Unlabelled Data

	Evaluation and Discussion
	Evaluation
	Discussion
	Discussion of Results
	Discussion of Architecture
	Discussion of Data

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Third-Party Python Libraries
	Detailed Projector Architectures
	Individual Results from Repeated Runs
	F1 Score Plots for Remaining Experiments
	Example Transcriptions of Validation Data

