@NTNU

Norwegian University of
Science and Technology

\/

ueydey) epbepy e1I0}DIA

NTNU

Norwegian University of
Science and Technology

Faculty of Engineering

Department of Energy and Process Engineering

Victoria Magda Kaplan

Digital Twin Model for Gas Turbine

Power Generation Forecasting

MSc. Natural Gas Technology
Supervisor: Lars Olof Nord
Co-supervisor: Even Solbraa

July 2023

@NTNU

Norwegian University of
Science and Technology

@NTNU

Norwegian University of
Science and Technology

Digital Twin Model for Gas Turbine Power
Generation Forecasting

MSc. Natural Gas Technology
Supervisor: Lars Olof Nord

Co-supervisor: Even Solbraa

Victoria Magda Kaplan

MSc. Natural Gas Technology
Submission date: July 2023
Supervisor: Lars Olof Nord
Co-supervisor: Even Solbraa

Norwegian University of Science and Technology
Department of Energy and Process Engineering

ictoria Magda Kapla
Victoria Magda Kaplan

Digital Twin Model for Gas Turbine Power
Generation Forecasting

Master’s thesis in Natural Gas Technology
Supervisor: Lars Olof Nord

Co-supervisor: Even Solbraa

June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

@ NTNU

ABSTRACT

In recent years, digital twin models have gained significant interest as powerful
tools for predicting the behavior of complex processes and types of equipment,
assisting in damage prevention, increasing productivity, and facilitating decision-
making in various industries. This study focuses on developing a digital twin of
a specific gas turbine for power forecasting by accurately modeling its behavior
under changing ambient conditions.

Despite its promising task, it comes with equal challenges: to generate a precise
digital twin needs to start with an accurate model. From this point forward,
the digital twin can correctly simulate the behavior and assist the industry with
decision-making challenges.

A comprehensive gas turbine model was developed using Python, enabling
the estimation of power generation based on varying ambient temperatures. The
model underwent verification and validation procedures to ensure its accuracy and
reliability. Furthermore, it was integrated with a weather forecast API, allowing
the prediction of the gas turbine’s power output under different weather scenarios.

The methodology employed in building the digital twin model is described in
detail, including the equations utilized and the setup for the simulation software.
The verification and validation process is thoroughly discussed to emphasize the
credibility of the digital twin model for real-world applications.

The results obtained from the digital twin simulations demonstrate its potential
capability to provide precise and reliable power generation forecasts for the studied
gas turbine.

This thesis contributes to the advancement of digital twin models for gas tur-
bines and showcases the potential of such models in power forecasting and decision-
making in the energy industry. The outcomes also emphasize the importance of
accurate modeling and data integration to maximize the benefits of digital twin
technology for industrial applications.

SAMMENDRAG

De siste arene har digitale tvillingmodeller fatt betydelig interesse som kraftige
verktoy for & forutsi oppferselen til komplekse prosesser og typer utstyr, bista med
skadeforebygging, gke produktiviteten og lette beslutningstaking i ulike bransjer.
Denne studien fokuserer pa a utvikle en digital tvilling av en spesifikk gassturbin
for kraftprognoser ved a ngyaktig modellere dens oppfersel under skiftende om-
givelsesforhold.

Til tross for den lovende oppgaven, kommer den med like utfordringer: a
generere en presis digital tvilling ma starte med en ngyaktig modell. Fra dette
tidspunktet kan den digitale tvillingen simulere atferden pa riktig mate og hjelpe
industrien med beslutningsutfordringer.

En omfattende gassturbinmodell ble utviklet ved bruk av Python, som mulig-
gjor estimering av kraftproduksjon basert pa varierende omgivelsestemperaturer.
Modellen gjennomgikk verifikasjons- og valideringsprosedyrer for & sikre ngyak-
tighet og palitelighet. Videre var den integrert med et veervarslings-API, som
muliggjorde forutsigelse av gassturbinens kraftuttak under forskjellige veerscenar-
ier.

Metodikken som brukes for a bygge den digitale tvillingmodellen er beskrevet
i detalj, inkludert likningene som ble brukt og oppsettet av simuleringsprogram-
varen. Verifikasjons- og valideringsprosessen er grundig diskutert for a understreke
troverdigheten til den digitale tvillingmodellen for applikasjoner i den virkelige
verden.

Resultatene oppnadd fra de digitale tvillingsimuleringene viser dens poten-
sielle evne til & gi presise og palitelige kraftproduksjonsprognoser for den studerte
gassturbinen.

Denne masteroppgaven bidrar til & fremme digitale tvillingmodeller for gasstur-
biner og viser potensialet til slike modeller i kraftprognoser og beslutningstaking
i energiindustrien. Resultatene understreker ogsa viktigheten av ngyaktig model-
lering og dataintegrasjon for & maksimere fordelene med digital tvillingteknologi
for industrielle applikasjoner.

i

PREFACE

This master thesis was written under the guidance of Lars Olof Nord and Even Sol-
braa at the Department of Energy and Process Engineering, Norwegian University
of Science and Technology.

I would like to express my deepest appreciation to both my supervisors, Lars
and Even, for their support throughout the entire process. Their guidance during
challenging phases of the work was invaluable. I am also immensely grateful to
Sviatoslav Eroshkin, whose assistance and continuous encouragement since the
beginning of the project have been essential. Your support and expertise have
truly made a profound difference.

I extend my heartfelt thanks to all my friends who have accompanied me on this
arduous journey of pursuing a master’s degree. To my friends Dhruva, Denisse,
Lukas, Marina, Maria, Marthine, Marco, Mohamamd, especially. Thank you for
all the laughter and support during the studies. I am very grateful to have made
friends in my masters that I will carry to my personal life.

Moreover, I dedicate this thesis to my family, whose belief in me even when I
doubted myself has been an unwavering pillar of support. Your early phone calls
from Brazil and Poland, filled with encouragement and love, have meant the world
to me. I consider myself incredibly fortunate to have such an extraordinary level
of unconditional support from each of you

il

CONTENTS

Abstract i
Sammendrag ii
Preface iii
Contents v
List of Figures v
List of Tables vii
Abbreviations ix
Introduction 1
Theory 3
2.1 Gasturbines 3
2.2 Object orientated programming)
2.3 Weather forecast Application Programming Interface - API 7
24 Digital Twin o0 8
Methods 13
3.1 Gas Turbine Performance Calculations 13

3.1.1 Compressor 13

3.1.2 Combustor. 16

3.1.3 Turbines 17

3.1.4 GasTurbine 18

3.1.5 Off design performance 19
3.2 Python Model 22

3.2.1 Combustion 25

3.2.2 Off design performance 28
3.3 Verification and Validation 29
3.4 HYSYSmodel 30
3.5 Thermoflow Model 31
3.6 Weather Forecast API 32
3.7 Digital Twin 34

v

CONTENTS

4 Results and Discussion
4.1 Design Model
4.2 Off-design scenarios
4.3 Verification
4.4 Validationo
4.4.1 Limitations of the model
4.5 Weather API connection
4.6 Digital Twino
5 Conclusion and Further Work
5.1 Conclusion
5.2 Future Work
References

Appendices:

35
35
37
37
43
20
ol
23

57
27
58

59

63

LIST OF FIGURES

2.1.1 Pressure - volume diagram of Brayton cycle. [5] 4
2.1.2 Cross section of gas turbine SGT A-35 for 34 and 38 MW showing
the main parts: 1 - compressor, 2 - combustor and 3 - expander.

Adapted from [6] 4
2.4.1 Digital twin model framework, extracted from [15]. 10
3.1.1 Gas Turbine main components. 13
3.1.2 Compressor characteristic.[18] 14
3.1.3 Compressor control volume. 15
3.1.4 Turbine characteristic.[18] 17
3.1.5 Turbine control volume. 18
3.1.6 Off design calculation procedure. 21
3.4.1 Aspen HYSYS model. 30

4.3.1 Power Output variation with Ambient Temperature. Green repre-
sents the values generated from HYSYS model, and the blue line
are the outputs from the Python mode. 37
4.3.2 Efficiency of gas turbine versus Ambient Temperature. Blue line
represents the values extracted from HYSYS model, and orange

represent the Python model results. 38
4.3.3 Gas Turbine Efficiency vs. Power Output at 0° C Ambient Tem-
perature. oL L 38
4.3.4 Gas Turbine Efficiency vs. Power Output at 15° C Ambient Tem-
perature. L L 39
4.3.5 Gas Turbine Efficiency vs. Power Output at 30° C Ambient Tem-
perature. 39
4.3.6 Turbine Exhaust Temperature T,,,, = 0°C. 40
4.3.7 Turbine Exhaust Temperature T,,,, = 15°C.. 40
4.3.8 Turbine Exhaust Temperature T,,,, =30°C.. 41
4.3.9 Compressor Outlet Temperature - T,,,, = 0°C. 41
4.3.10 Compressor Outlet Temperature - T,,,, = 15°C. 42
4.3.11 Compressor Outlet Temperature - T,,,, = 30°C. 42
4.4.1 Siemens SGT A35 RB overview. [24] 43
4.4.2 Siemens SGT A35 RB simplified diagram. 44
4.4.3 Air flow for off design conditions comparison. 48
4.4.4 Power and efficiency output results for Thermoflow and Python. . . 49

vi

LIST OF FIGURES vii

4.4.5 Gas turbine power results comparison. 49
4.4.6 Gas turbine efficiency results comparison. 50
4.4.7 Exhaust turbine temperature results comparison. 51
4.5.1 Average temperature weather historical data for the geographical
location selected.o oL D2
4.6.1 Power output estimation for the time frame selected. 55
4.6.2 Power output forecast. 0 0L 56

4.6.3 Efficiency of gas turbine forecast. 56

LIST OF TABLES

3.5.1 Fuel gas specification inputted in GTPRO. 31

4.1.1 Model comparison setup. * Air composition of 79.81 % N, and
20.09 % of Oy. ** for this first verification, the fuel composition

was simplified to 100 % CHy. 35
4.1.2 Comparison of Python and HYSYS model outputs. 36
4.4.1 Design conditions of SGT A35 - extracted from GTPRO and [24].

*Power Output at Generator Terminal. 44
4.4.2 Air composition, extracted from GTPRO (considering 0% relative

humidity). oL 45

4.4.3 GT PRO inputs to GasTurb. * Booster Compressor is the Intermediate
Pressure Compressor represented in the gas turbine setup, and HP stands

for high pressure compressor. 46
4.4.4 Tterations setup on GasTurb. 47
4.4.5 Comparison of Thermoflow and Python model for design conditions.

GasTurb setup: Booster Turboshaft HP Spool 47

4.5.1 Geographical coordinates of the offshore oil field. * Coordinates writ-
ten in DMS (degrees, minutes, seconds) format. **Coordinates written
in decimal format. Lo o1

4.6.1 OLS Regression Results. 54

viil

Abbreviations

API
JSON
GT
LHV
LCV
OOP
HPC
HPT
IPC
PT

Application Programming Interface

JavaScript Object Notation

Gas Turbine
Lower Heating Value

Lower Calorific Value

Object Oriented Programming

High Pressure Compressor

High Pressure Turbine

Intermediate Pressure Compressor

Power Turbine

Greek Letters

n Efficiency

Latin Letters

A

Cp

Cross-Section Area

Specific Heat Capacity

Fuel Flow Rate

Enthalpy

X

NOMENCLATURE

kJ/kg
kJ kg

kJ /kgK

kg/s

kJ/kg

X
m Mass Flow
AP Pressure difference
P Pressure
r Pressure Ratio
T Temperature
W Work
Subscripts
amb Ambient
c Combustor
comp Compressor
mn Inlet
I8 Isentropic
n Number of stages
new New
out Outlet
pol Polytropic
ref Reference
t Total

turb Turbine

LIST OF TABLES

kg /hr

kPa

kPa

MW

CHAPTER
ONE

INTRODUCTION

In a world with an emerging population, industry expansion, and increased reliance
and dependency on technology, the energy demand grows at an unprecedented
pace. Lately, geopolitical issues highlighted just how important it is to generate
not only energy addressing environmental concerns but in a way that it is reliable
and available.

Amidst this energy crisis, finding innovative solutions to deliver power becomes
of the utmost relevance. One promising approach lies in the optimization of gas
turbine operation, an equipment already established in the industry.

Gas turbines are critical components in power generation facilities, and their
efficient operation is vital for meeting energy demands and securing power avail-
ability. Compact equipment providing reliable energy with low emissions, high
efficiency, and the ability to operate with a wide range of different fuels, gas tur-
bines have been the choice for many industries for power generation.

Nonetheless, the inherent complexities of gas turbine systems, combined with
ever-changing operating conditions present challenges to precisely forecast perfor-
mance and predict potential issues in advance. Inaccuracy to simulate off-design
performance and the effect of environmental conditions is a challenge for gas tur-
bine performance evaluation.

In recent years, digital twin technology emerged as a powerful tool for modeling
and simulating the behavior of physical systems in a virtual environment. By
creating virtual copies of real systems, digital twins offer a powerful tool to model
and simulate the behavior of gas turbines in a simulation environment.

From evaluating its performance, not only it can predict when degradation oc-
curs but predicts when maintenance needs to be done, as well as when peak power
production will occur. This technology has the potential to transform the way gas
turbines operate, by optimizing and ensuring its safe and efficient performance, in
the face of high energy demands and environmental regulations.

Also, project power generation accurately also gives improved estimates for
energy availability, essential in a world where the energy demand increasing by as
much as 15% from 2022 to 2050 [1].

Thus, this master thesis aims to develop a robust digital twin model of a
generic gas turbine to predict the power generation accurately and evaluate the
effect of environmental conditions on the equipment’s performance. The model,
built using Python, will be connected to a weather forecast API for validation

CHAPTER 1. INTRODUCTION

against historical data and for creating the digital twin for future power generation
forecasts.
The work is structured as follows:

1.

2.

Literature review of gas turbines and their thermodynamic model.

Introduction to the concepts used for building the Python model, like object-
oriented programming, weather forecast API, and digital twin concepts.

The method for building the Python model for design and off-design perfor-
mance calculations of the gas turbine model.

Verification of the model with established software (Aspen HYSYS), software-
to-software validation with another commercial software (Thermoflow ®
Suite), and validation with actual data.

Analysis of verification and validation to ensure a reliable model.

Connection of the model with weather forecast API, validate the model with
historical data, and for giving an estimation of power generation.

Conclusions and further work.

CHAPTER
TWO

THEORY

2.1 Gas turbines

The development of gas turbines dates back to 1791 when an Englishman named
John Barber put up a patent for the first-ever gas turbine. However, it wasn’t until
1903, when Norwegian inventor Agidius Elling created a gas turbine able to gen-
erate more power than needed to run its components, which was a groundbreaking
achievement at a time when knowledge about aerodynamics was limited. From
there, gas turbines have evolved significantly both in performance and size reduc-
tion. Nowadays, gas turbines are the most versatile turbomachinery equipment in
operation.|[2]

Gas turbines, in essence, are power plants, converting chemical energy from
fuel into mechanical energy, and produce considerable amounts of energy when
compared to its size and weight. An increase in the use of gas turbines in the
last decades in industries ranging from the power industry, utilities, as well as
the petrochemical industry is due to its high efficiency, compactness, and low
emissions. The flexibility to operate with various fuels also make gas turbines an
obvious choice for power generation in offshore applications. [3]

The principle of operation of a gas turbine is based on the Brayton cycle, a
thermodynamic cycle that follows four processes: compression, heating, expansion,
and cooling, and is represented in figure 2.1.1. During an ideal thermodynamic
cycle, when ambient air passes through the compressor, its pressure and temper-
ature rise significantly, as seen on path 1 — 2. In an ideal process, entropy is
assumed constant in a so-called isentropic process.

Heat is introduced into the system through the combustion of the fuel upon
contact with the compressed air, along the constant pressure path 2 — 3. The
total entropy and temperature of the system increase from the exothermic reaction
during the isobaric process.

The hot and pressurized gases produced by combustion flow through the tur-
bine, connected to the same shaft as the compressor. As the gases expand and lose
pressure, they spin the turbine blades and generate mechanical energy. After spin-
ning the turbine, the excess energy is used to generate work, such as generating
electricity or propelling a vehicle. [4]

Finally, the exhaust gases are cooled and leave the system, completing the
thermodynamic cycle. This process is represented by curve 3 — 4.

4 CHAPTER 2. THEORY

Heat added
through combustion
@y
2 3
b 4 Output work fo
run compressor
\
\ N\ W,
\ \ x
Wi N B

A W
Pressure is increased

through compressor
as volume is reduced

a . \3' Useful work
“\ W,, available for
CERNA:.. S0 shaft power

Pressure

s or thrust
- + e
Start 1 vQ,, 4
Exhaust
heat
0 Volume of air

Figure 2.1.1: Pressure - volume diagram of Brayton cycle. [5]

A gas turbine main equipments are compressor, combustor, and turbine. Each
part is connected into one or more shafts, collectively named gas generator. There,
air entering the compressor is pressurized, heated, and used as an oxidizer of the
fuel entering the combustor, where it is continuously burned generating gases with
high temperatures and pressures, often called flue gas or exhaust gas. Then, the
exhaust gas is expanded through a turbine producing mechanical work, and exits
the turbine at lower pressure and temperature. The gas residual energy can be
used for different applications, such as power generation, heating, and cooling.
Figure 2.1.2 illustrates a real gas turbine schematic.

Figure 2.1.2: Cross section of gas turbine SGT A-35 for 34 and 38 MW showing
the main parts: 1 - compressor, 2 - combustor and 3 - expander. Adapted from

(6]

Gas turbines are classified in two categories: aeroderivative and industrial gas
turbines. Initially developed for military use with focus on improving powering
jet engines, aeroderivative gas turbines were later adapted for industrial use and

CHAPTER 2. THEORY)

power generation. Nowadays, the distinction between those two categories is not
so clear anymore, because aeroderivative gas turbines were modified for industrial
use due to compactness, and high pressure ratio.

These gas turbines connect compressor and turbine into a single shaft, but
also can be connected with multiple shafts running at different speeds, increasing
operational flexibility of the equipment, especially during part-load operation,
where the power generation is not at its maximum capacity.

Additionally, there are several ways for a gas turbine to produce energy. In a
so-called simple cycle, a gas turbine can be power-, or mechanical driven. Power-
driven turbines are connected to a generator, producing electricity that can be
used for domestic or industrial applications, like in the aircraft industry.

Inside the simple cycle, there is also the mechanical-driven gas turbines, used
to provide mechanical power directly into use, without the need of electricity
generation. It can be used for powering equipments such as pumps, compressors,
or other machinery in industrial applications. These gas turbines have a simpler
design when compared to power-driven gas turbines due to the fact that it does
not require the complex electrical systems for power generation.

Furthermore, some gas turbines can produce thermal energy that can be used
for heating applications, as well as other industrial processes. Another type of gas
turbine combines both thermal and electrical generation, in a combined heat and
power (CHP) system, more commonly referred to as cogeneration systems, which
increase overall efficiency of the system.

2.2 Object orientated programming

In a software development context, objects are representations of real-world sys-
tems within the virtual environment. They encompass data and associated be-
haviors, enabling executing actions with or on them. Much like physical objects,
virtual objects can be manipulated and used for various functions |7].

Knowing what an object means, object-oriented means that an object has
a direction towards something. Object-oriented works are focused on modeling
objects. It is a way of describing complex physical systems as a collection of
interacting objects through their data, behavior, as well as governing equations.

Object Oriented Programming (OOP) is a form of programming in Python that
allows programmers to create objects that have methods and attributes. Methods
is the name used in the object-orient context in the same manner as functions that
use information about the object, as well as the object, defined inside a class. It
returns results according to a formula or altering the object itself. OOP allows
users to create their objects and methods and create a repeatable and organized
code. In Python code, everything is an object, meaning that everything is an
instance of a class.

As a program code grows more in size and complexity, it becomes necessary to
structure it into group-related functions and data together, without interfering or
being modified by unrelated functions and datasets. Creating distinct code blocks
inside the main code makes it easier to understand, make modifications, as well
as code reuse. This approach reduces code development time. |§|

6 CHAPTER 2. THEORY

Object-oriented programming is one of the many ways possible to organize
a code. By writing all the functions, variables, and parameters necessary into
aggregate data structures, and dictionaries for ad-hoc grouping of related data,
using separate namespaces, the code has more structure and can be easily modified,
and reclaimed.

However, the main advantage of object orientation, is that it is possible to
combine data and functions which act upon that data into a single structure.
This way makes it clear to find the related parts of the code, physically defined
similarly to one another and also makes it easier to access the data only through
that object’s methods. This principle is called encapsulation, where the data inside
an object should only be accessible through the object’s functions, or methods.

Encapsulation is the main principle of object orientation, where it clusters
methods and data operating into a single object, and it can only be accessed when
calling out the method. This code then has several advantages, where the method
is defined in a single logical place. This is where the data is kept and the data
inside the object is not modified by any external code, guaranteeing data integrity.
Finally, when using a method, one is interested only in the result of the method,
not in the details to use it. This way is possible to change to using another object
that could be entirely different structured, but the code does not change because
of the same interface.

Despite encapsulation not being enforced by Python language, properties of an
object are conventionally named by starting with an underscore. In Java language,
for example, it is recommended to write set and get methods for all attributes,
even if the setter method assigns the value of the passed parameter and the getter
returns the attribute. [§]

These set-and-get methods are also applied for parameters that require some
calculation. Other attributes that do not require calculation are directly written
in the code, or given as external inputs for the code.

Since not all functions apply to all kinds of data provided in this code, user-
defined objects were used in the form of classes. Classes are a data type, similar to
string or list, where functions and related data act upon the data, located in one
place. This way, the code is more organized and easier to program as it gets more
complex. Data values stored inside an object are called attributes, and functions
associated with the object operating on those attributes are named methods. Set
and get methods are also applied for the calculated attributes.

With different classes written in a code, there are two main types of relation-
ships between classes: composition and inheritance. Composition is the process of
clustering objects altogether by making some objects attributes of other objects,
forming a so-called "has-a” relationship. For example, consider a class named
"Car" that has composition relationships with the "Engine" and "Wheel" classes.
The "Car" class contains instances of Wheel and Engine working and without
them, the object Car does not exist.

In composition, a class may have one or more variables of other classes, referred
to as its components. They are essential for the class to run and cannot work
independently. Meaning that, if the owner object ceases to exist in the code, its
attributes will also disappear.

This is relevant because it enables code reuse, modularity, and further building
complex code by combining simpler objects. It also promotes the creation of

CHAPTER 2. THEORY 7

more meaningful and specialized classes by hierarchically organizing them, or by
interconnecting components. Changes in the components of the class are affected
only locally, without impacting the entire system, improving the flexibility and
maintainability of the code.

Inheritance is another fundamental concept of OOP, which allows classes to
inherit methods, properties, and behavior from another class. Now, the relation
between classes is in the form of "is-a”, where a derived or subclass inherits the
characteristics from a base or parent class.

The example considered uses the class "Vehicle" as the base class, and the class
"Car" and "Boat" as subclasses. It demonstrates the "is-a” relationship, where
both the car and boat are vehicles. Each class is a vehicle, in this case, inheriting
common behavior from the parent class, but each one has its specific methods and
characteristics.

This way, the subclass automatically contains all the methods and variables
of the parent class, allowing for easy code reuse. The subclass can override the
behavior from the parent class, and also introduce new variables and methods
that are specific to itself. However, inheritance needs to be used carefully while
following the principles of encapsulation and abstraction. Incorrect use of inher-
itance leads to complex code maintenance and unforeseen errors. It is crucial to
carefully analyze the relationship between the classes to determine if inheritance
is the best approach for code design.|§|

Designing your objects can be done in a way as to represent real things, such
as process equipment or chemical reaction. One can also create objects that do
not have a physical representation but is still plausible to organize attributes and
methods together. Code objects do not necessarily have to be comparable to
real-world equivalents.

2.3 Weather forecast Application Programming In-
terface - API

Present everywhere nowadays, from mobile phones to weather forecasting, API
stands for application programming interface. It is a software intermediary that
allows for software to communicate with each other. APIs are an accessible way
to extract and share data among organizations.

The term API is generally used to describe connectivity interfaces to an appli-
cation. When using an application on your mobile, for example, it is connected
to the internet, and data is sent to a server. The server then collects this data,
interprets it, performs the necessary actions, and sends it back to the phone. The
application then interprets the data and presents it in a readable and user-friendly
way. [9]

For weather forecasts, a weather API allows weather data to be inquired into
data scripts and code. It contains several weather measurements, such as wind
speed, temperature, pressure, and humidity. More advanced APIs can also con-
tain near real-time current conditions reporting, and years of worldwide weather
reports.[10]

There is a variety of weather APIs available, each with its unique features
and levels of data access. Some are free, while others require a subscription or

8 CHAPTER 2. THEORY

payment. The choice of the API will depend on the specific needs of an application
or a project, as well as the desired level of data precision and reliability.

Weather APIs can be used in various applications, from providing weather
information for outdoor activities and events to optimizing decision-making pro-
cesses in industries, such as agriculture, transportation, and renewable energy.
Overall, it is a powerful tool for accessing and sharing weather data, offering sev-
eral benefits for individuals, as well as for industries alike.

2.4 Digital Twin

Digital twins can be defined as virtual copies of processes, equipment, and systems
modeled using their data, functions, and capabilities related to the physical object.

Even before the term digital twin was coined in 2003 by Michael Grieves [11],
one of the first digital twins registered came in the form of NASA’s solution for
allowing the damaged spacecraft Apollo 13 to return and bring its crew safely to
Earth.

By using the data from failure scenarios in the simulators used for training the
astronauts, NASA mission controllers quickly adapted to the real failure scenario
and were able to adjust the operation and trajectory of the spacecraft to land
safely and with no casualties.

Despite not being exact digital twins, these simulators were probably the first
use of digital twins, matching the actual conditions of the spacecraft in a way that
multiple possibilities were tested to bring the astronauts home.

The concept has lately been explored by several different fields, from using
data collected from smart watches to track human health, dynamic simulation of
weather forecasts, and going all the way to process monitoring for traffic control
and also for oil and gas processing to avoid major spills, its interest increased at the
same time as the methods for data monitoring improved. Operational flexibility
combined with the use of Artificial Intelligence or Machine learning tools also
contributes to pushing this new technology further.

Not only give live information about a real process, digital twin systems can be
applied to improve decision-making, and also make predictions on how the process
can perform in the future.[12]

Articles by Rasheed et al [13] and [12]| describe the values of a digital twin,
and the most relevant are described below:

e Visibility: Able to monitor operations in real-time, as well as it’s intercon-
nected systems;

e Efficiency and safety: minimize human intervention in dangerous operations;

e Maintenance: possibility to detect early faults much in advance, enabling
better maintenance scheduling;

e Risk assessment: by having a virtual copy of a real asset, different scenarios
are simulated in the digital twin to observe the system behavior at unusual
conditions, as well as the correlated mitigation strategies;

CHAPTER 2. THEORY 9

e Synergy and collaboration: by interconnecting different systems, software,
and data into different areas of the business, the decision-making time re-
duces;

e Personalization: modifying the digital twin according to each process, and
asset, with great detail enables faster evaluation of changes in operation
based on market and process data;

e Documentation: the digital twin can also be used for storing data, ready
and available for stakeholders.

Despite its promising outcomes, the evolution of digital twins needs to be
accompanied by the development of more precise models of the physical asset.

The physical realism of the model depends on accurate sensor technology,
physics-based simulators, and data-driven models. The data-driven models en-
sure that the model is continuously updated according to reality, adapting to new
changes in operation.

This constant model upgrade is also accompanied by hybrid analysis and mod-
eling, where the digital twin is built with a combination of simulated and real
measured data, increasing the sensibility and trustworthiness of the model.

Additionally, a highly reliable model needs to be accompanied by progress on
different fronts at the same tie, from continuous model improvement to human-
machine interface and data security, which are not the focus of this study.

There are distinct ways of building a digital twin model, and three of them are
described as follows:

Physics-based modeling

A physics-based modeling incorporates the observation of a physical phenomenon
and translating its behavior in the form of mathematical equations, to ultimately
set results.

However, the number of suppositions necessary to translate the physical ob-
servation into several equations ends up not fulfilling all the physics requirements.

The physics-based modeling approach has the great advantage of being gener-
ally less biased than data-driven models because they are governed by the laws of
nature. The use of numerical simulators derives from those physics equations, to
solve those equations numerically.

Despite this approach being more reliable because it is based on actual equa-
tions, the use of numerical simulators can lead to numerical instability, where it
may not be possible to encompass all the necessary historical data, in the long
term.

However, the advances in to use of high-fidelity numerical simulators in the last
two decades allow them to establish predictive digital twins, as stated by Rasheed
et al.[12]

Data driven modeling

In this type of modeling, real-data information collected from measurement in-
struments and historical data from the physical process is analyzed by machine
learning algorithms using statistical techniques to create the digital twin.

10 CHAPTER 2. THEORY

These models are used when it is necessary for critical real-time monitoring
and control of a process, or when the system is complex and difficult to explicitly
model using only equations.

This way, the data is treated as an expression of both known and unknown
physical phenomena, and by developing a data-driven model, one can account for
the full physics, fulfilling the gaps from the pure physics model. [14]

Hybrid model

Hybrid digital twin models are a combination of the two models above, in a com-
plementary way.

Here, the physical model sets the foundation for the model, where it is adjusted
and refined by the inputs gathered from real-time sensors and measurements based
on real operating conditions.

This model combines the advantages of both approaches, by providing a solid
and accurate foundation from the physics-based model, and the versatility of real-
time insights from the data-driven models. The theory and practical approach
combined have gained popularity in recent years. [15]

A framework extracted from [15] illustrating the creation of a digital twin of a
gas turbine is shown below, which summarizes the steps used for creating a hybrid
digital twin model in figure 2.4.1:

Physical entity of the gas turbine Virtual entity of the gas turbine

Combustion
chamber

r_' I
e

Measured
data

Compressor il ‘ Feu 1

I
e
=

‘ Volume +3

Simulated
data

Flurtane

()
Turbine turbine

Simulated data

Outlet pressure of compressor
Outlet temperature of compressor

Measured
performance|
data

Digital-twin

data ;
Simulated
performance|
data

Interactive
feedback
Data support

QOutlet pressure of power turbine
Qutlet temperature of power turbine

Rotation speed of power turbine

Inlet pressure of turbine
Inlet temperature of turbine
Qutlet pressure of turbine
Qutlet temperature of turbing

Rotation speed of compressor

=) Croman)

Condition monitoring

Inicractive
feedback

Warning of performance fault

Figure 2.4.1: Digital twin

model framework, extracted from [15].

CHAPTER 2. THEORY 11

The alternative approaches to building a digital twin need to be carefully se-
lected but always focused on the ultimate goal, which is to have very few differences
in the behavior of the real object, requiring a special dedication to building the
model.

12

CHAPTER 2. THEORY

CHAPTER
THREE

METHODS

3.1 Gas Turbine Performance Calculations

For evaluating the performance of a gas turbine, there are different methods,
varying in levels of precision. One of those could be by matching the compressor
and turbine performance characteristics, which are particular to each gas turbine,
and are described in more detail in chapter 3.1.5. However, the main drawback of
using these charts is that they are specific for each manufacturer, meaning that
may not be easily accessible.

For this study, a simplified model of a two-shaft industrial gas turbine is used
for developing the model in Python. The thermodynamics of the main components
described in 2 is described as follows, where the exhaust gases are used to the
turbine coupled with an electricity generator, as seen in figure 3.1.1. Temperatures
and pressures are represented as T, and P,.y and the subscript 7 = 1,2,3,4 will be
used throughout this work for representing each part of the engine.

Fuel

Air
ol 1 5 Combustor 3

Compressor Generator

Figure 3.1.1: Gas Turbine main components.

3.1.1 Compressor

Compressor performance calculation is an essential part of gas turbine analysis, as
it allows for estimating compressor efficiency, as well as operating characteristics.
To better understand these calculations, it is important to understand the role of
the compressor in the gas turbine system.

A compressor is a device that pressurizes air, increasing the temperature and
pressure of the fluid, meaning that it requires power input to provide energy for

13

14 CHAPTER 3. METHODS

the fluid. Increased pressure of air intake increase combustion process and power
extraction process after combustion more efficiently.[16] Performance analysis of
gas turbines ignores inlet pressure losses and assumes, assuming that the inlet is
ideal[17]. This means that ambient pressures and temperatures are equal to the
inlet of the compressor, Py = P; and Ty = T7.

Compressor performance is represented by a characteristic map showing the
relation of efficiency 7., corrected shaft rotational speed ﬁ, corrected mass flow

Poe

rate ™YL and pressure ratios -

P

Characteristics graphs are generated from experimental data relating pressure
ratio with some parameters such as temperature or mass flow, at different speeds.
Corrected mass flow rate is represented by %T, where it accounts for the changes
in mass flow according to different operating conditions. It considers changes in
temperature, pressure, and humidity and is a way to standardize the actual flow
rate to a set of reference conditions. A compressor characteristic is represented in

figure 3.1.2

30 T T

25

5]
o
T
N
%,
Y

Pressure ratio, pye/Po4
-
5]
T
N\ B
i : 3
N :
Y : :
. AY . .
h :
{ .
©
& -
ES

-
[e=]
T
\ ‘ : :
S : : :
: Vo : :
. : :

0 0.2 0.4 0.6 0.8 1 1.2
Normalized i \Ty4/Po1

Figure 3.1.2: Compressor characteristic.[18]

For large axial compressors, the lines of constant reduced speed can be con-
sidered vertical, and the isentropic efficiency 7;, is constant. These assumptions
are valid for both design and off-design modeling. Using the pressure ratio given
as an output of the compressor map, the isentropic outlet temperature 75, of a
compressor is determined using the pressure ratio from the pressure temperature
isentropic relation. The actual outlet temperature of the compressor is then cal-
culated afterwards, as follows:

CHAPTER 3. METHODS 15

P,)
Ty =T —
2s 1 (Pl)

(3.1)

Th, — T

Ty=T + -2 1

771'5,0

Where kappa (k = g—f is calculated using neqsim) and 7;s. is the isentropic

efficiency of the compressor.
An isentropic efficiency 7,5 is defined as the ratio between ideal and actual

enthalpy change during the compression process:
_hs—h T —Th
R R
Polytropic efficiency n,, of the compressor can be defined as the isentropic
efficiency of the compressor divided into several stages, and the relation between

those two is given by:
’ %
(Ff) -1
(3.3)

Using figure 3.1.3 for illustrating the boundary limits for the compressor cal-
culations, the compressor work equation will be derived below.

(3.2)

Figure 3.1.3: Compressor control volume.

Starting with the principle of mass conservation and the first law of thermo-
dynamics, the mass and complete energy balance of the compressor are:

d cv . .
m = Myn — Mout (34)

dt

dE.,) . _ c?] c?
dt = ch - Wshaft + m; (hz + - + gzz) — Mout (he + = + gze) (35)

2 2

16 CHAPTER 3. METHODS

Where cv subscript represents the control volume represented in figure 3.1.3.
Assuming steady-state flow, the mass balance then is m;, = M., and % =
0. Assuming negligible kinetic and potential energy changes in the system, the
differences between velocities and elevation z is also not considered.

With these simplifications, the energy equation then becomes:

Wshaft - ch = m(hout - hzn) (36)

In an adiabatic process, ()., can also be considered zero. Enthalpy h change
is a function of heat capacity at constant pressure and temperature change:

dh = C,-dT (3.7)

And C,, is the specific heat capacity at constant pressure. Assuming that C,
is constant during the compression process, the enthalpy equation then is:

Ah = C,AT (3.8)

Where A T is the difference between inlet and outlet temperatures. Replacing
h with the equation 3.8, the energy necessary to power the compressor is then
given by:

Wcomp = me(TQ - Tl) (39)
And C,, is the specific heat of air.

3.1.2 Combustor

The combustor function is to burn a mixture of air and fuel, and to deliver the
resulting exhaust gases to the turbine at an uniform temperature. Thermal energy
of the fuel/air mixture is increased during the combustion process.

Fuel is mixed with air, which supplies the oxygen necessary for the combustion
process. Mass and energy balance in the combustor is the given below. Here,
steady-state conditions are assumed, as well as heat capacity at constant pressure
of air and fuel streams, as well as the combustion gases stream.

7h3 = m1 + mfuel (310)
Eip = Eou (3.11)
mlcp,15h1+mfuel -LHV = m30p735h3 (312)

Since enthalpy change is simplified for C, AT, the outlet temperature of com-
bustor, or turbine inlet temperature (TIT), is determined using the following en-
ergy balance:

11 Co(Ty — Tp) + 1y - LHV = 1i3Cls (T3 — Tp) (3.13)

where 7j is the ambient temperature, LHV stands for lower heating value of
the gas, and C)3 represents the specific heating value at constant pressure of the
resulting gases of combustion.

CHAPTER 3. METHODS 17

3.1.3 Turbines

The function of a turbine is the exact opposite of the compressor, which is to
expand the fluid expands, releasing energy. In this case, work is generated by the
turbine, and this energy can be used for power generation, or even compressor
drive. Kinetic energy from the expanding gases which flow from the combustion
chamber is converted into shaftpower to drive the compressor, as well as other
equipments.

Turbine performance can be equivalent to the compressor, where it is also
represented by characteristics showing the relations between pressure ratios and
normalized flow capacity, as represented in figure 3.1.4. It is important to observe
that the constant speed lines turn flat at a certain point. When this happens, the
flow inside the turbine is considered choked. Choked flow is a restricting condition
that arises when an increase in pressure difference along a turbine does not alter
the inlet mass flux.

1.1 ! ‘ ! ‘
> 1 _Choking flow |
= :
g .
R .
m\ﬂ% § 08Eens / i
fo3 B 4
N /
T 07 .
E
[}
Z 06 .
05 ; i ; i i
1 1.5 2 25 3 35

Pressure ratio, pga/pga

Figure 3.1.4: Turbine characteristic.|18]

The outlet temperature of the turbine is calculated using the same approach
as for the compressor, given by:

k—1
P\ *
T =T (E,) (3.14)
Ty ="1T3— Nisyt (T3 - T4s)

Where T}, is the isentropic outlet temperature of the turbine, kappa (k = g—z
is calculated using negsim) and 7, is the isentropic efficiency of the turbine, and
T3 is the turbine inlet temperature.

An isentropic efficiency 7;, is defined as the ratio between ideal and actual
enthalpy change during the expansion process:

o hys—hye T3-T,
C hs—hy Ty — Ty

Similarly to the compressor, the isentropic and polytropic efficiency of the
turbine is related as follows:

18 CHAPTER 3. METHODS

() o

Figure 3.1.5: Turbine control volume.

The mass and energy balances shown in 3.1.1 are also valid for the turbine.
The difference lies in the work direction. Since work is being produced by the
turbine, it is released into the system, as shown in 3.1.5 above. The simplified
energy balance then becomes:

ch - Wshaft - m(hout - hzn) (317)
Assuming adiabatic expansion, and using the enthalpy equation for constant
C, and temperature difference, the work produced by the turbine is given by:

Whury = 13 - Cp,3(T3 - T4) *Nm (318)

And mg is the sum of the mass flow of air and fuel, C, 35 is the specific heat at
constant pressure of the combustion gases, and 7,, is the mechanical efficiency of
the turbine.

3.1.4 Gas Turbine

In the overall energy balance of the gas turbine, the power consumed by the
compressor (Wepmp) and the power generated by the turbine (Wi,,) needs to
be subtracted from one another to result in the net power produced by the gas
turbine. The net power output of the gas turbine becomes:

WGT = Wiurp — Wcomp (319)

There are several ways for accounting for the efficiency of a gas turbine [19].
Here, the efficiency based on the lower heating value of the fuel is calculated, and
the formula is given below:

War

__rer 3.20
g - LHV (3.20)

Nar

CHAPTER 3. METHODS 19

where Wgr is the power generated by the gas turbine in MW, m; is the mass
flow of fuel in kg /s, and LHV is the lower heating value of the fuel in MJ /kg.

3.1.5 Off design performance

Gas turbines are designed for specific conditions of temperature, pressure, and fuel
demand, but once it goes into operation, these conditions change and can affect
their overall performance.

To determine how a gas turbine will operate under specific conditions, a set
of equations are used to calculate its performance at a particular speed, pressure
ratio, and mass flow. When the turbine runs at steady speed, and all components
operate in equilibrium, it’s possible to create an equilibrium running diagram with
multiple equilibrium points. They are used to determine performance curves for
power thrust and specific fuel consumption.

The set of equations above is used to determine a gas turbine operation dur-
ing a single design point, where the equipment is running at a particular speed,
pressure ratio, and mass flow. When the turbine runs at a steady speed and its
components are operating in equilibrium. A set of several equilibrium points forms
an equilibrium running diagram, which can then be used to determine performance
curves for power thrust and specific fuel consumption, at different speeds.

However, the challenge lies in when the operation conditions deviate from
design, or when determining the limits of operation and power output of the
engine, usually referred to as off design performance. This is important not only
to establish the operational boundaries of a gas turbine but also to ensure correct
operation and for the manufacturer to guarantee the performance of the engine
within those boundaries.|4]

Two main analyses are performed: one, the reduction in specific fuel consump-
tion with regards to reduced power output, the effects of ambient conditions in
the overall gas turbine performance, as well as for calculating emissions.

Reduced specific fuel consumption with a reduction in power generation is
important to understand what will be the power output of the gas turbine, and
how can it affect overall efficiency, while remaining within the required operational
conditions, to avoid damaging the equipment. For example, when at constant
speed the inlet flow rate of the compressor is reduced, it can lead the operating
point towards surge, which may cause internal wear of the compressor and even
equipment shutdown if it stays during this operational mode for longer periods.

Ambient conditions also have a significant impact on gas turbine performance,
since it affects overall gas turbine power generation and efficiency. It is known that
cold ambient temperatures contribute to the higher power output from the turbine
and that higher temperatures have the opposite effect. Since such equipment
needs to have guaranteed performance by the manufacturer, the wide range of
ambient conditions on which it can operate also needs to be analyzed to ensure
safe operation and performance within acceptable conditions.|[20].

A basic method of determining the off-design performance of simple gas tur-
bines will be described below. Off-design calculations have to be in accordance
with mass flow, speed, and work between the various components.

Some assumptions are made for this model:

20 CHAPTER 3. METHODS

e Initially, the model was designed for a single-shaft gas turbine, coupled with
a generator at constant speed;

e Air is an ideal gas;
e No pressure drop at the inlet of the compressor, i.e. Py = Pi;

e Constant reduced flow rate at the compressor, i.e, vertical lines on compres-
sor map;

e Fully open inlet guide vanes (IGV) in the compressor are considered in this
model, meaning that the compressor dimensions are fixed and are fixed at
maximum inlet area;

e Choked flow on turbine;

e Polytropic efficiency of turbine and compressor are assumed constant.

With the assumption that the speed lines on the compressor map are constant,
combined with the continuity equation, and using ideal gas to model air, the
following relation is obtained, relating mass flow with temperature, pressure, and
cross-section area A, of the compressor, for design conditions (ref index) an for
another condition. Since the area of the compressor is constant, and the pressures
are also assumed constant, the simplified equation is also shown below:

M P ReyThes A

= 3.21
mref Pref R T ACﬂ"ef ()
m They
=4/ ==L 3.22
=\ (3.22)

Inside the combustion chamber, pressure losses need to be taken into account
to evaluate if there is fouling deposition, which can affect its performance. The
relation of pressure losses of design conditions to new operating points is described

as:
AP, :(it)1'8 (T3P37ref>o.8 (3.23)
APc,ref m3,ref TS,refP?) .

For the turbine, by assuming choked flow, the reduced flow is constant, as
shown in 3.1.4. This means that a relation between reference reduced speed and
the speed at different conditions can be established as well:

m\/T()l mref\/ TOl,ref
POl ’ POl,ref

Relating the two conditions, the choked nozzle equation is established:

P3 _ mB T3 : MW?;,ref (3 25)
PS,ref m3,ref T3,ref : MW3

During off-design operation, outlet pressures of the compressor and turbine vary
according to the inlet conditions, and the design values cannot be used for evalu-
ating gas turbine performance during this operation mode. For this, an iteration
process is established for evaluating gas turbine power output and will be further
implemented in the Python model.

= constant (3.24)

CHAPTER 3. METHODS 21

The iteration process is schematized below in figure 3.1.6:

New Operating
Conditions

Calculate new m1

Guess P2

Calculate T2

Calculate new
enthalpy of air

Sum enthalpies of

air and fuel Fuel Enthalpy

Use PHflash
function to calculate
new T3

Calculate m3, P3, AP and
P2

P2 - P2_guess <
tolerance

New P2 and T3

Figure 3.1.6: Off design calculation procedure.

Here, the new mass flow of air is calculated using the formula 3.22, according
to the ambient temperature measured. During off-design operation, the compres-

N

22 CHAPTER 3. METHODS

sor and turbine operate at different pressure ratios, so it is not possible to use
design values for performance calculations. The iteration process starts with a
first estimate of the outlet pressure of compressor P,, which is used to calculate
the outlet temperature of compressor T5.

These new conditions are used to calculate the new enthalpy of air, which will
be used for further calculations. For a given mass flow of fuel, enthalpy is also
calculated. These enthalpies are calculated using NeqSim in Python code. Then,
the enthalpy of air and fuel are summed and used inside the PHflash function of
NeqSim, to obtain the value for outlet temperature of combustor T3.

PHflash is a function in NeqSim used to perform a phase equilibrium calcula-
tion at a given pressure and enthalpy. It takes a thermodynamic system object at
a certain pressure and enthalpy and returns the corresponding equilibrium phase
composition and properties. For purposes of simplification, PHflash was used for
this calculation.

With a new value of T3, the new outlet pressure of the combustor P; and
pressure drop inside the combustor AP, are also calculated, using equations 3.25
and 3.23 respectively.

Finally, a new value of the outlet pressure of the compressor is calculated, with
the formula below:

P2,new = P3 + APC (326)

Resulting in a new value for the outlet pressure. If the difference between the
guessed value and the calculated value is below tolerance, the iteration stops. If
not, P ey is the new guessed value of P,. The iteration process continues until
the tolerance criteria are reached.

3.2 Python Model

The equations illustrated in 4 need a suitable system and/or software to be able
to perform calculations accordingly. An object-oriented program such as Python
can perform all the necessary calculations, in a practical and accessible manner.
Python holds several libraries that can create a prototype of almost any program.
Since in this work the focus is to model a gas turbine, other libraries need to be
used to supplement the model. Therefore, the physical properties of the fluids
entering the gas turbine system will be calculated using Neqgsim. In this master
thesis, NeqSim library is used for calculating physical properties of the chemical
compounds modeled. NeqSim Python is an interface to NeqSim Java library and
is used for calculating fluid behaviour, phase equilibrium and process simulation.
But first, it is necessary to download NeqSim Python library using pip install
command in Python:

#install neqgsim
!'pip install neqgsim

Although Negsim already has built-in functions for some components of a process
simulation such as stream, compressor or expander, a decision was made to imple-
ment them as methods directly in the Python code. Negsim is exclusively being

CHAPTER 3. METHODS 23

used for calculating fluid properties. This way, it gives more control and flexibility
over the code, where it is possible to easily change parameters and the methods,
without delving into the Neqgsim codebase.

As a stream is defined in the Python code, with its respective mass flow,
temperature and pressure, a TPflash is performed inside each stream, as well as the
initProperties() methods. Both functions are Negsim built-in functions used before
reading the physical properties of a defined stream. TPflash function calculates
the equlibrium phase distribution and composition based on temperature and
pressure. From there, the physical properties of the fluid, as well as the phase
composition is determined.

After TPflash, the initProperties() method is used to ensure the correct ini-
tialization of the fluid properties in the code, to obtain accurate and consistent
values. It sets up the necessary internal data structures and variables to enable the
calculation of various properties of the fluid mixture, such as enthalpy, entropy,
and density. This step ensures that the fluid properties are correctly initialized
and ready for subsequent calculations and analysis.

The method for calculating the properties inside the Stream class is shown
below:

class Stream():
def calc(self):

self.stream_fluid.setTemperature(self.temperature, "K")
self.stream_fluid.setPressure(self.pressure/le5, "bara'")
self.stream_fluid.setTotalFlowRate(self.flow_rate, ’kg/hr’)
TPflash(self.stream_fluid)
self.stream_fluid.initProperties()

In order to write the code in a more structured and organized form, the gas
turbine components, compressor, combustor, turbine, and also stream were sep-
arated into different classes, which are simply objects inside Python. This way,
all the methods related to each element of the gas turbine is separated in classes
for better clarification and traceability of the code.

The structure of the objects follows the same rules: the first method in every
class is the __init__ method. It starts the variables inside each class with a
default value, and it ensures that when a new instance of the members of the class
is created it avoids class data sharing among instances. The __init__ method for
the Stream class is shown as an example as follows:

class Stream():
def __init__(self):
self.temperature = None #K
self .pressure = None #Pa
self.flow_rate = None #kg/hr
self.stream_fluid= None #Negsim fluid

Since there are several methods and attributes shared between different classes
inside the code, when creating different objects of the same class, the methods
and attributes not created inside a class can be overwritten, and that may cause
errors in the results.

24 CHAPTER 3. METHODS

Next, the methods also used in each of the classes above the get and set for
each parameter inside a class. An example of these methods inside compressor
class is described below, and more details are in the whole code located in the
Appendix:

class Compressor():
def set_work(self, work:float, units:str) -> float:
20
Method to set compressor work. Returns compressor work in MW units. If

the unit is not identified, an error will appear.
23

if units == "MW":
self.work = work
elif units == "kW":
self.work = work*1le3
elif units == "W":
self.work = work*le6
else:

print (f"No units found for work in {self}.")
return self.work

def get_work(self, units:str) -> float:

23

Method to check if the correct unit for work is defined. If not, an

error will appear.
22

if units == "MW":
return self.work

else:
print(£f"No units found for {self} compressor work.")
return None

The set methods take in two arguments - the desired parameter and its re-
spective unit. The method then converts the parameter to the base unit defined
in the code, and sets the parameter with the correct base unit to the specific unit.
Then, the get method takes in one argument, and if the parameter is with the
correct unit, it returns its value. Otherwise, an error will appear. Overall, these
functions are used to retrieve attributes of an object in a standardized way, which
help to ensure consistency and accuracy of the calculations involved in each class.
For every parameter relevant for the calculations of gas turbine performance, the
set and get method are used.

Furthermore, the calc method is used. Every calculation performed inside a
class is compiled inside this method, and it also verifies which variable is set. If the
necessary number and type of parameters is defined, all the defined calculations
are performed when the method is called. An extract of the calc method inside
the turbine class is shown below:

class Turbine():
def calc(self):
self.success = False
if self.isentropic_efficiency is not None:
if self.deltaP is not None:
self.calc_inlet_pressure()

CHAPTER 3. METHODS 25

self.calc_outlet_temperature()
self.calc_outlet_stream()
self.calc_polytropic_efficiency()
self.calc_work()

self.success = True

3.2.1 Combustion

There are several ways to model combustion inside gas turbines. From more
complex to more simplified, all these methods have the ultimate goal: try to
reproduce the behavior of burning a combustible fuel when mixed with air, and
predict the resulted products of the combustion.

Since the focus of this work was not going in depth into the combustion mech-
anisms that occur inside the gas turbine, a simplification was made using Neqsim.
The function PHflash was used in order to obtain the turbine inlet temperature -
TIT. PH Flash is a method inside NeqSim library that calculates the distribution
of components in different phases to a state of minimal Gibbs Free Energy point,
in a liquid-vapor mixture.

In the PHflash, fluid and enthalpy of the mixture initial guess is given, and a
series of iterations are made in this method to estimate the fluid mixture compo-
sition that satisfies the minimum Free Gibbs Energy condition.

In the Python code, the initial value of the enthalpy is calculated by reading
the enthalpy value of the compressed air stream and added with the enthalpy of
the fuel stream. This calculation helps estimate the composition of the combustion
products based on the given enthalpy.

The fuel stream enthalpy was determined by multiplying its Lower Calorific
Value (LCV) with the mass flow in kg/s. LCV value is calculated using iso6976
method from NeqSim, which uses the ISO 6976 standard properties table to pro-
vide the physical properties of a gas mixture. By inputting fuel composition,
and reference conditions of temperature of the volume and combustion, the Lower
Calorific Value (LCV), Superior Calorific Value, as well as other properties of the
fuel mixture, can be read using the iso6976 method. For this work, the LCV value
only was used.

Furthermore, the fluid used in the PHflash calculation needed to be determined.
First, it was assumed that the fluid was only composed of the air mixture, which
is a reasonable assumption given the fact that the mass flow of air entering a
gas turbine is significantly higher than the fuel flow. This approach was used for
verification using Aspen HYSYS software.

However, the approach does not apply when using validation of the model
using Thermoflow. Therefore, an estimation of the combustion products was made.
Assuming complete combustion of the hydrocarbons present in the the natural gas
mixture, the following stoichiometric reactions were written in the python code:

26

CHAPTER 3. METHODS

CHy 4209 — COy + 2H50

205Hg + 705 — 4CO2 + 6 H,0
CsHg + 505 — 3C05 + 4H50
2C,H,0 4+ 1302 — 8C Oy + 10H,0
CsH,2 + 805 — 5C Oy + 6H50
2C¢H14 4+ 1905 — 12C 04 + 14H50

(3.27)

For each reaction, the same procedure was performed to determine the out-
let composition. The methane reaction was used to exemplify the procedure as
follows:

1.
2.

6.
7.

Calculate the available moles of Oy from the air stream;
Calculate the available moles of methane from the fuel stream;
Determine the stoichiometric ratio required for complete combustion;

Define the limiting reactant: the limiting reactant is consumed completely
and is the one that determines the extent of the reaction. Here, the min
function is used;

Calculate the number of moles of the combustion products;
Calculate the remaining moles of oxygen in the system;

Calculate the mole fractions of COy, H>O and O, for this reaction;

It is important to notice that the molar fraction of nitrogen is calculated sep-

arat

ely at the end of the reactions, due to the fact that it is an inert that is not

consumed in none of the reactions.
The code script below exemplifies the procedure for the methane reaction. All
the reactions written above were also implemented in the code.

def calc_chemical_reaction(self) -> float:
#Methane reaction

#Calculate available mols of CH4
mols_CH4 = (fuel_dictionary[’methane’] * total_moles_fuel)

#Determine stoichiometric ratio
CH4_limit = mols_CH4 * (2/1) #2 mols of H20 / 1 mol CH4
02_limit_methane = mols_02_air * (2/2) #2 mols of H20 / 1 mol CH4

Determine Limiting Reactant
limiting_reactant_methane = min(CH4_limit, 02_limit_methane)

#Calculate mols of combustion products

mols_CO02_methane = limiting reactant_methane * (1/1) #1 mol CO2 / 1
mol CH4

mols_H20_methane = limiting reactant_methane * (2/1) #2 mols H20 /
1 mol CH4

24

CHAPTER 3. METHODS 27

#Calculate remaining moles of oxygen

reacted_02_methane = limiting reactant_methane * (2/1) #2 moles of
02 are needed for 1 mol of CH4

mols_02_not_reacted_methane = mols_02_air - reacted_02_methane # 2
mols of CH4 are needed for 1 mol of methane

total_moles_methane = mols_C02_methane + mols_H20_methane +
mols_02_not_reacted_methane + mols_02_air + N2_ng + mols_N2_air *
fuel_dictionary[’methane’]

02_methane = (mols_02_not_reacted_methane / total_moles_methane) *
fuel_dictionary [’methane’]

C02_methane = (mols_C02_methane/total_moles_methane) *
fuel_dictionary [’methane’]

H20_methane = (mols_H20_methane/total_moles_methane) *
fuel_dictionary[’methane’]

After the composition of the outlet stream of the combustor is calculated, it
is applied in the ’combustor fluid’ stream setup. This fluid is used together with
the total enthalpy of the combustor inlet as inputs of the PHflash method. The
total flow rate is calculated by summing the flow rates of the inlet air stream and
the fuel stream.

Finally, the outlet temperature of the combustor is calculated after the PHflash
calculation. The script for calculating the LCV value of the fuel mixture, as well
as the turbine inlet temperature are shown below:

def calc_LHV(self):
229
Method for determining the lower calorific value of the fuel
mixture
23
is06976 = IS06976(self.get_fuel_inlet_stream().get_fluid())
is06976.setReferenceType(’mass’)
1506976.setVolRefT(float (15.0))
is06976.setEnergyRefT(float (15.0))
is06976.calculate()
self .LHV = round((iso6976.getValue("InferiorCalorificValue")*1e3)
,3) #J/kg

def calc_outlet_temperature(self) -> float:
2393
Method to calculate the outlet temperature of combustor - Turbine
Inlet Temperature (TIT)

First, the enthalpy of the air and fuel stream are calculated, and
then added.

The fuel used in the PHflash is based on an estimation of the
composition of the combustor exhaust. Complete combustion is assumed.

The PHflash method from negsim was used for calculating the outlet
temperature, based on the exhaust fluid and total enthalpy of the inlet of
the combustor.

29

enthalpy_air = self.get_inlet_stream().get_fluid().getEnthalpy()

enthalpy_fuel = self.get_LHV() * self.get_fuel_inlet_stream().

30

28

CHAPTER 3. METHODS

get_flow_rate("kg/hr") /3600
enthalpy = enthalpy_air + enthalpy_fuel

#combustion_fluid = self.get_inlet_stream().get_fluid().clone()

combustion_fluid = self.reaction_fluid combustion_fluid.
setPressure(self.get_inlet_stream() .get_pressure("Pa")/1e5, "bara'")

combustion_fluid.setTemperature(self.get_inlet_stream().
get_temperature("K"), ’K’)

combustion_fluid.setTotalFlowRate(self.get_inlet_stream().
get_flow_rate("kg/hr") + self.get_fuel_inlet_stream().get_flow_rate("kg/hr"
), "kg/hr")

combustion_fluid.initProperties()

TPflash(combustion_fluid)

PHflash(combustion_fluid, enthalpy)

self.outlet_temperature = combustion_fluid.getTemperature(’K’)

3.2.2 Off design performance

After running a design case for the gas turbine, the conditions in this model are
used for reference for the off design calculations, indicated in the code by the
subscript ref. The off design iteration process is implemented in Python code as
follows:

while (True):

iteration = 0
max_iterations = 1000

#Update P2, T3 and MW - Recycle

if P2_new > O and T3_new > O:
P2_guess = P2_new
T3_guess = T3_new

else:
P2_guess = my_compressor.get_outlet_stream().get_pressure("Pa")
T3_guess = my_combustor.get_outlet_stream().get_temperature("K")
tolerance_T = 5 #K
tolerance = 0.1 #Pa

Il

while (True):
T2 = T1 * ((P2_guess / P1) *x (R / (Cp * np)))

#Calculate air fluid properties at T2 and P2_guess
air = fluid("srk")

air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.setPressure(P2_guess, ’Pa’)
air.setTotalFlowRate (off_design_flow_rate, ’kg/hr’)
air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)
enthalpy_fuel = LHV * mfuel

#Total enthalpy

44

CHAPTER 3. METHODS 29

enthalpy = enthalpy_air + enthalpy_fuel

#combustion_fluid = off_design_compressor.get_inlet_stream().
get_fluid() .clone()

PHflash(air, enthalpy)

T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel*3600 + off_design_flow_rate

P3 = reference_P3 * (off_design_m3 / reference_m3) * sqrt(
T3_new/ reference_T3)

delta_P = reference_delta_P * (off_design m3 / reference_m3)
*x%1.8 * ((T3_new * reference_P3)/(reference_T3 * P3))*x0.8

P2 = P3x(1 + delta_P)

P2_new = P2

iteration = iteration + 1

diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) <
tolerance_T:
break

P2_guess = P2_new

T3_guess = T3_new
off_design_compressor.set_outlet_pressure(P2_new, "Pa")
off_design_compressor.calc()

Here, the while loop uses the design conditions of outlet pressure of compressor
and outlet temperature of combustor as initial guesses for the iteration process.
Then, the equations indicated in 2 for the off design conditions calculate the
remaining parameters, and resulting in a new outlet pressure of the compressor.

The iteration process stops once the tolerance criteria is met, where the differ-
ence between the guessed value and the calculated value is below the tolerance.
This pressure is then used for calculating the performance of the compressor at
off design conditions, as well as the remaining components of the gas turbine.

3.3 Verification and Validation

Having a reliable model that is able to represent the real behaviour of the gas
turbine sets the foundation for further developing the digital twin.

After creating the model in Python, the results are compared in two different
ways, to ensure that it is able to represent the correct behavior of a gas turbine,
within acceptable deviation. The first part is the verification of the model, which
refers to the process of evaluating a software system or component to determine
whether it was built correctly, and if it meets the requirements defined prior to
the software or component construction, as written in [21].

In this study, the Python model is verified against HYSY'S software, to confirm
that the equations are correctly written, and that the results match the ones
obtained through the HYSYS model.

Also, to verify the model at different operating conditions, the mass flow of fuel,
as well as the ambient temperature were modified within a determined range, and

30 CHAPTER 3. METHODS

the results were plotted together in the same graph to see the differences between
those models.

After verifying the model with HYSY'S, the model was ready for validation. In
addition to verification, validation is the process of assessing a system or compo-
nent to ascertain if the model is able to predict the real-world behavior of what
is intended to simulate. For this study, two validations were made: software-to-
software validation, and validation against real data of an already installed gas
turbine, to be selected later.

Software-to-software validation is important to verify if the accuracy and re-
liability of the model, as well as adding an additional layer of robustness for the
model, proving once again that the equations are correctly written in the code.
For this validation Thermoflow GTPRO software is used, due to the fact that it is
also an already established software for evaluating gas turbine and turbomachinery
and it is based on actual data of several manufacturers of these turbomachines.

Verification and validation of the model is critical to ensure that the model is
able to predict gas turbine behavior in a way that is reliable and accurate, in a
wide range of operating conditions.

3.4 HYSYS model

Aspen HYSYS is an operation unit simulator, used for simulating several oper-
ational units in the most varied industries. It is a flexible tool for simulating
several different kinds of operation units applied for a wide range of industries
following a simple and fast procedure. Despite being a simulator widely used for
unit operations, when it is necessary to increase the level of detail of the analysis
of complex equipments such as engines or gas turbines, other tools are proven to
be more accurate. In this work, HYSYS is used for verification of the model due
to its high thermodynamic accuracy prediction.

The gas turbine model chosen for this work was a single spool gas turbine,
as described in 2. In HYSYS each main component is created separately, and
are connected by one single shaft, as shown below. Since in Aspen HYSYS the
combustion modelling is not comprised in the simulator, the combustor part of the
gas turbine is simplified by using a Gibbs Reactor, where complete combustion
reaction of methane is assumed and set in the reactor, where the products of the
reaction are only C'Oy and H50.

ET-1 _"_ |H|Et_' l' L Qutlet

CH4 Turbine Q—%a—% Turbine
Combuk K-101
- ombustor
Compressed_air L
Air
Q-100 4
K-100

Figure 3.4.1: Aspen HYSYS model.

CHAPTER 3. METHODS 31

3.5 Thermoflow Model

Software-to-software validation of the Python model was done using an already
established software called Thermoflow, where its development is more focused in
engines, turbomachines, gas turbines, and steam cycles in general. Thermoflow is
a software suite that comprises several softwares used for modeling and analyzing
thermodynamic systems like power plants, cogeneration facilities and other energy-
generation related processes. Of all the softwares included in Thermoflow, two of
them were used: GT PRO® and GT MASTER ®.

GT PRO ® is a design program for gas turbines, combined cycle, and cogen-
eration plants. It is based on real gas turbine data from several manufacturers,
included in an embedded library with several of them, making it possible to sim-
ulate a selected gas turbine in simple or combined cycle, as well as being able to
specify the fuel and ambient conditions. User-input thermodynamic criteria com-
bined with manufacturer’s data allows GT PRO to generate design parameters for
the major equipment.

Once the GT PRO® model is established, another software from Thermoflow
is used for evaluating the equipment at off-design. GT MASTER ® takes the
design conditions from GT PRO®, and uses this information to evaluate off design
performance, taking into consideration variations in ambient conditions, part load
performance, and control set-points. It simplifies making several runs, or case
studies, starting from the same base case. The base case is simulated in GT
PRO® | and the off design simulation is done using GT MASTER®.[19]

After selecting the gas turbine from the software library, one might be able
to input specific fuel composition, as well as use the default value. Here, the fuel
gas molar composition was given, and was inputted in GT PRO. The fuel data
specification is given by the industry:

Component Molar Percentage (%)
Methane 81.6
Ethane 8.93
Propane 4.24
i-Butane 0.93
n-Butane 1.41
n-Pentane 0.34
n-Hexane 0.35
Nitrogen 0.36

Table 3.5.1: Fuel gas specification inputted in GTPRO.

Once the GTPRO® model was built and run, the design conditions of the
gas turbine were established, for the given fuel, defined previously. Thermoflow
generates the efficiency, power output, as well as mass flow of air and fuel for the
design point.

32 CHAPTER 3. METHODS

Off design performance was assessed in Thermoflow GT MASTER®. In these
batch runs, ambient temperature varied from 0 °C to 20 °C, and the outputs
results are saved in an excel file.

Then, comparison between GT MASTER ® results, and the Python model are
made to validate the Python model, in a so-called software-to-software validation.
Once the model is validated, it is ready to be used in the digital twin model of
the gas turbine.

3.6 Weather Forecast API

Two weather forecast APIs are used in this study, one for historical weather data,
and the other for weather forecast data, which will be used for the construction
of the digital twin.

Meteostat API will be used for historical weather data retrieval. Meteostat
is one of the largest vendors of open weather and climate data, and provides
simple access to historical weather data, and it will be used for retrieving historical
weather data.

The Meteostat library for Python provides fast and easy access to histori-
cal weather data using pandas. This historical observations come from different
sources, usually governmental organizations, and are combined through Meteo-
stat’s bulk data interface.

First, one must first determine the geographical coordinates of where the gas
turbine is placed. Then, a time frame period needs to be defined for observations
of the ambient conditions of the geographical location [22]. From there, weather
data such as ambient temperature, pressure, and wind speed can be extracted
from the API in JSON (JavaScript Object Notation) format.

Afterwards, a list in Python is generated for storing all the necessary infor-
mation, which will be used for further construction of the digital twin. Here, the
connection with the API weather database is shown:

%pip install meteostat
#Historical Weather Data

from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Point, Hourly

#Set time period
start = datetime(2023,1,1,12)
end = datetime(2023,5,1,12)

#Create point for Heidrun Platform location
Heidrun_platform = Point(65.33, 2.33,16.0)

#Get Hourly data
data = Hourly(Heidrun_platform, start, end)

data = data.fetch()
data.plot(y= [’tavg’,’tmin’, ’tmax’])
plt.show()

=

WO NN NN NN
© ® N o w w

4

CHAPTER 3. METHODS 33

data.plot(y=[’temp’])
plt.show()

#Extract average temperature values and store them in a list

tavg_list = []
for row in data.itertuples():
tavg_list.append(row.temp)

For weather forecast data, the open-source API developed by the Norwegian
Meteorological Institute named Locationforecast/2.0 API is used, in collaboration
with NRK - Norwegian Broadcasting Corporation. It can provide weather forecast
data for any geographical location in the world, using geographical coordinates
(latitude and longitude) as input.

This API offers a range of weather parameters, including air temperature, pres-
sure, wind speed and direction, and humidity, among others. It also provides a
weather forecast for up to nine days in advance, with hourly updates for the first
two days, and three-hourly updates for the remaining forecast period. Addition-
ally, it provides support for historical data, allowing users to retrieve weather data
for any location, for a given date and time in the past.

To use this API, an API key needs to be obtained from the Norwegian Meteo-
rological Institute. Once having the key, it is possible to make API requests using
HTTP/HTTPS protocols and retrieve data in the chosen format.

Overall, the Locationforecast/2.0 API is a versatile and complete tool for ac-
cessing weather data, which can be used in several applications, from research to
operational purposes.

Locationforecast will be used for retrieving weather forecast data for the digital
twin construction. The process begins by creating an username to have access to
the API, and then using the geographical coordinates of the selected place to
retrieve the data. Then, an access access key is generated by the API as an URL
link, allowing the user to obtain the necessary data [23].

For this study, the extracted variables needed were the ambient temperature,
as well as the day and time. The code snippet of the API connection is shown
below:

#Locationforecast API Connection

import requests

5 from datetime import datetime, timedelta

13
14
15

16

API URL
url = "https://api.met.no/weatherapi/locationforecast/2.0/compact?altitude=30&
lat=65.33&lon=7.32"

Define User-Agent header
headers = {

’User-Agent’: ’vmkaplan/PowerGeneration github.com/vmkaplan/PowerGeneration

)
B

’Contact’: ’victoriakaplan@hotmail.com’

}

Specify the time range for which you want to retrieve weather data

34

now = datetime.now()
start_time = now
end_time = start_time + timedelta(days=10)

Make GET request to API
response = requests.get(url, headers=headers)

Extract JSON response from the response body

5 data = response.json()

Extract time and temperature values
timeseries = data[’properties’] [’timeseries’]
current_time = now.strftime(’%Y-Ym-%dT%H:%M:%SZ?)

time_period = []
forecast_temperature = []
time_plot = []

for ts in timeseries:
time = ts[’time’]

CHAPTER 3. METHODS

temperature = ts[’data’][’instant’] [’details’] [’air_temperature’]

Check if the time is equal to or greater than the current time

if time >= current_time:

time_object = datetime.strptime(time, ’%Y-%m-%dT/H:%M:%SZ?)

day = time_object.day
month = time_object.month
year = time_object.year

time_plot.append(f’{day}-{month}-{yearl}’)

time_period.append(time)
forecast_temperature.append (temperature)

3.7 Digital Twin

The last part of this work is the actual construction of the digital twin. After
the verification and validation of the model, as well as the creation of the API
connection with the Python code, the digital twin can be built.

Following the principles of a hybrid digital twin described in chapter 2, the
approach is used in this study, combining physical model with a data-driven model.

In a real operation, the weather forecast is connected to the live process, and
it is used as an input of the Python code. Air and fuel stream conditions are also
input parameters of the code, as it is assumed that they are measured parameters

of the real process.

Afterwards, the output results of power and efficiency of the gas turbine will

be the results of the digital twin model.

CHAPTER
FOUR

RESULTS AND DISCUSSION

4.1 Design Model

The gas turbine equations described in chapter 3 were implemented in Python
using object oriented programming, with the methods also described in chapter 3.
After building a running model of the gas turbine, verification and validation was
performed, for both design and off design performance.

Verification of the model is made for confirming that the equations used for
thermodinamically describe the compressor, combustor, and expander behavior is
correct, with all the simplifications as described in chapter 3.

In the verification case, a design case was formulated and the parameters were
inserted in the Python and HYSYS model. The design case is shown in table 4.1.1,
which are the basis for building the design case of the simple spool gas turbine.

Value
Air mass flow™ 500 kg/s
Ambient Temperature 288.15 K
Ambient Pressure 1.013 bar
Compressor Pressure Ratio 10.7
Compressor Isentropic Efficiency 85.8 %
Methane mass flow™* 5 kg/s
Combustor Pressure Loss 1.5 %
Turbine pressure loss 45 mbar
Turbine Isentropic Efficiency 88.4 %

Table 4.1.1: Model comparison setup. * Air composition of 79.81 % N, and
20.09 % of O,y. ** for this first verification, the fuel composition was simplified to
100 % C'Hy.

The comparison between the output results from Python and HYSYS are

35

36 CHAPTER 4. RESULTS AND DISCUSSION

shown below in table 4.1.2. The difference of the variables between both soft-

wares, and Python model outputs is calculated the following way, using equation
4.1:

A(Software — Python)

Variable =
artable Software

%100 (4.1)

Where Software is the results taken from HYSYS and Thermoflow software,
and Python represents the values calculated from the Python model. This formula
is used for all the comparison results, and further discussion.

Parameter Python HYSYS Difference
Outlet Temperature Compressor - K 611 601 1.58
Polytropic Efficiency Compressor 0.896 0.894 0.23
Cp Inlet Stream Compressor - J/kgK 1013 1009 0.4
Compressor Work - MW 163.58 163.5 0.05
Turbine Inlet Temperature (TIT) - K 1007 1026 1.85
Outlet Temperature Turbine - K 612 622 1.66
Polytropic Efficiency Turbine 0.849 0.847 0.16
C, Inlet Stream Turbine - J/kgK 1171 1181 0.85
Turbine Work - MW 230.6 229.77 0.36
Gas Turbine Power Output - MW 66.07 65.47 0.92
Gas Turbine Overall Efficiency - % 26.41 26.17 0.93

Table 4.1.2: Comparison of Python and HYSYS model outputs.

The main differences between those models are related to the outlet tempera-
ture of compressor and turbine. This is related to the equations used for calculating
these outlet temperatures, which are using the isentropic temperature, as shown
in 2. Instead of using enthalpies in the calculations of the actual outlet temper-
atures, isentropic temperatures and kappa values read from Negsim are used to
determine the outlet temperature.

The other difference is also related to the outlet temperature of the combus-
tor comparison, which affects the calculation of the exhaust temperature of the
turbine. Since this calculation in Python is performed by a simplification using
Negsim, as stated in chapter 2, the accuracy of the calculation of this temperature
is affected by this simplification.

Since the equations and calculations performed by Aspen HYSYS to determine
these temperatures are not publicly disclosed, it becomes difficult to point out
precisely the equations used. This way, the exact reasons for these differences in
temperature results remain uncertain.

CHAPTER 4. RESULTS AND DISCUSSION 37

4.2 Off-design scenarios

Since the main goal of this study is to observe the impact of ambient temperature
over the power output and efficiency and gas turbines, the model has to run at
off-design conditions as well. Here, three off-design scenarios were used, where
the only parameter changing was the ambient temperature. The temperatures
selected were 0 °C, 15° C, and 30° C.

Each ambient temperature scenario is defined as a case study, and the results
are presented in the following graphs. The gas turbine power output varied as a
function of the mass flow of methane, in order to better observe if the impact of
ambient temperature is significant in a gas turbine power generation.

Even though at 15° C the gas turbine is operating at design conditions, this
temperature was also used in the off design calculation performance to verify if
the iteration procedure described in 3 is valid, and can be used as a method for
calculating off-design performance of the gas turbine.

4.3 Verification

For the verification against HYSYS to be accurate and reliable, key parameters
were selected for comparison with different mass flow rates of fuel, following the
procedure for the case study setup described in section 4.2 above.

It can be seen in figure 4.3.1 the gas turbine power generation of the gas turbine
is higher than for higher ambient temperatures, which is behavior consistent with
reality. Colder ambient temperatures increase ambient air density, allowing more
mass flow of air to enter the combustion chamber for the same compressor speed,
increasing the total mass flow of the air-fuel mixture, consequently increasing
power output.

—— HYSYS model
68 - —— Python code
2
. 67 4
5
=
>
© 66 -
<]
3
(o]
o
5 65 -
64

-10 0 10 20 30
Ambient Temperature - °C

Figure 4.3.1: Power Output variation with Ambient Temperature. Green repre-
sents the values generated from HYSYS model, and the blue line are the outputs
from the Python mode.

The gas turbine efficiency is also higher for colder temperatures. As seen in

38 CHAPTER 4. RESULTS AND DISCUSSION

figure 4.3.2, the higher power output the gas turbine, the efficiency grows propor-
tionally, for the same mass flow of fuel.

27.5

—— HYSYS model
Python code

27.0 4

- %

26.5 A

26.0

GT Efficiency

25.5 1

25.0

-10 0 10 20 30
Ambient Temperature - °C

Figure 4.3.2: Efficiency of gas turbine versus Ambient Temperature. Blue line
represents the values extracted from HYSYS model, and orange represent the
Python model results.

On all three cases, the results of power output of the gas turbine and efficiency
were plotted against each other. From figures 4.3.3, 4.3.4 and 4.3.5 it is possible
to see that the blue curve representing the Python model generates similar values
when compared to HYSYS model outputs, as seen in the red curves. Therefore,
the equations implemented in the Python model are consistent with HYSYS and
can be used for modeling the gas turbine.

—— HYSYS model
—— Python code

Gas Turbine Efficiency (%)
N
S

16 T T T T
40 60 80 100

Gas Turbine Power Output (MW)

Figure 4.3.3: Gas Turbine Efficiency vs. Power Output at 0° C Ambient Tem-
perature.

CHAPTER 4. RESULTS AND DISCUSSION 39

30 4 —— HYSYS model
—— Python code

N N N
o N N
1 1 1

Gas Turbine Efficiency (%)

=
o]
1

=
[e)]
1

30 40 50 60 70 80 90 100 110
Gas Turbine Power Output (MW)

Figure 4.3.4: Gas Turbine Efficiency vs. Power Output at 15° C Ambient
Temperature.

w
o
!

—— HYSYS model
—— Python code

N N N N
N B [e)] ©
! ! ! !

Gas Turbine Efficiency (%)

=
©
!

=
(o)]
1

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.5: Gas Turbine Efficiency vs. Power Output at 30° C Ambient
Temperature.

Nonetheless, from turbine exhaust temperatures comparison in figures 4.3.6, 4.3.7,
and 4.3.8 the differences are perceptible, but still within reasonable difference. The
yellow lines representing the Python model show lower values in comparison with
the blue lines, showing HYSYS model outputs. It is also possible to observe that
the variation decreases the higher the ambient temperature, which could be to the
thermodynamic behavior of the gas turbine.

Gas turbines are influenced by the properties of the working fluid, mainly air,
and its thermodynamics. At high temperatures, the specific heat capacity (C,) of
air decreases, which consequently affects the temperature rise in the combustion
process of the gas turbine.

40 CHAPTER 4. RESULTS AND DISCUSSION

700 A

—— HYSYS Model
Python Model

K

< 650 1

600 A

550 A

Exhaust Temperature

500 ~

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.6: Turbine Exhaust Temperature 7y,,, = 0 °C.

And since the combustion process is simplified using the PHflash method from
Negsim as stated in chapter 3, the turbine exhaust temperature is also influenced
by this temperature. The air density decreases at higher temperatures, which can
lead to more consistent combustion characteristics, lowering the difference between
the two simulations.

It also shows that the combustion simplification approach in both HYSYS and
Python are persistent, and that the PHflash method can be used for estimating
the combustion outlet temperature, or turbine inlet temperature (TIT).

—— HYSYS Model
700 - Python Model
v
g
S 650
)
o
()]
Qo
5
2 600 -
@
>
(]
<
2 550 1
500 -

30 40 50 60 70 80 90 100 110
Gas Turbine Power Output (MW)

Figure 4.3.7: Turbine Exhaust Temperature T,,,, = 15 °C.

CHAPTER 4. RESULTS AND DISCUSSION 41

—— HYSYS Model
Python Model

750 A

700 A

650 A

600 -

Exhaust Temperature - K

550 A

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.8: Turbine Exhaust Temperature T,,,, = 30 °C.

Moreover, the turbine exhaust temperature is also tied with the compressor
performance. Higher ambient temperatures tend to lower the compressor effi-
ciency, consequently increasing the turbine exhaust temperature.

Additionally, when comparing the outlet temperature of the compressor, the
Python model yields higher values for all three cases in this comparison.

This discrepancy may stem from differences in the methods employed by the
two models to calculate the outlet temperature. The Python code employs a more
straightforward approach using the isentropic temperature to calculate the outlet
temperature. Although the exact methodology used by Aspen HYSYS remains
unclear, it might involve solving the energy equation for the compressor.

It is not clear up to this point the exact method used by Aspen HYSYS, but
it is relevant to notice this difference in the output results, which can affect the
work further.

—— HYSYS model
600 1" —— Python code

590 ~

580 A

570 A

Outlet Temperature of Compressor (K)

U

[e)]

o
1

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.9: Compressor Outlet Temperature - T,,,, = 0 °C.

42 CHAPTER 4. RESULTS AND DISCUSSION

630 - —— HYSYS Model
—— Python Model

620 A

610 A

600 -

590 ~

Outlet Temperature Compressor - K

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.10: Compressor Outlet Temperature - T,,,, = 15 °C.

660
—— HYSYS Model

—— Python Model
650 A

640 A

630 -

620 -

Outlet Temperature Compressor - K

610 -

40 60 80 100
Gas Turbine Power Output (MW)

Figure 4.3.11: Compressor Outlet Temperature - T,,,, = 30 °C.

Overall, the model verification proved that the equations used are coherent and
can be used for modelling a gas turbine. The Python model established exhibits
a robust and consistent behavior for projection of gas turbine power output and
efficiency, for different ambient temperature conditions.

CHAPTER 4. RESULTS AND DISCUSSION 43

4.4 Validation

Once the verification of the Python was established, the validation of the model
could be done. This way, the model could be a robust representation of a gas
turbine, and then can be compared to another software for further validation.

The software-to-software validation was divided into two parts: validation us-
ing design conditions, and then moving on to off-design performance study.

Validation of the software model needed to begin with a selection of a real
gas turbine, used in power generation applications. Here, information about the
Siemens SGT A-35 was used for the definition of the parameters described below,
with a combination of manufacturer data from Thermoflow and company data.

With a compact design, while still maintaining high power generation capacity,
the Siemens SGT-A35 is a reliable gas turbine designed for power generation and
mechanical drive applications. It meets up the quality standards for security and
reliability in the gas industry for both onshore and offshore applications, as well
as for several other industries.

It is an aeroderivative gas turbine that can withstand a wide range of operating
conditions, and can be easily installed, reducing maintenance costs and downtime.
For power generation, can both be used in simple cycle or combined cycle gener-
ation, explained in detail on 2, while also used in mechanical drive applications,
with power outputs ranging from 30 MW to 39 MW.

The Siemens SGT-A35 RB is a three-shaft gas turbine consisting of two com-
pressors and two turbines, as well a combustion chamber. This configuration allows
the equipment to have more operational flexibility, during part-load performance
especially, while still maintaining high efficiency and low emissions.

Figure 4.4.1: Siemens SGT A35 RB overview. [24]

A simplified diagram for the gas turbine showing the main parts is shown in
figure

44 CHAPTER 4. RESULTS AND DISCUSSION

Fuel
'

-«

Air

Combustor

Gearbox

Power

IPC HPC High-Speed Turhine

Turbine

Figure 4.4.2: Siemens SGT A35 RB simplified diagram.

In this case, the SGT A-35 RB include the Siemens RB 211 gas generator,
together with the RT 62 gas turbine. Here, air passes through the air plenum
into the intermediate-pressure compressor (IPC), and then is directed to the high
pressure compressor (HPC) for additional compression, where it is then sent into
the combustion chamber.

There, the air mixed with the fuel is ignited, producing a high pressure, high
temperature stream of hot gases. These high stream energy drives the high-speed
power turbine, generating electricity. The hot gases are directed to the low-speed
gearbox mounted turbine RT 62, where the energy is used to drive a mechanical
load connected to the gearbox.|[6]

Within mechanical drive applications, there are six different types of SGT A-
35 gas turbine, varying in power generation, frequency, and presence of Dry Low
Emissions (DLE), a specific combustion system designed for lowering and drying
NO, emissions. For the purposes of this study, the performance data of the gas
turbine used as design conditions is shown below:

Component Molar Percentage (%)
Pressure Ratio - 21.7

Exhaust Flow - t/h 345

LHV Efficiency - % 36.32

Gross Power Output - MW* 29.07

Exhaust Temperature - C 506

LHV Heat Rate - kJ/kWh 9912

Table 4.4.1: Design conditions of SGT A35 - extracted from GTPRO and [24].

*Power Output at Generator Terminal.

In order to properly model the gas turbine, additional variables needed to be

CHAPTER 4. RESULTS AND DISCUSSION 45

determined. One of the variables was the compression ratio of the two-compressor
system. Since the isentropic efficiency was the same for all compression stages,
the pressure ratio in each stage was calculated using the formula [25]:

1
r=rp (4.2)

Where r is the pressure ratio in each stage, r; is the total pressure ratio of
the compressor system, and n is the number of stages. Here, company data stated
that the intermediate pressure compressor(IPC) consisted of 7 compression stages,
while the high pressure compressor(HPC) was built of 6 compression stages.

By applying equation 4.2 the pressure ratio for IPC compressor was 5.24, and
4.19 for the HPC compressor.

Air composition from Thermoflow was given and used in the Python code, as
shown below:

Component Molar Percentage (%)
Nitrogen 75.80

Oxygen 14.10

CO, 3.35

Argon 0.91

Water 5.82

Table 4.4.2: Air composition, extracted from GTPRO (considering 0% relative
hurfilitpmparison between Thermoflow results and Python code revealed more
uncertainties than expected. Despite Thermoflow providing accurate results of
a gas turbine based on manufacturer data, many parameters are not publicly
displayed, making a simulation of a gas turbine a challenge. Therefore it was
deemed necessary to obtain such parameters using a different approach, necessary
for running the model in Python.

For the Python model construction, the main parameters not shown in Ther-
moflow were the isentropic efficiencies of compressor and turbine, necessary to
determine outlet temperatures, among other variables stated in the chapter 2. To
determine the isentropic efficiencies, two approaches were selected: one was by
estimating initial values of those efficiencies and iterating them manually until
the power output and efficiency matched the results from Thermoflow. The sec-
ond option was to use another simplified software for better estimation of these
efficiencies.

It was quickly realized that manual random iteration was not efficient nor
accurate, therefore the software GasTurb 14 was used for isentropic efficiency
determination. GasTurb is a software used for gas turbine calculations, where
it can provide fast and accurate prediction of gas turbine performance based on
generalized compressor and turbine maps. It requires few inputs to generate data,
and it was used to provide an estimate of the compressors and turbines efficiencies
that are part of the gas turbine system.

For the simulation setup in GasTurb was made using Simple Cycle design,
using the Booster Turboshaft HP Spool design, representing the three-shaft gas

46 CHAPTER 4. RESULTS AND DISCUSSION

turbine, connected with a power turbine, as shown in figure 4.4.2. The following
inputs from Thermoflow were used for the GasTurb model:

Property Value
Ambient Pressure - kPa 101.325
Ambient Temperature - K 288.15
Absolute Inlet Pressure Loss - kPa 0.249
Absolute Exhaust Pressure Loss - kPa 1.245
Pressure Ratio Booster Compressor * 5.17
Pressure Ratio HP Compressor * 4.14
Burner Exit Temperature - K 1500
Fuel LHV - MJ/kg 46.7
Burner Pressure Ratio 0
Generator Efficiency 0.9801
Mechanical Efficiency 0.9902

Table 4.4.3: GT PRO inputs to GasTurb. * Booster Compressor is the Intermedi-
ate Pressure Compressor represented in the gas turbine setup, and HP stands for high
pressure compressor.

The only variables missing for completing the simulation were the compressors
and turbines isentropic efficiencies. The initial estimate of those efficiencies was
0.88 for compressors, and 0.9 for turbines. The simulation was made according
to the following procedure for discovering relations between those efficiencies to
match the parameters based on Thermoflow.

First, the parameters from 4.4.3 were used in GasTurb, as well as an initial
estimate of the compressors and turbine efficiencies. Then, using the iterations
feature from GasTurb, the following iterations were performed until the isentropic
efficiency values for each component converged.

The iteration setup shown in table 4.4.4 shows the variables modified, and the
target values. Target values in this model are based on design conditions from
Thermoflow. Once the efficiency values converged, they were used as inputs into
the Python model, and the outputs were compared with Thermoflow outputs.

CHAPTER 4. RESULTS AND DISCUSSION 47

Variable Target
Inlet Corrected Mass Flow * Exhaust Flow
Isentropic HPC Efficiency Shaft Power Delivered

Isentropic Efficiency Power Turbine Power Turbine Exhaust Temperature

Burner Exit Temperature Fuel Flow

Table 4.4.4: Iterations setup on GasTurb.

The iterations estimated that the isentropic efficiencies of the booster compres-
sor, HP compressor, HP turbine and power turbine to be, respectively, 0.89, 0.84,
0.887, and 0.887. Here, the isentropic efficiencies of both turbines are assumed to
be the same. The Python model comparison with the Thermoflow model, as well
as the differences for the design conditions is shown below:

Variable Thermoflow Python Difference
Output Model - %

Gas Turbine Efficiency - % 36.32 36.33 0.04

Gross Power Output - MW 29.07 29.01 0.19

Exhaust Temperature - K 779.15 721.15 11.46

Table 4.4.5: Comparison of Thermoflow and Python model for design conditions.
GasTurb setup: Booster Turboshaft HP Spool

Gross power output is the gas turbine power output at the generator terminal,
considering all efficiencies, mechanical and from the generator.

During design conditions comparison, two compressors and two turbines were
considered in the analysis. For the off-design evaluation, the analysis was simplified
into one compressor and one turbine, in a single-spool shaft as illustrated in figure
3.1.1. This saves computation time on the off-design iteration loop , and was also
studied to evaluate if it was possible to model a gas turbine accurately by doing
this simplification.

The GasTurb procedure was followed for the off design condition, only now the
gas turbine is assumed into a single-spool shaft. The isentropic efficiency of the
compressor and turbine then converged to the values of 0.84 and 0.87. Assuming
constant polytropic efficiency for the off design calculations, as written in chapter
3, the off design calculations were made using the same iteration procedure as for
the HYSYS verification. The comparison of the main outputs are shown in the
following graphs.

Starting with the air flow rate, in figure 4.4.3 it is possible to see the differences
in both results from those models. Since Thermoflow calculates the air flow rate
based on compressor performance map, the flow rate relation with the ambient
temperature is not as linear as it is determined in the Python model. The different
methodologies for calculating the air flow rate for off design operating conditions
explain the difference in results of those models.

48 CHAPTER 4. RESULTS AND DISCUSSION

360 1 —— Thermoflow data

Python code
355 -

350 -

345 A

Air Inlet Flow - t/hr

340 A

335 -

330 - T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Ambient Temperature - °C

Figure 4.4.3: Air flow for off design conditions comparison.

Nevertheless, the results show that in both cases, the inlet air flow decreases
as the ambient temperature increases, which makes the results from Python con-
sistent with Thermoflow outputs, despite the difference on the values. It shows
that, for a robust model of a gas turbine, the off design method for determining
the mass flow of air as shown in chapter 3 in the system can be used.

The model in Python also follows the same pattern as Thermoflow results for
power output and efficiency, as seen on figure 4.4.4. Here, it also shows that the
efficiency is directly proportional with the power output of the gas turbine, and it
grows smaller for high power outputs.

However, despite following the same pattern, there are still differences in the
results which need to be further investigated. One of the reasons for these differ-
ences is from the methods used for calculating power and efficiency, where in the
power calculation the temperatures are used, as well as specific heat capacity C,
is a property of the fluid, read from Neqgsim.

CHAPTER 4. RESULTS AND DISCUSSION 49

38.5

—— Thermoflow data
—— Python code
38.0 A

37.5 A

37.0 A

Gas Turbine Efficiency - %

36.5 A

36.0 T T T T
27 28 29 30 31

Gas Turbine Power Output - MW

Figure 4.4.4: Power and efficiency output results for Thermoflow and Python.

To further investigate the reasons behind these variations, the power and effi-
ciency calculated were plotted separately, against the ambient temperature.

From figure 4.4.5, the power outputs results show that the Python and GT
MASTER® models have similar values for power output. The deviance decreases
as the ambient temperature increases, and both models generate approximately
the same value for the design conditions, as shown in table 4.4.5. This is consistent
for the design point, and the behavior can be expanded to the off-design conditions.

w
N
1

—— Thermoflow data
—— Python code

w
=
1

Gas Turbine Power Output - MW
N w
(] o

N
00}
1

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Ambient Temperature - °C

Figure 4.4.5: Gas turbine power results comparison.

Nonetheless, the efficiency results shows higher discrepancies, where the Python
code gives higher values for efficiency when compared to Thermoflow. This is con-
nected to the power output difference, where the method for determining it uses

50 CHAPTER 4. RESULTS AND DISCUSSION

the temperature difference across the turbine and compressor, as previously ex-
plained in chapter 2.

Given the number of simplifications and assumptions used for the construction
of this model, the differences were considered acceptable, and the model has been
successfully validated against Thermoflow software suite.

—— Thermoflow data
38.0 - —— Python code

%

37.5 A

37.0 A

Gas Turbine Efficiency -

36.5 1

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Ambient Temperature - °C

Figure 4.4.6: Gas turbine efficiency results comparison.

Those results from this validation now provide evidence that the Python model
developed is robust, because it can be used for different off-design conditions of
operation. Since in this case the off-design scenarios are based on changes in
ambient temperature only, the model proved to simulate accurate results, and can
be used inside the digital twin model.

4.4.1 Limitations of the model

The exhaust temperature from both models are different from each other, and this
difference follows the off design performance evaluation.

Despite including iterations inside the turbine class to improve temperature
calculations, the temperature results from Python still have great deviations when
compared to Thermoflow outputs, where it is a limitation of the model.

Uncertainties on calculations of turbine exhaust temperature were observed
during the comparison between Thermoflow and Python model. This can be
explained due to the Python model uses isentropic temperatures and assumes
constant properties of the fluid to calculate the actual outlet temperature of the
turbine, whereas Thermoflow bases itself on real data given by the manufacturer.

There, most probably the enthalpies were considered in the calculations, as
well as solving directly the energy equation. It can also impact on efficiency
calculations of the gas turbine, justifying the larger difference when compared
with Thermoflow.

This was a limitation observed on the model, therefore the turbine exhaust
temperature was not a parameter used for validation of the model.

CHAPTER 4. RESULTS AND DISCUSSION 51

The comparison results for exhaust turbine temperature can be seen on figure
4.4.7.

510 A
500 A
490 A
480 - —— Thermoflow data
—— Python code

470 A

460 -

4501

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Ambient Temperature - °C

Gas Turbine Efficiency - %

Figure 4.4.7: Exhaust turbine temperature results comparison.

4.5 Weather API connection

As stated in 3, the relation with the API forecast begins with the geographical
coordinates of the place, as well as a definition of a time period. The geographical
place chosen was of an offshore oil field located in the Norwegian Sea, and the
coordinates were extracted from GeoHack website [26].

The coordinates are shown below in table 4.5.1:

Latitude Longitude
65° 197 33" N 719 3" E *
65.325833 7.3175 **

Table 4.5.1: Geographical coordinates of the offshore oil field. * Coordinates
written in DMS (degrees, minutes, seconds) format. **Coordinates written in decimal
format.

The time period chosen was from 1% of January of 2023 until 1% of May of the
same year. This large time period was chosen to better observe the influence of
ambient conditions in the gas turbine performance.

Once the coordinates and time stamp are defined, the data can be extracted
from Meteostat API. From there, the average temperature values need to be de-
fined in the API, and are stored into a list to be further added as input to the
digital twin. The data extraction made in Python is shown in the code snippet,
and the temperature values for the time frame selected are plotted in figure 4.5.1
below:

18
19
20
21
22
23

52 CHAPTER 4.

#Historical Weather Data

from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Point, Hourly

#Set time period
start = datetime(2023,1,1,12)
end = datetime(2023,5,1,12)

#Create point for Heidrun
Heidrun_platform = Point(65.33, 2.33,16.0)

4 #Get hourly dat

data = Hourly(Heidrun_platform, start, end)
data = data.fetch()

data.plot(y=[’temp’])

plt.show()

#Extract tavg values and store them in a list

tavg_list = []

for row in data.itertuples():
tavg_list.append(row.temp)

print(tavg_list)

RESULTS AND DISCUSSION

12,59

7.59

-°C

5.01

2.59

Temperature

0.01

—2.54

—5.0 4

— temp

Feb Mar
2023
Time

Figure 4.5.1: Average temperature weather historical data for the geographical

location selected.

Apr

May

1

2

CHAPTER 4. RESULTS AND DISCUSSION 53

4.6 Digital Twin

It is necessary to establish a connection with physical equipment to create a digital
copy of the object while attempting to simulate its behavior. This connection can
be made in the form of data gathering from measurements on-site, measuring
accurately in defined intervals of critical parameters to ensure the best overview
of equipment operation.

Here, the data source for simulating a digital twin was the Thermoflow database.
Since it is software based on manufacturer data (as stated in 3), it was used to
extract data from the gas turbine based on experiments and simulations.

For the construction of this digital twin, the main inputs for the model are
the ambient temperature and the fuel flow rate entering the combustion chamber.
The assumption of a gas turbine operating at full load, with constant pressure
drops at both inlet and exhaust, is maintained in this case, as well as no pressure
drop inside the combustion chamber.

Considering that the source for ambient temperature data comes from the
weather forecast API, the fuel flow rate data needs to be established. Since in this
work real gas turbine field data was not used, it was decided to find a relation
between fuel flow rate and ambient temperature.

A linear regression was performed using results from GT MASTER for different
ambient temperatures, resulting in different flow rates of fuel. The linear regression
was made in Python by using the statsmodel library. Statsmodel library is a
Python module that contains methods for the estimation of different statistical
models, among other features for statistical data exploration.

Using Statsmodel, the regression mode has different methods for data analysis.
The OLS method (Ordinary Least Squares) was used for finding a relation between
fuel intake in a gas turbine and ambient temperature.

First, the Python module is installed to access its methods. Later, the data
set extracted from off-design scenarios run on GT MASTER for each variable is
defined into two Python lists. The model is then fit into the data using the OLS
method, and the results for the regression are shown after. The code snippet
summarizing the statistical analysis is shown below:

import statsmodels.api as sm
import numpy as np

3 import pandas as pd

4

12

13

14

15

16

17

import matplotlib.pyplot as plt
Linear regression relating fuel intake with temperature

fuel_flow_rates

= [1.82, 1.82, 1.82, 1.82, 1.81, 1.80, 1.80, 1.79, 1.78, 1.77,
1.76, 1.75, 1.74,

1.73, 1.72, 1.71, 1.70, 1.69, 1.68, 1.67, 1.67] #kg/s

ambient_temperatures = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11 ,12 ,13 ,14 ,15
,16 ,17 ,18 ,19 ,20] #C

Fit the model

X = sm.add_constant (ambient_temperatures)
model = sm.0LS(fuel_flow_rates, X)
results = model.fit()

Plot the data and the fitted line

o4 CHAPTER 4. RESULTS AND DISCUSSION

1s plt.scatter(ambient_temperatures, fuel_flow_rates)
19 plt.show()

The summary table for the OLS regression is shown below in table 4.6.1:

Parameter Coefficient
R? 0.980
Adjusted R? 0.979
F-statistic 953.7
Prob (F-statistic)* 1.06e-17

Table 4.6.1: OLS Regression Results.

These indicators confirm that the regression is appropriate. The R-square (R?)
value measures how well the data fit the model, indicating the proportion of the
variance of the dependent variable (in this case the fuel flow) that can be explained
by the variation of the independent variable (ambient temperature). A high R-
squared value suggests that the regression is an appropriate fit for the data while
capturing most of the variability.

The Adjusted R-squared value (Adj. R?) considers the number of predictors
in the model while adjusting R? value accordingly. Here, the adjusted R? value
is 0.979, close to the R? value, indicating that the fuel flow rate has a strong
relationship with the ambient temperature.

Now, the F-statistic and Prob F-statistic (P-value) test the overall significance
of the model, assessing whether there is a significant linear relationship between
the independent and dependent variables. The p-value allows observing extreme
F-statistic values. Here, with a high F-statistic value (953.7) and a small p-value
(1.06e-17) indicates that the regression model is statistically significant.

Based on these indicators, the regression model is a good fit for the data. Then,
the overall equation relating fuel intake in a gas turbine and ambient temperature
is shown below:

F = 1.8403 — 0.0086 * T (4.3)

Where F is the fuel flow rate in kg /s, and T is the temperature in °C. With all
the external sources, the digital twin model can be run. The ambient temperature
data and the equation relating fuel flow with ambient temperature are used as
inputs of the model, and the Python code for off-design scenarios is run for this
set of data. The code below shows part of the structure of how this was set in the
Python environment:

1 ambient_temperature_list = tavg_list #List with data from the weather
forecast API
2 time_period = timestamps

| for i in range(len(ambient_temperature_list)):
5 t = ambient_temperature_list[i]
6 fuel_flow = 1.8403 - 0.0086 * t

CHAPTER 4. RESULTS AND DISCUSSION 55

fuel_flow_rates.append(fuel_flow)
fuel_inlet = fuel_flow_rates

for t, mfuel in zip (ambient_temperature_list, fuel_inlet):
#0ff-design loop continued

The power output estimation for the time frame selected is shown below. This
time period selected is used for retrieving historical data only. It is possible to
observe that the power generation is impacted by the ambient conditions.

Gas Turbine Power Output - MW

Figure 4.6.1: Power output estimation for the time frame selected.

The same behavior can be seen on figure 4.6.2, but now the model is connected
with Locationforecast Weather API in order to forecast the power generation of
the gas turbine:

It can be seen from both scenarios that the ambient conditions hold a significant
impact on gas turbine operation and performance. The digital twin model is a
tool where it makes possible to observe these phenomena, and can be expanded
further into evaluating other scenarios.

o6

Power Output Forecast - MW

Efficiency of the Gas Turbine -%

CHAPTER 4. RESULTS AND DISCUSSION

30.16
30.14
30.12
30.10
30.08 -
30.06
30.04
” S 3 S 3 S 3 S » S 3
g e g e g e g e g ol g
A ¥ A ¥ A ¥ A ¥ A A A
Y Ny N ~o N N N Y g W v
Time
Figure 4.6.2: Power output forecast.
34.86
34.85
34.84
34.83
34.82
34.81
; ; ; ; ; ; ; ; ; ; ;
» 0 » o » o » 0 » 0 ”
& e & e & e & e S e &
B N A & X ¥ A ¥ A A A
N N N ~) N N > v W v
Time

Figure 4.6.3: Efficiency of gas turbine forecast.

CHAPTER
FIVE

CONCLUSION AND FURTHER WORK

5.1 Conclusion

This project outlines the development of a digital twin of a gas turbine for power
generation forecast. The literature review showed how a simplified gas turbine can
be modeled, and it was successfully verified and validated against two established
software.

The model developed in Python was demonstrated to be robust and relatively
accurate, with its given simplifications and assumptions. The off-design procedure
for performance evaluation proved to be effective and generated good results.

The verification and validation procedures also were effective for the model
validation. This was a key part of the study to ensure that the model could
generate more precise and accurate results, to further be used to represent a real
operating gas turbine.

The off-design procedure simplified from Saravanamuttoo et al. [4] proved to
be a good simplified approach to calculate the main parameters of the off-design
performance of the gas turbine, despite its limitations on the turbine exhaust
temperature calculations.

The approach used for establishing a correlation from fuel data from Ther-
moflow ® and ambient temperature instead of using field data was effective for
the digital twin model and was able to generate good results.

This study made it possible to see how a digital twin can be used in an indus-
trial scenario, and indicate how much ambient temperature affects the performance
of a gas turbine.

It also highlighted that gas turbines’ best operating conditions are at colder
temperatures, where the density of the gaseous fluid increases, allowing more power
to be generated for the same fuel input. Higher power outputs consequently in-
crease gas turbine efficiency, and this study shows those effects.

From a verified and validated model, the digital twin provides a good esti-
mation of a gas turbine power forecast. The hybrid model approach proved to
account for the effects of both the physical and the data-driven model to create a
robust and reliable digital twin.

57

58 CHAPTER 5. CONCLUSION AND FURTHER WORK

5.2 Future Work

The complexity of gas turbine operation depends on a broader scope than the one
used in this study. To have a more precise functioning digital twin that mimics
almost exactly the behavior of a real gas turbine, fewer simplifications need to be
performed.

The use of other software to achieve unknown variables can be evaluated in
further works to determine its accuracy, and possibly use another method for cal-
culating these variables, like with the aid of compressor and turbine performance
curves, relating the speed of the turbomachine and efficiency, along with volume
flow.

Compressor and turbine maps can be applied in the off-design methodology,
which takes into consideration changes in speed, as well as part-load performance.
In the lack of specific maps, using a generalized compressor and turbine char-
acteristics could be another way of improving off-design calculations of the gas
turbine.

Perform validation of the model with real field data. This way, the reliabil-
ity of the model increases and is capable of providing an even more trustworthy
estimation of power generation forecasting.

Challenges in developing precise digital twins also rely on accurate sensor mea-
surements, as well as a precise model. For future work, establishing a reliable
digital twin tool model that can be connected with live process data will bring the
model one step closer to having fewer differences from the real gas turbine.

1]
2]

3]
4]
5]

[6]
7]
8]
9]

[10]

[11]

[12]

REFERENCES

EIA - Energy Information Administration. “Annual Energy Outlook - AEO
2023”. In: (2023).

Fred Landis. Development of gas turbines. Accessed on: 18.05.2023. URL:
%5Curl?, 7Bhttps://www.britannica. com/technology/gas - turbine -
engine/Development-of-gas-turbinesy7D.

Mehervan P. Boyce. Gas Turbine Engineering Handbook. Gulf Professional
Publishing, 2002. 1SBN: 0-88415-732-6.

HIH Saravanamuttoo, GFC Rogerds, and H. Cohen. Gas Turbine Theory.
Pearson Education, Ltd., 2001. 1SBN: 978-81-7758-902-3.

L.S. Langston. “Turbines, Gas”. In: Reference Module in Farth Systems
and Environmental Sciences. Elsevier, 2014. 1SBN: 978-0-12-409548-9. DOI:
https://doi.org/10.1016/B978-0-12-409548-9.09044-8. URL: https:
//www.sciencedirect.com/science/article/pii/B9780124095489090448.

C. Balestrino. “Evolutionary improvements of Siemens SGT-A35 gas tur-
bine”. In: Gas turbines for energy network symposium (2019).

Dusty Phillips. Python 3 Object Oriented Programming. Packt Publishing,
2010.

University of Cape Town and indivual contributors. Object-Oriented Pro-
gramming in Python Documentation - Release 1. 2017.

Ma-Keba Frye. “What is an API?” In: (). URL: https://www.mulesoft.
com/resources/api/what-is-an-api.

URL: %5Curl’,7Bhttps://www.visualcrossing.com/resources/documentation/
weather - api/what-is-a-weather-pi/#: 7 :text=A%5C%20weather?y
5C%20API17%5C%20is%5C%20an , %5C%2C%5C%20well’5C%2Ddefined’5C%
20programming5C%20interface.%7D.

Michael Grieves. “Digital Twin: Manufacturing Excellence through Virtual
Factory Replication”. In: (Mar. 2015).

Adil Rasheed, Omer San, and Trond Kvamsdal. Digital Twin: Values, Chal-
lenges and Enablers. 2019. arXiv: 1910.01719 [eess.SP].

99

60

[13]

[14]

[15]

[16]

[17]

18]
19]
[20]
[21)
[22)
23]

[24]

[25]

REFERENCES

Oracle. Digital Twins for IoT Applications: A Comprehensive Approach to
Implementing IoT Digital Twins. Accessed on: 01.06.2023. URL: %5Curl?,
7Bhttps://infotech.report/Resources/Whitepapers/a3323742-5fee-
4df3-89fd-d9aeaall2ba6b_digital-twins-for-iot-apps-wp-3491953.
pdf%7D.

Csaba Ruzsa. “Digital twin technology - external data resources in creating
the model and classification of different digital twin types in manufactur-
ing”. In: Procedia Manufacturing 54 (2021). 10th CIRP Sponsored Confer-
ence on Digital Enterprise Technologies (DET 2020) — Digital Technologies
as Enablers of Industrial Competitiveness and Sustainability, pp. 209-215.
ISSN: 2351-9789. DOI: https://doi.org/10.1016/j.promfg.2021.07.
032. URL: https://www.sciencedirect.com/science/article/pii/
S52351978921001682.

Minghui HU et al. “Digital twin model of gas turbine and its application
in warning of performance fault”. In: Chinese Journal of Aeronautics 36.3
(2023), pp. 449-470. 1ssN: 1000-9361. DOI: https://doi.org/10.1016/
j.cja.2022.07.021. URL: https://www.sciencedirect.com/science/
article/pii/S1000936122001583.

Alexios Alexiou. “Development of Gas Turbine Performance Models Using
a Generic Simulation Tool”. In: vol. 1. June 2005. DOI: 10.1115/GT2005-
68678.

Elias Tsoutsanis and Nader Meskin. “Dynamic performance simulation and
control of gas turbines used for hybrid gas/wind energy applications”. In:
Applied Thermal Engineering 147 (Jan. 2019), pp. 122-142. 1SSN: 1359-4311.
DOI: 10.1016/J.APPLTHERMALENG.2018.09.031.

S.L Dixon and C.A. Hall. Fluid Mechanics and Thermodynamics of Turbo-
machinery. Elsevier Inc, 2014. 1SBN: 978-0-12-415954-9.

Thermoflow Inc. Thermoflow Software Suite User’s Manual. 2022.

Saturday Ebigenibo and Nweke Promise. “Off-design performance analysis
of gas turbines”. In: Global Journal of Engineering and Technology Advances
4 (Aug. 2020), p. 4. DOI: 10.30574/gjeta.2020.4.2.0046.

“IEEE Standard Glossary of Software Engineering Terminology”. In: I[FEFE
Std 610.12-1990 (1990), pp. 1-84. DOI: 10.1109/IEEESTD. 1990.101064.

Accessed on: 11.05.2023. URL: %5Curl’,7Bhttps://dev.meteostat .net/
47D.

URL: %5Curl}%7Bhttps://api.met.no/%7D.

“Siemens Energy Gas turbine portfolio”. In: (). URL: https://assets.
Siemens-energy.com/siemens/assets/api/uuid:2ead6ba9-ceea-4053-
a079-a0496124af45/gas-portfolio-brochure.pdf.

Ignacio Lopez-Paniagua et al. “Step by Step Derivation of the Optimum
Multistage Compression Ratio and an Application Case”. In: Entropy 22
(6 June 2020), p. 678. 1SSN: 1099-4300. DOIL: 10 . 3390/ e22060678. URL:
https://www.mdpi.com/1099-4300/22/6/678.

REFERENCES 61

[26] Heidrun Oil Field. Accessed July 7, 2023. URL: https://geohack.toolforge.
org/geohack.php?pagename=Heidrun_oil_field¶ms=65_19_33_N_
7_19_3_E_type:landmark.

62

REFERENCES

63

APPENDICES

HYSYS model

Inlet Turbine K-101
Temperature 1018 [K Feed Pressure 10,68 | bar
Pressure 10,68 | bar Product Pressure 1,058 | bar
Molar Flow | 6,483e+004 | kgmole/h Energy 236,2 | MW
Product Temperature | 6172 |K
—
Turom
urbine
Ttne aiol
bush K-101
Combustor
Compressed_air
Air-2
O;
K-100
K-100 off
Feed Pressure 1,013 | bar design
Product Pressure 10,84 | bar
Energy 166,8 | MW
Product Temperature | 6014 |K

Off design

Inlet Turbine Off design
Temperature 1282 | K
Pressure 12,63 | bar
Molar Flow 6,924e+004 | kgmole/h
ser2 2 Outel
etz _ - Tixbine Turbine Off Design
- woine design Feed Pressure 12,63 | bar
Compressed_air-2 Off :
B Design Product Pressure 1,058 | bar
Energy 3386 | MW
p—
Q.100.2 Product Temperature | 767,0 | K
Compressor Off design Off design
Feed Pressure 1,013 | bar Compressor Power | 1,840e+005 | kW
Product Pressure 12,82 | bar Turbine Power 3,386e+005 | kW
Molar Flow 6,722e+004 | kgmole/h Efficiency 0,3332 | kW
Energy 184,0 | MW Air Flow 538,1 | ko's

64

Python Code

from neqgsim.thermo.thermoTools import fluid, printFrame
from neqgsim.thermo import PSflash, TPflash, PHflash
from neqsim.process import clearProcess

from neqsim.standards import IS06976

from math import loglO, log, sqrt

import matplotlib.pyplot as plt

from scipy.optimize import fsolve, minimize

import copy

import numpy as np

import pandas as pd

class Stream():
23

Object to define a stream in the model

Negsim will be used to calculate all the fluid properties

)3

def __init__(self):
self.temperature = None #K
self .pressure = None #Pa
self.flow_rate = None #kg/hr
self.stream_fluid = None #neqgsim fluid

def set_fluid(self,stream_fluid):

290

This function is used to assign an object with the fluid from neqgsim

22

self.stream_fluid = stream_fluid
def get_fluid(self):
return self.stream_fluid

def set_temperature(self,temperature:float,units:str) -> float:
29

Function to set temperature of the stream

Oparam self stream object
Oparam float temperature: temperature of the stream
Oparam str units: standarized value of a given physical property

returns:float temperature in K
23
if (units=="K"):
self.temperature
elif (units =="C"):
self.temperature
elif (units == ’F’):
self.temperature
else:
print (£"No units found for temperature in stream {selfl}")
self.temperature = None

temperature

temperature + 273.15

I

(9/5) *temperature+32

65

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

def get_temperature(self,units:str) -> float:
if units == "K":
return self.temperature
else:
print (f"No units found for temperature in stream {selfl}")
return None

def set_flow_rate(self,flow_rate:float,units:str) -> float:
PN A

Function to set flow rate. Returns the flow rate in kg/hr
22
if (units == ’kg/hr’):
self.flow_rate = flow_rate
elif (units == ’m3/hr’):
self.flow_rate = flow_rate*self.stream_fluid.getDensity()
elif (units == ’kg/s’):
self.flow_rate = flow_rate*x3600
elif (units == ’MSm3/day’):
self.flow_rate = flow_ratexleb*self.density_std/24
else:
print (£"No units found for flow rate in stream {selfl}")
return None

def get_flow_rate(self, units:str) -> float:
if units == ’kg/hr’:
return self.flow_rate
else:
print (£"No units found for flow rate in stream {self}")
return None

def set_pressure(self,pressure:float, units:str) -> float:
23

Function to set pressure of the stream

Returns the pressure of the stream in Pa.
200

if (units == ’Pa’):

self.pressure = pressure
elif (units == ’bara’):

self .pressure = pressurex*leb
elif (units == ’kPa’):

self.pressure = pressure/le3
else:

print (£"No units found for pressure in stream {self}")
self.pressure = None

def get_pressure(self,units:str) -> float:
if units == "Pa":
return self.pressure
else:
print ("No units found")
return None

def calc(self):

23

Calculation method inside the stream class. It verifies if the
parameters have the correct units, and then later performs a TPflash to

66

138

139

140

141

143

calculate the physica properties.

The properties will be calculated using neqgsim.

22
if self.temperature == None:

print (f"ERROR: temperature was not set to the STREAM {self}")
else:

self.stream_fluid.setTemperature(self.temperature, "K")

if self.pressure == None:

print (f"ERROR: pressure was not set to the STREAM {self}")
else:

self.stream_fluid.setPressure(self.pressure/le5, "bara")
if self.flow_rate == None:

print (f"ERROR: flow_rate was not set to the STREAM {self}")
else:

self.stream_fluid.setTotalFlowRate(self.flow_rate, ’kg/hr’)
TPflash(self.stream_fluid)
self.stream_fluid.initProperties()

class Compressor():
22

Object to define compressor design parameters
Calculate isentropic efficiency, outlet temperature of compressor

Negsim will be used for calculating the fluid properties, and assign it to
a fluid stream

29

def __init__(self):
self .pressure = None
self.temperature = None
self.inlet_stream = None #Stream class
self.outlet_stream = None #Stream class
self.pressure_ratio = None #no units
self.isentropic_efficiency = None #no units
self.polytropic_efficiency = None #no units
self.work = None #MW
self.outlet_temperature = None #K
self.outlet_pressure = None #Pa
self.isentropic_exponent = None #no units
self.polytropic_exponent = None #no units
self.correction_factor = None #no units
self.temperature_isentropic = None #K
self.inlet_temperature = None #K
self.flow_rate = None #kg/hr
self .pressure_air_filter = None #Pa

def set_inlet_stream(self, inlet_stream:Stream) -> Stream:
23

Function to assign inlet stream for the compressor
2930

self.inlet_stream = inlet_stream

def get_inlet_stream(self) -> Stream:
return self.inlet_stream

67

170 def set_outlet_stream(self, outlet_stream: Stream) -> Stream:
)20

172 Function to assign outlet stream for the compressor
22

174 self.outlet_stream = outlet_stream

176 def get_outlet_stream(self) -> Stream:
177 return self.outlet_stream

179 def calc_outlet_stream(self) -> Stream:
23

181 Function to calculate parameters of outlet stream of the compressor

183 Shallow copy of inlet stream, copying neqsim fluid, and flow rate,
according to the mass balance: flow_rate inlet_stream = flow_rate
outlet_stream

185 Outlet temperatures and pressures of the stream will be calculated on
calc_outlet_temperature and pressure method, and then assigned to the
outlet stream.

186

187 Negsim will then calculate the outlet stream properties.

188

189 20

190 self.outlet_stream = copy.copy(self.inlet_stream)

191 self.outlet_fluid = self.inlet_stream.get_fluid().clone()

192 if self.get_outlet_pressure("Pa") == None:

193 print ("COMPRESSOR ERROR: pressure is NONE")

194 if self.get_outlet_temperature("K") == None:

195 print ("COMPRESSOR ERROR: temperature is NONE")

196 else:

197 self.outlet_stream.set_fluid(self.outlet_fluid)

198 self.outlet_stream.set_temperature(self.get_outlet_temperature("K")

"K")

199 self.outlet_stream.set_pressure(self.get_outlet_pressure("Pa"), "Pa
"

200 self.outlet_stream.calc()

201

202 def set_outlet_pressure(self, outlet_pressure:float, units:str) -> float:

203 if units == "Pa":

204 self.outlet_pressure = outlet_pressure

205 elif units == "bara":

206 self.outlet_pressure = outlet_pressurexleb

207 else:

208 print (f"Error: Pressure units not found for compressor {self}.")

209

210 def get_outlet_pressure(self,units:str) -> float:

211 if units == "Pa":

212 return self.outlet_pressure

213 else:

214 print (£"No units found for pressure for the STREAM {selfl}")

215 return None

216

217 def calc_outlet_pressure(self) -> float:

218 self.outlet_pressure = self.inlet_stream.get_pressure("Pa")*self.

get_pressure_ratio()

219

68

def set_outlet_temperature(self, temperature:float, units:str) -> float:

if units == "K":
return self.temperature
elif units == "C":

self.outlet_temperature = self.outlet_temperature +273.15

elif units == "F":
self.outlet_temperature
else:
print ("No units found.")
return self.outlet_temperature

def get_outlet_temperature(self,units:str) ->float:
if units == "K":
return self.outlet_temperature
else:
print("No units found for temperature.")
return None

def get_kappa(self, temperature:float, pressure: float) -> float:

temp_stream = copy.copy(self.inlet_stream)
temp_fluid = self.inlet_stream.get_fluid().clone()
temp_stream.set_temperature(temperature, "K")
temp_stream.set_pressure(pressure, "Pa")
temp_stream.set_fluid(temp_fluid)
temp_stream.calc()

return temp_stream.get_fluid() .getKappa()

def calc_outlet_temperature(self):

steps = 200

Pr = self.get_pressure_ratio()

Tl = self.inlet_stream.get_temperature("K")

Pin = self.get_inlet_stream().get_pressure("Pa")

temperature_isentropic = 288.15

i=0

for i in range(steps):
kappa = self.inlet_stream.get_fluid() .getKappa()
Pr = self.get_pressure_ratio()**(i/steps)
temperature_isentropic = T1 * (Pr) *x((kappa-1)/kappa)
Pin = Pin * Pr

self.outlet_temperature = Tl + ((temperature_isentropic - T1)/self.

get_isentropic_efficiency())

def get_temperature_isentropic(self, units:str) -> float:
if units == "K":
return self.temperature_isentropic
else:

print (f"No units found for temperature in stream {selfl}")

return None

def set_pressure_ratio(self, pressure_ratio:float) -> float:
self.pressure_ratio = pressure_ratio

def get_pressure_ratio(self) -> float:
return self.pressure_ratio

def calc_pressure_ratio(self):

self .pressure_ratio = self.get_outlet_pressure("Pa")/self.
get_inlet_stream() .get_pressure("Pa")

69

(9/5)*self.outlet_temperature+32

309

310

def

def

def

def

def

def

PSfl

2

set_isentropic_efficiency(self, isentropic_efficiency) -> float:
self.isentropic_efficiency = isentropic_efficiency

get_isentropic_efficiency(self) -> float:
return self.isentropic_efficiency

calc_isentropic_efficiency(self):

kappa = self.inlet_stream.get_fluid() .getKappa()

k = kappa

Pr = self.get_pressure_ratio()

np = self.get_polytropic_efficiency()

self.isentropic_efficiency = 1/((Pr**((k-1)/k)-1)/(Pr**((k-1)/k*np)-1))

set_polytropic_efficiency(self, polytropic_efficiency:float) -> float:
self .polytropic_efficiency = polytropic_efficiency

get_polytropic_efficiency(self) ->float:
return self.polytropic_efficiency

calc_polytropic_efficiency(self) -> float:

23

Function to calculate polytropic efficiency.

Negsim will be used for calculating the isentropic properties using a
ash, as well as the inlet and outlet properties of the fluid.

)

def polytropic_efficiency_error(up):
Pl = self.get_inlet_stream().get_pressure("Pa")
P2 = self.get_outlet_pressure("Pa")
k = self.inlet_stream.get_fluid() .getKappa()
isentropic_efficiency = self.get_isentropic_efficiency()
difference = ((P2/P1)**((k-1)/k) - 1)/((P2/P1)**((k-1)/k*np) -1) -

isentropic_efficiency

def

def

np = np_guess

return difference
np_guess = self.get_isentropic_efficiency()
np_solution = fsolve(polytropic_efficiency_error, np_guess)
self .polytropic_efficiency = 1/np_solution[0]

set_work(self, work:float, units:str) -> float:
if units == "MW":
self.work = work
elif units == "kW":
self.work = work*le3
elif units == "W":
self.work = work*1le6
else:

print (£"No units found for work in {self}.")
return self.work

get_work(self, units:str) -> float:
if units == "MW":
return self.work
else:
print(£f"No units found for {self} compressor work.")

70

339

340

360
361
362

363

364

return None

def calc_work(self):

290

Function to calculate compressor work.

A PS Flash is used to calculate the isentropic properties of the outlet
stream.

Negsim will read the properties of inlet and outlet stream fluids to
perform the calculations.

23

#Properties of inlet fluid

self .density_in = self.get_inlet_stream().get_fluid().getDensity("kg/m3
")

self.pressure_in = self.get_inlet_stream().get_pressure("Pa")

self.flow_rate = self.get_inlet_stream().get_flow_rate("kg/hr")

self .entropy_in = self.get_inlet_stream().get_fluid() .getEntropy("J/K")

self.enthalpy_in = self.get_inlet_stream().get_fluid() .getEnthalpy("J/
kg")

Cp = self.get_inlet_stream().get_fluid() .getCp("J/kgK")

MW = self.get_inlet_stream().get_fluid() .getMolarMass()

#0utlet Fluid

self.density_out = self.get_outlet_stream().get_fluid().getDensity("kg/
m3")

self .pressure_out = self.get_outlet_stream().get_pressure("Pa")

self .volume_exponent = log(self.pressure_out/self.pressure_in)/log(self
.density_out/self.density_in)

n = self.volume_exponent

#Isentropic Properties of outlet fluid - using a PS Flash

outlet_pressure = self.get_outlet_stream().get_pressure("Pa")

PSflash(self.get_outlet_stream().get_fluid(), self.entropy_in, "J/K")

self.get_outlet_stream() .get_fluid().initProperties()

self.enthalpy_out_isentropic = self.get_outlet_stream().get_fluid().
getEnthalpy ("J/kg")

self .density_out_isentropic = self.get_outlet_stream().get_fluid().
getDensity("kg/m3")

numerator = self.enthalpy_out_isentropic - self.enthalpy_in

denominator = (n / (n - 1)) * ((self.pressure_out/self.
density_out_isentropic) - (self.pressure_in/self.density_in))

CF = numerator / denominator

self .work = (self.get_inlet_stream().get_flow_rate("kg/hr")/3600 * Cp *

(self.get_outlet_stream() .get_temperature("K") - self.get_inlet_stream().

get_temperature("K")))/1e6

def set_steps(self, steps:int) -> int:
self.steps = steps

def get_steps(self):
return self.steps

def calc(self) -> float:

23

Function for verifying if the necessary variables are defined for the

71

compressor. If two variables are given, the other ones are calculated.

379

380 If not, an error will appear.

381 720

382 self.success = False

383 #if self.steps is not None:

384

385 if self.isentropic_efficiency is not None:
386 if self.pressure_ratio is not None:
387 self.calc_outlet_pressure()

388 self.calc_polytropic_efficiency()
389 self.calc_outlet_temperature()

390 self.calc_outlet_stream()
391 self.calc_work()

392 #self.calc_compression_in_steps()
393 #self.calc_work()
394 self.success = True

395
396 elif self.outlet_pressure is not None:
397 self.calc_pressure_ratio()

398 self.calc_outlet_temperature()

399 self.calc_outlet_stream()

400 self.calc_polytropic_efficiency()
101 self.calc_work()

402 #self.calc_compression_in_steps()

103 self.success = True

405 elif self.outlet_temperature is not None:
406 self.calc_outlet_pressure()

107 self.calc_pressure_ratio()

108 self.calc_outlet_stream()

409 self.calc_polytropic_efficiency()

410 self.calc_work()

411 #self.calc_compression_in_steps()

112 self.success = True

114 elif self.polytropic_efficiency is not None:

415 self.calc_pressure_ratio()

416 self.calc_outlet_pressure()

417 self.calc_outlet_temperature()

418 self.calc_outlet_stream()

119 self.calc_work()

420 #self.calc_compression_in_steps()
421 self.success = True

422

123 elif self.work is not None:

124 self.calc_outlet_pressure()

425 self.calc_pressure_ratio()

426 self.calc_outlet_temperature()
427 self.calc_outlet_stream()

128 self.calc_polytropic_efficiency()

429 #self.calc_compression_in_steps()

130 self.success = True

431 else:

432 print (f"Error. Only isentropic efficiency is defined for
compressor {self}.")

134 elif self.set_outlet_pressure is not None:

72

35 if self.pressure_ratio is not None:
36 #self.calc_outlet_temperature()
137 self.calc_outlet_stream()

138 self.calc_isentropic_efficiency()
139 self.calc_polytropic_efficiency()
440 self.calc_work()

441 self.success = True

143 elif self.isentropic_efficiency is not None:
144 self.calc_pressure_ratio()

145 self.calc_outlet_temperature()

446 self.calc_outlet_stream()

447 self.calc_isentropic_efficiency()

148 self.calc_polytropic_efficiency()

149 self.calc_work()

150 self.success = True

452 elif self.outlet_temperature is not None:
153 self.calc_pressure_ratio()

154 self.calc_outlet_stream()

155 self.calc_isentropic_efficiency()

456 self.calc_polytropic_efficiency()

457 self.calc_work()

158 self.sucess = True

160 elif self.polytropic_efficiency is not None:
161 self.calc_pressure_ratio()

462 self.calc_isentropic_efficiency()
463 self.calc_outlet_temperature()

164 self.calc_outlet_stream()

165 self.calc_work()

166 self.sucess = True

467

468 elif self.work is not None:

169 self.calc_outlet_temperature()

170 self.calc_pressure_ratio()

171 self.calc_outlet_stream()

472 self.calc_isentropic_efficiency()
473 self.calc_polytropic_efficiency()
474 self.sucess = True

176 else:
177 print (f"Error. Only outlet pressure is defined for compressor {
self}.")

179 elif self.pressure_ratio is not None:

180 if self.outlet_pressure is not None:

181 print ("Compressor Error. Another variable needs to be specified
‘n)

482 self.success = False

184 elif self.outlet_temperature is not None:
185 self.calc_outlet_pressure()

486 self.calc_outlet_stream()

487 self.calc_isentropic_efficiency()

188 self.calc_polytropic_efficiency()

189 self.calc_work()

190 self.success = True

73

elif self.isentropic_efficiency is not None:
self.

self
self

elif self.polytropic_efficiency is not None:
self.
self.

self

calc_outlet_pressure()

.calc_outlet_temperature()
.calc_outlet_stream()

self.
self.
self.
self.

calc_isentropic_efficiency()
calc_polytropic_efficiency()
calc_work()

sucess = True

calc_outlet_pressure()
calc_outlet_temperature()

.calc_isentropic_efficiency()
self.
self.
self.

calc_outlet_stream()
calc_work()
success = True

elif self.work is not None:

self.
self.
self.
self.

self

else:

print (f"Compressor Error. Only pressure ratio is defined for

calc_outlet_pressure()
calc_outlet_temperature()
calc_outlet_stream()
calc_isentropic_efficiency()

.calc_polytropic_efficiency()
self.

success = True

compressor {self}.")

elif self.outlet_temperature is not None:
if self.pressure_ratio is not None:

self
self

.calc_outlet_pressure()
.calc_outlet_stream()

self.
self.
self.
self.

calc_isentropic_efficiency()
calc_polytropic_efficiency()
calc_work()

sucess = True

elif self.outlet_pressure is not None:

self.
self.
self.

self

elif self.isentropic_efficiency is not None:
.calc_outlet_pressure()
self.
self.

self

self

elif self.polytropic_efficiency is not None:
self.
self.

calc_pressure_ratio()
calc_outlet_stream()
calc_isentropic_efficiency()

.calc_polytropic_efficiency()
self.
self.

calc_work()
sucess = True

calc_pressure_ratio()
calc_outlet_stream()

.calc_polytropic_efficiency()
self.
self.

calc_work()
success = True

calc_isentropic_efficiency()
calc_pressure_ratio()

4

548 self.calc_outlet_pressure()

549 self.calc_outlet_stream()

550 self.calc_work()

551 self.success = True

52

553 elif self.work is not None:

554 self.calc_outlet_pressure()

555 self.calc_pressure_ratio()

556 self.calc_outlet_stream()

557 self.calc_isentropic_efficiency()
558 self.calc_polytropic_efficiency()
559 self.success = True

560

561 else:

562 print (f"Compressor Error. Only outlet temperature is defined
for compressor {selfl}.")

564 elif self.work is not None:

565 if self.outlet_temperature is not None:
566 self.calc_outlet_pressure()

567 self.calc_pressure_ratio()

568 self.calc_outlet_stream()

569 self.calc_isentropic_efficiency()
570 self.calc_polytropic_efficiency()
571 self.success = True

573 elif self.outlet_pressure is not None:
574 self.calc_pressure_ratio()

5 self.calc_outlet_temperature()

576 self.calc_outlet_stream()

577 self.calc_isentropic_efficiency()
578 self.calc_polytropic_efficiency()
579 self.sucess = True

581 elif self.pressure_ratio is not None:
582 self.calc_outlet_pressure()

583 self.calc_outlet_temperature()
584 self.calc_outlet_stream()

585 self.calc_isentropic_efficiency()
586 self.calc_polytropic_efficiency()
587 self.success = True

> 88

589 elif self.isentropic_efficiency is not None:
590 self.calc_outlet_temperature()

591 self.calc_outlet_pressure()

592 self.calc_pressure_ratio()

593 self.calc_polytropic_efficiency()
594 self.success = True

596 elif self.polytropic_efficiency is not None:

597 self.calc_pressure_ratio()

598 self.calc_outlet_pressure()

599 self.calc_outlet_temperature()

600 self.calc_outlet_stream()

601 self.calc_isentropic_efficiency()

602 self.success = True

603 else:

604 print (f"Compressor error. Only duty is defined for compressor {

5

self}.")

605

606 else:

607 print (f"Error. Two variables need to be defined for compressor {
self}.")

608 # else:

609 # print ("Error. Please define number of steps for calculation

accuracy.")
610
611
612
613
614 class Combustor():
23

616 Object to calculate turbine inlet temperature (TIT) - outlet of
combustor.

617

618 Chemical reaction included to estimate composition of outlet stream.

619

620 Energy balance on the combustor.

621

622 720

623

624 def __init__(self):

625

626 self.inlet_stream = None #Stream class

627 self.fuel_inlet_stream = None #kg/hr

628 self.outlet_stream = None #Stream class

629 self.outlet_temperature = None #K

630 self.outlet_pressure = None #Pa

631 self.inlet_pressure = None

632 self.outlet_fluid = None

633 self.deltaP = None

634 self.temperature = None

635 self.pressure = None

636 self .mixed_stream = None

637 self.ambient_temperature = 288.15 #K

638 self.work = None #MW

639 self .LHV = None #MJ/kg
640 self.mixed_stream = None #Stream class
641 self.excess_air = 1

642 self.isentropic_efficiency =1

643

644 def set_deltaP(self, deltaP) -> float:

645 self.deltaP = deltaP

646

647 def get_deltaP(self):

648 return self.deltaP

649

650 def set_ambient_temperature(self, ambient_temperature) :
651 self.ambient_temperature = ambient_temperature

652

653 def set_inlet_stream(self,inlet_stream:Stream) -> Stream:
654 self.inlet_stream = inlet_stream

655

656 def get_inlet_stream(self) -> Stream:

657 return self.inlet_stream

76

659 def set_fuel_inlet_stream(self,fuel_inlet_stream:Stream) -> Stream:

660 self.fuel_inlet_stream = fuel_inlet_stream

661

662 def get_fuel_inlet_stream(self):

663 return self.fuel_inlet_stream

664

665 def get_outlet_stream(self):

666 return self.outlet_stream

667

668 def set_outlet_pressure(self, outlet_pressure:float, units:str) ->
float:

669 if units == "Pa":

670 self.outlet_pressure = outlet_pressure

671 elif units == "bara":

672 self.outlet_pressure = outlet_pressure*leb

673 else:

674 print (f"Error: Pressure units not found for compressor {selfl}."

676 def get_outlet_pressure(self,units:str) -> float:

677 if units == "Pa":

678 return self.outlet_pressure

679 else:

680 print (£"No units found for pressure for the STREAM {self}")

681 return None

682

683 def calc_outlet_pressure(self) -> float:

684 self.outlet_pressure = self.inlet_stream.get_pressure("Pa")*(1 - (
self.get_deltaP()/100))

685

686 def set_outlet_temperature(self, temperature:float, units:str) -> float
687 if units == "K":

688 return self.temperature

689 elif units == "C":

690 self.outlet_temperature = self.outlet_temperature + 273.15

691 elif units == "F":

692 self.outlet_temperature =(9/5) * self.outlet_temperature + 32

693 else:

694 print (£"No units found for outlet temperature of combustor {
self}.")

695 return self.outlet_temperature

697 def get_outlet_temperature(self,units:str) ->float:
698 if units == "K":

699 return self.outlet_temperature

700 else:

701 print("No units found for temperature.")
702 return None

704 def get_LHV(self):
705 return self.LHV

707 def calc_LHV(self):

239

709 Method for determining the lower calorific value of the fuel

mixture
3

7

738

746

1506976 = IS06976(self.get_fuel_inlet_stream().get_fluid())

is06976.setReferenceType (’mass’)

is06976.setVolRefT (float(15.0))

is06976.setEnergyRefT(float (15.0))

is06976.calculate()

self .LHV = round((iso6976.getValue("InferiorCalorificValue")*1e3)
,3) #J/kg

def calc_heat_input(self):
self .heat_input = self.get_fuel_inlet_stream().get_flow_rate("kg/hr
")/3600 * self.get_LHV()

def get_outlet_stream(self):
return self.outlet_stream

def get_chemical_reaction_fluid(self) -> Stream:
return self.reaction_fluid

def calc_chemical_reaction(self) -> float:
3

Method for estimating outlet composition of the combustor stream.
Complete combustion is assumed.

Physical properties are calculated using neqgsim.
20

#Air components - create a dictionary with air components, and the
respective molar fractions

number_components_air = self.get_inlet_stream().get_fluid().
getNumber0fComponents ()

name_components_air = [self.get_inlet_stream().get_fluid().
getComponent (i) .getName() for i in range(number_components_air)]

molar_fractions_air = [self.get_inlet_stream().get_fluid().
getComponent (i) .getx() for i in range(number_components_air)]

air_dictionary = {}

for i in range(number_components_air):
air_dictionary[name_components_air[i]] = molar_fractions_air[i]

MW_02 = self.get_inlet_stream().get_fluid() .getComponent (’oxygen’) .
getMolarMass() *1000 #g/mol

MW_N2 = self.get_inlet_stream().get_fluid() .getComponent (’nitrogen’
) .getMolarMass() #1000 #g/mol

#Air Composition

total_moles_air = self.get_inlet_stream().get_fluid().
getTotalNumber0fMoles ()

mols_02_air = (air_dictionary[’oxygen’] * total_moles_air)

mols_N2_air = (air_dictionary[’nitrogen’] * total_moles_air)

#Fuel

number _components_fuel = self.get_fuel_inlet_stream().get_fluid().
getNumber0fComponents ()

name_components_fuel = [self.get_fuel_inlet_stream().get_fluid().
getComponent (i) .getName() for i in range(number_components_fuel)]

molar_fractions_fuel = [self.get_fuel_inlet_stream().get_fluid().

78

764

766

767

768

getComponent (i) .getx() for i in range(number_components_fuel)]
fuel_dictionary = {}

for i in range(number_components_fuel):
fuel_dictionary[name_components_fuel[i]] = molar_fractions_fuel

(il
fuel_flow_rate = self.get_fuel_inlet_stream().get_flow_rate("kg/hr"

MW_CH4 = self.get_fuel_inlet_stream().get_fluid() .getComponent (’
methane’) .getMolarMass()* 1000 #Molar mass methane in g/mol

total_moles_fuel = self.get_fuel_inlet_stream().get_fluid().
getTotalNumberOfMoles ()

MW_N2 = self.get_fuel_inlet_stream().get_fluid() .getPhase(0).
getComponent (*nitrogen’) .getMolarMass () *1000

MW_C02 = self.get_fuel_inlet_stream().get_fluid().getComponent (’CO2
’) .getMolarMass () *1000

MW_NG = self.get_fuel_inlet_stream().get_fluid().getMolarMass() *
1000

x_N2_f = self.get_fuel_inlet_stream().get_fluid() .getComponent (’
nitrogen’) .getx()

x_C02_f = self.get_fuel_inlet_stream().get_fluid() .getComponent (’
C02%) .getx()

#N2 mass on NG mix
if x_N2_f is not None:
x_N2_ng = (fuel_dictionary[’nitrogen’] * MW_N2)/MW_NG
m_N2_ng = x_N2_ng * fuel_flow_rate #kg/hr
mols_N2_ng = m_N2_ng / (MW_N2 / 1000)
N2_ng = mols_N2_ng * fuel_dictionary[’nitrogen’]

else:
pass

if x_C02_f is not None:
x_C02_ng = (fuel_dictionary[’C02’] * MW_C02)
m_C02_ng = x_C02_ng * fuel_flow_rate #kg/hr
mols_C02_ng = m_C02_ng / (MW_C02/1000)
C02_ng = mols_C02_ng * fuel_dictionary[’C02°’]
else:
pass

#Methane reaction

#Calculate available mols of CH4

mols_CH4 = (fuel_dictionary[’methane’] * total_moles_fuel)
#Determine stoichiometric ratio

CH4_limit = mols_CH4 * (2/1) #2 mols of H20 / 1 mol CH4

02_limit_methane = mols_02_air * (2/2) #2 mols of H20 / 1 mol CH4

Determine Limiting Reactant
limiting_reactant_methane = min(CH4_limit, 02_limit_methane)

#Calculate mols of combustion products

79

806

807

809

810

812

813

815

829

mols_CO02_methane = limiting_reactant_methane * (1/1) #1 mol C02 / 1
mol CH4

mols_H20_methane = limiting reactant_methane * (2/1) #2 mols H20 /
1 mol CH4

#Calculate remaining moles of oxygen

reacted_02_methane = limiting_reactant_methane * (2/1) #2 moles of
02 are needed for 1 mol of CH4

mols_02_not_reacted_methane = mols_02_air - reacted_02_methane # 2
mols of CH4 are needed for 1 mol of methane

total_moles_methane = mols_C02_methane + mols_H20_methane +
mols_02_not_reacted_methane + mols_02_air + N2_ng + mols_N2_air *
fuel_dictionary[’methane’]

02_methane = (mols_02_not_reacted_methane / total_moles_methane) *
fuel_dictionary [’methane’]

C02_methane = (mols_C02_methane/total_moles_methane) *
fuel_dictionary [’methane’]

H20_methane = (mols_H20_methane/total_moles_methane) *
fuel_dictionary[’methane’]

if ’ethane’ in fuel_dictionmary:
#Ethane Reaction
mols_C2H6 = (fuel_dictionary[’ethane’] * total_moles_fuel)
C2H6_limit = mols_C2H6 * (3/1) #3 mols H20 / 1 mol C2H6
02_1imit_ethane = mols_02_air * (3/3.5) #3 mols H20 / 3.5 mols
02

limiting_reactant_ethane = min(C2H6_limit, 02_limit_ethane)
mols_CO02_ethane = limiting reactant_ethane * (2/1) #2 mols C02
/ 1 mol C2H6
mols_H20_ethane = limiting_reactant_ethane * (3/1) #3 mols H20
/ 1 mol C2H6
mols_02_not_reacted_ethane = mols_02_air - mols_C2H6 * 3.5
total_moles_ethane = mols_CO02_ethane + mols_H20_ethane +
mols_02_not_reacted_ethane + N2_ng + mols_N2_air * fuel_dictionary [’ethane
’]
02_ethane = (mols_02_not_reacted_ethane/ total_moles_ethane) *
fuel_dictionary [’ethane’]
C02_ethane = (mols_C02_ethane / total_moles_ethane) *
fuel_dictionary [’ethane’]
H20_ethane = (mols_H20_ethane/total_moles_ethane) x*
fuel_dictionary[’ethane’]
else:
pass

if ’propane’ in fuel_dictionary:
#Propane Reaction

mols_C3H8 = (fuel_dictionary[’propane’] * total_moles_fuel)

C3H8_limit = mols_C3H8 * (4/1) #4 mols H20 / 1 mol C3HS8

02_limit_propane = mols_02_air * (4/5) #4 mols H20 / 5 mols 02

limiting_reactant_propane = min(C3H8_limit, 02_limit_propane)

mols_C02_propane = limiting_reactant_propane * (3/1) #3 mols
C02 / 1 mol C3H8

mols_H20_propane = limiting_reactant_propane * (4/1) #4 mols
H20 / 1 mol C3H8

|

80

845

846

847

848

849

859

860

861

862

863

864

865

866

867

868

869

878

879

880

mols_02_not_reacted_propane = mols_02_air - mols_C3H8 * 5

total_moles_propane = mols_CO2_propane + mols_H20_propane +
mols_02_not_reacted_propane + N2_ng * fuel_dictionary [’propane’]

02_propane = (mols_02_not_reacted_propane / total_moles_propane
) * fuel_dictionary[’propane’]

C02_propane = (mols_CO02_propane/total_moles_propane) *
fuel_dictionary[’propane’]

H20_propane = (mols_H20_propane/total_moles_propane) %*
fuel_dictionary[’propane’]

else:
pass

if ’n-butane’ in fuel_dictionary:

n-Butane Reaction

mols_C4H10 = (fuel_dictionary[’n-butane’] * total_moles_fuel)

C4H10_limit = mols_C4H10 * (5/1) #5 mols H20 / 1 mol n-C4H10

02_limit_butane = mols_02_air * (5/6.5) #5 mols H20 / 6.5 mols
02

limiting_reactant_butane = min(C4H10_limit, 02_limit_butane)

mols_CO02_butane = limiting_reactant_butane * (4/1) #4 mols C02
/ 1 mol C4H10

mols_H20_butane = limiting_reactant_butane * (5/1) #5 mols H20
/ 1 mol C4H10

mols_02_not_reacted_butane = mols_02_air - mols_C4H10 * 6.5

total_moles_butane = mols_CO02_butane + mols_H20_butane +
mols_02_not_reacted_butane + N2_ng * fuel_dictionary [’n-butane’]

02_nbutane = (mols_02_not_reacted_butane / total_moles_butane)
* fuel_dictionary[’n-butane’]

C02_nbutane = (mols_C02_butane/total_moles_butane) *
fuel_dictionary[’n-butane’]

H20_nbutane = (mols_H20_butane/total_moles_butane) x*
fuel_dictionary[’n-butane’]

else:
pass

if ’i-butane’ in fuel_dictionary:
i-Butane Reaction
mols_C4H10 =(fuel_dictionary[’i-butane’] * total_moles_fuel)
iC4H10_1imit = mols_C4H10 * (5/1) #5 mols H20 / 1 mol i-C4H10
02_1limit_ibutane = mols_02_air * (5/6.5) #5 mols H20 / 6.5 mols
02

limiting reactant_ibutane = min (iC4H10_limit, 02_limit_ibutane

mols_CO02_ibutane = limiting_reactant_ibutane * (4/1) #4 mols
C02 / 1 mol C4H10

mols_H20_ibutane = limiting_reactant_ibutane * (5/1) #5 mols
H20 / 1 mol C4H10

mols_02_not_reacted_ibutane = mols_02_air - mols_C4H10 *6.5

total_moles_ibutane = mols_CO2_ibutane + mols_H20_ibutane +
mols_02_not_reacted_ibutane + N2_ng * fuel_dictionary [’i-butane’]+ N2_ng *
fuel_dictionary [’i-butane’]

02_ibutane = (mols_02_not_reacted_ibutane / total_moles_ibutane
) * fuel_dictionary[’i-butane’]

C02_ibutane = (mols_CO02_ibutane/total_moles_ibutane) *
fuel_dictionary[’i-butane’]

81

886

887

889
890
891
892
893
894

895

896

897

898

899

900

901

902

903

904

905

906

913

916

918

H20_ibutane = (mols_H20_ibutane/total_moles_ibutane) *
fuel_dictionary[’i-butane’]
else:
pass

if ’n-pentane’ in fuel_dictionary:
n-Pentane Reaction
mols_CBH12 = (fuel_dictionary[’n-pentane’] * total_moles_fuel)
C5H12_1imit = mols_CBH12 * (6/1) # 6 mols H20 / 1 mol C5H12
02_limit_pentane = mols_02_air * (6/8) #6 mols H20 / 8 mols 02

limiting_reactant_pentane = min(C5H12_limit, 02_limit_pentane)

mols_CO02_pentane = limiting reactant_pentane * (5/1) #5 mols
C02 / 1 mol CBH12

mols_H20_pentane = limiting_reactant_pentane * (6/1) #6 mols
H20 / 1 mol C5H12

mols_02_not_reacted_pentane = mols_02_air - mols_C5H12x8

total_moles_pentane = mols_CO2_pentane + mols_H20_pentane +
mols_02_not_reacted_pentane + N2_ng * fuel_dictionary [’n-pentane’]

02_npentane = (mols_02_not_reacted_pentane /
total_moles_pentane) * fuel_dictionary[’n-pentane’]

C02_npentane = (mols_CO2_pentane/total_moles_pentane) *
fuel_dictionary[’n-pentane’]

H20_npentane = (mols_H20_pentane/total_moles_pentane) *
fuel_dictionary[’n-pentane’]

else:
pass

if ’n-hexane’ in fuel_dictionary:
n-Hexane Reaction
mols_C6H14 = (fuel_dictionary[’n-hexane’] * total_moles_fuel)
C6H14_limit = mols_C6H14 * (7/1) #7 mols H20 / 1 mol C6H14
02_1limit_hexane = mols_02_air * (7/9.5) #7 mols H20 / 9.5 mols
02
limiting_reactant_hexane = min(C6H14_limit, 02_limit_hexane)

mols_C02_hexane = limiting_reactant_hexanex (6/1) #6 mols C02 /
1 mol C6H14
mols_H20_hexane = limiting_reactant_hexane * (7/1) #7 mols H20
/ 1 mol C6H14
mols_02_not_reacted_hexane = mols_02_air - mols_C6H14 * 9.5
total_moles_hexane = mols_CO02_hexane + mols_H20_hexane +
mols_02_not_reacted_hexane + N2_ng * fuel_dictionary [’n-hexane’]
02_nhexane = (mols_02_not_reacted_hexane / total_moles_hexane)
*x fuel_dictionary[’n-hexane’]
C02_nhexane = (mols_C02_hexane/total_moles_hexane) *
fuel_dictionary[’n-hexane’]
H20_nhexane = (mols_H20_hexane/total_moles_hexane) x*
fuel_dictionary[’n-hexane’]
else:
pass

#Calculating the new fractions of the product
02_out = 02_methane + 02_propane + 02_nbutane + 02_ibutane +
02_npentane + 02_nhexane + 02_ethane

C02_out = CO2_methane + C02_ethane + CO2_propane + CO02_ibutane +
C02_nbutane + CO2_npentane + CO02_nhexane

82

926

932
933
934
935

936

938
939
940
941
942
943
944

945

946

947

959

960

961

H20_out = H20_methane + H20_ethane + H20_propane + H20_ibutane +
H20_nbutane + H20_npentane + H20_nhexane
N2_out = N2_ng + mols_N2_air

total_moles_out = 02_out + N2_out + CO02_out + H20_out

self.02_outlet 02_out / total_moles_out
self .N2_outlet N2_out / total_moles_out
self.C02_outlet = CO2_out / total_moles_out
self .H20_outlet = H20_out / total_moles_out

self.reaction_fluid = fluid(’srk’)
self.reaction_fluid.addComponent (’oxygen’, self.02_outlet)
self .reaction_fluid.addComponent (’nitrogen’, self.N2_outlet)
self.reaction_fluid.addComponent (°C02°, self.C02_outlet)
self.reaction_fluid.addComponent (’H20’, self.H20_outlet)
self.reaction_fluid.initProperties()

def calc_outlet_temperature(self) -> float:
229
Method to calculate the outlet temperature of combustor - Turbine
Inlet Temperature (TIT)

First, the enthalpy of the air and fuel stream are calculated, and
then added.

The fuel used in the PHflash is based on an estimation of the
composition of the combustor exhaust. Complete combustion is assumed.

The PHflash method from neqsim was used for calculating the outlet
temperature, based on the exhaust fluid and total enthalpy of the inlet of
the combustor.

23

enthalpy_air = self.get_inlet_stream().get_fluid().getEnthalpy()

enthalpy_fuel = self.get_LHV() * self.get_fuel_inlet_stream().
get_flow_rate("kg/hr") /3600

enthalpy = enthalpy_air + enthalpy_fuel

combustion_fluid = self.get_inlet_stream().get_fluid().clone()

#combustion_fluid = self.reaction_fluid

combustion_fluid.setPressure(self.get_inlet_stream() .get_pressure("
Pa")/1e5, "bara")

combustion_fluid.setTemperature(self.get_inlet_stream().
get_temperature("K"), ’K’)

combustion_fluid.setTotalFlowRate(self.get_inlet_stream().
get_flow_rate("kg/hr") + self.get_fuel_inlet_stream().get_flow_rate("kg/hr"
), "kg/hr")

combustion_fluid.initProperties()

TPflash(combustion_fluid)

PHflash(combustion_fluid, enthalpy)

self.outlet_temperature = combustion_fluid.getTemperature(’K’)

def calc_outlet_stream(self):
chemical_reaction = fluid (’srk’)
chemical_reaction.addComponent (’oxygen’, self.02_outlet)
chemical_reaction.addComponent (’nitrogen’, self.N2_outlet)
chemical_reaction.addComponent (’C02’, self.C02_outlet)
chemical_reaction.addComponent (’H20’, self.H20_outlet)

33

983

984

985
986
987
988
989
990
991
992
993
994
995
996

997

998

999

1000
1001
1002
1003
1004
1005
1006

1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

1021

self.outlet_stream = Stream()
self.outlet_stream.set_fluid(chemical_reaction)

if self.get_outlet_pressure("Pa") == None:
print ("COMBUSTOR ERROR: pressure is NONE")
if self.get_outlet_temperature("K") == None:
print ("COMBUSTOR ERROR: temperature is NONE")
else:
self.outlet_stream.set_fluid(chemical_reaction)
self.outlet_stream.set_temperature(self.get_outlet_temperature(
"K"), "K")
self.outlet_stream.set_pressure(self.get_outlet_pressure("Pa"),
"Pa")
self.outlet_stream.set_flow_rate(self.get_inlet_stream().
get_flow_rate("kg/hr") + self.get_fuel_inlet_stream().get_flow_rate("kg/hr"
), "kg/hr")
self.outlet_stream.calc()

def calc_outlet_stream_old(self):
self.outlet_stream = copy.copy(self.inlet_stream)
self.outlet_fluid = self.inlet_stream.get_fluid().clone()
if self.get_outlet_pressure("Pa") == None:
print ("COMBUSTOR ERROR: pressure is NONE")
if self.get_outlet_temperature("K") == None:
print ("COMBUSTOR ERROR: temperature is NONE")
else:
self.outlet_stream.set_fluid(self.outlet_fluid)
self.outlet_stream.set_temperature(self.
get_outlet_temperature("K"), "K")
self.outlet_stream.set_pressure(self.get_outlet_pressure("
Pa"), "Pa")
self.outlet_stream.set_flow_rate(self.get_inlet_stream().
get_flow_rate("kg/hr") + self.get_fuel_inlet_stream().get_flow_rate("kg/hr"
), "kg/hr")
self.outlet_stream.calc()

def set_excess_air(self, excess_air):
self.excess_air = excess_air

def calc(self):
290
Function to verify if the necessary variables were set for
calculating the combustor.

If not, an error will appear.

293

self.success = False
if self.fuel_inlet_stream is not None:
if self.deltaP is not None:

self.calc_LHV()
self.calc_outlet_pressure()
self.calc_chemical_reaction()
self.calc_outlet_temperature()
self.calc_heat_input()
self.calc_outlet_stream()
self.success = True

84

1022 else:

1023 print ("Combustor Error. Only fuel inlet stream was defined.
"

1024 elif self.deltaP is not None:

1025 if self.fuel_inlet_stream is not None:

1026 self.calc_LHV()

1027 self.calc_outlet_temperature()

1028 self.calc_chemical_reaction()

1029 self.calc_heat_input ()

1030 self.calc_outlet_pressure()

1031 self.calc_outlet_stream()

1032 self.success = True

1033 else:

1034 print ("Combustor error. Only pressure loss inside the
combustor was defined.")

1035 elif self.outlet_temperature is not None:

1036 if self.fuel_inlet_stream and self.deltaP is not None:
1037 self.calc_LHV()

1038 self.calc_heat_input ()

1039 self.calc_chemical_reaction()

1040 self.calc_outlet_pressure()

1041 self.calc_outlet_stream()

1042 self.success = True

1043 else:

1044 print ("Combustor error. Only outlet temperature of
combustor was defined.")

1045 else:

1046 print ("Combustor Error. Fuel inlet stream and combustor
pressure loss need to be defined.")

1047

1048 class Turbine():

1049 770

1050 Object to define turbine design parameters

1051

1052 Calculate isentropic efficiency outlet temperature of turbine, polytropic
efficiency, as well as turbine work.

1053

1054 Negsim will be used for calculating the fluid properties.

1055 770

1056 def __init__(self): #To avoid class data shared among instances
1057 self.inlet_stream = None #Stream Class

1058 self.outlet_stream = None #Stream Class

1059 self.outlet_temperature = None #K

1060 self.outlet_pressure = None #Pa

1061 self.inlet_pressure = None #Pa

1062 self.polytropic_efficiency = None #no units

1063 self.isentropic_efficiency = None #no units

1064 self.temperature_isentropic = None #K

1065 self.deltaP = None #no units

1066 self.pressure_ratio = None #no units

1067 self.atmospheric_pressure = 1.013eb5 #Pa, for now, this is constant.

Later, change it to variable, so add set and get methods for it
1068 self.work = None

1069 self .mechanical_efficiency = None #no units

1070

1071 def set_inlet_stream(self, inlet_stream:Stream) -> Stream:
1072 self.inlet_stream = inlet_stream

1073

85

1074
1075
1076
1077
1078
1079

1080

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098

1099
1100

1101

1104
1105

1106

1109
1110

1111

def get_inlet_stream(self) -> Stream:
return self.inlet_stream

def get_outlet_stream(self) -> Stream:
return self.outlet_stream

def set_outlet_temperature(self, outlet_temperature:float, units:str) ->
float:
if units == "K":
return self.outlet_temperature
elif units == "C":
self.outlet_temperature = self.outlet_temperature + 273.15
elif units == "F":
self.outlet_temperature
else:
print("No units found.")
return self.outlet_temperature

(9/5) * self.outlet_temperature + 32

def get_outlet_temperature(self,units:str) ->float:
if units == "K":
return self.outlet_temperature
else:
print ("No units found for temperature.")
return None

def set_atmospheric_pressure(self, atmospheric_pressure:float, units:str)
-> float:
if units ==’Pa’:
return self.atmospheric_pressure
elif units == ’bara’:
self.atmospheric_pressure = self.atmospheric_pressurexleb
else:
print ("No units found.")

def get_atmospheric_pressure(self, units:str) -> float:
if units == ’Pa’:
return self.atmospheric_pressure
else:
print ("Error. No units found for atmospheric pressure")
return None

def calc_outlet_temperature(self) -> float:
22

Function to calculate turbine outlet temperature
22
steps = 150 #Fixed
Pr = self.get_outlet_pressure("Pa")/self.get_inlet_stream().
get_pressure("Pa")
T3 = self.get_inlet_stream().get_temperature("K")
Pin = self.get_inlet_stream().get_pressure("Pa")
self.temperature_isentropic = 288.15
i=0
for i in range(steps):
k = self.get_inlet_stream().get_fluid() .getKappa()
Pr = (self.get_outlet_pressure("Pa")/self.get_inlet_stream().
get_pressure("Pa"))*x*(i/steps)
self.temperature_isentropic = self.get_inlet_stream().
get_temperature("K") * (Pr) *x ((k-1)/k)

36

1127

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173

self.outlet_temperature = self.get_inlet_stream().get_temperature("K")

- ((self.get_inlet_stream() .get_temperature("K") - self.
temperature_isentropic) * self.get_isentropic_efficiency())

def

def

def

get_

def

def

II)

def

def

def

set_outlet_pressure(self, outlet_pressure:float, units:str) -> float:

if units == "Pa":

self.outlet_pressure = outlet_pressure
elif units == "bara":

self.outlet_pressure = outlet_pressure*leb
else:

print (f"Error: Pressure units not found for compressor {selfl}."

get_outlet_pressure(self,units:str) -> float:
if units == "Pa":
return self.outlet_pressure
else:
print (£"No units found for pressure for the STREAM {self}")
return None

calc_outlet_pressure(self):
self.outlet_pressure = self.get_atmospheric_pressure("Pa") + self.

deltaP("Pa")

set_deltaP(self, deltaP:float, units:str) -> float:

if units == ’Pa’:
self.deltaP = deltaP
elif units == ’bara’:
self.deltaP = deltaP * 1leb
elif units == ’mbar’:
self.deltaP = deltaP * 100
else:

print (f"Error: Pressure units not found for turbine {selfl}.")

get_deltaP(self, units:str) -> float:
if units == ’Pa’:
return self.deltaP
else:
print (£"No units found for pressure differential in turbine {self}.

set_isentropic_efficiency(self, isentropic_efficiency:float) -> float:
self.isentropic_efficiency = isentropic_efficiency

get_isentropic_efficiency(self) -> float:
return self.isentropic_efficiency

calc_isentropic_efficiency(self):
k = self.get_inlet_stream().get_fluid() .getKappa()
P3 = self.get_inlet_stream().get_pressure("Pa")
P4 = self.get_outlet_pressure("Pa")
np = self.get_polytropic_efficiency()
Pr = P4/P3
self.isentropic_efficiency = (1-Pr **((k-1)/k*np))/(1-Pr**((k-1)/k))
def isentropic_efficiency_error(ni):
Pl = self.get_inlet_stream().get_pressure("Pa")
P2 = self.get_outlet_pressure("Pa")

87

1193
1194
1195
1196
1197
1198

1199

1206

1207

k = self.get_inlet_stream().get_fluid() .getKappa()
polytropic_efficiency = self.get_polytropic_efficiency()
difference = (1 - (P2/P1)*x((k-1)*ni/k))/(1 - (P2/P1)**((k-1)/k)) -

polytropic_efficiency

def

def

def

ni = ni_guess
return difference
ni_guess = self.get_polytropic_efficiency()
ni_solution = fsolve(isentropic_efficiency_error, ni_guess)

set_polytropic_efficiency(self, polytropic_efficiency:float) -> float:
self.polytropic_efficiency = polytropic_efficiency

get_polytropic_efficiency(self) -> float:
return self.polytropic_efficiency

calc_polytropic_efficiency(self):
23

Function to calculate turbine polytropic efficiency.

Negsim will be used for calculating the isentropic properties using a

PSflash, as well as the inlet and outlet properties of the fluid.

J

2

def polytropic_efficiency_error(up):
P1 = self.get_inlet_stream().get_pressure("Pa")
P2 = self.get_outlet_stream().get_pressure("Pa")
k = self.inlet_stream.get_fluid() .getKappa()
isentropic_efficiency = self.get_isentropic_efficiency()
difference = (1 - (P2/P1)*x((k-1)*np/k))/(1 - (P2/P1)*x((k-1)/k)) -

isentropic_efficiency

def

def

def

def

np = np_guess
return difference

np_guess = self.get_isentropic_efficiency()
np_solution = fsolve(polytropic_efficiency_error, np_guess)
self.polytropic_efficiency = np_solution[0]

set_mechanical_efficiency(self, mechanical_efficiency:float) -> float:
self .mechanical_efficiency = mechanical_efficiency

get_mechanical_efficiency(self):
return self.mechanical_efficiency

set_work(self, work:float, units:str) -> float:
if units == "MW":
self.work = work
elif units == "kW":
self.work = work*1le3
elif units == "W":
self.work = work*le6
else:

print (f"No units found for work in {self}.")
return self.work

get_work(self, units:str) -> float:

if units == "MW":
return self.work

38

1260

1261

1263
1264
1265
1266

1267

1268

1269

1270

1283

else:
print (£"No units found for {self} turbine work.")
return None

def calc_work(self):

290

Function to calculate turbine work.

A PS Flash is used to calculate the isentropic properties of the outlet
stream.

Negsim will read the properties of inlet and outlet stream fluids to
perform the calculations.

290

self.Cp = self.get_inlet_stream().get_fluid().getCp("J/kgK")

self.work = self.get_mechanical_efficiency() * (self.get_inlet_stream()
.get_flow_rate("kg/hr")/3600 * self.Cp * (self.get_inlet_stream().
get_temperature("K") - self.get_outlet_stream().get_temperature("K")))/1le6

def calc_outlet_stream(self) -> Stream:
self.outlet_stream = copy.copy(self.inlet_stream)
self.outlet_fluid = self.inlet_stream.get_fluid().clone()
if self.get_outlet_pressure("Pa") == None:
print ("TURBINE ERROR: pressure is NONE")
if self.get_outlet_temperature("K") == None:
print ("TURBINE ERROR: temperature is NONE")
else:
self.outlet_stream.set_fluid(self.outlet_fluid)
self.outlet_stream.set_temperature(self.
get_outlet_temperature("K"), "K")
self.outlet_stream.set_pressure(self.get_outlet_pressure("
Pa"), "Pa")
self.outlet_stream.calc()

def calc(self):

20

Function for verifying if the necessary variables are defined for the
turbine. If two variables are given, the other ones are calculated.

If not, an error will appear.
2930

self.success = False

if self.isentropic_efficiency is not None and self.
get_mechanical_efficiency() is not None:
if self.deltaP is not None:

self.calc_outlet_pressure()
self.calc_outlet_temperature()
self.calc_outlet_stream()
self.calc_polytropic_efficiency()
self.calc_work()
self.success = True

elif self.outlet_pressure is not None and self.

get_mechanical_efficiency() is not None:
self.calc_outlet_temperature()

89

1284 self.calc_outlet_stream()

1285 self.calc_polytropic_efficiency()

1286 self.calc_work()

1287 self.success = True

1288

1289 elif self.outlet_temperature is not None and self.

get_mechanical_efficiency() is not Nome:
1290 self.calc_outlet_pressure()
1291 self.calc_outlet_stream()

1292 self.calc_polytropic_efficiency()
1203 self.calc_work()
1294 self.success = True

1295
1296 elif self.polytropic_efficiency is not None and self.
get_mechanical_efficiency() is not None:

1297 self.calc_outlet_pressure()
1208 self.calc_outlet_temperature()
1299 self.calc_outlet_stream()

1300 self.calc_work()
1301 self.success = True

1303 elif self.work is not None and self.get_mechanical_efficiency() is
not None:

1304 self.calc_outlet_pressure()

1305 self.calc_outlet_temperature()

1306 self.calc_outlet_stream()

1307 self.calc_polytropic_efficiency()
1308 self.success = True

1309 else:

1310 print (f"Error. Only isentropic efficiency is defined for
turbine {selfl}.")

1312 elif self.polytropic_efficiency is not None:
1313 if self.outlet_pressure is not None:

1314 self.calc_isentropic_efficiency()
1315 self.calc_outlet_temperature()

1316 self.calc_outlet_stream()

1317 self.calc_work()

1318 self.success = True

1320 elif self.deltaP is not None and self.get_mechanical_efficiency() is
not None: #change here, from outlet P to deltaP for Thermoflow comparison

1321 if self.pressure_ratio is not None:
1322 self.calc_outlet_temperature()
1323 self.calc_outlet_stream()

1324 self.calc_isentropic_efficiency()
1325 self.calc_polytropic_efficiency()

1326 self.calc_work()

1327 self.success = True

1328

1329 elif self.isentropic_efficiency is not None and self.

get_mechanical_efficiency() is not None:
1330 self.calc_outlet_temperature()

1331 self.calc_outlet_stream()
1332 self.calc_polytropic_efficiency()
1333 self.calc_work()

1334 self.success = True

90

1336 elif self.outlet_temperature is not None and self.
get_mechanical_efficiency() is not Nomne:
1337 self.calc_outlet_stream()

1338 self.calc_isentropic_efficiency()
1339 self.calc_polytropic_efficiency()
1340 self.calc_work()

1341 self.sucess = True

1343 elif self.polytropic_efficiency is not None and self.
get_mechanical_efficiency() is not None:

1344 self.calc_outlet_pressure()

1345 self.calc_isentropic_efficiency()
1346 self.calc_outlet_temperature()
1347 self.calc_outlet_stream()

1348 self.calc_work()

1349 self.sucess = True

1351 elif self.work is not None and self.get_mechanical_efficiency() is
not None:

1352 self.calc_isentropic_efficiency()

1353 self.calc_outlet_temperature()

1354 self.calc_outlet_stream()

1355 self.calc_polytropic_efficiency()

1356 self.sucess = True

1357

1358 else:

1359 print (f"Error. Only outlet pressure is defined for turbine {
self}.")

1361 elif self.outlet_temperature is not None and self.
get_mechanical_efficiency() is not None:

1362 if self.pressure_ratio is not None and self.
get_mechanical_efficiency() is not Nomne:

1363 self.calc_outlet_pressure()

1364 self.calc_outlet_stream()

1365 self.calc_isentropic_efficiency()

1366 self.calc_polytropic_efficiency()

1367 self.calc_work()

1368 self.sucess = True

1369

1370 elif self.inlet_pressure is not None and self.
get_mechanical_efficiency() is not None:

1371 self.calc_outlet_pressure()
1372 self.calc_outlet_stream()
1373 self.calc_isentropic_efficiency()

1374 self.calc_polytropic_efficiency()
1375 self.calc_work()
1376 self.sucess = True

1378 elif self.isentropic_efficiency is not None and self.
get_mechanical_efficiency() is not None:
1379 self.calc_outlet_pressure()

1380 self.calc_outlet_stream()

1381 self.calc_polytropic_efficiency()

1382 self.calc_work()

1383 self.success = True

1384

1385 elif self.polytropic_efficiency is not None and self.

91

get_mechanical_efficiency() is not Nome:

1386 self.calc_isentropic_efficiency()

1387 self.calc_outlet_pressure()

1388 self.calc_outlet_stream()

1389 self.calc_work()

1390 self.success = True

1391

1392 elif self.work is not None and self.get_mechanical_efficiency() is
not None:

1393 self.calc_outlet_pressure()

1394 self.calc_outlet_stream()

1395 self.calc_isentropic_efficiency()

1396 self.calc_polytropic_efficiency()

1397 self.success = True

1398

1399 else:

1400 print(f"Turbine Error. Only outlet temperature is defined for
turbine {selfl}.")

1402 elif self.work is not None and self.get_mechanical_efficiency() is not
None:

1403 if self.outlet_temperature is not None:

1404 self.calc_outlet_pressure()

1405 self.calc_outlet_stream()

1406 self.calc_isentropic_efficiency()

1407 self.calc_polytropic_efficiency()

1408 self.success = True

1410 elif self.outlet_pressure is not None and self.
get_mechanical_efficiency() is not None:

1411 self.calc_outlet_pressure()

1412 self.calc_outlet_temperature()

1413 self.calc_outlet_stream()

1414 self.calc_isentropic_efficiency()

1415 self.calc_polytropic_efficiency()

1416 self.sucess = True

1418 elif self.pressure_ratio is not None and self.
get_mechanical_efficiency() is not Nome:

1419 self.calc_outlet_pressure()

1420 self.calc_outlet_temperature()

1421 self.calc_outlet_stream()

1422 self.calc_isentropic_efficiency()

1423 self.calc_polytropic_efficiency()

1424 self.success = True

1426 elif self.isentropic_efficiency is not None and self.
get_mechanical_efficiency() is not None:

1427 self.calc_outlet_temperature()

1428 self.calc_outlet_pressure()

1429 self.calc_polytropic_efficiency()

1430 self.success = True

1432 elif self.polytropic_efficiency is not None and self.
get_mechanical_efficiency() is not Nomne:

1433 self.calc_outlet_pressure()

1434 self.calc_outlet_temperature()

1435 self.calc_outlet_stream()

92

1436
1437
1438

1439

1440

1441

1442
1443
1444
1445
1446

1447

1448

1449

1456
1457

1458

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

1470

1481
1482
1483
1484
1485
1486
1487
1488

1489

self.calc_isentropic_efficiency()
self.success = True
else:
print (f"Turbine error. Only duty is defined for turbine {self}.
")
else:
print (f"Error. Two variables need to be defined for turbine {self}.

II)

class GasTurbine():

AN AN

Object to calculate GT parameters, such as overall efficiency and total
work.

Compressor and Turbine parameters will be used for the method inside this

class

23

def __init__(self):
self.gt_work = None #MW
self .mechanical_efficiency = None #No units
self.generator_efficiency = None #no units
self.gt_efficiency = None #no units
self.gt_specific_power = None #MJ/kg
self.turbine = None #Class
self.compressor = None #Class
self.combustor = None #Class
self.gross_power_output = None
self.gross_efficiency = None

def set_turbine(self, turbine:Turbine) -> Turbine:
self.turbine = turbine

def get_turbine(self):
return self.turbine

def set_compressor(self, compressor:Compressor) -> Compressor:
self.compressor = compressor

def get_compressor(self):
return self.compressor

def set_combustor(self, combustor:Combustor) -> Combustor:
self.combustor = combustor

def get_combustor(self):
return self.combustor

def get_gt_work(self, units:str) -> float:
if units == ’MW’:
return self.gt_work
else:
print ("No units found for Gas Turbine work.")

def set_gt_work(self, gt_work:float, units:str) -> float:
if units == ’MW’:

93

1490 self.gt_work = gt_work

1491

1492 def calc_gt_work(self):

1493 self.gt_work = (self.turbine.get_work("MW") - self.compressor.
get_work("MW")) * self.mechanical_efficiency *self.generator_efficiency

1494

1495 def set_gt_specific_power(self, gt_specific_power:float) -> float:

1496 self.gt_specific_power = gt_specific_power

1497

1498 def get_gt_specific_power(self):

1499 return self.gt_specific_power

1500

1501 def calc_gt_specific_power (self):

1502 self.gt_specific_power = self.get_gt_work("MW")/(self.compressor.
get_inlet_stream() .get_flow_rate("kg/hr")/3600) #MJ/kg of air

1503

1504 def set_gt_efficiency(self, gt_efficiency:float) -> float:

1505 self.gt_efficiency = gt_efficiency

1507 def calc_gt_efficiency(self):

1508 self.gt_efficiency = (self.get_gt_work("MW")/(self.combustor.
get_fuel_inlet_stream() .get_flow_rate("kg/hr")/3600 * self.combustor.
get_LHV()/1e6)) * 100

1510 def get_gt_efficiency(self):
1511 return self.gt_efficiency

1513 def get_gross_power_output(self, units:str):
1514 if units == "MW":

1515 return self.gross_power_output

1516 else:

1517 print("No units found for gross power output of turbine.")

1519 def calc_gross_power_output(self):

1520 self.gross_power_output = (self.turbine.get_work("MW") - self.
compressor.get_work("MW")) /(self.generator_efficiency * self.
mechanical_efficiency)

1522 def calc_gross_efficiency(self):

1523 self .gross_efficiency = self.get_gross_power_output ("MW")/(self.
combustor.get_fuel_inlet_stream() .get_flow_rate("kg/hr")/3600 * self.
combustor.get_LHV()/1e6)

1525 def get_gross_efficiency(self):

1526 return self.gross_efficiency

1527

1528

1529

1530 def calc(self):

1531 ?0

1532 Function to verify if all the necessary variables are defined before

performing GT calculatiomns.

1534 If not, an error will appear.

1535 770

1536 self.success = False

1537

1538 if self.turbine.get_work("MW") and self.compressor.get_work("MW") is

94

1566
1567
1568
1569

1570

not None:
self.calc_gt_work()
self.calc_gt_efficiency()
self.calc_gt_specific_power()
self.calc_gross_power_output ()
self.calc_gross_efficiency()
self.success = True

elif self.gt_work is not None:
self.calc_gt_efficiency()
self.calc_gt_specific_power()
self.calc_gross_power_output ()
self.calc_gross_efficiency()
self.success = True

else:
print(£"Gas Turbine error. Verify if generator efficiency,
compressor and turbine work are defined for {self} gas turbine.")

7 #Design Calculations

fluid_package = "srk"

air = fluid(fluid_package)
air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.addComponent ("methane", 0.0)
air.addComponent ("H20", 0.0)

5 air.addComponent ("hydrogen", 0.0)

air.addComponent ("C02", 0.0)
air.setMixingRule(2)

air_stream = Stream() #create object string
air_stream.set_temperature(288.15,"K")
air_stream.set_pressure(1.013, "bara")
air_stream.set_flow_rate(500,"kg/s")

73 air_stream.set_fluid(air) #assign an air stream with a fluid (read the fluid

from neqgsim)’
air_stream.calc()

; methane_fluid = fluid(fluid_package)

77 methane_fluid.addComponent ("nitrogen", 0.0)
s methane_fluid.addComponent ("oxygen", 0.0)

0 methane_fluid.addComponent ("argon", 0.0)

methane_fluid.addComponent ("methane", 1.0)
methane_fluid.addComponent ("hydrogen",0.0)
methane_fluid.addComponent ("H20", 0.0)
methane_fluid.addComponent ("C02", 0.0)
methane_fluid.addComponent (’propane’, 0.0)

5 methane_fluid.addComponent (’ethane’, 0.0)

methane_fluid.addComponent (’n-butane’, 0.0)
methane_fluid.addComponent (’i-butane’, 0.0)
methane_fluid.addComponent (’n-hexane’, 0.0)
methane_fluid.addComponent (’n-pentane’, 0.0)
methane_fluid.setMixingRule(2)

2 my_compressor = Compressor()

my_compressor.set_inlet_stream(air_stream)

95

1599
1600

1601

1602

1603

1604
1605
1606
1607

1608

1609
1610
1611

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1642
1643
1644
1645
1646
1647

1648

my_compressor.

5 my_compressor.

my_compressor.

7 My_compressor.

methane_stream
methane_stream
methane_stream
), "Pa")
methane_stream
methane_stream

set_isentropic_efficiency(0.858)
set_pressure_ratio(10.7)
set_steps(100)

calc()

= Stream()
.set_temperature(288.15,"K")
.set_pressure (my_compressor.get_outlet_stream() .get_pressure("Pa"

.set_flow_rate(5,"kg/s")
.set_fluid(methane_fluid) #assign an air stream with a fluid (

read the fluid from neqsim)

methane_stream

my_combustor =
my_combustor.s
my_combustor.s

fuel inlet
my_combustor.s
my_combustor.c

.calc()

Combustor ()
et_inlet_stream(my_compressor.get_outlet_stream())
et_fuel_inlet_stream(methane_stream) #assign methane stream as

stream
et_deltaP(1.5)
alc(Q)

my_turbine = Turbine()

my_turbine.set
my_turbine.set
my_turbine.set
my_turbine.set
my_turbine.set
my_turbine.cal

_inlet_stream(my_combustor.get_outlet_stream())
_isentropic_efficiency(0.884)

_deltaP(45e-3, "bara")
_outlet_pressure(1.013e5,"Pa")
_mechanical_efficiency(0.985)

cO

my_gt = GasTurbine()

my_gt.turbine
my_gt.compress

= my_turbine
Or = my_cOompressor

my_gt.combustor = my_combustor
my_gt.generator_efficiency = 0.986

my_gt.mechanic
my_gt.calc()

al_efficiency =1

#0ff - Design Calculation

#Reference case - design case for Gas Turbine, calculated above

#New inlet_mas

#R = 8.314 J/m

s_flow

olK

air = fluid("srk")

air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.addComponent ("argon", 0.0)
air.addComponent ("methane", 0.0)
air.addComponent ("H20", 0.0)
air.setMixingRule(2)

#New air flow rate

air_stream_off
air_stream_off
air_stream_off

_design = Stream() f#create object string
_design.set_temperature(288.15,"K") # -> change this T!
_design.set_pressure(1.013e5, "Pa")

96

1650 reference_flow_rate = my_compressor.get_inlet_stream().get_flow_rate("kg/hr")

1651 reference_T = my_compressor.get_inlet_stream() .get_temperature("K")

1652 off_design_inlet_T = air_stream_off_design.get_temperature("K")

1653 off_design_flow_rate = reference_flow_rate * sqrt(reference_T/
off_design_inlet_T) #new mass flow rate of air, according to off design
formula

1654 air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")

1655 air_stream_off_design.set_fluid(air)

1656 air_stream_off_design.calc()

1657

1658 #Compressor 0ff Design

1660 off_design_compressor = Compressor()

1661 off_design_compressor.set_inlet_stream(air_stream_off_design)

1662 off_design_compressor.set_polytropic_efficiency(my_compressor.
get_polytropic_efficiency())

1663

1664 MW = air_stream_off_design.get_fluid() .getMolarMass()

1665 R = 8.314 / MW #J/kgK

1666 Cp = my_compressor.get_inlet_stream().get_fluid() .getCp("J/kgK")

1667 P1 = my_compressor.get_inlet_stream() .get_pressure("Pa")

1668 TO 288.15 #K

1660 np = my_compressor.get_polytropic_efficiency()

1670 m1 = air_stream_off_design.get_flow_rate("kg/hr")

1671 LHV = my_combustor.get_LHV()

1672 reference_delta_P = (my_combustor.get_deltaP()/100)

1673 reference_P3 = my_combustor.get_outlet_stream().get_pressure("Pa")

1674 reference_T3 = my_combustor.get_outlet_temperature("K")

1675 reference_m3 = my_combustor.get_outlet_stream().get_flow_rate("kg/hr")

1676 reference_MW = my_combustor.get_outlet_stream().get_fluid() .getMolarMass()

1677 reference_fuel_rate = my_combustor.get_fuel_inlet_stream().get_flow_rate("kg/hr

||)
1678 T1 = air_stream_off_design.get_temperature("K")
1670 P2_new = 0

16s0 mfuel = my_combustor.get_fuel_inlet_stream().get_flow_rate("kg/hr")
1681

1632 while (True):

1683

1684 iteration = 0

1685 max_iterations = 1000

1686

1687 #Update P2, T3 and MW - Recycle

1688 if P2_new > 0 and T3_new > O:

1689 P2_guess = P2_new

1690 T3_guess = T3_new

1691 else:

1692 P2_guess = my_compressor.get_outlet_stream().get_pressure("Pa")
1693 T3_guess = my_combustor.get_outlet_stream().get_temperature("K")
1694

1695 tolerance T = 5

1696 tolerance = 0.1

1697

1698 while (True):

1699

1700 T2 = T1 * ((P2_guess / P1) *x (R / (Cp * np)))

1701
1702 #Calculate air fluid properties at T2 and P2_guess

97

1703
1704
1705
1706
1707
1708
1709

1710

1749

air = fluid("srk")

air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.addComponent ("argon", 0.0)

air.addComponent ("methane", 0.0)

air.addComponent ("H20", 0.0)
air.setTemperature(T2, ’K’)
air.setPressure(P2_guess/1e5, ’bara’)
air.setTotalFlowRate(off_design_flow_rate, ’kg/hr’)
air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)

#enthalpy_air = off_design_compressor.get_inlet_stream().get_fluid().

getEnthalpy ()

enthalpy_fuel = LHV * mfuel

#Total enthalpy
enthalpy = enthalpy_air + enthalpy_fuel/3600

#combustion_fluid = off_design_compressor.get_inlet_stream().get_fluid

() .clone()

PHflash(air, enthalpy)
T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel + off_design_flow_rate
P3 = reference_P3 * (off_design_m3 / reference_m3) * sqrt(T3_new/

reference_T3)

delta_P = reference_delta_P * (off_design m3 / reference_m3) **1.8 * ((

T3_new * reference_P3)/(reference_T3 * P3))*%0.8

P2 = P3*(1 + delta_P)

P2_new = P2

iteration = iteration + 1
diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) < tolerance_T:
break

P2_guess = P2_new

T3_guess = T3_new
off_design_compressor.set_outlet_pressure(P2_new, "Pa")
off_design_compressor.calc()

#0ff design combustor

methane_stream = Stream()
methane_stream.set_temperature(air_stream_off_design.get_temperature("K

II) , IIKII)

methane_stream.set_pressure(off_design_compressor.get_outlet_stream() .

get_pressure("Pa"), "Pa")

methane_stream.set_flow_rate(mfuel, "kg/hr")
methane_stream.set_fluid(methane_fluid) #assign an air stream with a

fluid (read the fluid from neqgsim)

methane_stream.calc()

98

1754 off_design_combustor = Combustor ()

1755 off_design_combustor.set_inlet_stream(off_design_compressor.
get_outlet_stream())

1756 off_design_combustor.set_fuel_inlet_stream(methane_stream) #assign
methane stream as fuel inlet stream

1757 off_design_combustor.set_deltaP(delta_P*100)

1758 off_design_combustor.calc()

1760 #0ff design turbine

1762 off_design_turbine = Turbine()

1763 off_design_turbine.set_inlet_stream(off_design_combustor.
get_outlet_stream())

1764 off_design_turbine.set_polytropic_efficiency(my_turbine.
get_polytropic_efficiency())

1765 off_design_turbine.set_deltaP(my_turbine.get_deltaP("Pa"),"Pa")

1766 off_design_turbine.set_outlet_pressure(1.013e5, "Pa")

1767 off_design_turbine.set_mechanical_efficiency(my_turbine.
get_mechanical_efficiency())

1768 off_design_turbine.calc()

1769

1770 #0ff design overall gas turbine

1772 off_design_gt = GasTurbine()

1773 off_design_gt.compressor = off_design_compressor
1774 off_design_gt.combustor = off_design_combustor
1775 off_design_gt.turbine = off_design_turbine

1776 off_design_gt.mechanical_efficiency = 0.985
1777 off_design_gt.generator_efficiency = 0.986
1778 off_design_gt.calc()

1779

1780 #Convergence Criteria

1781 if diff_guess <= tolerance:

1782 break

1784 #HYSYS Comparison - same procedure done for 0, 15 and 30C

1786 import numpy as np
1787 import matplotlib.pyplot as plt
1788 import pandas as pd

1700 fuel_flow_rates = np.arange(3, 7.25, 0.25) #kg/s - list of fuel flow rates to
simulate

1791 outlet_compressor_T = []

1792 outlet_comp_Cp=[]

1703 outlet_comp_kappa = []

17904 power_compressor = []

1795 outlet_combustor_Cp = []

1796 inlet_turbine_T]
1797 inlet_turbine_Cp = []
17908 outlet_turbine_T = []

1700 power_turbine = []
1500 efficiencies = []
1801 power_outputs = []

1803

1804 for mfuel in fuel_flow_rates:

1805

99

1806
1807
1808
1809
1810

1811

1840
1841
1842
1843
1844
1845
1846

1847

1848
1849
1850
1851

1852

air = fluid("srk")

air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.addComponent ("argon", 0.0)
air.addComponent ("methane", 0.0)
air.addComponent ("H20", 0.0)
air.setMixingRule(2)

#New air flow rate

air_stream_off_design = Stream() #create object string
air_stream_off_design.set_temperature(273.15,"K") # -> change this T!
air_stream_off_design.set_pressure(1.013e5, "Pa")

reference_flow_rate = my_compressor.get_inlet_stream().get_flow_rate("kg/hr
"

reference_T = my_compressor.get_inlet_stream().get_temperature("K")

off _design_inlet_T = air_stream_off_design.get_temperature("K")
off_design_flow_rate = reference_flow_rate * (reference_T/
off_design_inlet_T) #new mass flow rate of air, according to off design
formula

air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")
air_stream_off_design.set_fluid(air)

air_stream_off_design.calc()

#Compressor Off Design

off_design_compressor = Compressor()
off_design_compressor.set_inlet_stream(air_stream_off_design)
off_design_compressor.set_isentropic_efficiency(my_compressor.
get_isentropic_efficiency())

MW = air_stream_off_design.get_fluid().getMolarMass()

R = 8.314 / MW #J/kgK

Cp = my_compressor.get_inlet_stream() .get_fluid().getCp("J/kgK")

P1 = my_compressor.get_inlet_stream() .get_pressure("Pa")

TO = 288.15 #K

np = my_compressor.get_polytropic_efficiency()

ml = air_stream_off_design.get_flow_rate("kg/hr")

LHV = my_combustor.get_LHV()

reference_delta_P = (my_combustor.get_deltaP()/100)

reference_P3 = my_combustor.get_outlet_stream().get_pressure("Pa")
reference_T3 = my_combustor.get_outlet_temperature("K")

reference_m3 = my_combustor.get_outlet_stream().get_flow_rate("kg/hr")
reference_MW = my_combustor.get_outlet_stream().get_fluid() .getMolarMass()
reference_fuel_rate = my_combustor.get_fuel_inlet_stream().get_flow_rate("

kg/hr")
Tl = air_stream_off_design.get_temperature("K")
P2_new = 0

while (True):

iteration = 0
max_iterations = 1000

#Update P2, T3 and MW - Recycle
if P2_new > O and T3_new > O:

100

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

1871

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890

1891

1892
1893
1894
1895
1896
1897

1898

1899

1900
1901
1902
1903
1904

1905

1906
1907
1908
1909
1910
1911

1912

P2_guess = P2_new
T3_guess = T3_new

else:

P2_guess = my_compressor.get_outlet_stream().get_pressure("Pa")
T3_guess = my_combustor.get_outlet_stream() .get_temperature("K")
tolerance_T = 10

tolerance = 0.1

while (True):

T2 = T1 * ((P2_guess / P1) **x (R / (Cp * np)))

#Calculate air fluid properties at T2 and P2_guess
air = fluid("srk")

air.addComponent ("nitrogen", 0.7981)
air.addComponent ("oxygen", 0.2019)
air.addComponent ("argon", 0.0)

air.addComponent ("methane", 0.0)

air.addComponent ("H20", 0.0)
air.setTemperature(T2, ’K’)
air.setPressure(P2_guess/1e5, ’bara’)
air.setTotalFlowRate (off_design_flow_rate, ’kg/hr’)
air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)
enthalpy_fuel = LHV * mfuel

#Total enthalpy
enthalpy = enthalpy_air + enthalpy_fuel

#combustion_fluid = off_design_compressor.get_inlet_stream().

get_fluid().clone)

PHflash(air, enthalpy)
T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel*3600 + off_design_flow_rate
P3 = reference_P3 * (off_design _m3 / reference_m3) * sqrt(

T3_new/ reference_T3)

delta_P = reference_delta_P * (off_design_m3 / reference_m3)

*%1.8 * ((T3_new * reference_P3)/(reference_T3 * P3))**0.8

tolerance_T:

P2 = P3%(1 + delta_P)

P2_new = P2

iteration = iteration + 1
diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) <
break

P2_guess = P2_new

T3_guess = T3_new

off_design_compressor.set_outlet_pressure(P2_new, "Pa")
off_design_compressor.calc()

101

1913
1914
1915
1916

1917

1918

1919

1920
1921
1922

1923

1926
1927
1928
1929
1930

1931

1932

1933
1934

1935

1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

#0ff design combustor

methane_stream = Stream()

methane_stream.set_temperature(288.15,"K")

methane_stream.set_pressure(off_design_compressor.
get_outlet_stream() .get_pressure("Pa"), "Pa")

methane_stream.set_flow_rate(mfuel,"kg/s")

methane_stream.set_fluid(methane_fluid) #assign an air stream
with a fluid (read the fluid from neqsim)

methane_stream.calc()

off_design_combustor = Combustor ()
off_design_combustor.set_inlet_stream(off_design_compressor.
get_outlet_stream())
off_design_combustor.set_fuel_inlet_stream(methane_stream) #
assign methane stream as fuel inlet stream
off_design_combustor.set_deltaP(delta_P*100)
off_design_combustor.calc()

#0ff design turbine

off_design_turbine = Turbine()
off_design_turbine.set_inlet_stream(off_design_combustor.
get_outlet_stream())
off_design_turbine.set_isentropic_efficiency(my_turbine.
get_isentropic_efficiency())
off_design_turbine.set_deltaP(my_turbine.get_deltaP("Pa"),"Pa")
off_design_turbine.set_atmospheric_pressure(1.013e5, "Pa")
off_design_turbine.set_mechanical_efficiency(my_turbine.
get_mechanical_efficiency())
off_design_turbine.calc()

#0ff design overall gas turbine

off_design_gt = GasTurbine()
off_design_gt.compressor = off_design_compressor
off_design_gt.combustor = off_design_combustor
off_design_gt.turbine = off_design_turbine
off_design_gt.mechanical_efficiency = 0.985
off_design_gt.generator_efficiency = 0.986
off_design_gt.calc()

outlet_comp_kappa.append(off_design_compressor.
get_outlet_stream() .get_fluid() .getKappa())
outlet_comp_Cp.append(off_design_compressor.get_outlet_stream()
.get_fluid() .getCp("J/kgK"))
outlet_compressor_T.append(off_design_gt.compressor.
get_outlet_stream() .get_temperature("K"))
power_compressor.append (off _design_gt.compressor.get_work ("MW")
)
outlet_turbine_T.append(off_design_turbine.get_outlet_stream() .
get_temperature("K"))
power_turbine.append(off_design_gt.turbine.get_work("MW"))
efficiencies.append(off_design_gt.get_gt_efficiency())
power_outputs.append(off_design_gt.get_gt_work("MW"))
inlet_turbine_Cp.append(off_design_turbine.get_inlet_stream().
get_fluid() .getCp("J/kgK"))
#Convergence Criteria

102

1958
1959
1960
1961

1962

1963

1964
1965
1966
1967
1968
1969

1970

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012

af =
plt.

plt
plt
plt
plt
plt
plt
#plt

#Wea
%pip
#His
from
impo
from

#Set
star
end

#Cre
Heid

#Get
data

data
da
pl

data
plt.

#Ext

tavg
for

#Val

if diff_guess <= tolerance:
break

pd.read_excel(r’D:\Dados PC\Documents\Master thesis\Comparison_model.xlsx’
, sheet_name=’0ff_design_0C’)

plot(df [’Power_output_Mw’], df[’Efficiency_’], label = ’HYSYS model’, color
- ’I")

.plot (power_outputs,efficiencies, label = ’Python code’, color = ’b’)
.grid()

.xlabel("Gas Turbine Power Output (MW)")

.ylabel("Gas Turbine Efficiency (%)")

.legend ()

.plot ()

.savefig(’D:\Dados PC\Documents\Master thesis\Images\OC_comparison_exhaustT
.pdf’, dpi = 300, bbox_inches = ’tight’)

ther API connection for retrieving historical data
install meteostat
torical Weather Data Connection

datetime import datetime
rt matplotlib.pyplot as plt

meteostat import Point, Hourly

time period
t = datetime(2023,1,1,12)

= datetime(2023,5,1,12)

ate point for Heidrun Platform location
run_platform = Point(65.33, 2.33,16.0)

Hourly data
= Hourly(Heidrun_platform, start, end)

= data.fetch()

ta.plot(y= [’tavg’,’tmin’, ’tmax’])
t.show()

.plot(y=["temp’])
show ()

ract average temperature values and store them in a list
_list = []
row in data.itertuples():

tavg_list.append(row.temp)

idation of model Thermoflow GTPRO - Design conditions

#Siemens SGT-A35 RB with three shafts, PR of 21.7 according to Thermoflow

air

air.
air
air.
air.

= fluid("srk")
addComponent ("nitrogen", 0.76)

.addComponent ("oxygen", 0.141)

addComponent ("argon", 0.009)
addComponent ("methane", 0.0)

103

013 air.addComponent ("ethane", 0.0)
2014 air.addComponent ("propane", 0.0)
2015 air.addComponent ("i-butane",0.0)
2016 air.addComponent ("n-butane", 0.0)
2017 air.addComponent ("i-pentane", 0.0)
201 air.addComponent ("n-pentane", 0.0)
2019 air.addComponent ("n-hexane", 0.0)
2020 air.addComponent ("C02", 0.034)

2021 air.setMixingRule(2)

inlet_air = Stream()
inlet_air.set_fluid(air)

25 inlet_air.set_flow_rate(94.12, "kg/s")
inlet_air.set_pressure(1.01, "bara")
inlet_air.set_temperature(15, "C")
inlet_air.calc()

2030

2031

2032

Compressor_ipc_thermoflow

Compressor_ipc_thermoflow.
Compressor_ipc_thermoflow.

= Compressor()
set_inlet_stream(inlet_air)
set_pressure_ratio(5.243)

2033 Compressor_ipc_thermoflow.

Compressor_ipc_thermoflow.

set_isentropic_efficiency(0.92)
2034 calc()
2035

= Compressor ()
set_inlet_stream(Compressor_ipc_thermoflow.

2036 Compressor_hpc_thermoflow
Compressor_hpc_thermoflow.
get_outlet_stream())
Compressor_hpc_thermoflow.
Compressor_hpc_thermoflow.

Compressor_hpc_thermoflow.

2037

set_pressure_ratio(4.19)
set_isentropic_efficiency(0.89)
calc()

2038
2039
2040
2041
> methane_fluid
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.
methane_fluid.

= fluid("srk")

addComponent ("nitrogen", 0.003)
addComponent ("oxygen", 0.0)
addComponent ("argon", 0.0)
addComponent ("methane", 0.816)
addComponent ("ethane", 0.089)
addComponent ("propane", 0.042)
addComponent ("i-butane",0.009)
addComponent ("n-butane", 0.014)
addComponent ("n-pentane", 0.003)
addComponent ("n-hexane", 0.003)
addComponent ("C02", 0.019)
setMixingRule(2)

2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
fuel

fuel.
fuel

= Stream()
set_fluid(methane_fluid)
.set_flow_rate(1.71, "kg/s")
fuel.set_pressure(30.78, "bara")
fuel.set_temperature (267, "C")
fuel.calc()

2056
2057
2058
2059
2060
2061
2062
combustor_thermoflow = Combustor()
combustor_thermoflow.set_inlet_stream(Compressor_hpc_thermoflow.
get_outlet_stream())
combustor_thermoflow.set_fuel_inlet_stream(fuel)
combustor_thermoflow.set_deltaP(0)
combustor_thermoflow.calc()

2063

206

2065
2066
2067

2068

104

2069

2070

2078
2079
2080

2081

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101

2102

2109
2110

2111

turbine_hp_thermoflow

turbine_hp_thermoflow.

)

1 turbine_hp_thermoflow.
> turbine_hp_thermoflow.
turbine_hp_thermoflow.
turbine_hp_thermoflow.

turbine_lp_thermoflow

7 turbine_lp_thermoflow.

0))

turbine_lp_thermoflow.
turbine_lp_thermoflow.
turbine_lp_thermoflow.
turbine_lp_thermoflow.

= Turbine ()
set_inlet_stream(combustor_thermoflow.get_outlet_stream()

set_outlet_pressure(4.747,"bara")
set_isentropic_efficiency(0.85)
set_mechanical_efficiency(1)
calc()

= Turbine()
set_inlet_stream(turbine_hp_thermoflow.get_outlet_stream

set_outlet_pressure(1.026, "bara")
set_isentropic_efficiency(0.8)
set_mechanical_efficiency(1)
calc()

gt_Thermoflow = GasTurbine()
gt_Thermoflow.set_compressor (Compressor_hpc_thermoflow)
gt_Thermoflow.set_combustor (combustor_thermoflow)
gt_Thermoflow.set_turbine(turbine_hp_thermoflow)
gt_Thermoflow.generator_efficiency = 0.9801
gt_Thermoflow.mechanical_efficiency = 0.9902

gt_Thermoflow.calc()

#Validation with Thermoflow, assuming one compressor only

#Design conditions

air = fluid("srk")

air.addComponent ("nitrogen", 0.76)
air.addComponent ("oxygen", 0.141)
air.addComponent ("argon", 0.009)
air.addComponent ("methane", 0.0)
air.addComponent ("ethane", 0.0)
air.addComponent ("propane", 0.0)
air.addComponent ("i-butane",0.0)
air.addComponent ("n-butane", 0.0)

3 air.addComponent ("i-pentane", 0.0)

air.addComponent ("n-pentane", 0.0)

5 air.addComponent ("n-hexane", 0.0)

air.addComponent ("C02", 0.034)

7 air.setMixingRule(2)

inlet_air = Stream()

inlet_air.set_fluid(air)
inlet_air.set_flow_rate(94.12, "kg/s")
inlet_air.set_pressure(1.01, "bara")

inlet_air.calc()

; Compressor_thermoflow_
Compressor_thermoflow_
¢ Compressor_thermoflow_
Compressor_thermoflow_
Compressor_thermoflow_

3 inlet_air.set_temperature(15, "C")

ref = Compressor()
ref.set_inlet_stream(inlet_air)
ref.set_pressure_ratio(21.7)
ref.set_isentropic_efficiency(0.84)
ref.calc()

methane_fluid = fluid("srk")

23 methane_fluid.addComponent ("nitrogen", 0.003)

methane_fluid.addComponent ("oxygen", 0.0)

105

5 methane_fluid.addComponent ("argon", 0.0)
26 methane_fluid.addComponent ("methane", 0.816)

methane_fluid.addComponent ("ethane", 0.089)

methane_fluid.setMixingRule(2)

; fuel = Stream()
- fuel.set_fluid(methane_fluid)
s fuel.set_flow_rate(1.71,

fuel.set_pressure(30.78,

fuel.set_temperature (267,

fuel.calc()

combustor_thermoflow_ref

combustor_thermoflow_ref.

get_outlet_stream())

combustor_thermoflow_ref.

combustor_thermoflow_ref
combustor_thermoflow_ref

turbine_thermoflow_ref =

turbine_thermoflow_ref.set_inlet_stream(combustor_thermoflow_ref.

get_outlet_stream())

turbine_thermoflow_ref.set_outlet_pressure(1.026, "bara")
turbine_thermoflow_ref.set_isentropic_efficiency(0.87)
3 turbine_thermoflow_ref.set_mechanical_efficiency(1)

"kg/s")
"bara")
ncu)

= Combustor ()

set_inlet_stream(Compressor_thermoflow_ref.

set_fuel_inlet_stream(fuel)
.set_deltaP(0)
.calc()

Turbine ()

turbine_thermoflow_ref.calc()

gt_Thermoflow = GasTurbine()

: methane_fluid.addComponent ("propane", 0.042)
methane_fluid.addComponent ("i-butane",0.009)
methane_fluid.addComponent ("n-butane", 0.014)
methane_fluid.addComponent ("n-pentane", 0.003)
methane_fluid.addComponent ("n-hexane", 0.003)
3 methane_fluid.addComponent ("C02", 0.019)

;. gt_Thermoflow.set_compressor (Compressor_thermoflow_ref)
gt_Thermoflow.set_combustor (combustor_thermoflow_ref)
gt_Thermoflow.set_turbine(turbine_thermoflow_ref)

gt_Thermoflow.generator_efficiency = 0.9801

gt_Thermoflow.mechanical_efficiency = 0.9902

gt_Thermoflow.calc()

#0ff-design calculation with Thermoflow

#Assuming one compressor, and one turbine

#Reference case - design case for Gas Turbine, calculated above

#R = 8.314 J/molK

air = fluid("srk")

air.addComponent ("nitrogen", 0.76)

; air.addComponent ("oxygen", 0.141)

air.addComponent ("argon", 0.009)

78 air.addComponent ("methane", 0.0)

air.addComponent ("ethane", 0.0)
air.addComponent ("propane", 0.0)

106

2181
2182

2183

2188
2189
2190
2191
2192
2193

2194

2195
2196

2197

air.addComponent ("i-butane",0.0)

air.addComponent ("n-butane", 0.0)
air.addComponent ("i-pentane", 0.0)
air.addComponent ("n-pentane", 0.0)

5 air.addComponent ("n-hexane", 0.0)

air.addComponent ("C02", 0.034)

7 air.setMixingRule(2)

#New air flow rate

air_stream_off_design = Stream() #create object string
air_stream_off_design.set_temperature(273.15,"K") # -> change this T!
air_stream_off_design.set_pressure(1.010, "bara")

reference_flow_rate = Compressor_thermoflow_ref.get_inlet_stream().
get_flow_rate("kg/hr")

reference_T = Compressor_thermoflow_ref.get_inlet_stream().get_temperature("K")

off _design_inlet_T = air_stream_off_design.get_temperature("K")

off _design_flow_rate = reference_flow_rate * sqrt(reference_T/
off_design_inlet_T) #new mass flow rate of air, according to off design
formula

air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")

air_stream_off_design.set_fluid(air)

air_stream_off_design.calc()

#Compressor Off Design

off _design_compressor = Compressor ()
off _design_compressor.set_inlet_stream(air_stream_off_design)

206 off_design_compressor.set_polytropic_efficiency(Compressor_thermoflow_ref.

2230

2231

3 np

get_polytropic_efficiency())

s MW = air_stream_off_design.get_fluid() .getMolarMass()

R = 8.314 / MW #J/kgK
Cp = Compressor_thermoflow_ref.get_inlet_stream().get_fluid().getCp("J/kgK")

P1 = Compressor_thermoflow_ref.get_inlet_stream() .get_pressure("Pa")
TO = 288.15 #K

= Compressor_thermoflow_ref.get_polytropic_efficiency()
ml = air_stream_off_design.get_flow_rate("kg/hr")

5 LHV = combustor_thermoflow_ref.get_LHV()

reference_delta_P = (combustor_thermoflow_ref.get_deltaP()/100)
reference_P3 = combustor_thermoflow_ref.get_outlet_stream().get_pressure("Pa")

s reference_T3 = combustor_thermoflow_ref.get_outlet_temperature("K")

reference_m3 = combustor_thermoflow_ref.get_outlet_stream().get_flow_rate("kg/

hIJl)
reference_MW = combustor_thermoflow_ref.get_outlet_stream().get_fluid().
getMolarMass ()

reference_fuel_rate = combustor_thermoflow_ref.get_fuel_inlet_stream().
get_flow_rate("kg/hr")

Tl = air_stream_off_design.get_temperature("K")

P2_new = 0

mfuel = combustor_thermoflow_ref.get_fuel_inlet_stream().get_flow_rate("kg/hr")

print(ap, "np")
methane_fluid = fluid("srk")

methane_fluid.addComponent ("nitrogen", 0.00)
methane_fluid.addComponent ("oxygen", 0.0)

107

2232 methane_fluid.addComponent ("argon", 0.0)

2233 methane_fluid.addComponent ("methane", 0.816)
2234 methane_fluid.addComponent ("ethane", 0.089)
2235 methane_fluid.addComponent ("propane", 0.042)
2236 methane_fluid.addComponent ("i-butane",0.009)
2237 methane_fluid.addComponent ("n-butane", 0.014)
2235 methane_fluid.addComponent ("n-pentane", 0.003)
2230 methane_fluid.addComponent ("n-hexane", 0.003)
2240 methane_fluid.addComponent ("C02", 0)

2241 methane_fluid.setMixingRule(2)

2043 fuel = Stream()

22414 fuel.set_fluid(methane_fluid)
2245 fuel.set_flow_rate(1.71, "kg/s")
2246 fuel.set_pressure(30.78, "bara")
2217 fuel.set_temperature (267, "C")
2045 fuel.calc()

2250 while (True):

2252 iteration = 0

2253 max_iterations = 1000

2254

2255 #Update P2, T3 and MW - Recycle

2256 if P2_new > 0 and T3_new > O:

2257 P2_guess = P2_new

2258 T3_guess = T3_new

2259 else:

2260 P2_guess = Compressor_thermoflow_ref.get_outlet_stream() .get_pressure("
Pa")

2261 T3_guess = combustor_thermoflow_ref.get_outlet_stream().get_temperature
("K")

2262

2263 tolerance_T = 5

2264 tolerance = 0.1

2265

2266 while (True):

2267

2268 T2 = T1 * ((P2_guess / P1) *x (R / (Cp * np)))

2269

2270 #Calculate air fluid properties at T2 and P2_guess

2271 air = fluid("srk")

2272 air.addComponent ("nitrogen", 0.76)

2273 air.addComponent ("oxygen", 0.141)

2274 air.addComponent ("argon", 0.009)

2275 air.addComponent ("methane", 0.0)

2276 air.addComponent ("ethane", 0.0)

2277 air.addComponent ("propane", 0.0)

2278 air.addComponent ("i-butane",0.0)

2279 air.addComponent ("n-butane", 0.0)

2280 air.addComponent ("i-pentane", 0.0)

2281 air.addComponent ("n-pentane", 0.0)

2282 air.addComponent ("n-hexane", 0.0)

2283 air.addComponent ("C02", 0.034)

2284 air.setMixingRule(2)

2285 air.setTemperature(T2, ’K’)

2286 air.setPressure(P2_guess/le5, ’bara’)

2287 air.setTotalFlowRate(off_design_flow_rate,’kg/hr’)

108

2288

2289

2290

2296
2297
2298
2299
2300

2301

2304

2338

air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)
enthalpy_fuel = LHV * mfuel/3600

#Total enthalpy

enthalpy = enthalpy_air + enthalpy_fuel
PHflash(air, enthalpy)

T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel + off_design_flow_rate

P3 = reference_P3 * (off_design_m3 / reference_m3) * sqrt(T3_new/
reference_T3)

delta_P = reference_delta_P * (off_design_m3 / reference_m3) *x1.8 * ((
T3_new * reference_P3)/(reference_T3 * P3))**0.8

P2 = P3%(1 + delta_P)

P2_new = P2

iteration = iteration + 1

diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) < tolerance_T:
break

P2_guess = P2_new

T3_guess = T3_new
off_design_compressor.set_outlet_pressure(P2_new/le5, "bara')
off_design_compressor.calc()

#0ff design combustor

methane_stream = Stream()

methane_stream.set_temperature(fuel.get_temperature("K"),"K")

methane_stream.set_pressure(fuel.get_pressure("Pa"), "Pa")

methane_stream.set_flow_rate(mfuel/3600, "kg/s")

methane_stream.set_fluid(methane_fluid) #assign an air stream with a
fluid (read the fluid from neqgsim)

methane_stream.calc()

off_design_combustor = Combustor ()

off_design_combustor.set_inlet_stream(off_design_compressor.
get_outlet_stream())

off_design_combustor.set_fuel_inlet_stream(methane_stream) #assign
methane stream as fuel inlet stream

off_design_combustor.set_deltaP(0)

off_design_combustor.calc()

#0ff design turbine

off_design_turbine = Turbine()
off_design_turbine.set_inlet_stream(off_design_combustor.
get_outlet_stream())
off_design_turbine.set_polytropic_efficiency(turbine_thermoflow_ref.
get_polytropic_efficiency())
off_design_turbine.set_outlet_pressure(1.029, "bara")

109

2339 off_design_turbine.set_mechanical_efficiency(turbine_thermoflow_ref.
get_mechanical_efficiency())
2340 off_design_turbine.calc()

2342 #0ff design overall gas turbine

2343

2344 off_design_gt = GasTurbine()

2345 off_design_gt.compressor = off_design_compressor
2346 off_design_gt.combustor = off_design_combustor
2347 off_design_gt.turbine = off_design_turbine

2348 off_design_gt.mechanical_efficiency = 0.9902
2349 off_design_gt.generator_efficiency = 0.9801
2350 off_design_gt.calc()

2351

2352 #Convergence Criteria

2353 if diff_guess <= tolerance:

2354 break

2356 #Comparison of Thermoflow with Python code

2359 import numpy as np
2360 import matplotlib.pyplot as plt
2361 import pandas as pd

2364 data = pd.read_excel(’D:\Dados PC\Documents\Master thesis\Comparison_model.xlsx
>, sheet_name=’Thermoflow_graphs’)

2365

2366 fuel_flow_rates = data[’GT_fuel_flow’].tolist() #kg/s - list of fuel flow
rates to simulate

2367 ambient_temperatures = datal[’Compressor_inlet_T’].tolist() #C

2360 for i in range(len(ambient_temperatures)):
2370 ambient_temperatures[i] = ambient_temperatures[i] +273.15

2372 inlet_t=[]

2373 air_flow=[]

2374 outlet_compressor_T = []
75 outlet_comp_Cp=[]

2376 outlet_comp_kappa = []
2377 power_compressor = []
2375 outlet_combustor_Cp = []
2379 inlet_turbine T = []

2350 inlet_turbine_kappa = []
2331 outlet_turbine_T = []
2352 power_turbine = []

2383 efficiencies = []

2384 power_outputs = []

2385 gross_power_output=[]
2356 gross_efficiency=[]

2387
23ss for mfuel, ambient_t in zip(fuel_flow_rates,ambient_temperatures):

2389

2390 air = fluid("srk")

2391 air.addComponent ("nitrogen", 0.75808)
2392 air.addComponent ("oxygen", 0.14100)
2303 air.addComponent ("argon", 0.00913)

110

2396
2397
2398
2399

2400

2412

2413

2414

2437

2438

air.addComponent ("methane", 0.0)
air.addComponent ("ethane", 0.0)
air.addComponent ("propane", 0.0)
air.addComponent ("i-butane",0.0)
air.addComponent ("n-butane", 0.0)
air.addComponent ("i-pentane", 0.0)
air.addComponent ("n-pentane", 0.0)
air.addComponent ("n-hexane", 0.0)
air.addComponent ("C02", 0.03355)
air.setMixingRule(2)

#New air flow rate

air_stream_off_design = Stream() #create object string
air_stream_off_design.set_temperature(ambient_t,"K") # -> change this T!
air_stream_off_design.set_pressure(1.010e5, "Pa")

reference_flow_rate = Compressor_thermoflow_ref.get_inlet_stream().
get_flow_rate("kg/hr")

reference_T = Compressor_thermoflow_ref.get_inlet_stream().get_temperature(
IIK")

off _design_inlet_T = air_stream_off_design.get_temperature("K")

off _design_flow_rate = reference_flow_rate * sqrt(reference_T/
off_design_inlet_T) #new mass flow rate of air, according to off design
formula
air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")
air_stream_off_design.set_fluid(air)

air_stream_off_design.calc()

#Compressor 0ff Design

off_design_compressor = Compressor()
off_design_compressor.set_inlet_stream(air_stream_off_design)

off _design_compressor.set_polytropic_efficiency(Compressor_thermoflow_ref.
get_polytropic_efficiency())

MW = air_stream_off_design.get_fluid() .getMolarMass()

R = 8.314 / MW #J/kgK

Cp = Compressor_thermoflow_ref.get_inlet_stream().get_fluid().getCp("J/kgK"
)

P1 = Compressor_thermoflow_ref.get_inlet_stream() .get_pressure("Pa")

TO = 288.15 #K
np = turbine_thermoflow_ref.get_polytropic_efficiency()
ml = air_stream_off_design.get_flow_rate("kg/hr")

LHV = combustor_thermoflow_ref.get_LHV()

reference_delta_P = (combustor_thermoflow_ref.get_deltaP()/100)
reference_P3 = combustor_thermoflow_ref.get_outlet_stream().get_pressure("
Pa")

reference_T3 = combustor_thermoflow_ref.get_outlet_temperature("K")
reference_m3 = combustor_thermoflow_ref.get_outlet_stream().get_flow_rate("
kg/hr")

reference_MW = combustor_thermoflow_ref.get_outlet_stream().get_fluid().
getMolarMass ()

reference_fuel_rate = combustor_thermoflow_ref.get_fuel_inlet_stream().
get_flow_rate("kg/hr")

Tl = air_stream_off_design.get_temperature("K")

P2_new = 0

111

2442
2443 while (True):

2444

2445 iteration = 0

2446 max_iterations = 1000

2447

2448 #Update P2, T3 and MW - Recycle

2449 if P2_new > O and T3_new > O:

2450 P2_guess = P2_new

2451 T3_guess = T3_new

2452 else:

2453 P2_guess = Compressor_thermoflow_ref.get_outlet_stream().
get_pressure("Pa")

2454 T3_guess = combustor_thermoflow_ref.get_outlet_stream().

get_temperature("K")

2456 tolerance_T = 5

2457 tolerance = 0.1

2458

2459 while (True):

246(

2461 T2 = T1 * ((P2_guess / P1) *x (R / (Cp * np)))
2462

2463 #Calculate air fluid properties at T2 and P2_guess

2464 air = fluid("srk")

2465 air.addComponent ("nitrogen", 0.76)
2466 air.addComponent ("oxygen", 0.141)
2467 air.addComponent ("argon", 0.009)

2468 air.addComponent ("methane", 0.0)

2469 air.addComponent ("ethane", 0.0)

2470 air.addComponent ("propane", 0.0)

2471 air.addComponent ("i-butane",0.0)

2472 air.addComponent ("n-butane", 0.0)
2473 air.addComponent ("i-pentane", 0.0)
2474 air.addComponent ("n-pentane", 0.0)
2475 air.addComponent ("n-hexane", 0.0)
2476 air.addComponent ("C02", 0.034)

2477 air.setMixingRule(2)

2478 air.setTemperature(T2, ’K’)

2479 air.setPressure(P2_guess/1le5, ’bara’)
2480 air.setTotalFlowRate(off_design_flow_rate, ’kg/hr’)
2481 air.setMixingRule(2)

2482

2483 TPflash(air)

2484 air.initProperties()

2485 enthalpy_air = air.getEnthalpy(’J’)
2486 enthalpy_fuel = LHV * mfuel

2487

2488 #Total enthalpy

2489 enthalpy = enthalpy_air + enthalpy_fuel
2490 PHflash(air, enthalpy)

2491 T3_new = air.getTemperature(’K’)

2492

2493 #Calculating P2 based on new values of T3 and mfuel
2494

2495 off _design_m3 = mfuel + off_design_flow_rate
2496 P3 = reference_P3 * (off_design_m3 / reference_m3) * sqrt(T3_new/
reference_T3)

112

2498

2499

2531

delta_P = reference_delta P * (off_design m3 / reference_m3) **1.8

* ((T3_new * reference_P3)/(reference_T3 * P3))*x0.8

a fluid

P2 = P3*(1 + delta_P)

P2_new = P2

iteration = iteration + 1
diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) < tolerance_T

break
P2_guess = P2_new
T3_guess = T3_new

off_design_compressor.set_outlet_pressure(P2_new/leb5, "bara')
off_design_compressor.calc()

#0ff design combustor

methane_stream = Stream()
methane_stream.set_temperature(fuel.get_temperature("K"),"K")
methane_stream.set_pressure(fuel.get_pressure("Pa"), "Pa")
methane_stream.set_flow_rate(mfuel,"kg/s")
methane_stream.set_fluid(methane_fluid) #assign an air stream with
(read the fluid from neqsim)

methane_stream.calc()

off_design_combustor = Combustor ()
off _design_combustor.set_inlet_stream(off_design_compressor.

get_outlet_stream())

methane

off_design_combustor.set_fuel_inlet_stream(methane_stream) #assign
stream as fuel inlet stream

off_design_combustor.set_deltaP(0)

off_design_combustor.calc()

#0ff design turbine

off_design_turbine = Turbine()
off_design_turbine.set_inlet_stream(off_design_combustor.

get_outlet_stream())

off_design_turbine.set_polytropic_efficiency(turbine_thermoflow_ref

.get_polytropic_efficiency())

off_design_turbine.set_outlet_pressure(turbine_thermoflow_ref.

get_outlet_pressure("Pa"), "Pa")

off_design_turbine.set_outlet_pressure(1.0296e5, "Pa")
off_design_turbine.set_mechanical_efficiency(turbine_thermoflow_ref

.get_mechanical_efficiency())

off_design_turbine.calc()
#0ff design overall gas turbine

off_design_gt = GasTurbine()
off_design_gt.compressor = off_design_compressor
off_design_gt.combustor = off_design_combustor
off_design_gt.turbine = off_design_turbine
off_design_gt.mechanical_efficiency = 0.9902
off_design_gt.generator_efficiency = 0.9801
off_design_gt.calc()

113

outlet_comp_kappa.append(off_design_compressor.get_outlet_stream() .
get_fluid() .getKappa())
outlet_comp_Cp.append(off_design_compressor.get_outlet_stream().
get_fluid() .getCp("J/kgK"))
outlet_compressor_T.append(off_design_gt.compressor.
get_outlet_stream() .get_temperature("K"))
power_compressor.append (off_design_gt.compressor.get_work("MW"))
power_turbine.append(off_design_gt.turbine.get_work("MW"))
efficiencies.append(off_design_gt.get_gt_efficiency())
power_outputs.append(off_design_gt.get_gt_work("MW"))
outlet_turbine_T.append(off_design_turbine.get_outlet_stream().
get_temperature("K")-273.15)
gross_power_output.append(off_design_gt.get_gross_power_output ("MW"
)
gross_efficiency.append(off_design_gt.get_gross_efficiency())
air_flow.append(off_design_compressor.get_inlet_stream().
get_flow_rate("kg/hr")/1e3)
inlet_t.append(off_design_compressor.get_inlet_stream().
get_temperature("K")-273.15)

#Convergence Criteria
if diff_guess <= tolerance:
break

print (mfuel)
print (ambient_t)

; df = pd.read_excel(’D:\Dados PC\Documents\Master thesis\Comparison_model.xlsx’,

sheet_name=’Thermoflow_graphs’)

7 plt.plot(df [’GT_gross_power_MW’], df[’GT_eff’], 1label = ’Thermoflow data’,

color = ’r?)
plt.plot(power_outputs, efficiencies, label = ’Python code’, color = ’g’)
plt.grid()
plt.xlabel("Gas Turbine Power Output - MW")
plt.ylabel("Gas Turbine Efficiency - %")

2 plt.legend()
3 plt.plot)

#plt.savefig(’D:\Dados PC\Documents\Master thesis\Images\Thermoflow_airflow.pdf
>, dpi = 300, bbox_inches = ’tight’)

77 %pip install meteostat

#Historical Weather Data - Validation of the model

from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Point, Hourly

5 #3et time period
; start = datetime(2023,1,1,12)
7 end = datetime(2023,5,1,12)

#Create point for Heidrun
Heidrun_platform = Point(65.33, 2.33,16.0)

2 #Get daily data

114

2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630

2631

2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648

2649

#data = Daily(Heidrun_platform, start, end)

5 data = Hourly(Heidrun_platform, start, end)

data = data.fetch()
data.plot(y= [’tavg’,’tmin’, ’tmax’])
plt.show()

data.plot(y=[’temp’])
plt.xlabel(’Time’)
plt.ylabel(’Temperature (C)’)
plt.grid()

plt.plot()

#Extract tavg values and store them in a list

tavg_list = []

day_list = []

month_list = []

timestamps = []

for row in data.itertuples():
timestamps.append(row.Index)

print (timestamps)

for row in data.itertuples():
tavg_list.append(row.temp)
day_list.append(row.Index.day)
month_list.append(row.Index.month)

S L T L
import statsmodels.api as sm

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Linear regression relating fuel intake with temperature

fuel_flow_rates = [1.82, 1.82, 1.82, 1.82, 1.81, 1.80, 1.80, 1.79, 1.78, 1.77,
1.76, 1.75, 1.74, 1.73, 1.72, 1.71, 1.70, 1.69, 1.68, 1.67, 1.67] #kg/s

5 ambient_temperatures = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11 ,12 ,13 ,14 ,15

,16 ,17 ,18 ,19 ,20] #C

Fit the model

X = sm.add_constant (ambient_temperatures)
model = sm.0LS(fuel_flow_rates, X)
results = model.fit()

Print the results
print(results.summary())

Get the fitted parameters
intercept = results.params[0]

slope = results.params[1]

Plot the data and the fitted line

115

2650 plt.scatter (ambient_temperatures, fuel _flow_rates)
2651 plt.show()

2653 import numpy as np
2654 import matplotlib.pyplot as plt
2655 import pandas as pd

2657 ambient_temperature_list = tavg_list
2658

2650 time_period = timestamps

2660 efficiencies = []

2661 power_outputs = []
2662 fuel_flow_rates=[]
2663 inlet_t=[]

2664

2665 for i in range(len(ambient_temperature_list)):
2666 t = ambient_temperature_list[i]

2667 fuel_flow = 1.8403 - 0.0086 * t

2668 fuel_flow_rates.append(fuel_flow)

2669

2670 fuel_inlet = fuel_flow_rates
2672 for t, mfuel in zip (ambient_temperature_list, fuel_inlet):

2674 air = fluid("srk")

2675 air.addComponent ("nitrogen", 0.75808)
2676 air.addComponent ("oxygen", 0.14100)
2677 air.addComponent ("argon", 0.00913)

2678 air.addComponent ("methane", 0.0)
2679 air.addComponent ("ethane", 0.0)
2680 air.addComponent ("propane", 0.0)
2681 air.addComponent ("i-butane",0.0)
2682 air.addComponent ("n-butane", 0.0)
2683 air.addComponent ("i-pentane", 0.0)
2684 air.addComponent ("n-pentane", 0.0)
2685 air.addComponent ("n-hexane", 0.0)
2686 air.addComponent ("C02", 0.03355)
2687 air.setMixingRule(2)

2688

2689 #New air flow rate

2690

2691 air_stream_off_design = Stream() #create object string

2692 air_stream_off_design.set_temperature(t,"C") # -> change this T!
2693 air_stream_off_design.set_pressure(1.010e5, "Pa")

2695 reference_flow_rate = Compressor_thermoflow_ref.get_inlet_stream().
get_flow_rate("kg/hr")

2696 reference_T = Compressor_thermoflow_ref.get_inlet_stream().get_temperature(
uKu)

2697 off _design_inlet_T = air_stream_off_design.get_temperature("K")

2698 off_design_flow_rate = reference_flow_rate * sqrt(reference_T/
off _design_inlet_T) #new mass flow rate of air, according to off design
formula

2699 air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")
2700 air_stream_off_design.set_fluid(air)
2701 air_stream_off_design.calc()

2703 #Compressor Off Design

116

N

N

off _design_compressor = Compressor ()
off_design_compressor.set_inlet_stream(air_stream_off_design)
off_design_compressor.set_polytropic_efficiency(Compressor_thermoflow_ref.
get_polytropic_efficiency())

MW = air_stream_off_design.get_fluid() .getMolarMass()
R = 8.314 / MW #J/kgK

Cp = Compressor_thermoflow_ref.get_inlet_stream().get_fluid() .getCp("J/kgK"
)

P1 = Compressor_thermoflow_ref.get_inlet_stream().get_pressure("Pa")

TO = 288.15 #K

np = turbine_thermoflow_ref.get_polytropic_efficiency()

ml = air_stream_off_design.get_flow_rate("kg/hr")

LHV = combustor_thermoflow_ref.get_LHV()

reference_delta_P = (combustor_thermoflow_ref.get_deltaP()/100)
reference_P3 = combustor_thermoflow_ref.get_outlet_stream().get_pressure("
Pa")

reference_T3 = combustor_thermoflow_ref.get_outlet_temperature("K")
reference_m3 = combustor_thermoflow_ref.get_outlet_stream().get_flow_rate("
kg/hr") /3600

reference_MW = combustor_thermoflow_ref.get_outlet_stream().get_fluid().
getMolarMass ()

reference_fuel_rate = combustor_thermoflow_ref.get_fuel_inlet_stream().
get_flow_rate("kg/hr")

Tl = air_stream_off_design.get_temperature("K")

P2_new = 0

while (True):

iteration = 0
max_iterations = 1000

#Update P2, T3 and MW - Recycle
if P2_new > O and T3_new > O:
P2_guess = P2_new
T3_guess = T3_new
else:
P2_guess = Compressor_thermoflow_ref.get_outlet_stream().
get_pressure("Pa")
T3_guess = combustor_thermoflow_ref.get_outlet_stream().
get_temperature("K")

tolerance_T = 5
tolerance = 0.1

while (True):
T2 = T1 * ((P2_guess / P1) *x (R / (Cp * np)))

#Calculate air fluid properties at T2 and P2_guess
air = fluid("srk")

air.addComponent ("nitrogen", 0.76)
air.addComponent ("oxygen", 0.141)

air.addComponent ("argon", 0.009)

air.addComponent ("methane", 0.0)

air.addComponent ("ethane", 0.0)

air.addComponent ("propane", 0.0)

117

air.addComponent ("i-butane",0.0)
air.addComponent ("n-butane", 0.0)
air.addComponent ("i-pentane", 0.0)
air.addComponent ("n-pentane", 0.0)
air.addComponent ("n-hexane", 0.0)
air.addComponent ("C02", 0.034)
air.setMixingRule(2)
air.setTemperature(T2, ’K’)
air.setPressure(P2_guess/1e5, ’bara’)
air.setTotalFlowRate(off_design_flow_rate, ’kg/hr’)
air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)

#enthalpy_air = off_design_compressor.get_inlet_stream().get_fluid
() .getEnthalpy ()

enthalpy_fuel = LHV * mfuel

#Total enthalpy
enthalpy = enthalpy_air + enthalpy_fuel

#combustion_fluid = off_design_compressor.get_inlet_stream().
get_fluid() .clone()

PHflash(air, enthalpy)

T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel + off_design_flow_rate/3600

P3 = reference_P3 * (off_design_m3 / reference_m3) * sqrt(T3_new/
reference_T3)

delta_P = reference_delta P * (off_design m3 / reference_m3) **1.8
* ((T3_new * reference_P3)/(reference_T3 * P3))*x*0.8

P2 = P3*(1 + delta_P)

P2_new = P2

iteration = iteration + 1

diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) < tolerance_T
break

P2_guess = P2_new

T3_guess = T3_new
off_design_compressor.set_outlet_pressure(P2_new/le5, "bara')
off_design_compressor.calc()

#0ff design combustor

methane_stream = Stream()

methane_stream.set_temperature(fuel.get_temperature("K"),"K")

methane_stream.set_pressure(fuel.get_pressure("Pa"), "Pa")

methane_stream.set_flow_rate(mfuel,"kg/s")

methane_stream.set_fluid(methane_fluid) #assign an air stream with
a fluid (read the fluid from neqgsim)

methane_stream.calc()

118

2806 off_design_combustor = Combustor ()

2807 off_design_combustor.set_inlet_stream(off_design_compressor.
get_outlet_stream())

2808 off_design_combustor.set_fuel_inlet_stream(methane_stream) #assign
methane stream as fuel inlet stream

2809 off_design_combustor.set_deltaP(0)

2810 off_design_combustor.calc()

2811

2812 #0ff design turbine

2813 off_design_turbine = Turbine()

2814 off_design_turbine.set_inlet_stream(off_design_combustor.
get_outlet_stream())

2815 off_design_turbine.set_polytropic_efficiency(turbine_thermoflow_ref
.get_polytropic_efficiency())

2816 off_design_turbine.set_outlet_pressure(turbine_thermoflow_ref.
get_outlet_pressure("Pa"), "Pa")

2817 off_design_turbine.set_outlet_pressure(1.0296e5, "Pa")

2818 off_design_turbine.set_mechanical_efficiency(turbine_thermoflow_ref
.get_mechanical_efficiency())

2819 off_design_turbine.calc()

2820

2821 #0ff design overall gas turbine

2822

2823 off_design_gt = GasTurbine()

2824 off_design_gt.compressor = off_design_compressor

2825 off_design_gt.combustor = off_design_combustor

2826 off_design_gt.turbine = off_design_turbine

2827 off_design_gt.mechanical_efficiency = 0.9902

2828 off_design_gt.generator_efficiency = 0.9801

2829 off_design_gt.calc()

2830

2831 efficiencies.append(off_design_gt.get_gt_efficiency())

2832 power_outputs.append(off_design_gt.get_gt_work("MW"))

2833 inlet_t.append(off_design_compressor.get_inlet_stream().

get_temperature("K")-273.15)

2835 #Convergence Criteria
2836 if diff_guess <= tolerance:
2837 break

2838

2840 power = power_outputs
2841 temperature = tavg_list

2843 # plt.show()

2841 plt.figure(figsize=(10, 6))

2845 plt.plot(time_period[:len(power_outputs)], power_outputs[:len(time_period)],
color=’r’) # Plotting time vs. power

2846 plt.xlabel("Time")

2847 plt.ylabel("Gas Turbine Power Output - MW")

2848 plt.grid()

2850 plt.xticks(rotation=45) # Rotate the x-axis labels by 45 degrees

HAHHAHHHHAFHAHAFHAHHFH AR R H R ARG

119

2855 #Digital Twin Model
2857 #Weather Forecast Connection

2859 import requests

2860 from datetime import datetime, timedelta

2861

2862 # API URL

2863 url = "https://api.met.no/weatherapi/locationforecast/2.0/compact?altitude=30&
lat=65.33&lon=7.32"

2864

2865 # Define User-Agent header

2566 headers = {

2867 >User-Agent’: ’vmkaplan/PowerGeneration github.com/vmkaplan/PowerGeneration
’ 3

2868 ’Contact’: ’victoriakaplan@hotmail.com’

2869 }

2871 # Specify the time range for which you want to retrieve weather data
2872 now = datetime.now()

2873 start_time = now

2874 end_time = start_time + timedelta(days=12)

2876 # Make GET request to API

2877 response = requests.get(url, headers=headers)
2878

2879 # Extract JSON response from the response body
2850 data = response.json()

2881

2882 # Extract time and temperature values

2ss3 timeseries = datal[’properties’] [’timeseries’]
2884 current_time = now.strftime(’%Y-%m-%dT%H:%M:%SZ’)
2885

2836 time_period = N

2ss7 forecast_temperature = []

2sss time_plot = []

2889

2800 for ts in timeseries:

2891 time = ts[’time’]

2892 temperature = ts[’data’][’instant’] [’details’] [’air_temperature’]
2893

2894 # Check if the time is equal to or greater than the current time
2895 if time >= current_time:

2896

2897 time_object = datetime.strptime(time, ’%Y-Y%m-%dT/H:%M:%SZ?)
2898 day = time_object.day

2899 month = time_object.month

2900 year = time_object.year

2901

2902 time_plot.append(f’{day}-{month}-{year}’)

2903 time_period.append(time)

2904 forecast_temperature.append (temperature)

2905

2006 temperature = forecast_temperature

2007 time = time_period

2908

2009 #Digital twin for power production forecast

120

2011 import numpy as np
2012 import matplotlib.pyplot as plt
2013 import pandas as pd

2015 ambient_temperature_list = temperature
2916

2017 efficiencies = []

20918 power_outputs = [1

2010 fuel_flow_rates=[]

2920 inlet_t=[]

2022 for i in range(len(ambient_temperature_list)):
2923 t = ambient_temperature_list[i]

2924 fuel_flow = 1.8403 - 0.0086 * t

2925 fuel_flow_rates.append(fuel_flow)

2027 fuel_inlet = fuel_flow_rates

2020 for t, mfuel in zip (ambient_temperature_list, fuel_inlet):
2930

2931 air = fluid("srk")

2932 air.addComponent ("nitrogen", 0.75808)
2933 air.addComponent ("oxygen", 0.14100)
2934 air.addComponent ("argon", 0.00913)
2035 air.addComponent ("methane", 0.0)

2936 air.addComponent ("ethane", 0.0)

2937 air.addComponent ("propane", 0.0)

2938 air.addComponent ("i-butane",0.0)

2939 air.addComponent ("n-butane", 0.0)

2940 air.addComponent ("i-pentane", 0.0)
2941 air.addComponent ("n-pentane", 0.0)
2942 air.addComponent ("n-hexane", 0.0)

2943 air.addComponent ("C02", 0.03355)

2944 air.setMixingRule(2)

2945

2946 #New air flow rate

2947

2948 air_stream_off_design = Stream() #create object string

2949 air_stream_off_design.set_temperature(t,"C") # -> change this T!

2950 air_stream_off_design.set_pressure(1.010e5, "Pa")

2951

2952 reference_flow_rate = Compressor_thermoflow_ref.get_inlet_stream().
get_flow_rate("kg/hr")

2953 reference_T = Compressor_thermoflow_ref.get_inlet_stream() .get_temperature(
"K")

2954 off_design_inlet_T = air_stream_off_design.get_temperature("K")

2955 off_design_flow_rate = reference_flow_rate * sqrt(reference_T/
off _design_inlet_T) #new mass flow rate of air, according to off design
formula

2956 air_stream_off_design.set_flow_rate(off_design_flow_rate,"kg/hr")

2057 air_stream_off_design.set_fluid(air)

2958 air_stream_off_design.calc()

2959

2960 #Compressor 0ff Design

2961

2062 off_design_compressor = Compressor()

2963 off_design_compressor.set_inlet_stream(air_stream_off_design)

121

2964

2965
2966
2967

2968

2969

2970

2978

2979

2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992

2993

2994

2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012

3013

off_design_compressor.set_polytropic_efficiency(Compressor_thermoflow_ref.
get_polytropic_efficiency())

MW = air_stream_off_design.get_fluid() .getMolarMass()

R = 8.314 / MW #J/kgK

Cp = Compressor_thermoflow_ref.get_inlet_stream().get_fluid().getCp("J/kgK"
)

P1 = Compressor_thermoflow_ref.get_inlet_stream() .get_pressure("Pa")

TO = 288.15 #K

np = turbine_thermoflow_ref.get_polytropic_efficiency()

ml = air_stream_off_design.get_flow_rate("kg/hr")

LHV = combustor_thermoflow_ref.get_LHV()

reference_delta_P = (combustor_thermoflow_ref.get_deltaP()/100)
reference_P3 = combustor_thermoflow_ref.get_outlet_stream() .get_pressure("
Pa")

reference_T3 = combustor_thermoflow_ref.get_outlet_temperature("K")
reference_m3 = combustor_thermoflow_ref.get_outlet_stream().get_flow_rate("
kg/hr") /3600

reference_MW = combustor_thermoflow_ref.get_outlet_stream().get_fluid().
getMolarMass ()

reference_fuel_rate = combustor_thermoflow_ref.get_fuel_inlet_stream().
get_flow_rate("kg/hr")

Tl = air_stream_off_design.get_temperature("K")

P2_new = 0

while (True):

iteration = 0
max_iterations = 1000

#Update P2, T3 and MW - Recycle
if P2_new > 0 and T3_new > O:
P2_guess = P2_new
T3_guess = T3_new
else:
P2_guess = Compressor_thermoflow_ref.get_outlet_stream().
get_pressure("Pa")
T3_guess = combustor_thermoflow_ref.get_outlet_stream().
get_temperature ("K")

tolerance_T = 5
tolerance = 0.1

while (True):
T2 = T1 * ((P2_guess / P1) »x (R / (Cp * np)))

#Calculate air fluid properties at T2 and P2_guess
air = fluid("srk")
air.addComponent ("nitrogen", 0.76)
air.addComponent ("oxygen", 0.141)
air.addComponent ("argon", 0.009)
air.addComponent ("methane", 0.0)
air.addComponent ("ethane", 0.0)
air.addComponent ("propane", 0.0)
air.addComponent ("i-butane",0.0)
air.addComponent ("n-butane", 0.0)
air.addComponent ("i-pentane", 0.0)

122

3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025

3026

3027
3028
3029
3030
3031

3032

3033
3034
3035
3036
3037
3038

3039

3040

3041
3042
3043
3044
3045

3046

3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059

3060

3061
3062
3063

3064

air.addComponent ("n-pentane", 0.0)
air.addComponent ("n-hexane", 0.0)

air.addComponent ("C02", 0.034)
air.setMixingRule(2)

air.setTemperature(T2, ’K’)
air.setPressure(P2_guess/1e5, ’bara’)
air.setTotalFlowRate (off_design_flow_rate, ’kg/hr’)
air.setMixingRule(2)

TPflash(air)

air.initProperties()

enthalpy_air = air.getEnthalpy(’J’)

#enthalpy_air = off_design_compressor.get_inlet_stream().get_fluid

() .getEnthalpy ()

enthalpy_fuel = LHV * mfuel

#Total enthalpy
enthalpy = enthalpy_air + enthalpy_fuel

#combustion_fluid = off_design_compressor.get_inlet_stream().

get_fluid() .clone()

PHflash(air, enthalpy)
T3_new = air.getTemperature(’K’)

#Calculating P2 based on new values of T3 and mfuel

off_design_m3 = mfuel + off_design_flow_rate/3600
P3 = reference_P3 * (off_design m3 / reference_m3) * sqrt(T3_new/

reference_T3)

delta_P = reference_delta_P * (off_design m3 / reference_m3) **1.8

* ((T3_new * reference_P3)/(reference_T3 * P3))*x0.8

a fluid

P2 = P3*(1 + delta_P)

P2_new = P2

iteration = iteration + 1
diff_guess = abs(P2_guess - P2_new)

if diff_guess <= tolerance and abs(T3_new - T3_guess) < tolerance_T
break

P2_guess = P2_new

T3_guess = T3_new

off_design_compressor.set_outlet_pressure(P2_new/1e5, "bara")
off_design_compressor.calc()

#0ff design combustor

methane_stream = Stream()
methane_stream.set_temperature(fuel.get_temperature("K"),"K")
methane_stream.set_pressure(fuel.get_pressure("Pa"), "Pa")
methane_stream.set_flow_rate(mfuel, "kg/s")
methane_stream.set_fluid(methane_fluid) #assign an air stream with
(read the fluid from neqsim)

methane_stream.calc()

off_design_combustor = Combustor ()
off_design_combustor.set_inlet_stream(off_design_compressor.

get_outlet_stream())

123

3065

3066
3067
3068
3069
3070

3071

3072

3073

307

3075

3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089

3090

3091
3092
3093
3094
3095
3096
3097
3098
3099
3100

3101

3106
3107
3108

3109

methane

off_design_combustor.set_fuel_inlet_stream(methane_stream) #assign
stream as fuel inlet stream

off_design_combustor.set_deltaP(0)

off_design_combustor.calc()

#0ff design turbine
off_design_turbine = Turbine()
off_design_turbine.set_inlet_stream(off_design_combustor.

get_outlet_stream())

off_design_turbine.set_polytropic_efficiency(turbine_thermoflow_ref

.get_polytropic_efficiency())

off _design_turbine.set_outlet_pressure(turbine_thermoflow_ref.

get_outlet_pressure("Pa"), "Pa")

off_design_turbine.set_outlet_pressure(1.0296e5, "Pa")
off_design_turbine.set_mechanical_efficiency(turbine_thermoflow_ref

.get_mechanical_efficiency())

off_design_turbine.calc()
#0ff design overall gas turbine

off_design_gt = GasTurbine()
off_design_gt.compressor = off_design_compressor
off_design_gt.combustor = off_design_combustor
off_design_gt.turbine = off_design_turbine
off_design_gt.mechanical_efficiency = 0.9902
off_design_gt.generator_efficiency = 0.9801
off_design_gt.calc()

efficiencies.append(off_design_gt.get_gt_efficiency())
power_outputs.append(off_design_gt.get_gt_work("MW"))
inlet_t.append(off_design_compressor.get_inlet_stream().

get_temperature("K")-273.15)

#Convergence Criteria

if diff_guess <= tolerance:

break

power = power_outputs

= forecast_temperature

time = time_period

temperature
time_plot =
plt
plt

power
plt
plt
plt.grid()
plt
plt.
plt.show()

time_plot

.figure(figsize=(12, 6))
.plot(time_plot, power_outputs[:len(time)], color=’g’) # Plotting time vs.

.xlabel("Time", fontsize = ’127)
.ylabel("Power Output Forecast - MW", fontsize = ’127)

.xticks (rotation=45)

savefig(’Power_forecastAPI.pdf’, format = ’pdf’)

124

GasTurb Outputs

125

Date: 03
Time: 17

Jul23
:07

Boosted Turboshaft

Alt=

Station
amb
1
2
24
25
3
31
4
41
43
44
45
49

Om ISA

W
kg/s

94,120
94,120
94,120
94,120
94,120
94,120
95,840
95,840
95,840
95,840
95,840
95,840
95,840
95,840
95,840

0,000

Page 1

60% Relative Humidity

T

K
288,15
288,15
288,15
475,65
475,65
741,98
741,98
1428,32
1428,32
1048, 28
1048, 28
1048, 28
779,15
779,15
779,15
779,15
741,98

P
kPa

101,325
101,325
98,585
516,883
516,883
2165,742
2165,742
2165,742
2165,742
440,509
440,509
440,509
105,134
105,134
105,134
105,134
2165,747

WRstd
kg/s

96,926
23,752
23,752
7,080
10,002
10,002
42,127
152,174

152,174

Ps0-P2=

Efficien
Booster
Compres
Burner

HP Turb
LP Turb
Generat

2,740
cies:

sor
ine

ine
or

Ps8-Ps
isentr
0,9200
0,8529
1,0000
0,8500
0,8574
0,9801

0= 1,245

polytr RNI
0,9360 0,973
0,8778 2,807

0,8236 3,291
0,8335 0,954

p/P
5,243
4,190
1,000
4,916
4,190

HP Spool mech Eff 1,0000
PT Spool mech Eff 1,0000

Nom Spd 34

000 rpm
000 rpm

hum [%]
60,0

Input Data File:

war0
0,00653

Nom Spd 10
FHV Fuel
46,700 Generic

PWSD = 29958, 0
PSFEC = 0,2067
VO = 0,00
P25/P24 = 1,00000
P3/P2 = 21,97
FN res = 10,08
Heat Rate= 9654,5
WE = 1,72037
Loading = 100,00
s NOx = 0,6356
Therm Eff= 0,37288
P45/P44 = 1,00000
P6/P5 = 1,00000
A8 = 1,98227
P8/Pamb = 1,03759
WB1ld/wW2 = 0,00000
P2/P1 = 0,97296
Ps8 = 102,570
driven by HPT

WCHN/W25 = 0,00000
WCHR/W25 = 0,00000
eddd th = 0,85000
eta t-s = 0,83955
PW gen = 29361, 8
TRQ = 100,00
WCLN/W25 = 0,00000
WCLR/W25 = 0,00000

kW

kg/ (kW*h)
m/s

kN
kJ/ (KW*h)
kg/s

o

kPa

o\°

C:\Users\Usuario\AppData\Roaming\GasTurbl4\DemoData\Last 1 PRP.CYB (modified)

Page 1

Date: 03jul23
Time: 17:15

Single Spool Turboshaft

Alt= Om ISA 60% Relative Humidity
W T P WRstd
Station kg/s K kPa kg/s
amb 288,15 101,325
1 94,143 288,15 101,325
2 94,143 288,15 101,325 94,324
3 94,143 751,27 2198,753 7,019
31 94,143 751,27 2198,753
4 95,864 1436,26 2198,753 9,881
41 95,864 1436,26 2198,753 9,881
49 95,864 779,15 104,365
5 95,864 779,15 104,365 153,327
6 95,864 779,15 104,365
8 95,864 779,15 104,365 153,327
Coolg 0,000 751,27 2198,748
Bleed 0,000 751,27 2198,748
Ps0-P2= 0,000 Ps8-Ps0= 0,000
Efficiencies: isentr polytr RNI P/P
Compressor 0,8413 0,8921 1,000 21,700
Burner 1,0000 1,000
Turbine 0,8785 0,8300 3,320 21,068
Generator 1,0000
Spool mech Eff 11,0000 Nom Spd 17000 rpm
hum [%] war0 FHV Fuel
60,0 0,00637 46,700 Generic

Input Data File:

C:\Users\Usuario\AppData\Roaming\GasTurbl4\DemoData\singlespool

PWSD

PSFC

Heat Rate
Therm Eff
WE

s NOx
incidence
XM8

A8
P8/PsS8
Wecl L/W2
WB1d/W2
P2/P1
Ps8
WCLN/W2
WCLR/W2
Loading
ed5 th
PW gen

P6/P5

29958, 2

0,2068
9657,1
0,3728
1,72086

0,67096
0,00
0,2102
1,8327
1,03000
0,00000
0,00000
1,00000
101,325
0,00000
0,00000
100,00
0,87848
29958, 2

1,0000

kW

kg/ (kW*h)
kJ/ (kW*h)

kg/s

kPa

oe

kW

.ClS (modified)

Thermoflow Outputs

128

Plant Summary

GT PRO 30.0 Usuario

383 06-07-2023 13:56:22 file=D:\Dados PC\Documents\ThermoflowW\MYFILES30\GTPRO2_sgta35_2.GTP

Program revision date: March 3, 2022

Plant Configuration: Simple Cycle Gas Turbine(s)

One SIE SGT-A30 Engine (Curve Fit OEM Data Model #421), GT PRO Type 0, Subtype 0

Steam Property Formulation: IFC-67

Site ambient conditions: 1,013 bar, 15 C, 0,01% RH (3,227 C WB)

SYSTEM SUMMARY
Power Output kW LHV Heat Rate kJ/kWh Elect. Eff. LHV%
@ gen. term. net @ gen. term. net @ gen. term. net
Gas Turbine(s) 29075 9912 36,32
Steam Turbine(s) 0
Plant Total 29075 27199 9912 10595 36,32 33,98
GAS TURBINE PERFORMANCE - SIE SGT-A30 (Curve Fit OEM Data Model #421)
Gross power Gross LHV Gross LHV Heat Rate Exh. flow Exh. temp.
output, kW efficiency, % kJ/KWh t/h (o4
per unit 29075 36,32 9912 345 506
Total 29075 345
Number of gas turbine unit(s) = 1
Gas turbine load [%] 100 %
Fuel chemical HHV (77F/25C) per gas turbine = 88028 kW
Fuel chemical LHV (77F/25C) per gas turbine = 80049 kW
-UO GT PRO 30.0.0.20 Page: 1

383 06-07-2023 13:56:22 file=D:\Dados PC\Documents\Thermoflow\AMYFILES30\GTPRO2 _sgta35 2.GTP

Plant Summary

ESTIMATED PLANT AUXILIARIES (kW)

GT fuel compressor(s)* 1427,1| KW
GT supercharging fan(s)* 0| kW
GT electric chiller(s)* 0] kW
GT chiller/heater water pump(s) 0] kW
HRSG feedpump(s)* 0] kW
Condensate pump(s)* 0] kW
HRSG forced circulation pump(s) 0] kW
LTE recirculation pump(s) 0] kW
Cooling water pump(s) 0] kW
Air cooled condenser fans 0| kW
Cooling tower fans 0] kW
Dilution/Fresh air fan(s)* 0] kW
Aux. from PEACE running motor/load list 229,8| kW
Miscellaneous gas turbine auxiliaries 58,8 kW
Miscellaneous steam turbine auxiliaries 0| kW
Miscellaneous plant auxiliaries 14,54 kW
Constant plant auxiliary load 0] kW
Gasification plant, ASU* 0| kW
Gasification plant, fuel preparation 0| kW
Gasification plant, AGR* 0| kW
Gasification plant, other/misc 0| kW
Desalination plant auxiliaries 0| kW
Program estimated overall plant auxiliaries 1730,2| kW
Actual (user input) overall plant auxiliaries 1730,2| kW
Transformer losses 145,4| kW
Total auxiliaries & transformer losses 1875,5| kW

* Heat balance related auxiliaries

-UO GT PRO 30.0.0.20

383 06-07-2023 13:56:22 file=D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.GTP

Page: 2

Plant Summary

PLANT HEAT BALANCE
Energy In 89720 kW
Ambient air sensible 1423,5| kW
Ambient air latent 0,2462| kW
Fuel enthalpy @ supply 88296| kW
External gas addition to combustor 0] kW
Steam and water 0] kW
Makeup and process return 0| kW
Energy Out 90172| kW
Net power output 27199| kW
Stack gas sensible 52146| kW
Stack gas latent 8173| kW
GT mechanical loss 298,8| kW
GT gear box loss 443,8| kW
GT generator loss 589,2| kW
GT miscellaneous losses 440,1| kW
GT ancillary heat rejected 219,5| kW
GT process air bleed 0| kW
Fuel compressor mech/elec loss 214 1| kW
Supercharging fan mech/elec loss 0] kW
Condenser 0] kW
Process steam 0] kW
Process water 0] kW
Blowdown/leakages 0] kW
Heat radiated from steam cycle 0] kW
ST/generator mech/elec/gear loss 0] kW
Non-heat balance related auxiliaries 303,1| kW
Transformer loss 145,4| kW
Energy In - Energy Out -452,2| kW
GT heat balance error (arising from GT definitions) -452.2| kW
Zero enthalpy: dry gases & liquid water @ 32 F (273.15 K)

-UO GT PRO 30.0.0.20

383 06-07-2023 13:56:22 file=D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.GTP

Page: 3

Macro Outputs

GT Cycle Unit Base Case | Case 1 Case 2 Case 3 Case 4 Case 5
Computation Result Messages Messages Messages | Messages | Messages | Messages | Messages
1. GT gross power kW 31386 31386 31384 31341 31216 31092
2. GT gross LHV eff % 36,89 36,89 36,86 36,83 36,8 36,76
3. GT gross heat rate kJ/kWh 9758 9758 9766 9774 9783 9793
4. Compressor inlet mass flow t/h 359,6 359,6 358,7 357,7 356,4 355

5. Compressor inlet temperature C 0 0 1 2 3 4

6. Turbine inlet mass flow t/h N/A N/A N/A N/A N/A N/A
7. Turbine inlet temperature C N/A N/A N/A N/A N/A N/A
8. Turbine exhaust mass flow t/h 366,2 366,2 365,3 364,3 362,9 361,5
9. Turbine exhaust temperature C 488,8 488,8 491,2 4933 4947 496,1
10. GT fuel HHV chemical energy input (77F/25C) | kW 93557 93557 93619 93569 93288 93007
11. GT fuel LHV chemical energy input (77F/25C) kW 85076 85076 85133 85087 84832 84576
12. Exhaust gas molecular weight 28,68 28,68 28,68 28,68 28,68 28,68
13. Exhaust gas N2 mole percentage % 75,93 75,93 75,92 75,92 75,92 75,92
14. Exhaust gas O2 mole percentage % 14,44 14,44 14,42 14,41 14,4 14,4
15. Exhaust gas CO2 mole percentage % 3,279 3,279 3,289 3,296 3,299 3,301
16. Exhaust gas SO2 mole percentage % 0 0 0 0 0 0

17. Exhaust gas H20 mole percentage % 5,435 5,435 5,451 5,463 5,467 5,471
18. Exhaust gas Ar mole percentage % 0,9144 0,9144 0,9143 0,9143 0,9142 0,9142
19. GT fuel flow t/h 6,553 6,553 6,557 6,554 6,534 6,514
20. Combustor steam injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
21. Combustor water injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
22. Inlet filter pressure loss millibar 2,457 2,457 2,464 2,47 2,473 2,475
23. Total exhaust pressure loss millibar 13,72 13,72 13,7 13,66 13,58 13,5
24. Fogging water mass flow t/h N/A N/A N/A N/A N/A N/A
25. Number of chillers in plant 0 0 0 0 0 0

26. Nameplate capacity at standard conditions kW N/A N/A N/A N/A N/A N/A
27. Nameplate COP at standard conditions N/A N/A N/A N/A N/A N/A
28. Chiller load at current heat balance conditions kW N/A N/A N/A N/A N/A N/A
29. COP at current heat balance conditions N/A N/A N/A N/A N/A N/A
30. Chilled water temperature C N/A N/A N/A N/A N/A N/A
31. Chilled water range C N/A N/A N/A N/A N/A N/A
32. Chilled water mass flow @ coil t/h 0 0 0 0 0 0

33. Desired air temperature drop C N/A N/A N/A N/A N/A N/A
34. Actual air temperature drop C N/A N/A N/A N/A N/A N/A
35. Coolant temperature C N/A N/A N/A N/A N/A N/A
36. Chilled water temperature leaving chiller C N/A N/A N/A N/A N/A N/A
37. Chilled water mass flow leaving chiller (per GT) | t/h N/A N/A N/A N/A N/A N/A
38. Net chilled water flow to storage tank (plant total) | t/h 0 0 0 0 0 0

-Do Thermoflow Macro (GT MASTER) 30.0 - D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.MGTM
Base Case: D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.GTM

Page: 1

Macro Outputs

GT Cycle Unit Base Case | Case 6 Case 7 Case 8 Case 9 Case 10
Computation Result Messages Messages Messages | Messages | Messages | Messages | Messages
1. GT gross power kW 31386 30968 30844 30721 30530 30320
2. GT gross LHV eff % 36,89 36,73 36,69 36,66 36,62 36,57
3. GT gross heat rate kJ/kWh 9758 9802 9812 9821 9832 9843
4. Compressor inlet mass flow t/h 359,6 353,7 352,3 351 3494 347,9
5. Compressor inlet temperature C 0 5 6 7 8 9
6. Turbine inlet mass flow t/h N/A N/A N/A N/A N/A N/A
7. Turbine inlet temperature C N/A N/A N/A N/A N/A N/A
8. Turbine exhaust mass flow t/h 366,2 360,2 358,8 3574 355,9 354,2
9. Turbine exhaust temperature C 488,8 4974 498,8 500,2 501 501,7
10. GT fuel HHV chemical energy input (77F/25C) | kW 93557 92725 92444 92162 91690 91164
11. GT fuel LHV chemical energy input (77F/25C) kW 85076 84320 84064 83808 83379 82900
12. Exhaust gas molecular weight 28,68 28,68 28,68 28,68 28,68 28,68
13. Exhaust gas N2 mole percentage % 75,93 7591 75,91 7591 7591 7591
14. Exhaust gas O2 mole percentage % 14,44 14,39 14,39 14,38 14,39 14,4
15. Exhaust gas CO2 mole percentage % 3,279 3,304 3,306 3,309 3,306 3,302
16. Exhaust gas SO2 mole percentage % 0 0 0 0 0 0
17. Exhaust gas H20 mole percentage % 5,435 5,476 5,48 5,484 5,48 5,473
18. Exhaust gas Ar mole percentage % 0,9144 0,9142 0,9142 0,9142 0,9142 0,9142
19. GT fuel flow t/h 6,553 6,495 6,475 6,455 6,422 6,385
20. Combustor steam injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
21. Combustor water injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
22. Inlet filter pressure loss millibar 2,457 2,478 2,481 2,483 2,485 2,485
23. Total exhaust pressure loss millibar 13,72 13,43 13,35 13,27 13,17 13,06
24. Fogging water mass flow t/h N/A N/A N/A N/A N/A N/A
25. Number of chillers in plant 0 0 0 0 0 0
26. Nameplate capacity at standard conditions kW N/A N/A N/A N/A N/A N/A
27. Nameplate COP at standard conditions N/A N/A N/A N/A N/A N/A
28. Chiller load at current heat balance conditions kW N/A N/A N/A N/A N/A N/A
29. COP at current heat balance conditions N/A N/A N/A N/A N/A N/A
30. Chilled water temperature C N/A N/A N/A N/A N/A N/A
31. Chilled water range C N/A N/A N/A N/A N/A N/A
32. Chilled water mass flow @ coil t/h 0 0 0 0 0 0
33. Desired air temperature drop C N/A N/A N/A N/A N/A N/A
34. Actual air temperature drop C N/A N/A N/A N/A N/A N/A
35. Coolant temperature C N/A N/A N/A N/A N/A N/A
36. Chilled water temperature leaving chiller C N/A N/A N/A N/A N/A N/A
37. Chilled water mass flow leaving chiller (per GT) | t/h N/A N/A N/A N/A N/A N/A
38. Net chilled water flow to storage tank (plant total) | t/h 0 0 0 0 0 0

-Do Thermoflow Macro (GT MASTER) 30.0 - D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.MGTM Page: 2

Base Case: D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2 sgta35 2.GTM

Macro Outputs

GT Cycle Unit Base Case | Case 11 | Case 12 | Case 13 | Case 14 | Case 15
Computation Result Messages Messages Messages | Messages | Messages | Messages | Messages
1. GT gross power kW 31386 30111 29901 29692 29483 29279
2. GT gross LHV eff % 36,89 36,53 36,49 36,45 36,41 36,37
3. GT gross heat rate kJ/kWh 9758 9854 9865 9876 9888 9900
4. Compressor inlet mass flow t/h 359,6 346,3 3447 343,1 341,6 340,2
5. Compressor inlet temperature C 0 10 11 12 13 14
6. Turbine inlet mass flow t/h N/A N/A N/A N/A N/A N/A
7. Turbine inlet temperature C N/A N/A N/A N/A N/A N/A
8. Turbine exhaust mass flow t/h 366,2 352,6 351 3494 347,8 346,4
9. Turbine exhaust temperature C 488.8 502,3 502,9 503,6 504,3 505,1
10. GT fuel HHV chemical energy input (77F/25C) | kW 93557 90636 90106 89575 89048 88539
11. GT fuel LHV chemical energy input (77F/25C) kW 85076 82420 81939 81456 80977 80513
12. Exhaust gas molecular weight 28,68 28,68 28,68 28,68 28,68 28,68
13. Exhaust gas N2 mole percentage % 75,93 75,92 75,92 75,92 75,93 75,93
14. Exhaust gas O2 mole percentage % 14,44 14,4 14,41 14,42 14,43 14,44
15. Exhaust gas CO2 mole percentage % 3,279 3,298 3,294 3,29 3,286 3,28
16. Exhaust gas SO2 mole percentage % 0 0 0 0 0 0
17. Exhaust gas H20 mole percentage % 5,435 5,467 5,46 5,453 5,445 5,436
18. Exhaust gas Ar mole percentage % 0,9144 0,9142 0,9143 0,9143 0,9143 0,9144
19. GT fuel flow t/h 6,553 6,348 6,311 6,274 6,237 6,202
20. Combustor steam injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
21. Combustor water injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
22. Inlet filter pressure loss millibar 2,457 2,486 2,486 2,486 2,487 2,489
23. Total exhaust pressure loss millibar 13,72 12,95 12,85 12,74 12,63 12,54
24. Fogging water mass flow t/h N/A N/A N/A N/A N/A N/A
25. Number of chillers in plant 0 0 0 0 0 0
26. Nameplate capacity at standard conditions kW N/A N/A N/A N/A N/A N/A
27. Nameplate COP at standard conditions N/A N/A N/A N/A N/A N/A
28. Chiller load at current heat balance conditions kW N/A N/A N/A N/A N/A N/A
29. COP at current heat balance conditions N/A N/A N/A N/A N/A N/A
30. Chilled water temperature C N/A N/A N/A N/A N/A N/A
31. Chilled water range C N/A N/A N/A N/A N/A N/A
32. Chilled water mass flow @ coil t/h 0 0 0 0 0 0
33. Desired air temperature drop C N/A N/A N/A N/A N/A N/A
34. Actual air temperature drop C N/A N/A N/A N/A N/A N/A
35. Coolant temperature C N/A N/A N/A N/A N/A N/A
36. Chilled water temperature leaving chiller C N/A N/A N/A N/A N/A N/A
37. Chilled water mass flow leaving chiller (per GT) | t/h N/A N/A N/A N/A N/A N/A
38. Net chilled water flow to storage tank (plant total) | t/h 0 0 0 0 0 0

-Do Thermoflow Macro (GT MASTER) 30.0 - D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.MGTM Page: 3

Base Case: D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2 sgta35 2.GTM

Macro Outputs

GT Cycle Unit Base Case | Case 16 | Case 17 | Case 18 | Case 19 | Case 20
Computation Result Messages Messages Messages | Messages | Messages | Messages | Messages
1. GT gross power kW 31386 29075 28878 28680 28483 28291
2. GT gross LHV eff % 36,89 36,32 36,28 36,24 36,2 36,15
3. GT gross heat rate kJ/kWh 9758 9912 9923 9935 9946 9958
4. Compressor inlet mass flow t/h 359,6 338,8 337,3 335,7 334,1 332,6
5. Compressor inlet temperature C 0 15 16 17 18 19
6. Turbine inlet mass flow t/h N/A N/A N/A N/A N/A N/A
7. Turbine inlet temperature C N/A N/A N/A N/A N/A N/A
8. Turbine exhaust mass flow t/h 366,2 345 3434 341,8 340,2 338,6
9. Turbine exhaust temperature C 488.8 506 506,5 507,1 507,6 508,3
10. GT fuel HHV chemical energy input (77F/25C) | kW 93557 88028 87533 87035 86537 86057
11. GT fuel LHV chemical energy input (77F/25C) kW 85076 80049 79598 79146 78693 78256
12. Exhaust gas molecular weight 28,68 28,68 28,68 28,68 28,68 28,68
13. Exhaust gas N2 mole percentage % 75,93 75,93 75,93 75,94 75,94 75,94
14. Exhaust gas O2 mole percentage % 14,44 14,45 14,46 14,46 14,47 14,48
15. Exhaust gas CO2 mole percentage % 3,279 3,275 3,272 3,268 3,265 3,262
16. Exhaust gas SO2 mole percentage % 0 0 0 0 0 0
17. Exhaust gas H20 mole percentage % 5,435 5,427 5,422 5,417 5,411 5,405
18. Exhaust gas Ar mole percentage % 0,9144 0,9144 0,9144 0,9145 0,9145 0,9145
19. GT fuel flow t/h 6,553 6,166 6,131 6,096 6,061 6,028
20. Combustor steam injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
21. Combustor water injection flow (per GT) t/h N/A N/A N/A N/A N/A N/A
22. Inlet filter pressure loss millibar 2,457 2,49 2,491 2,491 2,491 2,491
23. Total exhaust pressure loss millibar 13,72 12,45 12,35 12,24 12,14 12,04
24. Fogging water mass flow t/h N/A N/A N/A N/A N/A N/A
25. Number of chillers in plant 0 0 0 0 0 0
26. Nameplate capacity at standard conditions kW N/A N/A N/A N/A N/A N/A
27. Nameplate COP at standard conditions N/A N/A N/A N/A N/A N/A
28. Chiller load at current heat balance conditions kW N/A N/A N/A N/A N/A N/A
29. COP at current heat balance conditions N/A N/A N/A N/A N/A N/A
30. Chilled water temperature C N/A N/A N/A N/A N/A N/A
31. Chilled water range C N/A N/A N/A N/A N/A N/A
32. Chilled water mass flow @ coil t/h 0 0 0 0 0 0
33. Desired air temperature drop C N/A N/A N/A N/A N/A N/A
34. Actual air temperature drop C N/A N/A N/A N/A N/A N/A
35. Coolant temperature C N/A N/A N/A N/A N/A N/A
36. Chilled water temperature leaving chiller C N/A N/A N/A N/A N/A N/A
37. Chilled water mass flow leaving chiller (per GT) | t/h N/A N/A N/A N/A N/A N/A
38. Net chilled water flow to storage tank (plant total) | t/h 0 0 0 0 0 0

-Do Thermoflow Macro (GT MASTER) 30.0 - D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.MGTM Page: 4

Base Case: D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2 sgta35 2.GTM

Macro Outputs

GT Cycle Unit Base Case | Case 21
Computation Result Messages Messages Messages
1. GT gross power kW 31386 28101
2. GT gross LHV eff % 36,89 36,11
3. GT gross heat rate kJ/kWh 9758 9970
4. Compressor inlet mass flow t/h 359,6 331,2
5. Compressor inlet temperature C 0 20

6. Turbine inlet mass flow t/h N/A N/A
7. Turbine inlet temperature C N/A N/A
8. Turbine exhaust mass flow t/h 366,2 337,2
9. Turbine exhaust temperature C 488,8 508,9
10. GT fuel HHV chemical energy input (77F/25C) | kW 93557 85585
11. GT fuel LHV chemical energy input (77F/25C) kW 85076 77827
12. Exhaust gas molecular weight 28,68 28,68
13. Exhaust gas N2 mole percentage % 75,93 75,94
14. Exhaust gas O2 mole percentage % 14,44 14,48
15. Exhaust gas CO2 mole percentage % 3,279 3,258
16. Exhaust gas SO2 mole percentage % 0 0

17. Exhaust gas H20 mole percentage % 5,435 5,399
18. Exhaust gas Ar mole percentage % 0,9144 0,9146
19. GT fuel flow t/h 6,553 5,995
20. Combustor steam injection flow (per GT) t/h N/A N/A
21. Combustor water injection flow (per GT) t/h N/A N/A
22. Inlet filter pressure loss millibar 2,457 2,492
23. Total exhaust pressure loss millibar 13,72 11,94
24. Fogging water mass flow t/h N/A N/A
25. Number of chillers in plant 0 0

26. Nameplate capacity at standard conditions kW N/A N/A
27. Nameplate COP at standard conditions N/A N/A
28. Chiller load at current heat balance conditions kW N/A N/A
29. COP at current heat balance conditions N/A N/A
30. Chilled water temperature C N/A N/A
31. Chilled water range C N/A N/A
32. Chilled water mass flow @ coil t/h 0 0

33. Desired air temperature drop C N/A N/A
34. Actual air temperature drop C N/A N/A
35. Coolant temperature C N/A N/A
36. Chilled water temperature leaving chiller C N/A N/A
37. Chilled water mass flow leaving chiller (per GT) | t/h N/A N/A
38. Net chilled water flow to storage tank (plant total) | t/h 0 0

-DO Thermoflow Macro (GT MASTER) 30.0 - D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2_sgta35 2.MGTM

Base Case: D:\Dados PC\Documents\Thermoflow\MYFILES30\GTPRO2 sgta35 2.GTM

Page: 5

