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Abstract

Background: Video recording of cells offers a straightforward way to gain

valuable information from their response to treatments. An indispensable step

in obtaining such information involves tracking individual cells from the

recorded data. A subsequent step is reducing such data to represent essential

biological information. This can help to compare various single‐cell tracking
data yielding a novel source of information. The vast array of potential data

sources highlights the significance of methodologies prioritizing simplicity,

robustness, transparency, affordability, sensor independence, and freedom

from reliance on specific software or online services.

Methods: The provided data presents single‐cell tracking of clonal (A549)

cells as they grow in two‐dimensional (2D) monolayers over 94 hours,

spanning several cell cycles. The cells are exposed to three different

concentrations of yessotoxin (YTX). The data treatments showcase the

parametrization of population growth curves, as well as other statistical

descriptions. These include the temporal development of cell speed in family

trees with and without cell death, correlations between sister cells, single‐cell
average displacements, and the study of clustering tendencies.

Results: Various statistics obtained from single‐cell tracking reveal patterns

suitable for data compression and parametrization. These statistics encompass

essential aspects such as cell division, movements, and mutual information

between sister cells.

Conclusion: This work presents practical examples that highlight the

abundant potential information within large sets of single‐cell tracking data.

Data reduction is crucial in the process of acquiring such information which

can be relevant for phenotypic drug discovery and therapeutics, extending

beyond standardized procedures. Conducting meaningful big data analysis

typically necessitates a substantial amount of data, which can stem from

standalone case studies as an initial foundation.
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1 | INTRODUCTION

The goal of this contribution is to showcase the
potential benefits of sharing refined single‐cell track-
ing data obtained from video recordings. Recent
advances in single‐cell research make it more inter-
esting to follow individual cells over time to gain
dynamic information from them at the individual level
[1]. Data from such observations can reflect several
processes and signaling pathways inside cells and
between them. Tracking single cells in video aspires to
provide this type of information, which can already be
lost when working on fixed dead cells. Such tracking
can also contribute to characterize phenotypic states
and quantify them, as permanent or temporary [2, 3].
It can provide data on lineage relationships between
cells and their descendants, contributing to trace
population dynamics and insight into possible patho-
logical outcomes [4].

Single‐cell tracking is especially relevant for study-
ing cancer cells, which are known to exhibit highly
adaptable behavior during treatments. Cancer cells can
rapidly alter their gene expression profiles to adapt to
new microenvironments, making them difficult to
target effectively [5]. This high plasticity also enables
cancer cells to fuse during close cellular interactions,
generating hybrid subpopulations with enhanced
tumorigenicity and metastatic capacity [6–8]. In addi-
tion, cancer cells can display significant phenotypic
heterogeneity within genetically identical populations
as a result of unique transcriptomes and proteomes [9].
This heterogeneity, which can be driven by epigenetic
alterations, poses a challenge for guiding personalized
treatments [10–13]. Tracking single cells over time can
provide valuable insights into lineage relationships and
population dynamics, shedding light on the mecha-
nisms behind these phenomena.

Several authors emphasize that single‐cell tracking
from video has broadened the spectrum in mammalian
signaling networks, drug development, and cancer
research [14–23]. Refs. [19, 24, 25] showed statistics
from systematic single‐cell tracking during several days,
elucidating heterogeneous cell response and induction of
cell death mechanisms. This tracking also allowed
detection of inheritable traits, such as vacuolar transfer
from mother to daughter cells. Inheritance may here be

significant for the interpretation of observations related
to autophagy signaling [26, 27].

Andrei et al. [28] pointed out different types of
observables from tracking two‐dimensional (2D) cell
cultures that might have biological relevance in cellular
studies. 2D cultures have provided a wealth of informa-
tion on fundamental biological processes and diseases
over the past decades [29]. The advantage of using these
models for tracking single cells is their low cost and
reproducibility as compared to three‐dimensional (3D)
platforms [30–32]. 2D models can easily integrate
subsequent biochemical analysis and act as surrogate
measurements for 3D situations [33].

3D models are under active development to better
represent the complexity of living organisms during in
vitro research [34–37]. However, they still do not
recapitulate micro‐environmental factors, being only
reductionist of the in vivo counterpart [29, 33]. 3D cell
culture models are currently application specific and
experiments with them are difficult to check for
repeatability [29]. Current 3D platforms do not allow
acquisition of cellular kinetics with a high spatial and
temporal resolution over a long period of time [33, 38].
High‐content screening (HCS) platforms are emer-
ging, however, visualization of 3D structures growing
within complex geometrical structures remain still a
big challenge mainly due to optical light scattering,
light absorption, and poor light penetration with
prolonged imaging acquisition times [29]. Microflui-
dic devices under highly controllable environmental
conditions is a well‐established operation in ongoing
research [39]. However, optimal nutrient supply and
sufficient cell retention, especially for the long‐term
cultivation of slow‐growing cells as well as motile
cells, still requires a reliable cell retention concept to
prevent permanent cell loss, which otherwise com-
promises qualitative and quantitative cell studies [40].

This study restricts to processing data from tracking
individual cells growing in 2D monolayers. The intention
is to show, by simple examples, the potential utility of
large collections of such data, allowing users to compare
their experiments with many previous similar experi-
ments. Such collections would facilitate big data analysis,
taking advantage of weak correlations in large amounts
of data. The source of these data may be video recor-
dings of diverse quality, assumed as by‐products from
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experiments worldwide. The present example data
therefore, for the sake of simplicity, only represent
positions (tracks) of individual cells and their eventual
division and death during recording. They originate from
previous work on Yessotoxin (YTX) [19]. This small
molecule compound can induce different cell death
modalities [41]. The broad spectrum of cellular response
to YTX suits the present illustrations. The richness of
responses from it may also make the compound an
interesting candidate to probe cells for properties.

Data collections from single‐cell tracking can be a
resource for both experimental work and statistical
investigations, including fault‐tolerant big data analysis
to search for patterns of biologic relevance. The present
data processing may also have direct interest for
processing videos aimed at special studies on possible
emergence of rare or resistant subpopulations among
cells subject to toxic agents, potential for metastasis or
early screening for drug discovery. Another actual
application is simply to check for the healthiness of cell
populations, including testing for contamination.

The data analyses below relates cells in pedigree trees,
where the initial cells are the ancestors (roots). These trees
facilitate classification of cells in subpopulations according
to a combined analysis of the cells in each tree. An example
of such a combined analysis is to count the number of
dying cells in each pedigree tree. The statistics below apply
this simple idea assuming that cells in pedigree trees, with
no cell death, might define a special resistant sub-
population. It reflects, for different subpopulations, varia-
tion in cell speed, correlations between sister cells as well as
relocation and tendency of clustering. The authors conjec-
ture that such data summaries can guide computerized
search after patterns and causal relations in large sets of
single‐cell tracking data. The final proof of concept depends
on access to such data sets.

A variety of relatively low‐cost equipment apply to
perform video‐based single‐cell tracking in 2D cellular
models. Researchers can now in their most cost‐effective
way produce videos of living cells for subsequent analysis
by remote (Internet/cloud based) services, as recently
developed by Korsnes Biocomputing (KoBio).1 They may
also do similar analysis/tracking using their own favorite
tools, such as Image J/TrackMate [42]. The supplementary
data illustrates the potential transparency and software/
equipment independence of such data production2

facilitating sample inspection. Perturbation of data values
can reveal if analysis results are sensitive to measurement
errors. These factors make such data relevant for

contribution to biological databases reviewed by Zou
et al. [43], and Haniffa et al., [44, 45]. The main intention
here is taking advantage to utilize data from simple and
low‐cost recordings to create synergistic value from
sharing data on cellular behavior.

2 | MATERIALS AND METHODS

2.1 | Toxin

YTX was obtained from the Cawthron Institute (Nelson,
New Zealand). YTX was dissolved in methanol as a
50 µM stock solution. The stock solution was diluted in
RPMI medium (Lonza, Norway), achieving a final
concentration of 2 µM YTX in 0.2% methanol. Treated
cells were incubated with 200, 500, and 1000 nM YTX
and control cells were incubated with 0.2% methanol as
vehicle.

2.2 | Cell culture

A549 cell lines were provided by Dr. Yvonne Andersson
and Dr. Gunhild Mari Mœlandsmo from the Institute of
Cancer Research at the Norwegian Radium Hospital.
Cells were cultured in RPMI 1640 (Lonza, Norway),
supplemented with 9% heat‐inactivated fetal calf serum
(FCS, Bionordika), 0.02M Hepes buffer 1M in 0.85%
NaCl (Cambrex no 0750, #BE17‐737G) and 10mL 1X
Glutamax (100X, Gibco #35050‐038), 5 mL in 500mL
medium. Cells were maintained at 37°C in a humidified
5% CO2 atmosphere.

2.3 | Single live‐cell imaging
and tracking

A549 cells were plated onto 96 multiwell black micro-
plates (Greiner Bio‐One GmbH) for time‐lapse imaging.
Cells were imaged into Cytation 5 Cell Imaging Reader
(Biotek), with temperature and gas control set to 37°C
and 5% CO2 atmosphere, respectively. Sequential imag-
ing of each well was taken using a 10x objective.

The bright and phase contrast imaging channel was
used for image recording. Two times, two partly over-
lapping images were stitched together to form images of
the appropriate size. A continuous kinetic procedure was
chosen where imaging was carried out with each
designated well within an interval of 6 min for a 94 h
incubation period. Exposed cells were recorded simulta-
neously subject to three different concentrations of YTX
200, 500, and 1000 nM.

1https://www.korsnesbiocomputing.no/
2Supplementary data are available via https://user.
korsnesbiocomputing.no (user inref 2022, password korsnes1)
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The single‐cell tracking in this work was performed
using the in‐house computer program Kobio Celltrack.3

The present data derives from previous work on YTX [19].

3 | RESULTS

3.1 | Single‐cell tracking

Figure 1 illustrates production of input data for the
present analysis. The colored dots in Figure 1a represent
individual cell positions during 94 h of recording. The
tracking also provides data on cell division and death.
The actual tools for tracking are outside the scope of this

study, which in principle could rely on data from any
functional tracking system.

Figure 1b illustrates data products from the prior
single‐cell tracking. The left part of the figure gives a
time‐attributed graph representation of kinships between
the descendants of a cell which is inside the red frame at
start of recording. The right part illustrates the positions
of these cells during recording. The horizontal positions
(x‐y coordinates) here represent spatial location and the
height (z‐coordinate) represents time. The red frame is
here just large enough to contain 100 root cells at the
start of recording. The present examples of statistical
analysis are for the cells belonging to the pedigree trees
starting inside such a red frame.

Figure 2 shows spatially located pedigree trees for
cells exposed to YTX at three different concentrations.
Cells in surviving lineages exposed to the highest YTX

FIGURE 1 Illustration of production of single‐cell tracking data for subsequent analysis and data compression aimed for big data
analysis. Cells were in this case exposed to 200 nM Yessotoxin (YTX). The supplementary data includes video demonstrations of the actual
tracking (see footnote 2). (a) Snapshots illustrating tracking individual cells from video of A549 lung cancer cells. Left: at the start, center:
after 40 h, right: 80 h. The actual recording instrument was Cytation 5 with 10× magnification. Each image consists of 2 × 2 stitched
(approximately) simultaneous images. The red frame is just large enough to contain 100 cells at start of recording. All these 100 cells and
their descendants are subjected to subsequent tracking (see supplementary data). (b) Left: “flat” temporal representation of a pedigree tree
showing cell tags/names for reference in communications. Cell division appears as ovals, where their color depends on generation.
Rectangles represent cell death (blue: apoptosis‐like, red: necrosis‐like). Right: 3D illustration of the same pedigree tree, providing
information on motion of the cells.

3https://www.korsnesbiocomputing.no/
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concentration (1000 nM) may appear to behave similar to
cells subject to the lowest YTX (200 nM) concentration. It
could reflect a resistant subpopulation.

3.2 | Single‐cell viability

Cell tracking offers valuable insights into fundamental
cellular properties like survival and proliferation, making
it a crucial tool across various domains of cell research
such as risk assessment for toxic agents, drug screening,
and cancer research. Researchers studying the impact of
specific toxic agents on a particular group of cells can
enhance their understanding by comparing their findings
with data from similar experiments conducted elsewhere.
Efficient reduction of such data plays a pivotal role in

facilitating meaningful comparisons and enabling access
to relevant information within extensive data collections.
This section presents prototypes of data reduction
techniques aimed at achieving these objectives.

Figure 3a shows the change in the size of distinct cell
subpopulations during video recording. The graphs show
the development of number of cells in pedigree trees with
roots (initial ancestors) inside a frame centered in the video
and just large enough to contain 100 cells at the start of
recording. The population of cells belonging to the largest
pedigree trees naturally grows faster than the total
population. These cells potentially dominate in number
after some time, if they inherit their tendency of cell
division and survival. Correlations between proliferation
and survival of descendants of sister cells (see Figure 4) can
indicate such inheritance.

FIGURE 2 “Forest” of pedigree trees from tracking A549 cells exposed to Yessotoxin (YTX) at concentrations 200, 500, and 1000 nM.
The upper row shows trajectories for cells in lineages without death (“resistant cells”). The middle row is for trajectories of cells in lineages
where at least one cell lives at the end of recording (“surviving pedigree trees”). The lower row shows trajectories for cells in lineages dying
out during recording. Red and black dots represent cell division and cell death respectively. Note that single‐cell tracking can provide more
precise information on cell viability as compared to traditional bulk assays. These types of measurements are prone to overestimate cell
survival due to prior apoptotic cell clearance and disintegration.
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The lower row in Figure 3a illustrates that cell
“viability analysis” based on single‐cell tracking can
provide information beyond results from traditional bulk
analysis. The black solid lines in Figure 3a represent a
third‐degree polynomial model fit to the data:

P t at bt ct( ) = 100 + + + ,3
2 3 (1)

where a, b, and c are the (model) parameters and t
represents time. Polynomials (or Taylor expansions)
are generally a convenient way to represent smooth
(“simple”) functions and to compress data (represent-
ing it by three parameters). Parameters from fitting a

complex biologically justified model may not necessar-
ily represent more biologically relevant information if
they are less effective to compress data.

Assume fitting a Taylor model (Equation 1) to the data
as above (see Figure 3a). Consider the resulting parameters
as a point, P= (a, b, c), in the three‐dimensional parameter
space. Similar parameters from various experiments will
give a set of points in the parameter space. If these points
spread out close to, for example, a 2D structure (embedded
in the 3D space), then there should, intuitively, be hope for
finding statistical models with two parameters (instead of
three) providing a biological interpretation/understanding.
Voids in the parameter space can also represent knowledge.

(a)

(b)

FIGURE 3 Illustration of different views of cell proliferation for A549 cells exposed to 200, 500, and 1000 nM Yessotoxin (YTX)
concentrations. Note that “all” refers to all cells in the red frame (see Figure 1a); “no death”: cells in lineages with no death; “survivors”: cells in
pedigree trees where at least one cell lives at the end of recording. Note the smoothness of the graphs, enabling effective parametrization (“data
compression”). (a) Development of the number of cells after the start of recording. (b) Development of the number of cells after the first cell
division. The graphs start at 200%, reflecting the doubling of the number of cells immediately after the first cell division.
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Figure 3b shows the percentage development of
the number of cells in pedigree trees as a function of
time after the first cell division. The left part of the
figure is for all 100 pedigree tress (initiating in the red
frame as explained above), and the right part is for the
30 largest pedigree trees. The figure shows that cells
exposed to the lowest concentration of YTX (200 nM)
tend to follow a regular timing for cell division, as
opposed to those subject to the highest concentration
(1000 nM). This tendency is most expressed for the
largest pedigree trees (right part of the figure).

3.3 | Speed

Measurements of cell speed offer valuable insights into
cellular conditions following various treatments. This
information holds significant prognostic value by
providing indications of cellular response and potential
outcomes associated with specific interventions. For
instance, it can contribute to the identification of
distinct migration and persistence values that may
correlate with the rate of intravasation [46].

Similar arguments for data reductions of viability,
discussed in Section 3.2, are also applicable to cell
speed. It is worth noting that viability and speed are
likely to be correlated, which presents additional
opportunities for data reduction, including dimension-
ality reduction techniques [47].

Track length for a cell during a period of time t
(divided by t) can intuitively define its average speed
during that period. However, track length is not in
practice directly available nor be it well‐defined for
imprecise and irregular positional data, where mea-
sures of length can depend on resolution. Cell speed

could (ad hoc) refer to movements of a given defined
point in a cell (e.g., the mean point of the nucleus/
nuclei). However, it may principally be looked at as a
spatio‐temporally localized (statistical) property of a
cell. Future work may assume an “uncertainty princi-
ple” where a positional data point is considered a
random selection from a set of possible positions
depending on the tracking method. An alternative
approach is to increase the level of sophistication and
replace the concept of “cell speed” with temporal
change in the (segmented) set of points covered by an
actual cell.

Estimates of positions are, for any definition,
imprecise for low‐quality imagery data. This work,
therefore, for the sake of simplicity, demonstrates
Gaussian kernel smoothing and interpolation [48] to
define speed. The actual bandwidth is 15 min. Perturba-
tions of estimates of cell positions may help to reveal how
final results are sensitive to this choice of bandwidth. The
authors left this exercise as a separate study. Note that
big data approaches may in principle automatically sort
out useful definitions of speed.

Figure 5 shows distributions of the 8 h centered
moving generalized mean speed for cells in lineages
with and without death during recording. The upper
and third rows are for the regular mean, whereas the
second and lower rows similarly show the fourth power
mean for the same data. This example illustrates a
possible data product that presumably could provide
information to big data analysis. The power mean Mp is
increasingly more sensitive to the highest speeds for
increased values of p. The distribution for M4, for
example, seems to be more sensitive to cell death in
lineages as compared to lineages with no cell death. One
can expect that the power mean Mp for p= 1, 2, …, n will

FIGURE 4 Results from kernel smoothing (bandwidth 1.5) of stack plots for number of descendants of first‐generation sister cells
within 70 h after their birth. The plots are for cells born within 20 h after start of recording. The two apparent clusters in the plot for cells
exposed to 200 nM Yessotoxin (YTX) indicate inheritance from the common mother cell.
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in a compact way reflect the distribution of speed for a
restricted value of n.

3.4 | Correlation between descendants
of sister cells

Correlating or analyzing the mutual information4

between parameters of sister cells can reveal signaling

downstream lineages. The treatment of cells can affect
their signaling and potentially introduce noise during cell
division affecting the behavior of descendant cells. As a
result, single‐cell tracking data has the potential to
capture and reflect this valuable information. When
multiple cell types exhibit similar responses to similar
treatments performed at different laboratories, they can
provide deeper insights into cellular reactions. By
comparing single‐cell tracking data from different
experiments, we can facilitate the discovery of robust
findings. This section outlines ideas for summarizing or
reducing the data to facilitate this search.

FIGURE 5 Distribution of 8 h centered running generalized mean of speed of cells during recording. The top and third row show
regular (first order) mean, and the second and fourth row show fourth power mean (Mp, p= 4). Note the difference between the
distributions, especially at the first part of the recording.

4http://www.scholarpedia.org/article/Mutual_information
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Figure 6 shows joint distributions for the total
track length of first‐generation sister cells and their
descendants 60 h after the birth of these (initial) sister
cells. These statistics are restricted to sister cells born
within 30 h after start of the recording. The estimates
result from using the algorithm scipy.stats.gaus-
sian_kde from SciPy5 with default settings (i.e., the
“scott” method defines the estimator bandwidth).
Section 3.3 outlines the present estimation of length
from imprecise positional data (applying Gaussian
kernel smoothing).

The joint distributions of Figure 6 show positive
correlations and hence reflect inheritance from
mother cells to their daughters. The authors will not
further speculate on the biological significance of
these statistics, since they only reflect results from

one experiment. However, the main finding here is
that such distributions are sensitive to cell treatment.
One may therefore suspect such data summaries to be
relevant for big data analysis. The regularity of such
distributions enables effective parametrization (or
data compression) to help search in large databases.

Figure 7 supports the notion of signaling downstream
lineages by demonstrating visual evidence of morpholog-
ical similarities among cells within the same pedigree
tree, in contrast to the surrounding cells. Moreover, the
corresponding pedigree trees and movements also exhibit
resemblances. These observations strongly imply that
establishing connections between cells in pedigree trees
can significantly aid the analysis of single cells.
Classification of cells, for example, often involves a
certain level of uncertainty. However, by adopting a
combined classification approach specifically designed
for pedigree trees, it can be feasible to mitigate this
inherent uncertainty.

FIGURE 6 Joint probability density function (PDF) of total track length (x and y) for the first generation sister cells and their
descendants 60 h after the birth of these (initial) sister cells. The cells are subject to YTX exposure at concentrations 200 nm, 500 nm
and 1000 nm. The upper row shows distributions for the pedigree trees with no cell death, and the lower one shows pedigree trees
with some cell death.

5https://scipy.org/
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3.5 | Mean square displacement (MSD)
of first generation daughter cells

The MSD of cells over time is a measure that captures both
their speed and directional persistence. Statistics from it can
presumably help big data analyses to find causal relations
in large sets of single‐cell tracking data. Such data can also
have direct interest in special studies. [46] for example,
argue for the importance of acquiring such data for better
understanding tumor growth rate and size.

This section explores potential methods for extracting
features from such data, aligning with the principles
discussed in Sections 3.2, 3.3, and 3.4. Figure 8a illustrates
the MSD of first‐generation daughter cells, depicting their
displacement as a function of time since birth. The figure is
for cells in pedigree trees, with and without cell death
during recording. The MSD of cells over time reflects both
their speed and movement patterns. This section explores
potential methods for extracting features from such data,
aligning with the principles discussed in Sections 3.2, 3.3,
and 3.4. Figure 8a illustrates the MSD of first‐generation
daughter cells, depicting their displacement as a function of
time since birth. The upper row here shows the tendency
of cells to need extra time to start drifting from their place
of birth. Processing of more data may reveal if this extra
time can be considered a “phenotype” useful for search in
data from many diverse experiments.

Note that Figure 8a indicates that cells in lineages
with dying cells tend to move faster from their initial
position as compared to cells with no observed cell death.
A possible hypothesis is that cells with the strongest
(inheritable) tendencies to move, are more vulnerable to
the actual toxin (YTX) as compared to the others.
One may also relate the observation to the concept of
“fight‐or‐flight” reaction, where many types of cells
respond to a variety of stressors in a reasonably
standardized fashion, which allows them to combat the
offending stimulus or escape from it [49].

If the movement follows a “memory‐less” Brownian‐
type motion, the graphs for the upper row in Figure 8a
would appear as straight horizontal lines, while the lower
row would exhibit straight upward tilting lines. However,
the actual graphs of Figure 8a reflect that the direction of
movement tends to be independent of the direction about
4–6 h earlier. The period up to about 4 h is “memory
time” reflecting how long cells tend to keep their
direction. It can partly correlate with cell shape,
assuming elongated cells move in their longitudinal
direction.

Assume the vector r(t) represents the relocation of a
cell t time units after its birth. The vector dot (inner)
product

c r r ,t = t t( ) ( ) · ( ) (2)

FIGURE 7 Visual illustration of morphological similarities between cells in the same lineage. This is an argument that combined
analysis of cells in pedigree trees can provide more information as compared to analysis of cells without knowing their close relatives. Left:
Snapshot from video of A549 cells after 45 h expossure to yessotoxin. The middle and right sections depict pedigree trees, with the lower
portion demonstrating the movement of cells in the above pedigree tree during recording. The time axis is represented upwards. The red
triangle points out cells in the pedigree tree with root cell C219 (middle of the figure) whereas the green triangle points out cells in the
pedigree tree with root cell C334 (right part of the figure). Note that these cells form clusters.
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then gives this distance squared (equal |r(t)|2). Figure 8a
shows average values for c(t) for two subsets of cells
where t ranges from 0 to 15 h. A tempting idea is slightly
to modify this elaboration and check for an average
value of

c r r ,t t t( ) = ( ) · ( )1,2 1 2 (3)

where r1 (t) and r2 (t) each represent the positions of a
couple of siblings (sister cells) t time units after their
birth. Figure 8b shows an example of results from such a
numerical experiment. The motivation for this test is the
conceptual simplicity and pure formal similarity between
Equations (2) and (3). The authors have no specific
biological interpretations of these graphs, except that

(a)

(b)

FIGURE 8 Examples of statistics of displacements of sister cells after their birth. The cells are subject to exposure by Yessotoxin (YTX)
at concentrations of 200, 500, and 1000 nM. (a) Upper row: Mean square displacement (MSD) of individual first‐generation daughter cells
(i.e., c(t)/t, see Equation 2) as a function of time t from their birth (divided by t) Lower row: MSD of first generation daughter cells as a
function of time from their birth. “live tree”: for cells in pedigree trees with no cell death (during recording period). “some death”: for cells
in pedigree trees with some cell death (during recording period). (b) Average values of c1,2(t)/t (see Equation 3) for cells in pedigree trees
with and without cell death 200, 500, and 1000 nM.

426 | CANCER INNOVATION

 27709183, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cai2.88 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [31/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



they reflect the tendency for sister cells to follow each
other after their birth. This tendency seems to depend on
exposure.

3.6 | Material exchange and trait
inheritance

Moving cells are capable of maintaining close proximity for
extended periods, which may suggest intercellular commu-
nication or material exchange that can impact their
behavior. The specific characterization of this behavior is a
subject for future research. Figure 9 exemplifies the
identification of these events where cells exhibit prolonged
closeness. This type of data may have special interest for
coculture or studies on differentiation where interactions are
crucial. Cells can interact through physical contact, surface
receptor‐ligand interaction, cellular junctions, and secreted
stimulus [30]. Understanding these types of interactions can
contribute to deciphering the complex network of interac-
tion between cells, helping to improve therapeutics [30].

Analyses of “forests” of pedigree trees can reflect
effects from events where cells absorb debris from dead
cells and transfer it to their descendants. Figure 10 shows
an example of such behavior where a cell includes an
apoptotic body from a neighboring dying cell. Such
apoptotic bodies can subsequently appear as vacuoles in
the absorbing cell. Sets of such vacuoles in a cell are
traceable throughout cell division by comparing their
size and number.

4 | DISCUSSION

This work illustrates a number of possible methods to
refine (or compress) data from video‐based single‐cell
tracking. The main intention is to provide relevant input
for big data analysis (or machine learning in general) to
identify biomarkers for better diagnosis and prognosis.

Well‐proven fault‐tolerant computerized methods are
here available to search for causal relations in large data
sets [50–52]. The principle of Occam's razor [53, 54] can
guide the search, favouring simplifications and approxi-
mations. It can be considered a contradiction to
anticipate the exact result from trying big data analysis
methods, nor can one expect to anticipate which refine-
ment methods are most effective. Successful big data
analysis is (similar to data mining) assumed beyond the
reach of human brains. However, their result may finally
be understood by humans.

Big data methods go beyond assuming linear associa-
tion between variables. The present examples therefore
restrict to visual/intuitive illustrations of data refinement
left for further processing. The existence of several local
maxima in joint distributions (clustering) may, as an
example, reflect significant biological information. The left
part of Figure 4 illustrates this point. It shows two main
maxima of the joint distribution of number of descendants
of sister cells. This may indicate inheritance of robustness/
viability, making it likely for the most robust cells finally
to dominate in number (which could be relevant for
prognoses in cancer).

The present examples of refinement methods typi-
cally show different behavior of cells in pedigree trees
with cell death as compared to the behavior of cells in
pedigree trees without cell death (during recording).
Some of these examples also show correlations between
sister cells or descendants of sister cells. This is an
argument to treat whole pedigree trees as individual
entities in the initial data refinement.

Successful application of big data analysis can, in
addition to sort out causal relations, give the possibility to
search for similarities between the behavior of cells in
many experiments. Methods to compare experiments can
in general be an important part of a collective knowledge
base of cell behavior.

Recent progress in techniques for sparse represen-
tations, compressive sensing, and machine learning

FIGURE 9 Forest of pedigree trees including identification of events where cells stay at the vicinity of each other for at least 4 h 2 h
apart from their birth (cell division). The cells were subject to Yessotoxin (YTX) exposure at concentrations of 200, 500, and 1000 nM.
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(see e.g., [55, 56]) give a perspective of direct automatic
identification of actual biomarkers directly from video
of cells. The present work contributes to this develop-
ment by demonstrating initial refinement of data from
single‐cell tracking. These data summaries may also be
of direct biological or medical interest in the concep-
tual framework of standalone experiments. They
may in addition help the development of formal

mathematical methods by applying concepts from
statistical physics [57]. However, note that machine
search for causality in data may utilize weak correla-
tions without any immediate intuitive meaning.

This work illustrates derivation of the following
parameters from single‐cell tracking data which repre-
sent positions of individual live cells, their division, and
death during several cell cycles:

FIGURE 10 Example where an apoptotic body (green arrow) from a dying cell (1) ends up as a vacuole in a neighboring cell (2) which
subsequently divides, and the vacuole ends up in one of the daughter cells. Detailed inspection of many cells in video can reveal such rare
events and shed light on epigenetic heritage, and generally signaling downstream pedigree trees. Such signaling is an argument to study
lineages as independent entities and for example, apply information on lineage relations when for example classifying cells.
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• Number of cells in different classes of pedigree trees
during video recording (Section 3.2). It may reflect that
some pedigree trees consist of specially viable and
resilient cells. This property seems to be already
written into the root (ancestor) cell. Intrusive single‐
cell analysis after tracking, while preserving track
identities, may clarify the corresponding mechanisms
behind this resilience.

• Parameters from (representations of) speed distributions
for various subsets of cells during tracking (Figure 5).
The regularity of these distributions allow representa-
tions by few parameters (so‐called sparse representation).

• Parameters from joint distributions of the size of
(pedigree) subtrees for the first generation sister cells
where they are root cells (Figure 6). Such distribu-
tions can be parameterized by correlation coeffi-
cients, covariance, and shape parameters (or sparse
representations).

• “Memory” time of trajectories for cells in subpopula-
tions. Figure 8a reveals that cell trajectories can have a
tendency to keep their direction, typically during 2 h to
4 h. This tendency can reflect cell shape.

• Tendency for cells to stay close to each other for
periods. Figure 9 visualizes an example where cells
tend to stay close for periods of time. Such events can
potentially reflect intercellular communication and
material exchange (see Figure 10). This tendency may
have a special interest in studies where communica-
tion between different cell types plays a role. Tracking
of cells in coculture can in this case help to reveal how
to affect such behavior.

An intention behind the present work is, as pointed
out above, to promote ideas for better and easier
comparison between different experiments. This would
promote securing reproducibility of observations, which
has emerged as a main concern in life science research in
recent years [58]. Easy exchange of raw and refined data
is paramount in such quality assurance. Experiments on
cells can include video recording of them under standard
(common) conditions, and statistics from tracking the
cells can reveal differences between experiments and
which can affect their reproducibility. Tracking under
standard conditions may in general reveal effects on cells
and which otherwise may pass under the radar using
bulk assays. This is an example of direct use of the
present type of statistics.

Large‐scale sharing of data from tracking single cells in
video will naturally raise questions on robustness of results
from initial analysis of them. Cells in different experiments
may never be treated exactly the same way. Cells can be
sensitive to photo‐toxicity as well as possible molecular
probes. Types of extracellular matrices and their proteins

can also affect cellular behavior in test wells [59]. Data
analysis can reveal to what degree comparisons of data
from them still apply. It will be important to identify ranges
of conditions for cells in which they will behave in
comparable ways. It will also be important to identify
conditions/treatments where cellular behavior is sensitive
to small and uncontrollable perturbations. Data analysis
may also reveal possible probabilistic views of results from
observing cellular behavior.

Further development of sensors and software will
extend the above restriction to data on cell positions,
division, and death. This will advance exploitation of its
potential utility, as indicated by several authors [16, 23,
60–62]. Single‐cell tracking from high‐quality imagery
allows collecting data on phenotypical changes, other-
wise difficult to measure from an end‐point measure-
ment such as single‐cell RNA‐sequencing (scRNA‐seq)
[62]. Furthermore, epigenetic states, protein expression,
and enzyme activity, can not only be inferred from
changes in gene expression [62, 63]. Integrating single‐
cell tracking with RNA‐seq analysis can therefore
complement characterization of biological processes by
combining analysis of cellular phenotypes with gene
expression profiles [64, 65]. These analyses allow over-
laying phenotypic cell identity with genetic lineage
information for a more comprehensive view of clonal
relationships, since gene expression alone is not suffi-
cient to classify cell states [4, 66]. Integrating such
analysis into cell ontology can help to discover a large
variety of novel cell populations [45]. Tracking individual
cells can therefore complement current cell ontology
efforts.

Big data analysis relies on a significant amount of
data to derive meaningful insights, and accurately
assessing the value of a data set is only possible once it
becomes available for analysis. As a result, the authors
assert that a comprehensive roadmap for substantial and
meaningful data sharing should involve the prototyping
of statistical parameters and the creation of value
through the execution of complementary specialized
studies. The authors' current contribution aims to serve
as an inspiration for such specialized studies, motivating
researchers to delve further into this field of research.
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