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1  |  INTRODUC TION

Ecological research in the 21st century has been characterized by the ac-
cumulation of species occurrence data, due mainly to the advancements 
in digital technology and online data repositories (LaDeau et al., 2017). 
While this accumulation of data has expanded the potentials of ecolog-
ical analysis on the spread, range shifts and relationship species have 
with the underlying environment, a multitude of challenges have arisen. 

In particular, the data are likely to have come from disparate sources, 
resulting in heterogeneous attributes, assumptions and sampling proto-
cols inherent in each (Fletcher Jr et al., 2019).

Typically, analysis of such data uses species distribution models 
(SDMs), which model the relationship between species' distributions 
and the underlying environment. They are fitted to data using a va-
riety of different estimation procedures and software packages (ex-
amples of such provided in Norberg et al.,  2019). However, when 
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Abstract
1.	 Ecological data are being collected at a large scale from a multitude of different 

sources, each with their own sampling protocols and assumptions. As a result, the 
integration of disparate datasets is a rapidly growing area in quantitative ecol-
ogy, and is subsequently becoming a major asset in understanding the shifts and 
trends in species' distributions.

2.	 However, the tools and software available to construct statistical models to inte-
grate these disparate datasets into a unified framework is lacking. This has made 
these methods inaccessible to general practitioners and has stagnated the growth 
of data integration in more applied settings.

3.	 We therefore present PointedSDMs: an easy to use R package used to construct 
integrated species distribution models. It provides functions to easily format the 
data, fit the models in a computationally efficient way and presents the output in 
a format that is convenient for additional work.

4.	 This paper illustrates the different uses and functions available in the package, 
which are designed to simplify the modelling of integrated models. A case study 
using the package is also presented: combining three datasets coming from dif-
ferent sampling protocols, all containing records of Setophaga caerulescens across 
Pennsylvania state.
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several datasets were available, the standard approach was to fa-
vour one dataset and discard the others, or use them in some form 
of secondary analysis (Simmonds et al., 2020).

As a result, a myriad of statistical methods to perform analysis, make 
predictions and efficiently use all available data have been produced—
the so-called integrated species distribution models (ISDMs; see Miller 
et al., 2019, for a detailed review). A common result among research 
on the topic is that integrated data models appear to not only expand 
the spatial scope of a study, but also appear to be superior to models 
with a single data source by providing improvements to the results and 
estimates in comparison to using only a single dataset (see e.g. Bowler 
et al., 2019; Fithian et al., 2015; Miller et al., 2019).

Despite the development of ISDMs, a significant problem is the 
lack of general software and tools to make inference with them; 
thus, the overall uptake has been generally slow. Here we introduce 
PointedSDMs, an easy to use R (R Core Team, 2022) package designed 
to fit SDMs using data obtained from heterogeneous sources, and in-
tegrate them all together in a unified statistical framework. It does so 
using a hierarchical state space formulation—in which we link a pro-
cess model (which provides a description of the true distribution of the 
model) with observation models for each dataset, dependent on their 
underlying sampling protocols (Isaac et al., 2020).

The integrated model for this package is fitted using integrated nested 
Laplace approximation (INLA)—a computationally efficient method used 
by Bayesian statisticians to fit latent Gaussian models. The theory behind 
the INLA methodology is discussed in detail in Rue et al. (2009), and es-
timating models with this methodology is made simple with the now es-
tablished R-INLA package (Martins et al., 2013). The PointedSDMs package 
constructs a wrapper around the R package inlabru (Bachl et al., 2019), 
which, in turn, builds on the R-INLA package to help provide a user-
friendly method to simplify the modelling of spatial process models.

1.1  |  Statistical model

The aim of our state-space point process model is to use the avail-
able species' location data to make inference about the ‘true’ 
distribution of the population of the species'; since this distribu-
tion cannot be directly observed, it is referred to as a latent state 
(Isaac et al., 2020). To do inference, we use a hierarchical modelling 
structure with an underlying process model which provides a sta-
tistical description of how points are distributed in space; the role 
of such is a reflection of how multiple data types emerge from the 
same system (Isaac et al., 2020). This process has a spatially vary-
ing intensity function (denoted here by �(s)) which is some function 
of environmental covariates X and parameters � such that a higher 
intensity implies that the species is more abundant in a location. 
A visual representation of the hierarchical setup of this model is 
presented in Figure 1.

For this model, we assume that the underlying process model is 
a log-Gaussian Cox process (LGCP) with an intensity function given 
as �(s) = exp{�(s)}, which describes the expected number of species 
at some location, s. The log of this intensity function is thus given as:

where � is a dataset-specific intercept term, �u is the coefficient associ-
ated with the uth environmental covariate and �(s) is a zero-mean spa-
tially continuous Gaussian random field (GRF), included in the model to 
account for potential spatial autocorrelation and the effects of all the 
environmental covariates not included in the model. Therefore, the ex-
pected number of species' presences within a region Ω is given by the 
integral of the intensity function across the entire region:

(1)�(s) = � +

k
∑

u=1

�uXu(s) + � (s),

F I G U R E  1  Representation of the 
structure of the integrated species 
distribution model, where each dataset is 
a separate realization of the ‘true’ species 
distribution. This is done by assuming 
each dataset has its own observation 
process, with a common latent, which is 
described by ecological covariates and 
parameters.
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Next, we assume that each dataset process (Yi , i = 1, 2, … , n) has its 
own sub-model (observation model), which provide a statistical de-
scription on the data-collection process (Isaac et al., 2020). These mod-
els link the intensity function to the dataset's assumed likelihood, given 
by, (Yi ∣ �(s), �i), where �i are the parameters for the ith observation 
model. Table 1 provides a description of the three types of datasets 
allowed in PointedSDMs: presence-only (modelled as a thinned Poisson 
random variable), presence–absence (modelled as a Bernoulli random 
variable with a cloglog link function (see Kéry & Royle, 2016) and counts 
(modelled as a Poisson random variable) datasets.

Then, by combining the process model with the observation 
models, the full likelihood for the data processes Y =

{

Y1,Y2, … ,Yn
}

 
is given by:

that is, the model component for the latent state of the model, multi-
plied by the product of the individual likelihoods for the data processes.

In addition to the species location data, datasets sometimes in-
clude additional trait variables (often referred to as marks). These 
data may also be included in the point-process modelling framework 
to supplement the amount of information in the SDM through the 
joint-likelihood method described above, by treating each mark as 
its own observation model. That is, we assume within the datasets 
there are marks 

(

Ml , l = 1, 2, … , p
)

 with associated observation mod-
els (Ml ∣ �(s), �l

)

, which results in the full likelihood:

2  |  PACK AGE FUNC TIONALIT Y

PointedSDMs was developed to streamline the modelling process 
and provide a general framework for integrated SDMs for ecologists 
who have a collection of heterogeneous datasets at hand. It does so 
by re-formatting and assigning appropriate metadata to the species' 

location and covariate data, and then constructing the relevant objects 
required by R-INLA (Martins et al., 2013) to do the model fitting. The 
package contains four primary functions for model pre-preparations 
(intModel), fitting and inference (fitISDM) and cross-validation (datase-
tOut and blockedCV), as well as several generic functions related to 
plotting, printing and predicting the results of the model.

intModel is the first function used in the integrated modelling 
process, and is built using R's R6 (Chang, 2021) object-orientated 
system. Here, the user adds the species location data, environ-
mental covariates, as well as additional R-INLA and sp (Pebesma & 
Bivand, 2005) objects required; most of the other arguments for 
this function are used to define variable names and terms to be 
included in the model. Since this is an R6 object, there are a hand-
ful of slot functions which allow further specification and adjust-
ments of the components in the model. A description of each of 
these slot functions and their intended use is available in Table 2. 
PointedSDMs allows datasets from three sampling schemes: 
presence-only, presence–absence and count data, where the lat-
ter two are defined in the model through their response variable 
names, using the intModel's arguments responsePA and responseC-
ounts, respectively.

If the user defines a spatial partitioning of their data points using 
intModel's slot function, ‘.\$spatialBlock’, spatial cross-validation may 
be performed using the function, blockedCV: which iteratively calcu-
lates a cross-validation score by leaving a certain block of data out of 
the model based on their spatial location.

fitISDM is used for the modelling and estimation of the inte-
grated model. The data argument of the function is an object created 
by the function intModel, which contains the necessary information 
and metadata required in the model. The second argument, options 
is used to control any additional R-INLA or inlabru options.

After the model has been estimated, another form of spatial 
cross-validation may be completed using the function, datasetOut. 
The function works by calculating a cross-validation score from the 
following steps:

1.	 Running a new model with one less dataset (from the main 
model)—resulting in a reduced model,

2.	 Predicting the intensity function at the locations of the left-out 
dataset with the reduced model,

3.	 Using the predicted values as an offset in a new model,

(2)�(s) = ∫Ω�(s)ds.

(3)(Y ∣ X ,�,�) ∝ p
(

�
(

(s
)

,X ,�
)

⋅

n
∏

i=1

(Yi ∣ �(s), �i),

(4)

(Y ,M ∣ X ,�,�) ∝ p
(

�
(

(s
)

,X ,�
)

⋅

n
∏

i=1

(Yi ∣ �(s), �i) ⋅
p
∏

l=1

(Ml ∣ �(s), �l
)

.

TA B L E  1  Details on the observation models for the species location data which may be used in the PointedSDMs R package.

Dataset type Statistical family Link function Dataset description

Presence-only Thinned Poisson log() Typically opportunistically collected data with only 
information on the species presence available, treated as a 
thinned point-process to reflect sampling biases

Presence–absence Binomial cloglog() Information on both the presence and absence of a species at 
a sampling location. Sometimes referred to as detection/
non-detection data

Counts Poisson log() The number of species located at each sampling location 
obtained through direct counts or some other index of 
abundance Sometimes referred to as abundance data

 2041210x, 2023, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14091 by N
tnu N

orw
egian U

niversity O
f Science &

 T
echnology, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1203Methods in Ecology and Evolu
onMOSTERT and O'HARA

4.	 Finding the difference between the marginal-likelihood of the 
main model (i.e. the model with all the datasets considered) and 
the marginal-likelihood of the offset model.

Installation of the package may be done directly from CRAN 
servers using the following R script:

install.packages(‘PointedSDMs’)

Any concerns and questions regarding the use of the package 
may be asked on issues board of the package's GitHub repository: 
https://github.com/Phili​pMost​ert/Point​edSDMs

3  |  WORKED E X AMPLE

3.1  |  Introduction

The example below illustrates the use of PointedSDMs in a worked 
example, using datasets from a variety of distinct sources. The data-
sets used include observations of the black-throated blue warbler 
Setophaga caerulescens (genus) from both structured and unstruc-
tured sampling schemes, obtained from various locations around 
Pennsylvania state (41°12′N, 77°11′W) on the eastern side of the 
United States of America (USA), which were collected between 2005 
and 2009. Similar studies using these data were presented by Miller 
et al.  (2019) and Isaac et al.  (2020), who used the WinBUGS (Lunn 
et al., 2000) and the R-INLA package, respectively, to obtain results.

3.2  |  Description of spatial covariates

Two standardized and continuous spatial covariates describing the 
study area were used in this analysis. The first, elevation, describes 

the height in metres above sea level, obtained from the package, 
elevatr (Hollister et al., 2021), and the second, canopy, describes the 
percentage of tree canopy covered in the area, obtained from the 
package, FedData (Bocinsky, 2022), which, in turn, accesses the data 
from the National Land Cover Database (NLCD). Both of these pack-
ages produced spatial covariates in the form of Raster objects, which 
we stacked into a single RasterBrick object before analysis.

3.3  |  Description of datasets

The data used in this analysis come from three heterogeneous 
sources, where we assumed the underlying sampling protocol for 
each dataset is unique to that dataset (we considered datasets rep-
resenting: presence-only, presence–absence and count data). These 
datasets and their unique sampling protocols are displayed graphi-
cally in Figure 2. We see that the three datasets combined have a 
better spatial representation of Pennsylvania compared to any data-
set individually. However, each has a different sampling protocol, 
which implies an ISDM is appropriate to use for this example.

The citizen science presence-only data were obtained from 
eBird (Sullivan et al., 2009), a citizen science project launched by the 
Cornell Lab of Ornithology where amateur birders are able to submit 
checklists of avian detections to an online data repository, which has 
grown significantly since its inception, and has established itself as 
a significant tool in scientific research. Since the eBird data are col-
lected by non-scientists, as so we expect the biases typically found 
in citizen science data. Given the nature of such data, we modelled 
these data as a thinned version of the intensity surface, with an ad-
ditional spatial random field to account for biases in the collection 
process (Simmonds et al., 2020). Mathematically, this is given by:

where �(s) is the thinning parameter of the intensity function since we 
assume imperfect detection from these data (and as a result, estimate 
relative abundance instead of true abundance). This parameter cannot 
be directly estimated, and is therefore confounded within the intercept 
term of the model.

The other two datasets used come from structured survey data. 
The first comes from the North American Breeding Bird Survey (BBS; 
Pardieck et al., 2018), a long-term birding project designed to monitor 
changes in North American breeding bird populations for numerous 
species (Sauer et al., 2017). These data are collected alongside road-
side survey routes composed of 50 independent stops 800 m apart 
from one another (Sauer et al., 2013). Surveys are conducted at each 
stops annually by an observer for a duration of 3 min, where avian 
species are identified by both sight and audition around a 400 m 
radius surrounding the stop. For their analysis, Isaac et al.  (2020) 
treated the BBS data as a replicate presence–absence data per sight; 
however, for illustrative purposes we treat it as a count datasets, 
with a response variable denoting the number of species observed 
at each sight. Mathematically, this is given by:

(5)
YeBird∼Poisson

(

�(s) ⋅e�eBird(s)
)

�(s)=�eBird+�elevation+�canopy+� shared(s)+�bias(s),

TA B L E  2  The main slot functions available in intModel. A 
demonstration of the different functions in use is presented in the 
Setophaga vignette in the package.

Slot function Description

.$plot() Create a plot of the points classified by either 
dataset or species

.$addData() Include species location data in the model

.$addBias() Add an additional bias spatial field to a 
selected dataset

.$updateFormula() Update the formula for selected observation 
models

.$changeComponents() Add or remove specific inlabru components 
in the model

.$priorsFixed() Specify priors for the fixed effects in the model

.$specifySpatial() Specify arguments for the spatial field 
construction

.$spatialBlock() Spatially block the data for cross-validation

.$addSamplers() Add integration domain for the presence-only 
datasets
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The Pennsylvania Breeding Bird Atlas (BBA; obtained from Paton 
et al., 2019) is another long-term avian project following a standardized 
collection process (Wilson et al., 2012). These data comprise of more 
than 34,000 point counts (5165 points across the state of Pennsylvania) 
collected over a period of 5 years (2005–2009). Observers recorded 
observations of singing black-throated blue warbler around a 150 m 
radius for 5 equal intervals, each 75 s in duration. Following Isaac 
et al. (2020), we treat this data as detection/non-detection data (1 in-
dicating the presence of a species; 0 indicating the absence of a spe-
cies) and assume that the sights are small enough to be represented as 
points. Mathematically, this is given by:

where pi represents the probability of presence in location i .

3.4  |  Model preparations

The first step to running an integrated model with PointedSDMs is to 
organize and assign appropriate metadata to the individual datasets, 
using the intModel function, which is used to initiate and prepare the 

statistical model before any inference is made; and so the arguments 
it takes are used to assign the relevant metadata to the datasets and 
covariates as well as set up all the objects required by R-INLA.

# SpatialPolygons object of PA state for the boundary for the mesh  
PA <- USAboundaries::us_states(states = "Pennsylvania")  
PA <- PA$geometry[1]  
PA <- as(PA, "Spatial")  
  
mesh <- INLA::inla.mesh.2d(boundary = inla.sp2segment(PA),  
                                                cutoff = 0.2,  
                                                max.edge = c(0.1, 0.24),   
                                                offset = c(0.1, 0.4))  
   
proj <- sp::CRS("+proj=longlat +datum=WGS84  
                           +no_defs +ellps=WGS84 +towgs84=0,0,0")  
  
# Stack covariates together into one Raster object  
covariates <- scale(stack(elev_raster, NLCD_canopy_raster))  
names(covariates) <- c('elevation', 'canopy')  
   
spatial_data <- intModel(eBird_caerulescens, BBS, BBA,  
                          Coordinates = c('X', 'Y'),  
                          Projection = proj, Mesh = mesh,  
                          responsePA = 'NPres', responseCounts = 'Counts',  
                          spatialCovariates = covariates)

(6)
YBBS∼Poisson

(

e�BBS(s)
)

�BBS(s)=�BBS+�elevation+�canopy+� shared(s).

(7)
YBBA∼Binomial

(

pi
)

cloglog
(

pi
)

=�BBA+�elevation+�canopy+� shared(s),

F I G U R E  2  (a–c) Plots of the three datasets considered in the case study for species Setophaga caerulescens. (d) Map of the United States 
of America, highlighting Pennsylvania state.
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We would also like to account for spatial autocorrelation in the 
model through a GRF with a Matérn covariance function, which may 
be computationally expensive for large point process models. R-INLA 
counters this issue by approximating these GRFs via the stochastic 
partial differential equation (SPDE) approach (Lindgren et al., 2011), 
which requires the construction of a Delaunay triangulated mesh 
(interested readers who would like further details on the mesh con-
struction are referred to Krainski et al., 2018; Lindgren & Rue, 2015). 
The mesh for this example was created with the inla.mesh.2d func-
tion by supplying a SpatialPolygons boundary of the study region 
as well as the max.edge, offset, and cutoff arguments. Furthermore, 
the SPDE models for this example were specified using penalizing 
complexity (PC) priors (Simpson et al., 2017), which are designed to 
control the spatial range and standard deviation in the GRF's Matérn 
covariance function to reduce over-fitting in the model.

spatial_data$specifySpatial(sharedSpatial = TRUE,  
		              prior.sigma = c(5, 0.01),  
		              prior.range = c(1, 0.01))

Simmonds et al.  (2020) demonstrated in a simulation study 
that running a second spatial field for opportunistically collected 
presence-only data is a useful method to account for bias when 
knowledge of the sources of bias is scant or when covariates to 
adjust for bias are unavailable. Therefore, we use the `.\$addBias` 
function to add a second spatial field to our citizen science data to 
account for potential biases not reflected in the shared field.

spatial_data$addBias(‘eBird_caerulescens’)

3.5  |  Results

The integrated model is easily fit using the fitISDM function as below, 
which takes two arguments: data (which is an intModel object cre-
ated above) and options (which is a list of R-INLA and inlabru options 
used to configure the model). In this model, the two fixed covariates 
and separate intercept terms for the three datasets were consid-
ered. In addition to the bias field for eBird_caerulescens, a common 
spatial field was used across the datasets; and to speed up computa-
tion time, R-INLA's empirical Bayes' integration strategy was used.

spat_model <- fitISDM(data = spatial_data,  
       options = list(control.inla = list(int.strategy='eb')))

PointedSDMs also includes the function datasetOut to carry out 
a form leave-one-out cross validation, which iteratively omits one 
dataset (and its associated marks) out of the full model. Table 3 illus-
trates the results of omitting one dataset out of the model at a time, 
where the mean change in fixed effects appears to vary significantly 
between the datasets.

data_out <- datasetOut(model = spat_model,  
	    dataset = c('BBS', 'BBA', 'eBird_caerulescens'),  
	    predictions = TRUE)

Setting predictions = TRUE allows the user to calculate a cross-
validation score obtained by leaving out a dataset. In this case leav-
ing out the BBS dataset causes the greatest difference in marginal 
likelihood between the main model and the reduced (without BBS) 
model, suggesting that this dataset provides the most information in 
our integrated model.

3.6  |  Predictions

A crucial part of the process of making SDMs is creating prediction 
maps (such as those in Figure 3 to help researchers understand the 
species' spread. Predictions of the ISDMs from fitISDM are made 
easy using the predict function. The function will automatically 
create individual formulas to predict per dataset after the user has 
specified which components they would like to predict (with the ar-
guments: covariates, spatial and intercept); and all components used 

TA B L E  3  Leave-one-out cross-validation score as well as the 
changes in fixed effects as a result of leaving a dataset out. The 
cross-validation score is calculated by finding the difference 
between the marginal likelihood of the full model, and the marginal 
likelihood of the model with the dataset left out.

Dataset left out � Elevation � Canopy
Cross-validation 
score

BBS 0.1974 0.1074 3.4660

BBA −0.5537 −0.1786 2.7370

eBird 0.0951 0.0867 2.3187

F I G U R E  3  Mean and standard 
deviation of the predicted intensity 
(log(�(s))) of the integrated species 
distribution model, which gives a 
reflection of relative abundance across 
the spatial map.
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in the model may be included by setting the predictor argument to 
TRUE. However, any formula may be predicted by using the func-
tion's formula argument.

projections <- predict(spat_model, mesh = mesh,  
		     mask = PA,  
		     predictor = TRUE,  
		     fun = 'linear',  
		     n.samples = 1000)  
projection_means <- plot(projections,  
		           plot = FALSE)

PointedSDMs also provides methods to plot basic predictive maps 
for a variety of statistics. By setting the plot argument to FALSE, the 
ggplot (Wickham,  2016) object of the predicted statistic is given, 
which would allow for more custom plotting functionality.

4  |  CONCLUSIONS

PointedSDMs is an R package that provides the tools to make the 
most of the vast volume of species location data available today, by 
promoting and facilitating the integrated modelling of marked point 
process SDMs in a convenient way. It does so using the now well-
established INLA methodology, and by constructing wrapper func-
tions around the R package, inlabru.

4.1  |  Opportunities for future work

A multitude of different R packages have been developed in the past to 
assist with the construction of SDMs (see: dismo [Hijmans et al., 2022], 
sdm [Naimi & Aráujo,  2016], biomod2 [Thuiller et al.,  2023], HMSC 
[Tikhonov et al., 2020] to mention a few); however, none of them have 
methods to create ISDMs—thus providing a novelty of PointedSDMs. 
Despite this, there are still extensions to the PointedSDMs framework 
which should considered to extend the project further.

Different groups of species influence each other through a 
multitude of processes (such as predation and competition), 
thereby affecting each other's distribution across space and time. 
A method to account for these processes would be to add inter-
species interactions between different species, therefore chang-
ing the model framework to a joint species distribution model 
(JSDM).

A limitation of this model is that it only incorporates a small sub-
set of the types of data used in ecology (presence-only, presence–
absence and count data). Therefore, there is an opportunity to 
incorporate other types of data (such as biomass and movement 
data) into this framework, which would thereby extend the possibil-
ities of research within a project.

Furthermore, providing tools to assist users in adding more 
custom components into the model, for example being able to 
both add random effects and change their precision matrix, should 

be considered. Incorporating this into the package would allow 
PointedSDMs to be used in additional analyses, such as studying 
phylogenetics.

Finally, constructing the necessary tools and data pipelines to 
move species and environmental data from online repositories to 
create a complete workflow in a way that is not only reproducible, 
but also easy enough to use for ecologists and policymakers with 
minimal basic skills would allow a package like this to show off its 
full potential (a reflection of the steps to develop such a workflow is 
discussed in Mostert et al., 2022). Before this is completed, tools re-
quired to simplify the sharing and standardization of ecological data 
on a large scale need to be developed.
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