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Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung 
disease characterized by damage to the alveolar epithelium, leading to fibrosis 
and excessive accumulation of extracellular matrix in the interstitium of the 
lung. In the present study we performed high-resolution proteomic profiling of 
bronchoalveolar lavage (BAL) from IPF patients and controls, and found that the 
complement pathway was highly upregulated in IPF. The proteins C5, C6, C7, 
C8, and C9, all of which are part of the complement end product, TCC, were 
all upregulated. We also found that TCC levels were increased in plasma among 
IPF patients compared to controls, after adjustment for age, sex and BMI [mean 
(SD) 0.62 (0.24) vs. 0.33 (0.10), p  =  0.031]. These findings suggest a role for the 
complement system in the pathogenesis of IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that 
leads to decline in lung function and early mortality (1). Although anti-fibrotic therapies 
approved for IPF improve respiratory outcomes (2, 3), these drugs are associated with substantial 
side effects, and do not cure the disease. The prognosis for patients with IPF remains poor, with 
median survival often estimated to approximately 3–5 years (1).

The pathogenesis of IPF is multifactorial and characterized by progressive fibrosis and 
excessive accumulation of extracellular matrix in the interstitium of the lung, with an imbalance 
between anti-fibrotic and pro-fibrotic factors leading to collagen deposition (4).

To identify proteins involved in these processes, we performed high-resolution proteomic 
profiling of bronchoalveolar lavage (BAL) from IPF patients and controls, and identified the 
complement system to be differentially regulated. The objectives were to (i) categorize the 
complement factors identified by proteomics, and (ii) assess the clinical significance of 
circulating soluble terminal C5b-9 complement complex (TCC) in plasma, a key downstream 
readout of systemic complement activation, and its association with lung function and 
complement levels in BAL.
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Materials and methods

Subjects

Twenty-nine patients with IPF [mean age (SD) 66 (7) years, 6 
females], and 10 controls [aged 48 (13) years, 7 females] were included 
in this cross-sectional study and underwent bronchoscopy with BAL 
(5). IPF patients were diagnosed according to ATS/ERS criteria after 
multidisciplinary evaluation (6). Controls underwent bronchoscopy 
as part of planned surveillance >6 months after resection of carcinoid 
tumor, and were considered healthy without signs of lung disease. 
Contraindications for BAL for all subjects were forced vital capacity 
(FVC) <50% predicted and/or diffusing capacity of the lung for carbon 
monoxide (DLCO) < 40% predicted using GLI reference values (7, 8). 
These contraindications will exclude patients with severe IPF since the 
BAL procedure entails too high risk of complications in this group (9). 
We  excluded patients on anti-fibrotic treatment, active smokers 
during the last year, and those aged >75 years. Characteristics of the 
study population are presented in Table 1.

Bronchoalveolar lavage

Bronchoalveolar lavage (BAL) collection and preparation were 
performed as described previously (5). In short, fiberoptic 
bronchoscopy was performed in  local anesthesia with 10% 
lidocaine with the subject in a supine position. Alfentanil (0.25–
1.0 mg) was given intravenously in some subjects. With the 

bronchoscope wedged in a middle lobe segment, BAL was 
performed by instillation of 3 × 40 mL aliquots of Ringer solution 
(Fresenius Kabi, Germany) at 37°C. After each instillation, 
aspiration was performed with a negative pressure of 
10–12 mmHg, until backflow stopped or the patient started to 
cough. The recoveries from the second and third aliquot were 
used in this study. BAL was filtered through a nylon web (pore 
size; 48 μm) and centrifuged at 380 g for 5 min at 4°C. The cell 
pellet was re-suspended in 1 mL phosphate-buffered saline and 
supernatant was snap frozen in liquid nitrogen and stored at 
−80°C. Total cell count and viability were determined with 
tryptan blue staining and a hematological cell counter. Twenty-two 
of the 29 IPF patients had BAL samples with recovery of >30% of 
instillation, >95% viable cells and < 5% epithelial cells (10).

Proteomics in BAL

Sample preparation for mass spectroscopy was performed as 
described (11) using BAL supernatant from 22 IPF patients and 10 
controls. The peptide samples were analyzed by liquid 
chromatography–tandem mass spectrometry (nEasy-LC coupled to 
QExactive Plus, Thermo) with 60 min separation gradient. One 
replicate was performed per sample. MaxQuant v1.6.1.0 was used for 
protein identification and label-free quantification. Perseus v1.6.1.3 
was used for statistical analysis based on normalized intensities (t-test 
with FDR < 0.05). The mass spectrometry proteomics data were 
deposited to the ProteomeXchange Consortium PRIDE repository 
with identifier PXD036638 (12). In the supplement, the mass 
spectrometry data is available as a raw data file (excel file) with 
analysis from Perseus. Pathway analyses were performed using 
Cytoscape 3.8.0 with cytoKEGG. Proteomic data were adjusted for age 
and sex.

EDTA plasma and TCC analysis

Blood (EDTA) was collected <2 h before BAL collection. EDTA 
plasma was centrifuged (1,400 ×  g, 20 min) and plasma was snap 
frozen in liquid nitrogen and stored at −80°C. The fluid-phase 
terminal complement complex (TCC), consisting of the components 
C5b, C6, C7, C8, and C9, was measured by ELISA using a monoclonal 
antibody aE11 as originally described in (13), and later modified by 
using another detection antibody (14). The upper reference value for 
TCC in plasma was 0.7 complement arbitrary units (CAU)/mL (14). 
This value was determined using 40 healthy blood donors (20 females 
and 20 males), using the 95-percentile for defining the cut-off. A 
detailed protocol for the TCC ELISA is presented in 
Supplementary material.

Statistical analysis

Comparison of complement factors in BAL (proteomic analysis) 
and plasma (TCC) between IPF patients and controls was performed 
with MANCOVA using complement factors as dependent, diagnosis 
(IPF or control) as fixed and age, sex and BMI as covariates. Spearman 
correlation was used to assess associations between proteomic 

TABLE 1 Characteristics of the study cohort.

IPF (n  =  29) Controls (n  =  10)

Age (years) Age (years) 66 (7) 48 (14)

Sex (female/male) 6/23 7/3

BMI (kg/m2) 28.7 (3.8) 25.6 (4.45)

Lung function

FVC (L) 3.2 (0.6) 4.3 (0.7)

FVC % predicted 74 (14) 104 (15)

FEV1 (L) 2.6 (0.5) 3.4 (0.5)

FEV1% predicted 78 (14) 105 (16)

DLCO (mmol/min*kPa) 4.6 (0.8) 8.2 (2)

DLCO % predicted 52 (8) 99 (13)

Blood samples

Hb (g/dL) 14.4 (1.3) 13.9 (1.3)

CRP (mg/L) 4 (4.2) 1.4 (1.4)

Leukocytes (106/L) 8 (2) 5 (1)

Cells in BAL

Macrophages (%) 80 (15) 83 (17)

Neutrophils (%) 6 (8) 7 (18)

Lymphocytes (%) 9 (9) 10 (11)

Eosinophils (%) 4 (5) 0 (0)

IPF, idiopathic pulmonary fibrosis; BMI, body mass index; FVC, Forced vital capacity; FEV1, 
forced expiratory volume-one second; DLCO, diffusing capacity for carbon monoxide; Hb, 
hemoglobin; CRP, C-reactive protein. Data are presented as mean (SD).
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components and BMI as well as with TCC within patients 
dichotomized at TCC 0.7 CAU/mL.

Ethical considerations

The study was approved by the Regional Committee for Medical 
Research Ethics (2013/2358) and written informed consent was 
obtained from all participants.

Results

In the proteomic dataset, we found 567 differentially regulated 
proteins (118 upregulated and 449 downregulated) (p < 0.05, 
0.66 > FoldChange >1.5) in BAL, comparing IPF patients with 
controls. Pathway analyses of the 567 proteins are listed in Figure 1, 
showing the top 5 significantly enriched pathways (with >10 proteins 
present) in IPF compared to controls (Figure 1A). The complement 
and coagulation system were among the pathways with most proteins 
differentially regulated in IPF as compared with controls, with 23 out 
of 85 proteins involved (27%) (Figure 1A). The proteins C5, C6, C7, 
C8, and C9, all part of the complement end product, TCC, were all 
significantly upregulated (Figure  1B). In addition, we  found that 
several of the complement proteins in the classical pathway and 
alternative pathways, such as C1r and complement factor B, 
were upregulated.

Focusing on TCC, C1r, complement factor B and C3, C5-9, these 
factors correlated well with BMI (all r between 0.43 and 0.64, p < 0.05), 
except TCC (r = −0.28, p = 0.14) and C6 (r = 0.14, p = 0.52). Table 2 lists 
the complement components from the proteomics analysis (IPF 
patients vs. controls) with age, sex and BMI adjusted p-values.

After adjustment for age, sex and BMI, IPF patients had 
significantly increased TCC levels in plasma compared to controls 
[mean (SD) 0.62 (0.24) vs. 0.33 (0.10), p = 0.031] (Figure 1C). Elevated 
TCC plasma values (≥0.7 CAU/mL) were present in 34% of the IPF 
patients, but in none of the controls. Of the IPF patients, 72% had 
TCC levels higher than the controls. In patients with elevated plasma 
TCC (>0.7 CAU/mL), TCC was significantly correlated with the 

complement factors, C3, C8, and C9 in BAL (Figure 1D). We found 
no correlation between lung function (FVC and DLCO) and TCC 
levels in plasma.

Discussion

Our results suggest that complement plays a role in the 
pathogenesis of IPF. Proteomic analysis of BAL demonstrated that the 
complement system was highly differentially regulated in IPF patients 
as compared with controls. Importantly, all five components of TCC 
were upregulated in the proteomic analyses. TCC in plasma was also 
elevated in IPF patients as compared to controls, and elevated levels 
of TCC correlated with C3, C8, and C9 complement factors in BAL.

Proteomic analysis of BAL revealed that the complement and 
coagulation cascade were the top two differentially regulated 
pathways, with half of the proteins in the complement pathway 
elevated in IPF patients as compared with controls. Similarly, in a 
proteomic analysis of peripheral blood, comparing IPF patients to 
normal controls, O’Dwyer et  al. found that complement and 
coagulation cascade were among the most significantly enriched 
clusters (15). Gu et al. have identified C5b-9 in fibroblasts in lung 
explants of IPF patients who have undergone lung transplantation, as 
well as elevated levels of TCC in BAL and plasma compared to 
controls (16). They found that blocking complement receptors C3aR 
and C5aR stopped the progression of animal experimental bleomycin-
induced lung fibrosis and suppressed the local complement activation, 
which indicate that complement plays a role in disease progression 
(16). Meliconi et al. found elevated levels of C3d, C4d, and Factor Ba 
in humans, demonstrating that conversion products of all complement 
pathways are increased in IPF (17). Higher C3 expression is also 
associated with a MUC5B promoter variant that has been shown to 
be a strong risk factor for the development of IPF, suggesting that it 
may contribute to the pathogenesis of IPF (18). Also, IL17-A and 
transforming growth factor beta (TGFβ) have been suggested to have 
a role in complement activation and in the pathogenesis of IPF (19, 
20). IL17A mediates epithelial injury via TGFβ that again 
downregulates Complement Inhibitory Proteins (CIP), leading to 
complement activation.

FIGURE 1

(A) Top 5 regulated pathways in BAL in IPF patients using KEGG pathway analysis. (B) Scheme of the complement system. Differentially regulated 
complement components (p  <  0.05) marked in shades of red colour, i.e., upregulated; depending on the t-score after the proteomics analysis (IPF 
patients vs. controls). (C) Terminal complement complex (TCC) in EDTA plasma in controls (Ctr) vs. IPF [complement activation unit (CAU)/mL]. 
(D) Correlation plots and r-value between complement factors, C1r, CfB, C3, C5, C6, C7, C8 and C9 and TCC  <  0.7 and TCC  >  0.7 in IPF patients only. 
*p  <  0.05.

https://doi.org/10.3389/fmed.2023.1236495
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sikkeland et al. 10.3389/fmed.2023.1236495

Frontiers in Medicine 04 frontiersin.org

The proteomics analyses do not measure activated products of 
the complement system, but rather native complement components 
present in the lung. However, elevated levels of plasma TCC in IPF 
clearly indicate that systemic complement activation occurs in 
these patients. The proteomics data indicate that there are sufficient 
amounts of all components needed to activate the terminal 
pathway to form TCC, and it is reasonable to assume a local 
activation in the IPF lung. When TCC is formed, the small potent 
peptide C5a is released. C5a is one of the most important 
contributors to inflammation, inducing innumerable cytokines and 
other inflammatory mediators (21). In accordance with the 
findings of Gu et  al. (16), our findings support a role of the 
C5a-C5aR axis as a possible driver of chronic inflammation and 
progression of fibrosis. The increased plasma concentration of TCC 
may be due to leakage of TCC from the lungs to the circulation, or 
reflect a low-grade systemic activation occurring in these patients, 
or a combination thereof. We  were unable to demonstrate any 
correlation between complement components (in the lung) and 
lung function parameters.

The study has limitations. We  were not able to match the 
control group with the IPF-group with respect to age and sex. 
Since the two groups were not properly matched, we controlled 
for age and sex in the statistical analyses. In addition, many of the 
complement factors correlated with BMI, and BMI was therefore 

also included as an adjustment variable. In a study that involves 
bronchoscopy and BAL, it is difficult to recruit healthy controls. 
For practical and ethical reasons, we  chose to recruit controls 
among subjects who should undergo bronchoscopy anyway, as 
part of annual surveillance after curative resection of carcinoid 
tumors. They were non-smokers and considered healthy with no 
previous or current medication that could interfere with 
the results.

In conclusion, IPF was associated with upregulation of terminal 
complement components in BAL, and increased terminal complement 
complex in plasma, suggesting a role for the complement system in 
the pathogenesis of IPF.

Data availability statement

The mass spectrometry proteomics data to the ProteomeXchange 
Consortium is available via the PRIDE partner repository with the 
dataset identifier PXD036638. In the deposited file, there are also mass 
spectrometry data from patients with sarcoidosis and hypersensitivity 
pneumonia, which are not included in the current study with only IPF 
patients and controls. In the supplement of the present paper, the mass 
spectrometry data is available as a raw data file (excel file) with 
analysis from Perseus.

TABLE 2 Complement component proteomic data in BAL comparing patients with IPF vs. Controls.

UniProt Gene name Protein name Fold change IPF vs. 
Ctr

Adj P*

B4DPQ0 C1R Complement C1r subcomponent 2.46 <0.001

Q9NZP8 C1RL Complement C1r subcomponent-like protein 1.52 0.010

P02745 C1QA Complement C1q subcomponent subunit A 0.8 0.074

A0A0A0MSV6 C1QB Complement C1q subcomponent subunit B 0.4 0.010

P02747 C1QC Complement C1q subcomponent subunit C 0.7 0.030

P09871 C1S Complement C1s subcomponent 0.4 <0.001

Q9NPY3 CD93 Complement component C1q receptor 2.51 <0.001

P06681 C2 Complement C2 1.1 0.94

P01024 C3 Complement C3 1.71 <0.001

P0C0L5 C4B Complement C4-B 0.7 0.56

P01031 C5 Complement C5 2.83 <0.001

P13671 C6 Complement component C6 1.87 0.001

A0A0D9SEN1 C7 Complement component C7 3.20 <0.001

P07357 C8A Complement component C8 alpha chain 3.47 <0.001

P07358 C8B Complement component C8 beta chain 2.44 <0.001

P07360 C8G Complement component C8 gamma chain 2.97 <0.001

P02748 C9 Complement component C9; C9a; C9b 3.20 <0.001

B4E1Z4 CFB Complement factor B 1.81 <0.001

K7ERG9 CFD Complement factor D 1.0 0.77

P08603 CFH Complement factor H 3.75 <0.001

Q03591 CFHR1 Complement factor H-related protein 1 5.22 0.005

G3XAM2 CFI Complement factor I; heavy chain;light chain 2.28 <0.001

*Adjusted for age, sex and BMI.
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